/* ** hp100.c ** HP CASCADE Architecture Driver for 100VG-AnyLan Network Adapters ** ** $Id: hp100.c,v 1.56 1998/03/04 15:23:59 perex Exp perex $ ** ** Based on the HP100 driver written by Jaroslav Kysela ** Extended for new busmaster capable chipsets by ** Siegfried "Frieder" Loeffler (dg1sek) ** ** Maintained by: Jaroslav Kysela ** ** This driver has only been tested with ** -- HP J2585B 10/100 Mbit/s PCI Busmaster ** -- HP J2585A 10/100 Mbit/s PCI ** -- HP J2970 10 Mbit/s PCI Combo 10base-T/BNC ** -- HP J2973 10 Mbit/s PCI 10base-T ** -- HP J2573 10/100 ISA ** -- Compex ReadyLink ENET100-VG4 10/100 Mbit/s PCI / EISA ** -- Compex FreedomLine 100/VG 10/100 Mbit/s ISA / EISA / PCI ** ** but it should also work with the other CASCADE based adapters. ** ** TODO: ** - J2573 seems to hang sometimes when in shared memory mode. ** - Mode for Priority TX ** - Check PCI registers, performance might be improved? ** - To reduce interrupt load in busmaster, one could switch off ** the interrupts that are used to refill the queues whenever the ** queues are filled up to more than a certain threshold. ** - some updates for EISA version of card ** ** ** This source/code is public free; you can distribute it and/or modify ** it under terms of the GNU General Public License (published by the ** Free Software Foundation) either version two of this License, or any ** later version. ** ** 1.55 -> 1.56 ** - removed printk in misc. interrupt and update statistics to allow ** monitoring of card status ** - timing changes in xmit routines, relogin to 100VG hub added when ** driver does reset ** - included fix for Compex FreedomLine PCI adapter ** ** 1.54 -> 1.55 ** - fixed bad initialization in init_module ** - added Compex FreedomLine adapter ** - some fixes in card initialization ** ** 1.53 -> 1.54 ** - added hardware multicast filter support (doesn't work) ** - little changes in hp100_sense_lan routine ** - added support for Coax and AUI (J2970) ** - fix for multiple cards and hp100_mode parameter (insmod) ** - fix for shared IRQ ** ** 1.52 -> 1.53 ** - fixed bug in multicast support ** */ #define HP100_DEFAULT_PRIORITY_TX 0 #undef HP100_DEBUG #undef HP100_DEBUG_B /* Trace */ #undef HP100_DEBUG_BM /* Debug busmaster code (PDL stuff) */ #undef HP100_DEBUG_TRAINING /* Debug login-to-hub procedure */ #undef HP100_DEBUG_TX #undef HP100_DEBUG_IRQ #undef HP100_DEBUG_RX #undef HP100_MULTICAST_FILTER /* Need to be debugged... */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for CONFIG_PCI */ #include #if LINUX_VERSION_CODE < 0x020100 #define ioremap vremap #define iounmap vfree typedef struct enet_statistics hp100_stats_t; #else #define LINUX_2_1 typedef struct net_device_stats hp100_stats_t; #endif #ifndef __initfunc #define __initfunc(__initarg) __initarg #else #include #endif #include "hp100.h" /* * defines */ #define HP100_BUS_ISA 0 #define HP100_BUS_EISA 1 #define HP100_BUS_PCI 2 #ifndef PCI_DEVICE_ID_HP_J2585B #define PCI_DEVICE_ID_HP_J2585B 0x1031 #endif #ifndef PCI_VENDOR_ID_COMPEX #define PCI_VENDOR_ID_COMPEX 0x11f6 #endif #ifndef PCI_DEVICE_ID_COMPEX_ENET100VG4 #define PCI_DEVICE_ID_COMPEX_ENET100VG4 0x0112 #endif #ifndef PCI_VENDOR_ID_COMPEX2 #define PCI_VENDOR_ID_COMPEX2 0x101a #endif #ifndef PCI_DEVICE_ID_COMPEX2_100VG #define PCI_DEVICE_ID_COMPEX2_100VG 0x0005 #endif #define HP100_REGION_SIZE 0x20 /* for ioports */ #define HP100_MAX_PACKET_SIZE (1536+4) #define HP100_MIN_PACKET_SIZE 60 #ifndef HP100_DEFAULT_RX_RATIO /* default - 75% onboard memory on the card are used for RX packets */ #define HP100_DEFAULT_RX_RATIO 75 #endif #ifndef HP100_DEFAULT_PRIORITY_TX /* default - don't enable transmit outgoing packets as priority */ #define HP100_DEFAULT_PRIORITY_TX 0 #endif /* * structures */ struct hp100_eisa_id { u_int id; const char *name; u_char bus; }; struct hp100_pci_id { u_short vendor; u_short device; }; struct hp100_private { struct hp100_eisa_id *id; u_short chip; u_short soft_model; u_int memory_size; u_int virt_memory_size; u_short rx_ratio; /* 1 - 99 */ u_short priority_tx; /* != 0 - priority tx */ u_short mode; /* PIO, Shared Mem or Busmaster */ u_char bus; u_char pci_bus; u_char pci_device_fn; short mem_mapped; /* memory mapped access */ u_int *mem_ptr_virt; /* virtual memory mapped area, maybe NULL */ u_int *mem_ptr_phys; /* physical memory mapped area */ short lan_type; /* 10Mb/s, 100Mb/s or -1 (error) */ int hub_status; /* was login to hub successful? */ u_char mac1_mode; u_char mac2_mode; u_char hash_bytes[ 8 ]; hp100_stats_t stats; /* Rings for busmaster mode: */ hp100_ring_t *rxrhead; /* Head (oldest) index into rxring */ hp100_ring_t *rxrtail; /* Tail (newest) index into rxring */ hp100_ring_t *txrhead; /* Head (oldest) index into txring */ hp100_ring_t *txrtail; /* Tail (newest) index into txring */ hp100_ring_t rxring[ MAX_RX_PDL ]; hp100_ring_t txring[ MAX_TX_PDL ]; u_int *page_vaddr; /* Virtual address of allocated page */ u_int *page_vaddr_algn; /* Aligned virtual address of allocated page */ int rxrcommit; /* # Rx PDLs commited to adapter */ int txrcommit; /* # Tx PDLs commited to adapter */ }; /* * variables */ static struct hp100_eisa_id hp100_eisa_ids[] = { /* 10/100 EISA card with revision A Cascade chip */ { 0x80F1F022, "HP J2577 rev A", HP100_BUS_EISA }, /* 10/100 ISA card with revision A Cascade chip */ { 0x50F1F022, "HP J2573 rev A", HP100_BUS_ISA }, /* 10 only EISA card with Cascade chip */ { 0x2019F022, "HP 27248B", HP100_BUS_EISA }, /* 10/100 EISA card with Cascade chip */ { 0x4019F022, "HP J2577", HP100_BUS_EISA }, /* 10/100 ISA card with Cascade chip */ { 0x5019F022, "HP J2573", HP100_BUS_ISA }, /* 10/100 PCI card - old J2585A */ { 0x1030103c, "HP J2585A", HP100_BUS_PCI }, /* 10/100 PCI card - new J2585B - master capable */ { 0x1041103c, "HP J2585B", HP100_BUS_PCI }, /* 10 Mbit Combo Adapter */ { 0x1042103c, "HP J2970", HP100_BUS_PCI }, /* 10 Mbit 10baseT Adapter */ { 0x1040103c, "HP J2973", HP100_BUS_PCI }, /* 10/100 EISA card from Compex */ { 0x0103180e, "ReadyLink ENET100-VG4", HP100_BUS_EISA }, /* 10/100 EISA card from Compex - FreedomLine (sq5bpf) */ /* Note: plhbrod@mbox.vol.cz reported that same ID have ISA */ /* version of adapter, too... */ { 0x0104180e, "FreedomLine 100/VG", HP100_BUS_EISA }, /* 10/100 PCI card from Compex - FreedomLine * * I think this card doesn't like aic7178 scsi controller, but * I haven't tested this much. It works fine on diskless machines. * Jacek Lipkowski */ { 0x021211f6, "FreedomLine 100/VG", HP100_BUS_PCI }, /* 10/100 PCI card from Compex (J2585A compatible) */ { 0x011211f6, "ReadyLink ENET100-VG4", HP100_BUS_PCI } }; #define HP100_EISA_IDS_SIZE (sizeof(hp100_eisa_ids)/sizeof(struct hp100_eisa_id)) static struct hp100_pci_id hp100_pci_ids[] = { { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585A }, { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585B }, { PCI_VENDOR_ID_COMPEX, PCI_DEVICE_ID_COMPEX_ENET100VG4 }, { PCI_VENDOR_ID_COMPEX2, PCI_DEVICE_ID_COMPEX2_100VG } }; #define HP100_PCI_IDS_SIZE (sizeof(hp100_pci_ids)/sizeof(struct hp100_pci_id)) static int hp100_rx_ratio = HP100_DEFAULT_RX_RATIO; static int hp100_priority_tx = HP100_DEFAULT_PRIORITY_TX; static int hp100_mode = 1; #ifdef LINUX_2_1 MODULE_PARM( hp100_rx_ratio, "1i" ); MODULE_PARM( hp100_priority_tx, "1i" ); MODULE_PARM( hp100_mode, "1i" ); #endif /* * prototypes */ static int hp100_probe1( struct device *dev, int ioaddr, u_char bus, u_char pci_bus, u_char pci_device_fn ); static int hp100_open( struct device *dev ); static int hp100_close( struct device *dev ); static int hp100_start_xmit( struct sk_buff *skb, struct device *dev ); static int hp100_start_xmit_bm (struct sk_buff *skb, struct device *dev ); static void hp100_rx( struct device *dev ); static hp100_stats_t *hp100_get_stats( struct device *dev ); static void hp100_misc_interrupt( struct device *dev ); static void hp100_update_stats( struct device *dev ); static void hp100_clear_stats( int ioaddr ); static void hp100_set_multicast_list( struct device *dev); static void hp100_interrupt( int irq, void *dev_id, struct pt_regs *regs ); static void hp100_start_interface( struct device *dev ); static void hp100_stop_interface( struct device *dev ); static void hp100_load_eeprom( struct device *dev, u_short ioaddr ); static int hp100_sense_lan( struct device *dev ); static int hp100_login_to_vg_hub( struct device *dev, u_short force_relogin ); static int hp100_down_vg_link( struct device *dev ); static void hp100_cascade_reset( struct device *dev, u_short enable ); static void hp100_BM_shutdown( struct device *dev ); static void hp100_mmuinit( struct device *dev ); static void hp100_init_pdls( struct device *dev ); static int hp100_init_rxpdl( struct device *dev, register hp100_ring_t *ringptr, register u_int *pdlptr); static int hp100_init_txpdl( struct device *dev, register hp100_ring_t *ringptr, register u_int *pdlptr); static void hp100_rxfill( struct device *dev ); static void hp100_hwinit( struct device *dev ); static void hp100_clean_txring( struct device *dev ); #ifdef HP100_DEBUG static void hp100_RegisterDump( struct device *dev ); #endif /* TODO: This function should not really be needed in a good design... */ static void wait( void ) { udelay( 1000 ); } /* * probe functions * These functions should - if possible - avoid doing write operations * since this could cause problems when the card is not installed. */ __initfunc(int hp100_probe( struct device *dev )) { int base_addr = dev ? dev -> base_addr : 0; int ioaddr = 0; #ifdef CONFIG_PCI int pci_start_index = 0; #endif #ifdef HP100_DEBUG_B hp100_outw( 0x4200, TRACE ); printk( "hp100: %s: probe\n", dev->name ); #endif if ( base_addr > 0xff ) /* Check a single specified location. */ { if ( check_region( base_addr, HP100_REGION_SIZE ) ) return -EINVAL; if ( base_addr < 0x400 ) return hp100_probe1( dev, base_addr, HP100_BUS_ISA, 0, 0 ); if ( EISA_bus && base_addr >= 0x1c38 && ( (base_addr - 0x1c38) & 0x3ff ) == 0 ) return hp100_probe1( dev, base_addr, HP100_BUS_EISA, 0, 0 ); #ifdef CONFIG_PCI printk( "hp100: %s: You may specify card # in i/o address parameter for PCI bus...", dev->name ); return hp100_probe1( dev, base_addr, HP100_BUS_PCI, 0, 0 ); #else return -ENODEV; #endif } else #ifdef CONFIG_PCI if ( base_addr > 0 && base_addr < 8 + 1 ) pci_start_index = 0x100 | ( base_addr - 1 ); else #endif if ( base_addr != 0 ) return -ENXIO; /* at first - scan PCI bus(es) */ #ifdef CONFIG_PCI if ( pcibios_present() ) { int pci_index; #ifdef HP100_DEBUG_PCI printk( "hp100: %s: PCI BIOS is present, checking for devices..\n", dev->name ); #endif for ( pci_index = pci_start_index & 7; pci_index < 8; pci_index++ ) { u_char pci_bus, pci_device_fn; u_short pci_command; int pci_id_index; for ( pci_id_index = 0; pci_id_index < HP100_PCI_IDS_SIZE; pci_id_index++ ) if ( pcibios_find_device( hp100_pci_ids[ pci_id_index ].vendor, hp100_pci_ids[ pci_id_index ].device, pci_index, &pci_bus, &pci_device_fn ) == 0 ) goto __pci_found; break; __pci_found: pcibios_read_config_dword( pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, &ioaddr ); ioaddr &= ~3; /* remove I/O space marker in bit 0. */ if ( check_region( ioaddr, HP100_REGION_SIZE ) ) continue; pcibios_read_config_word( pci_bus, pci_device_fn, PCI_COMMAND, &pci_command ); if ( !( pci_command & PCI_COMMAND_IO ) ) { #ifdef HP100_DEBUG printk( "hp100: %s: PCI I/O Bit has not been set. Setting...\n", dev->name ); #endif pci_command |= PCI_COMMAND_IO; pcibios_write_config_word( pci_bus, pci_device_fn, PCI_COMMAND, pci_command ); } if ( !( pci_command & PCI_COMMAND_MASTER ) ) { #ifdef HP100_DEBUG printk( "hp100: %s: PCI Master Bit has not been set. Setting...\n", dev->name ); #endif pci_command |= PCI_COMMAND_MASTER; pcibios_write_config_word( pci_bus, pci_device_fn, PCI_COMMAND, pci_command ); } #ifdef HP100_DEBUG printk( "hp100: %s: PCI adapter found at 0x%x\n", dev->name, ioaddr ); #endif if ( hp100_probe1( dev, ioaddr, HP100_BUS_PCI, pci_bus, pci_device_fn ) == 0 ) return 0; } } if ( pci_start_index > 0 ) return -ENODEV; #endif /* CONFIG_PCI */ /* Second: Probe all EISA possible port regions (if EISA bus present) */ for ( ioaddr = 0x1c38; EISA_bus && ioaddr < 0x10000; ioaddr += 0x400 ) { if ( check_region( ioaddr, HP100_REGION_SIZE ) ) continue; if ( hp100_probe1( dev, ioaddr, HP100_BUS_EISA, 0, 0 ) == 0 ) return 0; } /* Third Probe all ISA possible port regions */ for ( ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20 ) { if ( check_region( ioaddr, HP100_REGION_SIZE ) ) continue; if ( hp100_probe1( dev, ioaddr, HP100_BUS_ISA, 0, 0 ) == 0 ) return 0; } return -ENODEV; } __initfunc(static int hp100_probe1( struct device *dev, int ioaddr, u_char bus, u_char pci_bus, u_char pci_device_fn )) { int i; u_char uc, uc_1; u_int eisa_id; u_int chip; u_int memory_size = 0, virt_memory_size = 0; u_short local_mode, lsw; short mem_mapped; u_int *mem_ptr_phys, *mem_ptr_virt; struct hp100_private *lp; struct hp100_eisa_id *eid; #ifdef HP100_DEBUG_B hp100_outw( 0x4201, TRACE ); printk("hp100: %s: probe1\n",dev->name); #endif if ( dev == NULL ) { #ifdef HP100_DEBUG printk( "hp100_probe1: %s: dev == NULL ?\n", dev->name ); #endif return EIO; } if ( hp100_inw( HW_ID ) != HP100_HW_ID_CASCADE ) { return -ENODEV; } else { chip = hp100_inw( PAGING ) & HP100_CHIPID_MASK; #ifdef HP100_DEBUG if ( chip == HP100_CHIPID_SHASTA ) printk("hp100: %s: Shasta Chip detected. (This is a pre 802.12 chip)\n", dev->name); else if ( chip == HP100_CHIPID_RAINIER ) printk("hp100: %s: Rainier Chip detected. (This is a pre 802.12 chip)\n", dev->name); else if ( chip == HP100_CHIPID_LASSEN ) printk("hp100: %s: Lassen Chip detected.\n", dev->name); else printk("hp100: %s: Warning: Unknown CASCADE chip (id=0x%.4x).\n",dev->name,chip); #endif } dev->base_addr = ioaddr; hp100_page( ID_MAC_ADDR ); for ( i = uc = eisa_id = 0; i < 4; i++ ) { eisa_id >>= 8; uc_1 = hp100_inb( BOARD_ID + i ); eisa_id |= uc_1 << 24; uc += uc_1; } uc += hp100_inb( BOARD_ID + 4 ); if ( uc != 0xff ) /* bad checksum? */ { printk("hp100_probe: %s: bad EISA ID checksum at base port 0x%x\n", dev->name, ioaddr ); return -ENODEV; } for ( i=0; i < HP100_EISA_IDS_SIZE; i++) if ( hp100_eisa_ids[ i ].id == eisa_id ) break; if ( i >= HP100_EISA_IDS_SIZE ) { for ( i = 0; i < HP100_EISA_IDS_SIZE; i++) if ( ( hp100_eisa_ids[ i ].id & 0xf0ffffff ) == ( eisa_id & 0xf0ffffff ) ) break; if ( i >= HP100_EISA_IDS_SIZE ) { printk( "hp100_probe: %s: card at port 0x%x isn't known (id = 0x%x)\n", dev -> name, ioaddr, eisa_id ); return -ENODEV; } } eid = &hp100_eisa_ids[ i ]; if ( ( eid->id & 0x0f000000 ) < ( eisa_id & 0x0f000000 ) ) { printk( "hp100_probe: %s: newer version of card %s at port 0x%x - unsupported\n", dev->name, eid->name, ioaddr ); return -ENODEV; } for ( i = uc = 0; i < 7; i++ ) uc += hp100_inb( LAN_ADDR + i ); if ( uc != 0xff ) { printk("hp100_probe: %s: bad lan address checksum (card %s at port 0x%x)\n", dev->name, eid->name, ioaddr ); return -EIO; } /* Make sure, that all registers are correctly updated... */ hp100_load_eeprom( dev, ioaddr ); wait(); /* * Determine driver operation mode * * Use the variable "hp100_mode" upon insmod or as kernel parameter to * force driver modes: * hp100_mode=1 -> default, use busmaster mode if configured. * hp100_mode=2 -> enable shared memory mode * hp100_mode=3 -> force use of i/o mapped mode. * hp100_mode=4 -> same as 1, but re-set the enable bit on the card. */ /* * LSW values: * 0x2278 -> J2585B, PnP shared memory mode * 0x2270 -> J2585B, shared memory mode, 0xdc000 * 0xa23c -> J2585B, I/O mapped mode * 0x2240 -> EISA COMPEX, BusMaster (Shasta Chip) * 0x2220 -> EISA HP, I/O (Shasta Chip) * 0x2260 -> EISA HP, BusMaster (Shasta Chip) */ #if 0 local_mode = 0x2270; hp100_outw(0xfefe,OPTION_LSW); hp100_outw(local_mode|HP100_SET_LB|HP100_SET_HB,OPTION_LSW); #endif /* hp100_mode value maybe used in future by another card */ local_mode=hp100_mode; if ( local_mode < 1 || local_mode > 4 ) local_mode = 1; /* default */ #ifdef HP100_DEBUG printk( "hp100: %s: original LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW) ); #endif if(local_mode==3) { hp100_outw(HP100_MEM_EN|HP100_RESET_LB, OPTION_LSW); hp100_outw(HP100_IO_EN|HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_BM_WRITE|HP100_BM_READ|HP100_RESET_HB, OPTION_LSW); printk("hp100: %s: IO mapped mode forced.\n", dev->name); } else if(local_mode==2) { hp100_outw(HP100_MEM_EN|HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_IO_EN |HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_BM_WRITE|HP100_BM_READ|HP100_RESET_HB, OPTION_LSW); printk("hp100: %s: Shared memory mode requested.\n", dev->name); } else if(local_mode==4) { if(chip==HP100_CHIPID_LASSEN) { hp100_outw(HP100_BM_WRITE| HP100_BM_READ | HP100_SET_HB, OPTION_LSW); hp100_outw(HP100_IO_EN | HP100_MEM_EN | HP100_RESET_LB, OPTION_LSW); printk("hp100: %s: Busmaster mode requested.\n",dev->name); } local_mode=1; } if(local_mode==1) /* default behaviour */ { lsw = hp100_inw(OPTION_LSW); if ( (lsw & HP100_IO_EN) && (~lsw & HP100_MEM_EN) && (~lsw & (HP100_BM_WRITE|HP100_BM_READ)) ) { #ifdef HP100_DEBUG printk("hp100: %s: IO_EN bit is set on card.\n",dev->name); #endif local_mode=3; } else if ( chip == HP100_CHIPID_LASSEN && ( lsw & (HP100_BM_WRITE|HP100_BM_READ) ) == (HP100_BM_WRITE|HP100_BM_READ) ) { printk("hp100: %s: Busmaster mode enabled.\n",dev->name); hp100_outw(HP100_MEM_EN|HP100_IO_EN|HP100_RESET_LB, OPTION_LSW); } else { #ifdef HP100_DEBUG printk("hp100: %s: Card not configured for BM or BM not supported with this card.\n", dev->name ); printk("hp100: %s: Trying shared memory mode.