/* * Lance ethernet driver for the MIPS processor based * DECstation family * * * adopted from sunlance.c by Richard van den Berg * * additional sources: * - PMAD-AA TURBOchannel Ethernet Module Functional Specification, * Revision 1.2 * * History: * * v0.001: The kernel accepts the code and it shows the hardware address. * * v0.002: Removed most sparc stuff, left only some module and dma stuff. * * v0.003: Enhanced base address calculation from proposals by * Harald Koerfgen and Thomas Riemer. * * v0.004: lance-regs is pointing at the right addresses, added prom * check. First start of address mapping and DMA. * * v0.005: started to play around with LANCE-DMA. This driver will not work * for non IOASIC lances. HK * * v0.006: added pointer arrays to lance_private and setup routine for them * in dec_lance_init. HK * * v0.007: Big shit. The LANCE seems to use a different DMA mechanism to access * the init block. This looks like one (short) word at a time, but the smallest * amount the IOASIC can transfer is a (long) word. So we have a 2-2 padding here. * Changed lance_init_block accordingly. The 16-16 padding for the buffers * seems to be correct. HK * * v0.008 - mods to make PMAX_LANCE work. 01/09/1999 triemer */ #undef DEBUG_DRIVER static char *version = "declance.c: v0.008 by Linux Mips DECstation task force\n"; static char *lancestr = "LANCE"; /* * card types */ #define ASIC_LANCE 1 #define PMAD_LANCE 2 #define PMAX_LANCE 3 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_TC unsigned long system_base = 0; unsigned long dmaptr; #endif static int type; #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ #define LE_CSR0 0 #define LE_CSR1 1 #define LE_CSR2 2 #define LE_CSR3 3 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */ #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */ #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */ #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */ #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */ #define LE_C0_MERR 0x0800 /* ME: Memory error */ #define LE_C0_RINT 0x0400 /* Received interrupt */ #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */ #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */ #define LE_C0_INTR 0x0080 /* Interrupt or error */ #define LE_C0_INEA 0x0040 /* Interrupt enable */ #define LE_C0_RXON 0x0020 /* Receiver on */ #define LE_C0_TXON 0x0010 /* Transmitter on */ #define LE_C0_TDMD 0x0008 /* Transmitter demand */ #define LE_C0_STOP 0x0004 /* Stop the card */ #define LE_C0_STRT 0x0002 /* Start the card */ #define LE_C0_INIT 0x0001 /* Init the card */ #define LE_C3_BSWP 0x4 /* SWAP */ #define LE_C3_ACON 0x2 /* ALE Control */ #define LE_C3_BCON 0x1 /* Byte control */ /* Receive message descriptor 1 */ #define LE_R1_OWN 0x80 /* Who owns the entry */ #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */ #define LE_R1_FRA 0x20 /* FRA: Frame error */ #define LE_R1_OFL 0x10 /* OFL: Frame overflow */ #define LE_R1_CRC 0x08 /* CRC error */ #define LE_R1_BUF 0x04 /* BUF: Buffer error */ #define LE_R1_SOP 0x02 /* Start of packet */ #define LE_R1_EOP 0x01 /* End of packet */ #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T1_OWN 0x80 /* Lance owns the packet */ #define LE_T1_ERR 0x40 /* Error summary */ #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */ #define LE_T1_EONE 0x08 /* Error: one retry needed */ #define LE_T1_EDEF 0x04 /* Error: deferred */ #define LE_T1_SOP 0x02 /* Start of packet */ #define LE_T1_EOP 0x01 /* End of packet */ #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T3_BUF 0x8000 /* Buffer error */ #define LE_T3_UFL 0x4000 /* Error underflow */ #define LE_T3_LCOL 0x1000 /* Error late collision */ #define LE_T3_CLOS 0x0800 /* Error carrier loss */ #define LE_T3_RTY 0x0400 /* Error retry */ #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */ /* Define: 2^4 Tx buffers and 2^4 Rx buffers */ #ifndef LANCE_LOG_TX_BUFFERS #define LANCE_LOG_TX_BUFFERS 4 #define LANCE_LOG_RX_BUFFERS 4 #endif #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) #define PKT_BUF_SZ 1536 #define RX_BUFF_SIZE PKT_BUF_SZ #define TX_BUFF_SIZE PKT_BUF_SZ #undef TEST_HITS #define DEBUG_DRIVER 1 #define ZERO 0 /* The DS2000/3000 have a linear 64 KB buffer. * The PMAD-AA has 128 kb buffer on-board. * * The IOASIC LANCE devices use a shared memory region. This region as seen * from the CPU is (max) 128 KB long and has to be on an 128 KB boundary. * The LANCE sees this as a 64 KB long continuous memory region. * * The LANCE's DMA address is used as an index in this buffer and DMA takes * place in bursts of eight 16-Bit words which are packed into four 32-Bit words * by the IOASIC. This leads to a strange padding: 16 bytes of valid data followed * by a 16 byte gap :-(. */ struct lance_rx_desc { unsigned short rmd0; /* low address of packet */ short gap0; unsigned char rmd1_hadr; /* high address of packet */ unsigned char rmd1_bits; /* descriptor bits */ short gap1; short length; /* This length is 2s complement (negative)! * Buffer length */ short gap2; unsigned short mblength; /* This is the actual number of bytes received */ short gap3; }; struct lance_tx_desc { unsigned short tmd0; /* low address of packet */ short gap0; unsigned char tmd1_hadr; /* high address of packet */ unsigned char tmd1_bits; /* descriptor bits */ short gap1; short length; /* Length is 2s complement (negative)! */ short gap2; unsigned short misc; short gap3; }; /* First part of the LANCE initialization block, described in databook. */ struct lance_init_block { unsigned short mode; /* Pre-set mode (reg. 15) */ short gap0; unsigned char phys_addr[12]; /* Physical ethernet address * only 0, 1, 4, 5, 8, 9 are valid * 2, 3, 6, 7, 10, 11 are gaps */ unsigned short filter[8]; /* Multicast filter. * only 0, 2, 4, 6 are valid * 1, 3, 5, 7 are gaps */ /* Receive and transmit ring base, along with extra bits. */ unsigned short rx_ptr; /* receive descriptor addr */ short gap1; unsigned short rx_len; /* receive len and high addr */ short gap2; unsigned short tx_ptr; /* transmit descriptor addr */ short gap3; unsigned short tx_len; /* transmit len and high addr */ short gap4; char gap5[16]; /* The buffer descriptors */ struct lance_rx_desc brx_ring[RX_RING_SIZE]; struct lance_tx_desc btx_ring[TX_RING_SIZE]; }; #define BUF_OFFSET_CPU sizeof(struct lance_init_block) #define BUF_OFFSET_LNC (sizeof(struct lance_init_block)>>1) #define libdesc_offset(rt, elem) \ ((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem]))))) /* * This works *only* for the ring descriptors */ #define LANCE_ADDR(x) (PHYSADDR(x) >> 1) struct lance_private { char *name; volatile struct lance_regs *ll; volatile struct lance_init_block *init_block; volatile unsigned long *dma_ptr_reg; int rx_new, tx_new; int rx_old, tx_old; struct net_device_stats stats; unsigned short busmaster_regval; struct net_device *dev; /* Backpointer */ struct lance_private *next_module; /* Pointers to the ring buffers as seen from the CPU */ char *rx_buf_ptr_cpu[RX_RING_SIZE]; char *tx_buf_ptr_cpu[TX_RING_SIZE]; /* Pointers to the ring buffers as seen from the LANCE */ char *rx_buf_ptr_lnc[RX_RING_SIZE]; char *tx_buf_ptr_lnc[TX_RING_SIZE]; }; #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\ lp->tx_old - lp->tx_new-1) /* The lance control ports are at an absolute address, machine and tc-slot * dependant. * DECstations do only 32-bit access and the LANCE uses 16 bit addresses, * so we have to give the structure an extra member making rap pointing * at the right address */ struct lance_regs { volatile unsigned short rdp; /* register data port */ unsigned short pad; volatile unsigned short rap; /* register address port */ }; int dec_lance_debug = 2; /* #ifdef MODULE static struct lance_private *root_lance_dev = NULL; #endif */ static inline void writereg(volatile unsigned short *regptr, short value) { *regptr = value; wbflush(); } /* Load the CSR registers */ static void load_csrs(struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; int leptr; /* The address space as seen from the LANCE * begins at address 0. HK */ leptr = 0; writereg(&ll->rap, LE_CSR1); writereg(&ll->rdp, (leptr & 0xFFFF)); writereg(&ll->rap, LE_CSR2); writereg(&ll->rdp, leptr >> 16); writereg(&ll->rap, LE_CSR3); writereg(&ll->rdp, lp->busmaster_regval); /* Point back to csr0 */ writereg(&ll->rap, LE_CSR0); } /* * Our specialized copy routines * */ void cp_to_buf(void *to, const void *from, __kernel_size_t len) { unsigned short *tp, *fp, clen; unsigned char *rtp, *rfp; if (type == PMAX_LANCE) { clen = len >> 1; tp = (unsigned short *) to; fp = (unsigned short *) from; while (clen--) { *tp++ = *fp++; tp++; } clen = len & 1; rtp = (unsigned char *) tp; rfp = (unsigned char *) fp; while (clen--) { *rtp++ = *rfp++; } } else { /* * copy 16 Byte chunks */ clen = len >> 4; tp = (unsigned short *) to; fp = (unsigned short *) from; while (clen--) { *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; tp += 8; } /* * do the rest, if any. */ clen = len & 15; rtp = (unsigned char *) tp; rfp = (unsigned char *) fp; while (clen--) { *rtp++ = *rfp++; } } wbflush(); } void cp_from_buf(void *to, unsigned char *from, int len) { unsigned short *tp, *fp, clen; unsigned char *rtp, *rfp; if (type == PMAX_LANCE) { clen = len >> 1; tp = (unsigned short *) to; fp = (unsigned short *) from; while (clen--) { *tp++ = *fp++; fp++; } clen = len & 1; rtp = (unsigned char *) tp; rfp = (unsigned char *) fp; while (clen--) { *rtp++ = *rfp++; } } else { /* * copy 16 Byte chunks */ clen = len >> 4; tp = (unsigned short *) to; fp = (unsigned short *) from; while (clen--) { *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; *tp++ = *fp++; fp += 8; } /* * do the rest, if any. */ clen = len & 15; rtp = (unsigned char *) tp; rfp = (unsigned char *) fp; while (clen--) { *rtp++ = *rfp++; } } } /* Setup the Lance Rx and Tx rings */ /* Sets dev->tbusy */ static void lance_init_ring(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib; int leptr; int i; ib = (struct lance_init_block *) (dev->mem_start); /* Lock out other processes while setting up hardware */ dev->tbusy = 1; lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; ib->mode = 0; /* Copy the ethernet address to the lance init block. * XXX bit 0 of the physical address registers has to be zero */ ib->phys_addr[0] = dev->dev_addr[0]; ib->phys_addr[1] = dev->dev_addr[1]; ib->phys_addr[4] = dev->dev_addr[2]; ib->phys_addr[5] = dev->dev_addr[3]; ib->phys_addr[8] = dev->dev_addr[4]; ib->phys_addr[9] = dev->dev_addr[5]; /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(libdesc_offset(brx_ring, 0)); ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16); ib->rx_ptr = leptr; if (ZERO) printk("RX ptr: %8.8x(%8.8x)\n", leptr, libdesc_offset(brx_ring, 0)); /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(libdesc_offset(btx_ring, 0)); ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16); ib->tx_ptr = leptr; if (ZERO) printk("TX ptr: %8.8x(%8.8x)\n", leptr, libdesc_offset(btx_ring, 0)); /* Clear the multicast filter */ ib->filter[0] = 0; ib->filter[2] = 0; ib->filter[4] = 0; ib->filter[6] = 0; if (ZERO) printk("TX rings:\n"); /* Setup the Tx ring entries */ for (i = 0; i < TX_RING_SIZE; i++) { leptr = (int) lp->tx_buf_ptr_lnc[i]; ib->btx_ring[i].tmd0 = leptr; ib->btx_ring[i].tmd1_hadr = leptr >> 16; ib->btx_ring[i].tmd1_bits = 