\n", dev->name); #endif /* In this case, try shared memory mode */ local_mode=2; hp100_outw(HP100_MEM_EN|HP100_SET_LB, OPTION_LSW); /* hp100_outw(HP100_IO_EN|HP100_RESET_LB, OPTION_LSW); */ } } #ifdef HP100_DEBUG printk( "hp100: %s: new LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW) ); #endif /* Check for shared memory on the card, eventually remap it */ hp100_page( HW_MAP ); mem_mapped = (( hp100_inw( OPTION_LSW ) & ( HP100_MEM_EN ) ) != 0); mem_ptr_phys = mem_ptr_virt = NULL; memory_size = (8192<<( (hp100_inb(SRAM)>>5)&0x07)); virt_memory_size = 0; /* For memory mapped or busmaster mode, we want the memory address */ if ( mem_mapped || (local_mode==1)) { mem_ptr_phys = (u_int *)( hp100_inw( MEM_MAP_LSW ) | ( hp100_inw( MEM_MAP_MSW ) << 16 ) ); (u_int)mem_ptr_phys &= ~0x1fff; /* 8k alignment */ if ( bus == HP100_BUS_ISA && ( (u_long)mem_ptr_phys & ~0xfffff ) != 0 ) { printk("hp100: %s: Can only use programmed i/o mode.\n", dev->name); mem_ptr_phys = NULL; mem_mapped = 0; local_mode=3; /* Use programmed i/o */ } /* We do not need access to shared memory in busmaster mode */ /* However in slave mode we need to remap high (>1GB) card memory */ if(local_mode!=1) /* = not busmaster */ { if ( bus == HP100_BUS_PCI && mem_ptr_phys >= (u_int *)0x100000 ) { /* We try with smaller memory sizes, if ioremap fails */ for(virt_memory_size = memory_size; virt_memory_size>16383; virt_memory_size>>=1) { if((mem_ptr_virt=ioremap((u_long)mem_ptr_phys,virt_memory_size))==NULL) { #ifdef HP100_DEBUG printk( "hp100: %s: ioremap for 0x%x bytes high PCI memory at 0x%lx failed\n", dev->name, virt_memory_size, (u_long)mem_ptr_phys ); #endif } else { #ifdef HP100_DEBUG printk( "hp100: %s: remapped 0x%x bytes high PCI memory at 0x%lx to 0x%lx.\n", dev->name, virt_memory_size, (u_long)mem_ptr_phys, (u_long)mem_ptr_virt); #endif break; } } if(mem_ptr_virt==NULL) /* all ioremap tries failed */ { printk("hp100: %s: Failed to ioremap the PCI card memory. Will have to use i/o mapped mode.\n", dev->name); local_mode=3; virt_memory_size = 0; } } } } if(local_mode==3) /* io mapped forced */ { mem_mapped = 0; mem_ptr_phys = mem_ptr_virt = NULL; printk("hp100: %s: Using (slow) programmed i/o mode.\n", dev->name); } /* Initialise the "private" data structure for this card. */ if ( (dev->priv=kmalloc(sizeof(struct hp100_private), GFP_KERNEL)) == NULL) return -ENOMEM; memset( dev->priv, 0, sizeof(struct hp100_private) ); lp = (struct hp100_private *)dev->priv; lp->id = eid; lp->chip = chip; lp->mode = local_mode; lp->pci_bus = pci_bus; lp->bus = bus; lp->pci_device_fn = pci_device_fn; lp->priority_tx = hp100_priority_tx; lp->rx_ratio = hp100_rx_ratio; lp->mem_ptr_phys = mem_ptr_phys; lp->mem_ptr_virt = mem_ptr_virt; hp100_page( ID_MAC_ADDR ); lp->soft_model = hp100_inb( SOFT_MODEL ); lp->mac1_mode = HP100_MAC1MODE3; lp->mac2_mode = HP100_MAC2MODE3; memset( &lp->hash_bytes, 0x00, 8 ); dev->base_addr = ioaddr; lp->memory_size = memory_size; lp->virt_memory_size = virt_memory_size; lp->rx_ratio = hp100_rx_ratio; /* can be conf'd with insmod */ /* memory region for programmed i/o */ request_region( dev->base_addr, HP100_REGION_SIZE, eid->name ); dev->open = hp100_open; dev->stop = hp100_close; if (lp->mode==1) /* busmaster */ dev->hard_start_xmit = hp100_start_xmit_bm; else dev->hard_start_xmit = hp100_start_xmit; dev->get_stats = hp100_get_stats; dev->set_multicast_list = &hp100_set_multicast_list; /* Ask the card for which IRQ line it is configured */ hp100_page( HW_MAP ); dev->irq = hp100_inb( IRQ_CHANNEL ) & HP100_IRQMASK; if ( dev->irq == 2 ) dev->irq = 9; if(lp->mode==1) /* busmaster */ dev->dma=4; /* Ask the card for its MAC address and store it for later use. */ hp100_page( ID_MAC_ADDR ); for ( i = uc = 0; i < 6; i++ ) dev->dev_addr[ i ] = hp100_inb( LAN_ADDR + i ); /* Reset statistics (counters) */ hp100_clear_stats( ioaddr ); ether_setup( dev ); /* If busmaster mode is wanted, a dma-capable memory area is needed for * the rx and tx PDLs * PCI cards can access the whole PC memory. Therefore GFP_DMA is not * needed for the allocation of the memory area. */ /* TODO: We do not need this with old cards, where PDLs are stored * in the cards shared memory area. But currently, busmaster has been * implemented/tested only with the lassen chip anyway... */ if(lp->mode==1) /* busmaster */ { /* Get physically continous memory for TX & RX PDLs */ if ( (lp->page_vaddr=kmalloc(MAX_RINGSIZE+0x0f,GFP_KERNEL) ) == NULL) return -ENOMEM; lp->page_vaddr_algn=((u_int *) ( ((u_int)(lp->page_vaddr)+0x0f) &~0x0f)); memset(lp->page_vaddr, 0, MAX_RINGSIZE+0x0f); #ifdef HP100_DEBUG_BM printk("hp100: %s: Reserved DMA memory from 0x%x to 0x%x\n", dev->name, (u_int)lp->page_vaddr_algn, (u_int)lp->page_vaddr_algn+MAX_RINGSIZE); #endif lp->rxrcommit = lp->txrcommit = 0; lp->rxrhead = lp->rxrtail = &(lp->rxring[0]); lp->txrhead = lp->txrtail = &(lp->txring[0]); } /* Initialise the card. */ /* (I'm not really sure if it's a good idea to do this during probing, but * like this it's assured that the lan connection type can be sensed * correctly) */ hp100_hwinit( dev ); /* Try to find out which kind of LAN the card is connected to. */ lp->lan_type = hp100_sense_lan( dev ); /* Print out a message what about what we think we have probed. */ printk( "hp100: %s: %s at 0x%x, IRQ %d, ", dev->name, lp->id->name, ioaddr, dev->irq ); switch ( bus ) { case HP100_BUS_EISA: printk( "EISA" ); break; case HP100_BUS_PCI: printk( "PCI" ); break; default: printk( "ISA" ); break; } printk( " bus, %dk SRAM (rx/tx %d%%).\n", lp->memory_size >> 10, lp->rx_ratio ); if ( lp->mode==2 ) /* memory mapped */ { printk( "hp100: %s: Memory area at 0x%lx-0x%lx", dev->name,(u_long)mem_ptr_phys, ((u_long)mem_ptr_phys+(mem_ptr_phys>(u_int *)0x100000?(u_long)lp->memory_size:16*1024))-1 ); if ( mem_ptr_virt ) printk( " (virtual base 0x%lx)", (u_long)mem_ptr_virt ); printk( ".\n" ); /* Set for info when doing ifconfig */ dev->mem_start = (u_long)mem_ptr_phys; dev->mem_end = (u_long)mem_ptr_phys+(u_long)lp->memory_size; } printk( "hp100: %s: ", dev->name ); if ( lp->lan_type != HP100_LAN_ERR ) printk( "Adapter is attached to " ); switch ( lp->lan_type ) { case HP100_LAN_100: printk( "100Mb/s Voice Grade AnyLAN network.\n" ); break; case HP100_LAN_10: printk( "10Mb/s network.\n" ); break; default: printk( "Warning! Link down.\n" ); } return 0; } /* This procedure puts the card into a stable init state */ static void hp100_hwinit( struct device *dev ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4202, TRACE ); printk("hp100: %s: hwinit\n", dev->name); #endif /* Initialise the card. -------------------------------------------- */ /* Clear all pending Ints and disable Ints */ hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* clear all pending ints */ hp100_outw( HP100_INT_EN | HP100_RESET_LB, OPTION_LSW ); hp100_outw( HP100_TRI_INT | HP100_SET_HB, OPTION_LSW ); if(lp->mode==1) { hp100_BM_shutdown( dev ); /* disables BM, puts cascade in reset */ wait(); } else { hp100_outw( HP100_INT_EN | HP100_RESET_LB, OPTION_LSW ); hp100_cascade_reset( dev, TRUE ); hp100_page( MAC_CTRL ); hp100_andb( ~(HP100_RX_EN|HP100_TX_EN), MAC_CFG_1); } /* Initiate EEPROM reload */ hp100_load_eeprom( dev, 0 ); wait(); /* Go into reset again. */ hp100_cascade_reset( dev, TRUE ); /* Set Option Registers to a safe state */ hp100_outw( HP100_DEBUG_EN | HP100_RX_HDR | HP100_EE_EN | HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB | HP100_FAKE_INT | HP100_INT_EN | HP100_MEM_EN | HP100_IO_EN | HP100_RESET_LB, OPTION_LSW); hp100_outw( HP100_TRI_INT | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW ); hp100_outb( HP100_PRIORITY_TX | HP100_ADV_NXT_PKT | HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW ); /* TODO: Configure MMU for Ram Test. */ /* TODO: Ram Test. */ /* Re-check if adapter is still at same i/o location */ /* (If the base i/o in eeprom has been changed but the */ /* registers had not been changed, a reload of the eeprom */ /* would move the adapter to the address stored in eeprom */ /* TODO: Code to implement. */ /* Until here it was code from HWdiscover procedure. */ /* Next comes code from mmuinit procedure of SCO BM driver which is * called from HWconfigure in the SCO driver. */ /* Initialise MMU, eventually switch on Busmaster Mode, initialise * multicast filter... */ hp100_mmuinit( dev ); /* We don't turn the interrupts on here - this is done by start_interface. */ wait(); /* TODO: Do we really need this? */ /* Enable Hardware (e.g. unreset) */ hp100_cascade_reset( dev, FALSE ); /* ------- initialisation complete ----------- */ /* Finally try to log in the Hub if there may be a VG connection. */ if( lp->lan_type != HP100_LAN_10 ) hp100_login_to_vg_hub( dev, FALSE ); /* relogin */ } /* * mmuinit - Reinitialise Cascade MMU and MAC settings. * Note: Must already be in reset and leaves card in reset. */ static void hp100_mmuinit( struct device *dev ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; int i; #ifdef HP100_DEBUG_B hp100_outw( 0x4203, TRACE ); printk("hp100: %s: mmuinit\n",dev->name); #endif #ifdef HP100_DEBUG if( 0!=(hp100_inw(OPTION_LSW)&HP100_HW_RST) ) { printk("hp100: %s: Not in reset when entering mmuinit. Fix me.\n",dev->name); return; } #endif /* Make sure IRQs are masked off and ack'ed. */ hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* ack IRQ */ /* * Enable Hardware * - Clear Debug En, Rx Hdr Pipe, EE En, I/O En, Fake Int and Intr En * - Set Tri-State Int, Bus Master Rd/Wr, and Mem Map Disable * - Clear Priority, Advance Pkt and Xmit Cmd */ hp100_outw( HP100_DEBUG_EN | HP100_RX_HDR | HP100_EE_EN | HP100_RESET_HB | HP100_IO_EN | HP100_FAKE_INT | HP100_INT_EN | HP100_RESET_LB, OPTION_LSW ); hp100_outw( HP100_TRI_INT | HP100_SET_HB, OPTION_LSW); if(lp->mode==1) /* busmaster */ { hp100_outw( HP100_BM_WRITE | HP100_BM_READ | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW ); } else if(lp->mode==2) /* memory mapped */ { hp100_outw( HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW ); hp100_outw( HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW ); hp100_outw( HP100_MEM_EN | HP100_SET_LB, OPTION_LSW ); hp100_outw( HP100_IO_EN | HP100_SET_LB, OPTION_LSW ); } else if( lp->mode==3 ) /* i/o mapped mode */ { hp100_outw( HP100_MMAP_DIS | HP100_SET_HB | HP100_IO_EN | HP100_SET_LB, OPTION_LSW ); } hp100_page( HW_MAP ); hp100_outb( 0, EARLYRXCFG ); hp100_outw( 0, EARLYTXCFG ); /* * Enable Bus Master mode */ if(lp->mode==1) /* busmaster */ { /* Experimental: Set some PCI configuration bits */ hp100_page( HW_MAP ); hp100_andb( ~HP100_PDL_USE3, MODECTRL1 ); /* BM engine read maximum */ hp100_andb( ~HP100_TX_DUALQ, MODECTRL1 ); /* No Queue for Priority TX */ /* PCI Bus failures should result in a Misc. Interrupt */ hp100_orb( HP100_EN_BUS_FAIL, MODECTRL2); hp100_outw( HP100_BM_READ | HP100_BM_WRITE | HP100_SET_HB, OPTION_LSW ); hp100_page( HW_MAP ); /* Use Burst Mode and switch on PAGE_CK */ hp100_orb( HP100_BM_BURST_RD | HP100_BM_BURST_WR, BM); if((lp->chip==HP100_CHIPID_RAINIER)||(lp->chip==HP100_CHIPID_SHASTA)) hp100_orb( HP100_BM_PAGE_CK, BM ); hp100_orb( HP100_BM_MASTER, BM ); } else /* not busmaster */ { hp100_page(HW_MAP); hp100_andb(~HP100_BM_MASTER, BM ); } /* * Divide card memory into regions for Rx, Tx and, if non-ETR chip, PDLs */ hp100_page( MMU_CFG ); if(lp->mode==1) /* only needed for Busmaster */ { int xmit_stop, recv_stop; if((lp->chip==HP100_CHIPID_RAINIER)||(lp->chip==HP100_CHIPID_SHASTA)) { int pdl_stop; /* * Each pdl is 508 bytes long. (63 frags * 4 bytes for address and * 4 bytes for for header). We will leave NUM_RXPDLS * 508 (rounded * to the next higher 1k boundary) bytes for the rx-pdl's * Note: For non-etr chips the transmit stop register must be * programmed on a 1k boundary, i.e. bits 9:0 must be zero. */ pdl_stop = lp->memory_size; xmit_stop = ( pdl_stop-508*(MAX_RX_PDL)-16 )& ~(0x03ff); recv_stop = ( xmit_stop * (lp->rx_ratio)/100 ) &~(0x03ff); hp100_outw( (pdl_stop>>4)-1, PDL_MEM_STOP ); #ifdef HP100_DEBUG_BM printk("hp100: %s: PDL_STOP = 0x%x\n", dev->name, pdl_stop); #endif } else /* ETR chip (Lassen) in busmaster mode */ { xmit_stop = ( lp->memory_size ) - 1; recv_stop = ( ( lp->memory_size * lp->rx_ratio ) / 100 ) & ~(0x03ff); } hp100_outw( xmit_stop>>4 , TX_MEM_STOP ); hp100_outw( recv_stop>>4 , RX_MEM_STOP ); #ifdef HP100_DEBUG_BM printk("hp100: %s: TX_STOP = 0x%x\n",dev->name,xmit_stop>>4); printk("hp100: %s: RX_STOP = 0x%x\n",dev->name,recv_stop>>4); #endif } else /* Slave modes (memory mapped and programmed io) */ { hp100_outw( (((lp->memory_size*lp->rx_ratio)/100)>>4), RX_MEM_STOP ); hp100_outw( ((lp->memory_size - 1 )>>4), TX_MEM_STOP ); #ifdef HP100_DEBUG printk("hp100: %s: TX_MEM_STOP: 0x%x\n", dev->name,hp100_inw(TX_MEM_STOP)); printk("hp100: %s: RX_MEM_STOP: 0x%x\n", dev->name,hp100_inw(RX_MEM_STOP)); #endif } /* Write MAC address into page 1 */ hp100_page( MAC_ADDRESS ); for ( i = 0; i < 6; i++ ) hp100_outb( dev->dev_addr[ i ], MAC_ADDR + i ); /* Zero the multicast hash registers */ for ( i = 0; i < 8; i++ ) hp100_outb( 0x0, HASH_BYTE0 + i ); /* Set up MAC defaults */ hp100_page( MAC_CTRL ); /* Go to LAN Page and zero all filter bits */ /* Zero accept error, accept multicast, accept broadcast and accept */ /* all directed packet bits */ hp100_andb( ~(HP100_RX_EN| HP100_TX_EN| HP100_ACC_ERRORED| HP100_ACC_MC| HP100_ACC_BC| HP100_ACC_PHY), MAC_CFG_1 ); hp100_outb( 0x00, MAC_CFG_2 ); /* Zero the frame format bit. This works around a training bug in the */ /* new hubs. */ hp100_outb( 0x00, VG_LAN_CFG_2); /* (use 802.3) */ if(lp->priority_tx) hp100_outb( HP100_PRIORITY_TX | HP100_SET_LB, OPTION_MSW ); else hp100_outb( HP100_PRIORITY_TX | HP100_RESET_LB, OPTION_MSW ); hp100_outb( HP100_ADV_NXT_PKT | HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW ); /* If busmaster, initialize the PDLs */ if(lp->mode==1) hp100_init_pdls( dev ); /* Go to performance page and initalize isr and imr registers */ hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* ack IRQ */ } /* * open/close functions */ static int hp100_open( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B int ioaddr=dev->base_addr; #endif #ifdef HP100_DEBUG_B hp100_outw( 0x4204, TRACE ); printk("hp100: %s: open\n",dev->name); #endif /* New: if bus is PCI or EISA, interrupts might be shared interrupts */ if ( request_irq(dev->irq, hp100_interrupt, lp->bus==HP100_BUS_PCI||lp->bus==HP100_BUS_EISA?SA_SHIRQ:SA_INTERRUPT, lp->id->name, dev)) { printk( "hp100: %s: unable to get IRQ %d\n", dev->name, dev->irq ); return -EAGAIN; } MOD_INC_USE_COUNT; dev->tbusy = 0; dev->trans_start = jiffies; dev->interrupt = 0; dev->start = 1; lp->lan_type = hp100_sense_lan( dev ); lp->mac1_mode = HP100_MAC1MODE3; lp->mac2_mode = HP100_MAC2MODE3; memset( &lp->hash_bytes, 0x00, 8 ); hp100_stop_interface( dev ); hp100_hwinit( dev ); hp100_start_interface( dev ); /* sets mac modes, enables interrupts */ return 0; } /* The close function is called when the interface is to be brought down */ static int hp100_close( struct device *dev ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4205, TRACE ); printk("hp100: %s: close\n", dev->name); #endif hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all IRQs */ hp100_stop_interface( dev ); if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status=hp100_login_to_vg_hub( dev, FALSE ); dev->tbusy = 1; dev->start = 0; free_irq( dev->irq, dev ); #ifdef HP100_DEBUG printk( "hp100: %s: close LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW) ); #endif MOD_DEC_USE_COUNT; return 0; } /* * Configure the PDL Rx rings and LAN */ static void hp100_init_pdls( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; hp100_ring_t *ringptr; u_int *pageptr; int i; #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_B hp100_outw( 0x4206, TRACE ); printk("hp100: %s: init pdls\n", dev->name); #endif if(0==lp->page_vaddr_algn) printk("hp100: %s: Warning: lp->page_vaddr_algn not initialised!\n",dev->name); else { /* pageptr shall point into the DMA accessible memory region */ /* we use this pointer to status the upper limit of allocated */ /* memory in the allocated page. */ /* note: align the pointers to the pci cache line size */ memset(lp->page_vaddr_algn, 0, MAX_RINGSIZE); /* Zero Rx/Tx ring page */ pageptr=lp->page_vaddr_algn; lp->rxrcommit =0; ringptr = lp->rxrhead = lp-> rxrtail = &(lp->rxring[0]); /* Initialise Rx Ring */ for (i=MAX_RX_PDL-1; i>=0; i--) { lp->rxring[i].next = ringptr; ringptr=&(lp->rxring[i]); pageptr+=hp100_init_rxpdl(dev, ringptr, pageptr); } /* Initialise Tx Ring */ lp->txrcommit = 0; ringptr = lp->txrhead = lp->txrtail = &(lp->txring[0]); for (i=MAX_TX_PDL-1; i>=0; i--) { lp->txring[i].next = ringptr; ringptr=&(lp->txring[i]); pageptr+=hp100_init_txpdl(dev, ringptr, pageptr); } } } /* These functions "format" the entries in the pdl structure */ /* They return how much memory the fragments need. */ static int hp100_init_rxpdl( struct device *dev, register hp100_ring_t *ringptr, register u32 *pdlptr ) { /* pdlptr is starting adress for this pdl */ if( 0!=( ((unsigned)pdlptr) & 0xf) ) printk("hp100: %s: Init rxpdl: Unaligned pdlptr 0x%x.\n",dev->name,(unsigned)pdlptr); ringptr->pdl = pdlptr+1; ringptr->pdl_paddr = virt_to_bus(pdlptr+1); ringptr->skb = (void *) NULL; /* * Write address and length of first PDL Fragment (which is used for * storing the RX-Header * We use the 4 bytes _before_ the PDH in the pdl memory area to * store this information. (PDH is at offset 0x04) */ /* Note that pdlptr+1 and not pdlptr is the pointer to the PDH */ *(pdlptr+2) =(u_int) virt_to_bus(pdlptr); /* Address Frag 1 */ *(pdlptr+3) = 4; /* Length Frag 1 */ return( ( ((MAX_RX_FRAG*2+2)+3) /4)*4 ); } static int hp100_init_txpdl( struct device *dev, register hp100_ring_t *ringptr, register u32 *pdlptr ) { if( 0!