0; ib->btx_ring[i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring[i].misc = 0; if (i < 3 && ZERO) printk("%d: 0x%8.8x(0x%8.8x)\n", i, leptr, (int) lp->tx_buf_ptr_cpu[i]); } /* Setup the Rx ring entries */ if (ZERO) printk("RX rings:\n"); for (i = 0; i < RX_RING_SIZE; i++) { leptr = (int) lp->rx_buf_ptr_lnc[i]; ib->brx_ring[i].rmd0 = leptr; ib->brx_ring[i].rmd1_hadr = leptr >> 16; ib->brx_ring[i].rmd1_bits = LE_R1_OWN; ib->brx_ring[i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring[i].mblength = 0; if (i < 3 && ZERO) printk("%d: 0x%8.8x(0x%8.8x)\n", i, leptr, (int) lp->rx_buf_ptr_cpu[i]); } wbflush(); } static int init_restart_lance(struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; int i; writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_INIT); /* Wait for the lance to complete initialization */ for (i = 0; (i < 100) && !(ll->rdp & LE_C0_IDON); i++) { udelay(10); } if ((i == 100) || (ll->rdp & LE_C0_ERR)) { printk("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp); return -1; } if ((ll->rdp & LE_C0_ERR)) { printk("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp); return -1; } writereg(&ll->rdp, LE_C0_IDON); writereg(&ll->rdp, LE_C0_STRT); writereg(&ll->rdp, LE_C0_INEA); return 0; } static int lance_rx(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib; volatile struct lance_rx_desc *rd = 0; unsigned char bits; int len = 0; struct sk_buff *skb = 0; ib = (struct lance_init_block *) (dev->mem_start); #ifdef TEST_HITS int i; printk("["); for (i = 0; i < RX_RING_SIZE; i++) { if (i == lp->rx_new) printk("%s", ib->brx_ring[i].rmd1_bits & LE_R1_OWN ? "_" : "X"); else printk("%s", ib->brx_ring[i].rmd1_bits & LE_R1_OWN ? "." : "1"); } printk("]"); #endif for (rd = &ib->brx_ring[lp->rx_new]; !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring[lp->rx_new]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { lp->stats.rx_over_errors++; lp->stats.rx_errors++; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++; if (bits & LE_R1_OFL) lp->stats.rx_over_errors++; if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++; if (bits & LE_R1_EOP) lp->stats.rx_errors++; } else { len = (rd->mblength & 0xfff) - 4; skb = dev_alloc_skb(len + 2); if (skb == 0) { printk("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; return 0; } lp->stats.rx_bytes += len; skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align */ skb_put(skb, len); /* make room */ cp_from_buf(skb->data, (char *) lp->rx_buf_ptr_cpu[lp->rx_new], len); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); lp->stats.rx_packets++; } /* Return the packet to the pool */ rd->mblength = 0; rd->length = -RX_BUFF_SIZE | 0xf000; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; } return 0; } static int lance_tx(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib; volatile struct lance_regs *ll = lp->ll; volatile struct lance_tx_desc *td; int i, j; int status; ib = (struct lance_init_block *) (dev->mem_start); j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { td = &ib->btx_ring[i]; /* If we hit a packet not owned by us, stop */ if (td->tmd1_bits & LE_T1_OWN) break; if (td->tmd1_bits & LE_T1_ERR) { status = td->misc; lp->stats.tx_errors++; if (status & LE_T3_RTY) lp->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) lp->stats.tx_window_errors++; if (status & LE_T3_CLOS) { lp->stats.tx_carrier_errors++; printk("%s: Carrier Lost", dev->name); /* Stop the lance */ writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); load_csrs(lp); init_restart_lance(lp); return 0; } /* Buffer errors and underflows turn off the * transmitter, restart the adapter. */ if (status & (LE_T3_BUF | LE_T3_UFL)) { lp->stats.tx_fifo_errors++; printk("%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); /* Stop the lance */ writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); load_csrs(lp); init_restart_lance(lp); return 0; } } else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits &= ~(LE_T1_POK); /* One collision before packet was sent. */ if (td->tmd1_bits & LE_T1_EONE) lp->stats.collisions++; /* More than one collision, be optimistic. */ if (td->tmd1_bits & LE_T1_EMORE) lp->stats.collisions += 2; lp->stats.tx_packets++; } j = (j + 1) & TX_RING_MOD_MASK; } lp->tx_old = j; return 0; } static void lance_interrupt(const int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; int csr0; if (dev->interrupt) printk("%s: again\n", dev->name); dev->interrupt = 1; writereg(&ll->rap, LE_CSR0); csr0 = ll->rdp; /* Acknowledge all the interrupt sources ASAP */ writereg(&ll->rdp, csr0 & (LE_C0_INTR | LE_C0_TINT | LE_C0_RINT)); if ((csr0 & LE_C0_ERR)) { /* Clear the error condition */ writereg(&ll->rdp, LE_C0_BABL | LE_C0_ERR | LE_C0_MISS | LE_C0_CERR | LE_C0_MERR); } if (csr0 & LE_C0_RINT) lance_rx(dev); if (csr0 & LE_C0_TINT) lance_tx(dev); if ((TX_BUFFS_AVAIL >= 0) && dev->tbusy) { dev->tbusy = 0; mark_bh(NET_BH); } if (csr0 & LE_C0_BABL) lp->stats.tx_errors++; if (csr0 & LE_C0_MISS) lp->stats.rx_errors++; if (csr0 & LE_C0_MERR) { volatile unsigned long int_stat = *(unsigned long *) (system_base + IOCTL + SIR); printk("%s: Memory error, status %04x", dev->name, csr0); if (int_stat & LANCE_DMA_MEMRDERR) { printk("%s: DMA error\n", dev->name); int_stat |= LANCE_DMA_MEMRDERR; /* * re-enable LANCE DMA */ *(unsigned long *) (system_base + IOCTL + SSR) |= (1 << 16); wbflush(); } writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); load_csrs(lp); init_restart_lance(lp); dev->tbusy = 0; } writereg(&ll->rdp, LE_C0_INEA); writereg(&ll->rdp, LE_C0_INEA); dev->interrupt = 0; } struct net_device *last_dev = 0; static int lance_open(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; int status = 0; last_dev = dev; /* Associate IRQ with lance_interrupt */ if (request_irq(dev->irq, &lance_interrupt, 0, lp->name, dev)) { printk("Lance: Can't get irq %d\n", dev->irq); return -EAGAIN; } /* Stop the Lance */ writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); load_csrs(lp); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; status = init_restart_lance(lp); /* * if (!status) * MOD_INC_USE_COUNT; */ return status; } static int lance_close(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; dev->start = 0; dev->tbusy = 1; /* Stop the card */ writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); free_irq(dev->irq, (void *) dev); /* MOD_DEC_USE_COUNT; */ return 0; } static inline int lance_reset(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; int status; /* Stop the lance */ writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); load_csrs(lp); dev->trans_start = jiffies; dev->interrupt = 0; dev->start = 1; dev->tbusy = 0; status = init_restart_lance(lp); #ifdef DEBUG_DRIVER printk("Lance restart=%d\n", status); #endif return status; } static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib; unsigned long flags; int entry, skblen, len; int status = 0; static int outs; ib = (struct lance_init_block *) (dev->mem_start); /* Transmitter timeout, serious problems */ if (dev->tbusy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 100) { status = -1; } else { printk("%s: transmit timed out, status %04x, reset\n", dev->name, ll->rdp); lance_reset(dev); } return status; } /* Block a timer-based transmit from overlapping. */ if (test_and_set_bit(0, (void *) &dev->tbusy) != 0) { printk("Transmitter access conflict.