=( ((unsigned)pdlptr) & 0xf) ) printk("hp100: %s: Init txpdl: Unaligned pdlptr 0x%x.\n",dev->name,(unsigned) pdlptr); ringptr->pdl = pdlptr; /* +1; */ ringptr->pdl_paddr = virt_to_bus(pdlptr); /* +1 */ ringptr->skb = (void *) NULL; return((((MAX_TX_FRAG*2+2)+3)/4)*4); } /* * hp100_build_rx_pdl allocates an skb_buff of maximum size plus two bytes * for possible odd word alignment rounding up to next dword and set PDL * address for fragment#2 * Returns: 0 if unable to allocate skb_buff * 1 if successful */ int hp100_build_rx_pdl( hp100_ring_t *ringptr, struct device *dev ) { #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_BM u_int *p; #endif #ifdef HP100_DEBUG_B hp100_outw( 0x4207, TRACE ); printk("hp100: %s: build rx pdl\n", dev->name); #endif /* Allocate skb buffer of maximum size */ /* Note: This depends on the alloc_skb functions allocating more * space than requested, i.e. aligning to 16bytes */ ringptr->skb = dev_alloc_skb( ((MAX_ETHER_SIZE+2+3)/4)*4 ); if(NULL!=ringptr->skb) { /* * Reserve 2 bytes at the head of the buffer to land the IP header * on a long word boundary (According to the Network Driver section * in the Linux KHG, this should help to increase performance.) */ skb_reserve(ringptr->skb, 2); ringptr->skb->dev=dev; ringptr->skb->data=(u_char *)skb_put(ringptr->skb, MAX_ETHER_SIZE ); /* ringptr->pdl points to the beginning of the PDL, i.e. the PDH */ /* Note: 1st Fragment is used for the 4 byte packet status * (receive header). Its PDL entries are set up by init_rxpdl. So * here we only have to set up the PDL fragment entries for the data * part. Those 4 bytes will be stored in the DMA memory region * directly before the PDL. */ #ifdef HP100_DEBUG_BM printk("hp100: %s: build_rx_pdl: PDH@0x%x, skb->data (len %d) at 0x%x\n", dev->name, (u_int) ringptr->pdl, ((MAX_ETHER_SIZE+2+3)/4)*4, (unsigned int) ringptr->skb->data); #endif ringptr->pdl[0] = 0x00020000; /* Write PDH */ ringptr->pdl[3] = ((u_int)virt_to_bus(ringptr->skb->data)); ringptr->pdl[4] = MAX_ETHER_SIZE; /* Length of Data */ #ifdef HP100_DEBUG_BM for(p=(ringptr->pdl); p<(ringptr->pdl+5); p++) printk("hp100: %s: Adr 0x%.8x = 0x%.8x\n",dev->name,(u_int) p,(u_int) *p ); #endif return(1); } /* else: */ /* alloc_skb failed (no memory) -> still can receive the header * fragment into PDL memory. make PDL safe by clearing msgptr and * making the PDL only 1 fragment (i.e. the 4 byte packet status) */ #ifdef HP100_DEBUG_BM printk("hp100: %s: build_rx_pdl: PDH@0x%x, No space for skb.\n", dev->name, (u_int) ringptr->pdl); #endif ringptr->pdl[0]=0x00010000; /* PDH: Count=1 Fragment */ return(0); } /* * hp100_rxfill - attempt to fill the Rx Ring will empty skb's * * Makes assumption that skb's are always contiguous memory areas and * therefore PDLs contain only 2 physical fragments. * - While the number of Rx PDLs with buffers is less than maximum * a. Get a maximum packet size skb * b. Put the physical address of the buffer into the PDL. * c. Output physical address of PDL to adapter. */ static void hp100_rxfill( struct device *dev ) { int ioaddr=dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; hp100_ring_t *ringptr; #ifdef HP100_DEBUG_B hp100_outw( 0x4208, TRACE ); printk("hp100: %s: rxfill\n",dev->name); #endif hp100_page( PERFORMANCE ); while (lp->rxrcommit < MAX_RX_PDL) { /* ** Attempt to get a buffer and build a Rx PDL. */ ringptr = lp->rxrtail; if (0 == hp100_build_rx_pdl( ringptr, dev )) { return; /* None available, return */ } /* Hand this PDL over to the card */ /* Note: This needs performance page selected! */ #ifdef HP100_DEBUG_BM printk("hp100: %s: rxfill: Hand to card: pdl #%d @0x%x phys:0x%x, buffer: 0x%x\n", dev->name, lp->rxrcommit, (u_int)ringptr->pdl, (u_int)ringptr->pdl_paddr, (u_int)ringptr->pdl[3]); #endif hp100_outl( (u32)ringptr->pdl_paddr, RX_PDA); lp->rxrcommit += 1; lp->rxrtail = ringptr->next; } } /* * BM_shutdown - shutdown bus mastering and leave chip in reset state */ static void hp100_BM_shutdown( struct device *dev ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; unsigned long time; #ifdef HP100_DEBUG_B hp100_outw( 0x4209, TRACE ); printk("hp100: %s: bm shutdown\n",dev->name); #endif hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* Ack all ints */ /* Ensure Interrupts are off */ hp100_outw( HP100_INT_EN | HP100_RESET_LB , OPTION_LSW ); /* Disable all MAC activity */ hp100_page( MAC_CTRL ); hp100_andb( ~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1 ); /* stop rx/tx */ /* If cascade MMU is not already in reset */ if (0 != (hp100_inw(OPTION_LSW)&HP100_HW_RST) ) { /* Wait 1.3ms (10Mb max packet time) to ensure MAC is idle so * MMU pointers will not be reset out from underneath */ hp100_page( MAC_CTRL ); for(time=0; time<5000; time++) { if( (hp100_inb(MAC_CFG_1)&(HP100_TX_IDLE|HP100_RX_IDLE))== (HP100_TX_IDLE|HP100_RX_IDLE) ) break; } /* Shutdown algorithm depends on the generation of Cascade */ if( lp->chip==HP100_CHIPID_LASSEN ) { /* ETR shutdown/reset */ /* Disable Busmaster mode and wait for bit to go to zero. */ hp100_page(HW_MAP); hp100_andb( ~HP100_BM_MASTER, BM ); /* 100 ms timeout */ for(time=0; time<32000; time++) { if ( 0 == (hp100_inb( BM ) & HP100_BM_MASTER) ) break; } } else { /* Shasta or Rainier Shutdown/Reset */ /* To ensure all bus master inloading activity has ceased, * wait for no Rx PDAs or no Rx packets on card. */ hp100_page( PERFORMANCE ); /* 100 ms timeout */ for(time=0; time<10000; time++) { /* RX_PDL: PDLs not executed. */ /* RX_PKT_CNT: RX'd packets on card. */ if ( (hp100_inb( RX_PDL ) == 0) && (hp100_inb( RX_PKT_CNT ) == 0) ) break; } if(time>=10000) printk("hp100: %s: BM shutdown error.\n", dev->name); /* To ensure all bus master outloading activity has ceased, * wait until the Tx PDA count goes to zero or no more Tx space * available in the Tx region of the card. */ /* 100 ms timeout */ for(time=0; time<10000; time++) { if ( (0 == hp100_inb( TX_PKT_CNT )) && (0 != (hp100_inb( TX_MEM_FREE )&HP100_AUTO_COMPARE))) break; } /* Disable Busmaster mode */ hp100_page(HW_MAP); hp100_andb( ~HP100_BM_MASTER, BM ); } /* end of shutdown procedure for non-etr parts */ hp100_cascade_reset( dev, TRUE ); } hp100_page( PERFORMANCE ); /* hp100_outw( HP100_BM_READ | HP100_BM_WRITE | HP100_RESET_HB, OPTION_LSW ); */ /* Busmaster mode should be shut down now. */ } /* * transmit functions */ /* tx function for busmaster mode */ static int hp100_start_xmit_bm( struct sk_buff *skb, struct device *dev ) { unsigned long flags; int i, ok_flag; int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; hp100_ring_t *ringptr; #ifdef HP100_DEBUG_B hp100_outw( 0x4210, TRACE ); printk("hp100: %s: start_xmit_bm\n",dev->name); #endif if ( skb==NULL ) { #ifndef LINUX_2_1 dev_tint( dev ); #endif return 0; } if ( skb->len <= 0 ) return 0; /* Get Tx ring tail pointer */ if( lp->txrtail->next==lp->txrhead ) { /* No memory. */ #ifdef HP100_DEBUG printk("hp100: %s: start_xmit_bm: No TX PDL available.\n", dev->name); #endif /* not waited long enough since last tx? */ if ( jiffies - dev->trans_start < HZ ) return -EAGAIN; if ( lp->lan_type < 0 ) /* no LAN type detected yet? */ { hp100_stop_interface( dev ); if ( ( lp->lan_type = hp100_sense_lan( dev ) ) < 0 ) { printk( "hp100: %s: no connection found - check wire\n", dev->name ); hp100_start_interface( dev ); /* 10Mb/s RX pkts maybe handled */ return -EIO; } if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); /* relogin */ hp100_start_interface( dev ); } if ( lp->lan_type == HP100_LAN_100 && lp->hub_status < 0 ) /* we have a 100Mb/s adapter but it isn't connected to hub */ { printk( "hp100: %s: login to 100Mb/s hub retry\n", dev->name ); hp100_stop_interface( dev ); lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); } else { hp100_ints_off(); i = hp100_sense_lan( dev ); hp100_ints_on(); if ( i == HP100_LAN_ERR ) printk( "hp100: %s: link down detected\n", dev->name ); else if ( lp->lan_type != i ) /* cable change! */ { /* it's very hard - all network setting must be changed!!! */ printk( "hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name ); lp->lan_type = i; hp100_stop_interface( dev ); if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); } else { printk( "hp100: %s: interface reset\n", dev->name ); hp100_stop_interface( dev ); if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); } } dev->trans_start = jiffies; return -EAGAIN; } /* * we have to turn int's off before modifying this, otherwise * a tx_pdl_cleanup could occur at the same time */ save_flags( flags ); cli(); ringptr=lp->txrtail; lp->txrtail=ringptr->next; /* Check whether packet has minimal packet size */ ok_flag = skb->len >= HP100_MIN_PACKET_SIZE; i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE; ringptr->skb=skb; ringptr->pdl[0]=((1<<16) | i); /* PDH: 1 Fragment & length */ ringptr->pdl[1]=(u32)virt_to_bus(skb->data); /* 1st Frag: Adr. of data */ if(lp->chip==HP100_CHIPID_SHASTA) { /* TODO:Could someone who has the EISA card please check if this works? */ ringptr->pdl[2]=i; } else /* Lassen */ { /* In the PDL, don't use the padded size but the real packet size: */ ringptr->pdl[2]=skb->len; /* 1st Frag: Length of frag */ } /* Hand this PDL to the card. */ hp100_outl( ringptr->pdl_paddr, TX_PDA_L ); /* Low Prio. Queue */ lp->txrcommit++; restore_flags( flags ); /* Update statistics */ lp->stats.tx_packets++; #ifdef LINUX_2_1 lp->stats.tx_bytes += skb->len; #endif dev->trans_start = jiffies; return 0; } /* clean_txring checks if packets have been sent by the card by reading * the TX_PDL register from the performance page and comparing it to the * number of commited packets. It then frees the skb's of the packets that * obviously have been sent to the network. * * Needs the PERFORMANCE page selected. */ static void hp100_clean_txring( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; int ioaddr = dev->base_addr; int donecount; #ifdef HP100_DEBUG_B hp100_outw( 0x4211, TRACE ); printk("hp100: %s: clean txring\n", dev->name); #endif /* How many PDLs have been transmitted? */ donecount=(lp->txrcommit)-hp100_inb(TX_PDL); #ifdef HP100_DEBUG if(donecount>MAX_TX_PDL) printk("hp100: %s: Warning: More PDLs transmitted than commited to card???\n",dev->name); #endif for( ; 0!=donecount; donecount-- ) { #ifdef HP100_DEBUG_BM printk("hp100: %s: Free skb: data @0x%.8x txrcommit=0x%x TXPDL=0x%x, done=0x%x\n", dev->name, (u_int) lp->txrhead->skb->data, lp->txrcommit, hp100_inb(TX_PDL), donecount); #endif #ifdef LINUX_2_1 dev_kfree_skb( lp->txrhead->skb ); #else dev_kfree_skb( lp->txrhead->skb, FREE_WRITE ); #endif lp->txrhead->skb=(void *)NULL; lp->txrhead=lp->txrhead->next; lp->txrcommit--; } } /* tx function for slave modes */ static int hp100_start_xmit( struct sk_buff *skb, struct device *dev ) { int i, ok_flag; int ioaddr = dev->base_addr; u_short val; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4212, TRACE ); printk("hp100: %s: start_xmit\n", dev->name); #endif if ( skb==NULL ) { #ifndef LINUX_2_1 dev_tint( dev ); #endif return 0; } if ( skb->len <= 0 ) return 0; if ( lp->lan_type < 0 ) /* no LAN type detected yet? */ { hp100_stop_interface( dev ); if ( ( lp->lan_type = hp100_sense_lan( dev ) ) < 0 ) { printk( "hp100: %s: no connection found - check wire\n", dev->name ); hp100_start_interface( dev ); /* 10Mb/s RX packets maybe handled */ return -EIO; } if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); /* relogin */ hp100_start_interface( dev ); } /* If there is not enough free memory on the card... */ i=hp100_inl(TX_MEM_FREE)&0x7fffffff; if ( !(((i/2)-539)>(skb->len+16) && (hp100_inb(TX_PKT_CNT)<255)) ) { #ifdef HP100_DEBUG printk( "hp100: %s: start_xmit: tx free mem = 0x%x\n", dev->name, i ); #endif /* not waited long enough since last failed tx try? */ if ( jiffies - dev->trans_start < HZ ) { #ifdef HP100_DEBUG printk("hp100: %s: trans_start timing problem\n", dev->name); #endif return -EAGAIN; } if ( lp->lan_type == HP100_LAN_100 && lp->hub_status < 0 ) /* we have a 100Mb/s adapter but it isn't connected to hub */ { printk( "hp100: %s: login to 100Mb/s hub retry\n", dev->name ); hp100_stop_interface( dev ); lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); } else { hp100_ints_off(); i = hp100_sense_lan( dev ); hp100_ints_on(); if ( i == HP100_LAN_ERR ) printk( "hp100: %s: link down detected\n", dev->name ); else if ( lp->lan_type != i ) /* cable change! */ { /* it's very hard - all network setting must be changed!!! */ printk( "hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name ); lp->lan_type = i; hp100_stop_interface( dev ); if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); } else { printk( "hp100: %s: interface reset\n", dev->name ); hp100_stop_interface( dev ); if ( lp->lan_type == HP100_LAN_100 ) lp->hub_status = hp100_login_to_vg_hub( dev, FALSE ); hp100_start_interface( dev ); udelay(1000); } } dev->trans_start = jiffies; return -EAGAIN; } for ( i=0; i<6000 && ( hp100_inb( OPTION_MSW ) & HP100_TX_CMD ); i++ ) { #ifdef HP100_DEBUG_TX printk( "hp100: %s: start_xmit: busy\n", dev->name ); #endif } hp100_ints_off(); val = hp100_inw( IRQ_STATUS ); /* Ack / clear the interrupt TX_COMPLETE interrupt - this interrupt is set * when the current packet being transmitted on the wire is completed. */ hp100_outw( HP100_TX_COMPLETE, IRQ_STATUS ); #ifdef HP100_DEBUG_TX printk("hp100: %s: start_xmit: irq_status=0x%.4x, irqmask=0x%.4x, len=%d\n",dev->name,val,hp100_inw(IRQ_MASK),(int)skb->len ); #endif ok_flag = skb->len >= HP100_MIN_PACKET_SIZE; i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE; hp100_outw( i, DATA32 ); /* tell card the total packet length */ hp100_outw( i, FRAGMENT_LEN ); /* and first/only fragment length */ if ( lp->mode==2 ) /* memory mapped */ { if ( lp->mem_ptr_virt ) /* high pci memory was remapped */ { /* Note: The J2585B needs alignment to 32bits here! */ memcpy( lp->mem_ptr_virt, skb->data, ( skb->len + 3 ) & ~3 ); if ( !ok_flag ) memset( lp->mem_ptr_virt, 0, HP100_MIN_PACKET_SIZE - skb->len ); } else { /* Note: The J2585B needs alignment to 32bits here! */ memcpy_toio( lp->mem_ptr_phys, skb->data, (skb->len + 3) & ~3 ); if ( !ok_flag ) memset_io( lp->mem_ptr_phys, 0, HP100_MIN_PACKET_SIZE - skb->len ); } } else /* programmed i/o */ { outsl( ioaddr + HP100_REG_DATA32, skb->data, ( skb->len + 3 ) >> 2 ); if ( !ok_flag ) for ( i = ( skb->len + 3 ) & ~3; i < HP100_MIN_PACKET_SIZE; i += 4 ) hp100_outl( 0, DATA32 ); } hp100_outb( HP100_TX_CMD | HP100_SET_LB, OPTION_MSW ); /* send packet */ lp->stats.tx_packets++; #ifdef LINUX_2_1 lp->stats.tx_bytes += skb->len; #endif dev->trans_start=jiffies; hp100_ints_on(); #ifdef LINUX_2_1 dev_kfree_skb( skb ); #else dev_kfree_skb( skb, FREE_WRITE ); #endif #ifdef HP100_DEBUG_TX printk( "hp100: %s: start_xmit: end\n", dev->name ); #endif return 0; } /* * Receive Function (Non-Busmaster mode) * Called when an "Receive Packet" interrupt occurs, i.e. the receive * packet counter is non-zero. * For non-busmaster, this function does the whole work of transfering * the packet to the host memory and then up to higher layers via skb * and netif_rx. */ static void hp100_rx( struct device *dev ) { int packets, pkt_len; int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; u_int header; struct sk_buff *skb; #ifdef DEBUG_B hp100_outw( 0x4213, TRACE ); printk("hp100: %s: rx\n", dev->name); #endif /* First get indication of received lan packet */ /* RX_PKT_CND indicates the number of packets which have been fully */ /* received onto the card but have not been fully transfered of the card */ packets = hp100_inb( RX_PKT_CNT ); #ifdef HP100_DEBUG_RX if ( packets > 1 ) printk( "hp100: %s: rx: waiting packets = %d\n", dev->name,packets ); #endif while ( packets-- > 0 ) { /* If ADV_NXT_PKT is still set, we have to wait until the card has */ /* really advanced to the next packet. */ for (pkt_len=0; pkt_len<6000 &&(hp100_inb(OPTION_MSW)&HP100_ADV_NXT_PKT); pkt_len++ ) { #ifdef HP100_DEBUG_RX printk( "hp100: %s: rx: busy, remaining packets = %d\n", dev->name, packets ); #endif } /* First we get the header, which contains information about the */ /* actual length of the received packet. */ if( lp->mode==2 ) /* memory mapped mode */ { if ( lp->mem_ptr_virt ) /* if memory was remapped */ header = *(__u32 *)lp->mem_ptr_virt; else header = readl( lp->mem_ptr_phys ); } else /* programmed i/o */ header = hp100_inl( DATA32 ); pkt_len = ((header & HP100_PKT_LEN_MASK) + 3) & ~3; #ifdef HP100_DEBUG_RX printk( "hp100: %s: rx: new packet - length=%d, errors=0x%x, dest=0x%x\n", dev->name, header & HP100_PKT_LEN_MASK, (header>>16)&0xfff8, (header>>16)&7); #endif /* Now we allocate the skb and transfer the data into it. */ skb = dev_alloc_skb( pkt_len ); if ( skb == NULL ) /* Not enough memory->drop packet */ { #ifdef HP100_DEBUG printk( "hp100: %s: rx: couldn't allocate a sk_buff of size %d\n", dev->name, pkt_len ); #endif lp->stats.rx_dropped++; } else /* skb successfully allocated */ { u_char *ptr; skb->dev = dev; /* ptr to start of the sk_buff data area */ ptr = (u_char *)skb_put( skb, pkt_len ); /* Now transfer the data from the card into that area */ if ( lp->mode==2 ) { if ( lp->mem_ptr_virt ) memcpy( ptr, lp->mem_ptr_virt, pkt_len ); /* Note alignment to 32bit transfers */ else memcpy_fromio( ptr, lp->mem_ptr_phys, pkt_len ); } else /* io mapped */ insl( ioaddr + HP100_REG_DATA32, ptr, pkt_len >> 2 ); skb->protocol = eth_type_trans( skb, dev ); netif_rx( skb ); lp->stats.rx_packets++; #ifdef LINUX_2_1 lp->stats.rx_bytes += skb->len; #endif #ifdef HP100_DEBUG_RX printk( "hp100: %s: rx: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", dev->name, ptr[ 0 ], ptr[ 1 ], ptr[ 2 ], ptr[ 3 ], ptr[ 4 ], ptr[ 5 ], ptr[ 6 ], ptr[ 7 ], ptr[ 8 ], ptr[ 9 ], ptr[ 10 ], ptr[ 11 ] ); #endif } /* Indicate the card that we have got the packet */ hp100_outb( HP100_ADV_NXT_PKT | HP100_SET_LB, OPTION_MSW ); switch ( header & 0x00070000 ) { case (HP100_MULTI_ADDR_HASH<<16): case (HP100_MULTI_ADDR_NO_HASH<<16): lp->stats.multicast++; break; } } /* end of while(there are packets) loop */ #ifdef HP100_DEBUG_RX printk( "hp100_rx: %s: end\n", dev->name ); #endif } /* * Receive Function for Busmaster Mode */ static void hp100_rx_bm( struct device *dev ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; hp100_ring_t *ptr; u_int header; int pkt_len; #ifdef HP100_DEBUG_B hp100_outw( 0x4214, TRACE ); printk("hp100: %s: rx_bm\n", dev->name); #endif #ifdef HP100_DEBUG if(0==lp->rxrcommit) { printk("hp100: %s: rx_bm called although no PDLs were committed to adapter?