\n"); return -1; } skblen = skb->len; save_and_cli(flags); if (!TX_BUFFS_AVAIL) { restore_flags(flags); return -1; } len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; lp->stats.tx_bytes += len; entry = lp->tx_new & TX_RING_MOD_MASK; ib->btx_ring[entry].length = (-len); ib->btx_ring[entry].misc = 0; cp_to_buf((char *) lp->tx_buf_ptr_cpu[entry], skb->data, skblen); /* Clear the slack of the packet, do I need this? */ /* For a firewall its a good idea - AC */ /* if (len != skblen) memset ((char *) &ib->tx_buf [entry][skblen], 0, (len - skblen) << 1); */ /* Now, give the packet to the lance */ ib->btx_ring[entry].tmd1_bits = (LE_T1_POK | LE_T1_OWN); lp->tx_new = (lp->tx_new + 1) & TX_RING_MOD_MASK; outs++; /* Kick the lance: transmit now */ writereg(&ll->rdp, LE_C0_INEA | LE_C0_TDMD); dev->trans_start = jiffies; dev_kfree_skb(skb); if (TX_BUFFS_AVAIL) dev->tbusy = 0; restore_flags(flags); return status; } static struct net_device_stats *lance_get_stats(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; return &lp->stats; } static void lance_load_multicast(struct net_device *dev) { volatile struct lance_init_block *ib = (struct lance_init_block *) (dev->mem_start); volatile u16 *mcast_table = (u16 *) & ib->filter; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_BE; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI) { ib->filter[0] = 0xffff; ib->filter[2] = 0xffff; ib->filter[4] = 0xffff; ib->filter[6] = 0xffff; return; } /* clear the multicast filter */ ib->filter[0] = 0; ib->filter[2] = 0; ib->filter[4] = 0; ib->filter[6] = 0; /* Add addresses */ for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = 0xffffffff; for (byte = 0; byte < 6; byte++) for (bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if (test) { crc = crc ^ poly; } } crc = crc >> 26; mcast_table[crc >> 3] |= 1 << (crc & 0xf); } return; } static void lance_set_multicast(struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib; volatile struct lance_regs *ll = lp->ll; ib = (struct lance_init_block *) (dev->mem_start); while (dev->tbusy) schedule(); set_bit(0, (void *) &dev->tbusy); while (lp->tx_old != lp->tx_new) schedule(); writereg(&ll->rap, LE_CSR0); writereg(&ll->rdp, LE_C0_STOP); lance_init_ring(dev); if (dev->flags & IFF_PROMISC) { ib->mode |= LE_MO_PROM; } else { ib->mode &= ~LE_MO_PROM; lance_load_multicast(dev); } load_csrs(lp); init_restart_lance(lp); dev->tbusy = 0; } static int __init dec_lance_init(struct net_device *dev, const int type) { static unsigned version_printed = 0; struct lance_private *lp; volatile struct lance_regs *ll; int i; unsigned long esar_base; unsigned char *esar; #ifndef CONFIG_TC system_base = KN01_LANCE_BASE; #else int slot; #endif if (dec_lance_debug && version_printed++ == 0) printk(version); if (dev == NULL) { dev = init_etherdev(0, sizeof(struct lance_private) + 8); } else { dev->priv = kmalloc(sizeof(struct lance_private) + 8, GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof(struct lance_private) + 8); } /* Make certain the data structures used by the LANCE are aligned. */ dev->priv = (void *) (((unsigned long) dev->priv + 7) & ~7); lp = (struct lance_private *) dev->priv; switch (type) { #ifdef CONFIG_TC case ASIC_LANCE: dev->base_addr = system_base + LANCE; /* buffer space for the on-board LANCE shared memory */ /* * FIXME: ugly hack! */ dev->mem_start = KSEG1ADDR(0x0020000); dev->mem_end = dev->mem_start + 0x00020000; dev->irq = ETHER; esar_base = system_base + ESAR; /* * setup the pointer arrays, this sucks [tm] :-( */ for (i = 0; i < RX_RING_SIZE; i++) { lp->rx_buf_ptr_cpu[i] = (char *) (dev->mem_start + BUF_OFFSET_CPU + 2 * i * RX_BUFF_SIZE); lp->rx_buf_ptr_lnc[i] = (char *) (BUF_OFFSET_LNC + i * RX_BUFF_SIZE); } for (i = 0; i < TX_RING_SIZE; i++) { lp->tx_buf_ptr_cpu[i] = (char *) (dev->mem_start + BUF_OFFSET_CPU + 2 * RX_RING_SIZE * RX_BUFF_SIZE + 2 * i * TX_BUFF_SIZE); lp->tx_buf_ptr_lnc[i] = (char *) (BUF_OFFSET_LNC + RX_RING_SIZE * RX_BUFF_SIZE + i * TX_BUFF_SIZE); } /* * setup and enable IOASIC LANCE DMA */ lp->dma_ptr_reg = (unsigned long *) (system_base + IOCTL + LANCE_DMA_P); *(lp->dma_ptr_reg) = PHYSADDR(dev->mem_start) << 3; *(unsigned long *) (system_base + IOCTL + SSR) |= (1 << 16); wbflush(); break; case PMAD_LANCE: slot = search_tc_card("PMAD-AA"); claim_tc_card(slot); dev->mem_start = get_tc_base_addr(slot); dev->base_addr = dev->mem_start + 0x100000; dev->irq = get_tc_irq_nr(slot); esar_base = dev->mem_start + 0x1c0002; break; #endif case PMAX_LANCE: dev->irq = ETHER; dev->base_addr = KN01_LANCE_BASE; dev->mem_start = KN01_LANCE_BASE + 0x01000000; esar_base = KN01_RTC_BASE + 1; /* * setup the pointer arrays, this sucks [tm] :-( */ for (i = 0; i < RX_RING_SIZE; i++) { lp->rx_buf_ptr_cpu[i] = (char *) (dev->mem_start + BUF_OFFSET_CPU + 2 * i * RX_BUFF_SIZE); lp->rx_buf_ptr_lnc[i] = (char *) (BUF_OFFSET_LNC + i * RX_BUFF_SIZE); } for (i = 0; i < TX_RING_SIZE; i++) { lp->tx_buf_ptr_cpu[i] = (char *) (dev->mem_start + BUF_OFFSET_CPU + 2 * RX_RING_SIZE * RX_BUFF_SIZE + 2 * i * TX_BUFF_SIZE); lp->tx_buf_ptr_lnc[i] = (char *) (BUF_OFFSET_LNC + RX_RING_SIZE * RX_BUFF_SIZE + i * TX_BUFF_SIZE); } break; default: printk("declance_init called with unknown type\n"); return -ENODEV; break; } ll = (struct lance_regs *) dev->base_addr; esar = (unsigned char *) esar_base; /* prom checks */ /* First, check for test pattern */ if (esar[0x60] != 0xff && esar[0x64] != 0x00 && esar[0x68] != 0x55 && esar[0x6c] != 0xaa) { printk("Ethernet station address prom not found!\n"); return -ENODEV; } /* Check the prom contents */ for (i = 0; i < 8; i++) { if (esar[i * 4] != esar[0x3c - i * 4] && esar[i * 4] != esar[0x40 + i * 4] && esar[0x3c - i * 4] != esar[0x40 + i * 4]) { printk("Something is wrong with the ethernet " "station address prom!\n"); return -ENODEV; } } /* Copy the ethernet address to the device structure, later to the * lance initialization block so the lance gets it every time it's * (re)initialized. */ switch (type) { case ASIC_LANCE: printk("%s: IOASIC onboard LANCE, addr = ", dev->name); break; case PMAD_LANCE: printk("%s: PMAD-AA, addr = ", dev->name); break; case PMAX_LANCE: printk("%s: PMAX onboard LANCE, addr = ", dev->name); break; } for (i = 0; i < 6; i++) { dev->dev_addr[i] = esar[i * 4]; printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ',' : ':'); } printk(" irq = %d\n", dev->irq); /* Fill the dev fields */ dev->open = lance_open; dev->stop = lance_close; dev->hard_start_xmit = lance_start_xmit; dev->get_stats = lance_get_stats; dev->set_multicast_list = lance_set_multicast; dev->dma = 0; /* lp->ll is the location of the registers for lance card */ lp->ll = ll; lp->name = lancestr; /* busmaster_regval (CSR3) should be zero according to the PMAD-AA * specification. */ lp->busmaster_regval = 0; lp->dev = dev; ether_setup(dev); /* #ifdef MODULE dev->ifindex = dev_new_index(); lp->next_module = root_lance_dev; root_lance_dev = lp; #endif */ return 0; } /* Find all the lance cards on the system and initialize them */ int __init dec_lance_probe(struct net_device *dev) { static int called = 0; #ifdef CONFIG_TC int slot = -1; if (TURBOCHANNEL) { if (IOASIC && !called) { called = 1; type = ASIC_LANCE; } else { if ((slot = search_tc_card("PMAD-AA")) >= 0) { type = PMAD_LANCE; } else { return -ENODEV; } } } else { if (!called) { called = 1; type = PMAX_LANCE; } else { return -ENODEV; } } #else if (!called && !TURBOCHANNEL) { called = 1; type = PMAX_LANCE; } else { return -ENODEV; } #endif return dec_lance_init(dev, type); } /* #ifdef MODULE int init_module(void) { root_lance_dev = NULL; return dec_lance_probe(NULL); } void cleanup_module(void) { struct lance_private *lp; while (root_lance_dev) { lp = root_lance_dev->next_module; unregister_netdev(root_lance_dev->dev); kfree(root_lance_dev->dev); root_lance_dev = lp; } } #endif -* MODULE */