\n", dev->name); return; } else /* RX_PKT_CNT states how many PDLs are currently formatted and available to * the cards BM engine */ if( (hp100_inw(RX_PKT_CNT)&0x00ff) >= lp->rxrcommit) { printk("hp100: %s: More packets received than commited? RX_PKT_CNT=0x%x, commit=0x%x\n", dev->name, hp100_inw(RX_PKT_CNT)&0x00ff, lp->rxrcommit); return; } #endif while( (lp->rxrcommit > hp100_inb(RX_PDL)) ) { /* * The packet was received into the pdl pointed to by lp->rxrhead ( * the oldest pdl in the ring */ /* First we get the header, which contains information about the */ /* actual length of the received packet. */ ptr=lp->rxrhead; header = *(ptr->pdl-1); pkt_len = (header & HP100_PKT_LEN_MASK); #ifdef HP100_DEBUG_BM printk( "hp100: %s: rx_bm: header@0x%x=0x%x length=%d, errors=0x%x, dest=0x%x\n", dev->name, (u_int) (ptr->pdl-1),(u_int) header, pkt_len, (header>>16)&0xfff8, (header>>16)&7); printk( "hp100: %s: RX_PDL_COUNT:0x%x TX_PDL_COUNT:0x%x, RX_PKT_CNT=0x%x PDH=0x%x, Data@0x%x len=0x%x\n", dev->name, hp100_inb( RX_PDL ), hp100_inb( TX_PDL ), hp100_inb( RX_PKT_CNT ), (u_int) *(ptr->pdl), (u_int) *(ptr->pdl+3), (u_int) *(ptr->pdl+4)); #endif if( (pkt_len>=MIN_ETHER_SIZE) && (pkt_len<=MAX_ETHER_SIZE) ) { if(ptr->skb==NULL) { printk("hp100: %s: rx_bm: skb null\n", dev->name); /* can happen if we only allocated room for the pdh due to memory shortage. */ lp->stats.rx_dropped++; } else { skb_trim( ptr->skb, pkt_len ); /* Shorten it */ ptr->skb->protocol = eth_type_trans( ptr->skb, dev ); netif_rx( ptr->skb ); /* Up and away... */ lp->stats.rx_packets++; #ifdef LINUX_2_1 lp->stats.rx_bytes += ptr->skb->len; #endif } switch ( header & 0x00070000 ) { case (HP100_MULTI_ADDR_HASH<<16): case (HP100_MULTI_ADDR_NO_HASH<<16): lp->stats.multicast++; break; } } else { #ifdef HP100_DEBUG printk("hp100: %s: rx_bm: Received bad packet (length=%d)\n",dev->name,pkt_len); #endif if(ptr->skb!=NULL) #ifdef LINUX_2_1 dev_kfree_skb( ptr->skb ); #else dev_kfree_skb( ptr->skb, FREE_READ ); #endif lp->stats.rx_errors++; } lp->rxrhead=lp->rxrhead->next; /* Allocate a new rx PDL (so lp->rxrcommit stays the same) */ if (0 == hp100_build_rx_pdl( lp->rxrtail, dev )) { /* No space for skb, header can still be received. */ #ifdef HP100_DEBUG printk("hp100: %s: rx_bm: No space for new PDL.\n", dev->name); #endif return; } else { /* successfully allocated new PDL - put it in ringlist at tail. */ hp100_outl((u32)lp->rxrtail->pdl_paddr, RX_PDA); lp->rxrtail=lp->rxrtail->next; } } } /* * statistics */ static hp100_stats_t *hp100_get_stats( struct device *dev ) { int ioaddr = dev->base_addr; #ifdef HP100_DEBUG_B hp100_outw( 0x4215, TRACE ); #endif hp100_ints_off(); hp100_update_stats( dev ); hp100_ints_on(); return &((struct hp100_private *)dev->priv)->stats; } static void hp100_update_stats( struct device *dev ) { int ioaddr = dev->base_addr; u_short val; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4216, TRACE ); printk("hp100: %s: update-stats\n", dev->name); #endif /* Note: Statistics counters clear when read. */ hp100_page( MAC_CTRL ); val = hp100_inw( DROPPED ) & 0x0fff; lp->stats.rx_errors += val; lp->stats.rx_over_errors += val; val = hp100_inb( CRC ); lp->stats.rx_errors += val; lp->stats.rx_crc_errors += val; val = hp100_inb( ABORT ); lp->stats.tx_errors += val; lp->stats.tx_aborted_errors += val; hp100_page( PERFORMANCE ); } static void hp100_misc_interrupt( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4216, TRACE ); printk("hp100: %s: misc_interrupt\n", dev->name); #endif /* Note: Statistics counters clear when read. */ lp->stats.rx_errors++; lp->stats.tx_errors++; } static void hp100_clear_stats( int ioaddr ) { unsigned long flags; #ifdef HP100_DEBUG_B hp100_outw( 0x4217, TRACE ); printk("hp100: %s: clear_stats\n", dev->name); #endif save_flags( flags ); cli(); hp100_page( MAC_CTRL ); /* get all statistics bytes */ hp100_inw( DROPPED ); hp100_inb( CRC ); hp100_inb( ABORT ); hp100_page( PERFORMANCE ); restore_flags( flags ); } /* * multicast setup */ /* * Set or clear the multicast filter for this adapter. */ static void hp100_set_multicast_list( struct device *dev ) { unsigned long flags; int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4218, TRACE ); printk("hp100: %s: set_mc_list\n", dev->name); #endif save_flags( flags ); cli(); hp100_ints_off(); hp100_page( MAC_CTRL ); hp100_andb( ~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1 ); /* stop rx/tx */ if ( dev->flags & IFF_PROMISC ) { lp->mac2_mode = HP100_MAC2MODE6; /* promiscuous mode = get all good */ lp->mac1_mode = HP100_MAC1MODE6; /* packets on the net */ memset( &lp->hash_bytes, 0xff, 8 ); } else if ( dev->mc_count || (dev->flags&IFF_ALLMULTI) ) { lp->mac2_mode = HP100_MAC2MODE5; /* multicast mode = get packets for */ lp->mac1_mode = HP100_MAC1MODE5; /* me, broadcasts and all multicasts */ #ifdef HP100_MULTICAST_FILTER /* doesn't work!!! */ if ( dev -> flags & IFF_ALLMULTI ) { /* set hash filter to receive all multicast packets */ memset( &lp->hash_bytes, 0xff, 8 ); } else { int i, j, idx; u_char *addrs; struct dev_mc_list *dmi; memset( &lp->hash_bytes, 0x00, 8 ); #ifdef HP100_DEBUG printk("hp100: %s: computing hash filter - mc_count = %i\n", dev -> name, dev -> mc_count ); #endif for ( i = 0, dmi = dev -> mc_list; i < dev -> mc_count; i++, dmi = dmi -> next ) { addrs = dmi -> dmi_addr; if ( ( *addrs & 0x01 ) == 0x01 ) /* multicast address? */ { #ifdef HP100_DEBUG printk("hp100: %s: multicast = %02x:%02x:%02x:%02x:%02x:%02x, ", dev -> name, addrs[ 0 ], addrs[ 1 ], addrs[ 2 ], addrs[ 3 ], addrs[ 4 ], addrs[ 5 ] ); #endif for ( j = idx = 0; j < 6; j++ ) { idx ^= *addrs++ & 0x3f; printk( ":%02x:", idx ); } #ifdef HP100_DEBUG printk("idx = %i\n", idx ); #endif lp->hash_bytes[ idx >> 3 ] |= ( 1 << ( idx & 7 ) ); } } } #else memset( &lp->hash_bytes, 0xff, 8 ); #endif } else { lp->mac2_mode = HP100_MAC2MODE3; /* normal mode = get packets for me */ lp->mac1_mode = HP100_MAC1MODE3; /* and broadcasts */ memset( &lp->hash_bytes, 0x00, 8 ); } if ( ( (hp100_inb(MAC_CFG_1) & 0x0f)!=lp->mac1_mode ) || ( hp100_inb(MAC_CFG_2)!=lp->mac2_mode ) ) { int i; hp100_outb( lp->mac2_mode, MAC_CFG_2 ); hp100_andb( HP100_MAC1MODEMASK, MAC_CFG_1 ); /* clear mac1 mode bits */ hp100_orb( lp->mac1_mode, MAC_CFG_1 ); /* and set the new mode */ hp100_page( MAC_ADDRESS ); for ( i = 0; i < 8; i++ ) hp100_outb( lp->hash_bytes[ i ], HASH_BYTE0 + i ); #ifdef HP100_DEBUG printk("hp100: %s: mac1 = 0x%x, mac2 = 0x%x, multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, lp->mac1_mode, lp->mac2_mode, lp->hash_bytes[ 0 ], lp->hash_bytes[ 1 ], lp->hash_bytes[ 2 ], lp->hash_bytes[ 3 ], lp->hash_bytes[ 4 ], lp->hash_bytes[ 5 ], lp->hash_bytes[ 6 ], lp->hash_bytes[ 7 ] ); #endif if(lp->lan_type==HP100_LAN_100) { #ifdef HP100_DEBUG printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name); #endif lp->hub_status=hp100_login_to_vg_hub( dev, TRUE ); /* force a relogin to the hub */ } } else { int i; u_char old_hash_bytes[ 8 ]; hp100_page( MAC_ADDRESS ); for ( i = 0; i < 8; i++ ) old_hash_bytes[ i ] = hp100_inb( HASH_BYTE0 + i ); if ( memcmp( old_hash_bytes, &lp->hash_bytes, 8 ) ) { for ( i = 0; i < 8; i++ ) hp100_outb( lp->hash_bytes[ i ], HASH_BYTE0 + i ); #ifdef HP100_DEBUG printk("hp100: %s: multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, lp->hash_bytes[ 0 ], lp->hash_bytes[ 1 ], lp->hash_bytes[ 2 ], lp->hash_bytes[ 3 ], lp->hash_bytes[ 4 ], lp->hash_bytes[ 5 ], lp->hash_bytes[ 6 ], lp->hash_bytes[ 7 ] ); #endif if(lp->lan_type==HP100_LAN_100) { #ifdef HP100_DEBUG printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name); #endif lp->hub_status=hp100_login_to_vg_hub( dev, TRUE ); /* force a relogin to the hub */ } } } hp100_page( MAC_CTRL ); hp100_orb( HP100_RX_EN | HP100_RX_IDLE | /* enable rx */ HP100_TX_EN | HP100_TX_IDLE, MAC_CFG_1 ); /* enable tx */ hp100_page( PERFORMANCE ); hp100_ints_on(); restore_flags( flags ); } /* * hardware interrupt handling */ static void hp100_interrupt( int irq, void *dev_id, struct pt_regs *regs ) { struct device *dev = (struct device *)dev_id; struct hp100_private *lp = (struct hp100_private *)dev->priv; int ioaddr; u_int val; if ( dev == NULL ) return; ioaddr = dev->base_addr; if ( dev->interrupt ) printk( "hp100: %s: re-entering the interrupt handler\n", dev->name ); hp100_ints_off(); dev->interrupt = 1; /* mark that we are inside the handler */ #ifdef HP100_DEBUG_B hp100_outw( 0x4219, TRACE ); #endif /* hp100_page( PERFORMANCE ); */ val = hp100_inw( IRQ_STATUS ); #ifdef HP100_DEBUG_IRQ printk( "hp100: %s: mode=%x,IRQ_STAT=0x%.4x,RXPKTCNT=0x%.2x RXPDL=0x%.2x TXPKTCNT=0x%.2x TXPDL=0x%.2x\n", dev->name, lp->mode, (u_int)val, hp100_inb( RX_PKT_CNT ), hp100_inb( RX_PDL ), hp100_inb( TX_PKT_CNT ), hp100_inb( TX_PDL ) ); #endif if(val==0) /* might be a shared interrupt */ { dev->interrupt=0; hp100_ints_on(); return; } /* We're only interested in those interrupts we really enabled. */ /* val &= hp100_inw( IRQ_MASK ); */ /* * RX_PDL_FILL_COMPL is set whenever a RX_PDL has been executed. A RX_PDL * is considered executed whenever the RX_PDL data structure is no longer * needed. */ if ( val & HP100_RX_PDL_FILL_COMPL ) { if(lp->mode==1) hp100_rx_bm( dev ); else { printk("hp100: %s: rx_pdl_fill_compl interrupt although not busmaster?\n", dev->name); } } /* * The RX_PACKET interrupt is set, when the receive packet counter is * non zero. We use this interrupt for receiving in slave mode. In * busmaster mode, we use it to make sure we did not miss any rx_pdl_fill * interrupts. If rx_pdl_fill_compl is not set and rx_packet is set, then * we somehow have missed a rx_pdl_fill_compl interrupt. */ if ( val & HP100_RX_PACKET ) /* Receive Packet Counter is non zero */ { if(lp->mode!=1) /* non busmaster */ hp100_rx( dev ); else if ( !(val & HP100_RX_PDL_FILL_COMPL )) { /* Shouldnt happen - maybe we missed a RX_PDL_FILL Interrupt? */ hp100_rx_bm( dev ); } } /* * Ack. that we have noticed the interrupt and thereby allow next one. * Note that this is now done after the slave rx function, since first * acknowledging and then setting ADV_NXT_PKT caused an extra interrupt * on the J2573. */ hp100_outw( val, IRQ_STATUS ); /* * RX_ERROR is set when a packet is dropped due to no memory resources on * the card or when a RCV_ERR occurs. * TX_ERROR is set when a TX_ABORT condition occurs in the MAC->exists * only in the 802.3 MAC and happens when 16 collisions occur during a TX */ if ( val & ( HP100_TX_ERROR | HP100_RX_ERROR ) ) { #ifdef HP100_DEBUG_IRQ printk("hp100: %s: TX/RX Error IRQ\n", dev->name); #endif hp100_update_stats( dev ); if(lp->mode==1) { hp100_rxfill( dev ); hp100_clean_txring( dev ); } } /* * RX_PDA_ZERO is set when the PDA count goes from non-zero to zero. */ if ( (lp->mode==1)&&(val &(HP100_RX_PDA_ZERO)) ) hp100_rxfill( dev ); /* * HP100_TX_COMPLETE interrupt occurs when packet transmitted on wire * is completed */ if ( (lp->mode==1) && ( val & ( HP100_TX_COMPLETE )) ) hp100_clean_txring( dev ); /* * MISC_ERROR is set when either the LAN link goes down or a detected * bus error occurs. */ if ( val & HP100_MISC_ERROR ) /* New for J2585B */ { #ifdef HP100_DEBUG_IRQ printk("hp100: %s: Misc. Error Interrupt - Check cabling.\n", dev->name); #endif if(lp->mode==1) { hp100_clean_txring( dev ); hp100_rxfill( dev ); } hp100_misc_interrupt( dev ); } dev->interrupt = 0; hp100_ints_on(); } /* * some misc functions */ static void hp100_start_interface( struct device *dev ) { unsigned long flags; int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4220, TRACE ); printk("hp100: %s: hp100_start_interface\n",dev->name); #endif save_flags( flags ); cli(); /* Ensure the adapter does not want to request an interrupt when */ /* enabling the IRQ line to be active on the bus (i.e. not tri-stated) */ hp100_page( PERFORMANCE ); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* ack all IRQs */ hp100_outw( HP100_FAKE_INT|HP100_INT_EN|HP100_RESET_LB, OPTION_LSW); /* Un Tri-state int. TODO: Check if shared interrupts can be realised? */ hp100_outw( HP100_TRI_INT | HP100_RESET_HB, OPTION_LSW ); if(lp->mode==1) { /* Make sure BM bit is set... */ hp100_page(HW_MAP); hp100_orb( HP100_BM_MASTER, BM ); hp100_rxfill( dev ); } else if(lp->mode==2) { /* Enable memory mapping. Note: Don't do this when busmaster. */ hp100_outw( HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW ); } hp100_page(PERFORMANCE); hp100_outw( 0xfefe, IRQ_MASK ); /* mask off all ints */ hp100_outw( 0xffff, IRQ_STATUS ); /* ack IRQ */ /* enable a few interrupts: */ if(lp->mode==1) /* busmaster mode */ { hp100_outw( HP100_RX_PDL_FILL_COMPL | HP100_RX_PDA_ZERO | HP100_RX_ERROR | /* HP100_RX_PACKET | */ /* HP100_RX_EARLY_INT | */ HP100_SET_HB | /* HP100_TX_PDA_ZERO | */ HP100_TX_COMPLETE | /* HP100_MISC_ERROR | */ HP100_TX_ERROR | HP100_SET_LB, IRQ_MASK ); } else { hp100_outw( HP100_RX_PACKET | HP100_RX_ERROR | HP100_SET_HB | HP100_TX_ERROR | HP100_SET_LB , IRQ_MASK ); } /* Enable MAC Tx and RX, set MAC modes, ... */ hp100_set_multicast_list( dev ); restore_flags( flags ); } static void hp100_stop_interface( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; int ioaddr = dev->base_addr; u_int val; #ifdef HP100_DEBUG_B printk("hp100: %s: hp100_stop_interface\n",dev->name); hp100_outw( 0x4221, TRACE ); #endif if (lp->mode==1) hp100_BM_shutdown( dev ); else { /* Note: MMAP_DIS will be reenabled by start_interface */ hp100_outw( HP100_INT_EN | HP100_RESET_LB | HP100_TRI_INT | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW ); val = hp100_inw( OPTION_LSW ); hp100_page( MAC_CTRL ); hp100_andb( ~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1 ); if ( !(val & HP100_HW_RST) ) return; /* If reset, imm. return ... */ /* ... else: busy wait until idle */ for ( val = 0; val < 6000; val++ ) if ( ( hp100_inb( MAC_CFG_1 ) & (HP100_TX_IDLE | HP100_RX_IDLE) ) == (HP100_TX_IDLE | HP100_RX_IDLE) ) { hp100_page(PERFORMANCE); return; } printk( "hp100: %s: hp100_stop_interface - timeout\n", dev->name ); hp100_page(PERFORMANCE); } } static void hp100_load_eeprom( struct device *dev, u_short probe_ioaddr ) { int i; int ioaddr = probe_ioaddr > 0 ? probe_ioaddr : dev->base_addr; #ifdef HP100_DEBUG_B hp100_outw( 0x4222, TRACE ); #endif hp100_page( EEPROM_CTRL ); hp100_andw( ~HP100_EEPROM_LOAD, EEPROM_CTRL ); hp100_orw( HP100_EEPROM_LOAD, EEPROM_CTRL ); for ( i = 0; i < 10000; i++ ) if ( !( hp100_inb( OPTION_MSW ) & HP100_EE_LOAD ) ) return; printk( "hp100: %s: hp100_load_eeprom - timeout\n", dev->name ); } /* Sense connection status. * return values: LAN_10 - Connected to 10Mbit/s network * LAN_100 - Connected to 100Mbit/s network * LAN_ERR - not connected or 100Mbit/s Hub down */ static int hp100_sense_lan( struct device *dev ) { int ioaddr = dev->base_addr; u_short val_VG, val_10; struct hp100_private *lp = (struct hp100_private *)dev->priv; #ifdef HP100_DEBUG_B hp100_outw( 0x4223, TRACE ); #endif hp100_page( MAC_CTRL ); val_10 = hp100_inb( 10_LAN_CFG_1 ); val_VG = hp100_inb( VG_LAN_CFG_1 ); hp100_page( PERFORMANCE ); #ifdef HP100_DEBUG printk( "hp100: %s: sense_lan: val_VG = 0x%04x, val_10 = 0x%04x\n", dev->name, val_VG, val_10 ); #endif if ( val_10 & HP100_LINK_BEAT_ST ) /* 10Mb connection is active */ return HP100_LAN_10; if ( val_10 & HP100_AUI_ST ) /* have we BNC or AUI onboard? */ { val_10 |= HP100_AUI_SEL | HP100_LOW_TH; hp100_page( MAC_CTRL ); hp100_outb( val_10, 10_LAN_CFG_1 ); hp100_page( PERFORMANCE ); return HP100_LAN_10; } if ( (lp->id->id == 0x02019F022) || (lp->id->id == 0x01042103c) || (lp->id->id == 0x01040103c) ) return HP100_LAN_ERR; /* Those cards don't have a 100 Mbit connector */ if ( val_VG & HP100_LINK_CABLE_ST ) /* Can hear the HUBs tone. */ return HP100_LAN_100; return HP100_LAN_ERR; } static int hp100_down_vg_link( struct device *dev ) { struct hp100_private *lp = (struct hp100_private *)dev->priv; int ioaddr = dev->base_addr; unsigned long time; long savelan, newlan; #ifdef HP100_DEBUG_B hp100_outw( 0x4224, TRACE ); printk("hp100: %s: down_vg_link\n", dev->name); #endif hp100_page( MAC_CTRL ); time=jiffies+(HZ/4); do{ if ( hp100_inb( VG_LAN_CFG_1 ) & HP100_LINK_CABLE_ST ) break; } while (time>jiffies); if ( jiffies >= time ) /* no signal->no logout */ return 0; /* Drop the VG Link by clearing the link up cmd and load addr.*/ hp100_andb( ~( HP100_LOAD_ADDR| HP100_LINK_CMD), VG_LAN_CFG_1); hp100_orb( HP100_VG_SEL, VG_LAN_CFG_1); /* Conditionally stall for >250ms on Link-Up Status (to go down) */ time=jiffies+(HZ/2); do{ if ( !(hp100_inb( VG_LAN_CFG_1) & HP100_LINK_UP_ST) ) break; } while(time>jiffies); #ifdef HP100_DEBUG if (jiffies>=time) printk("hp100: %s: down_vg_link: Link does not go down?\n", dev->name); #endif /* To prevent condition where Rev 1 VG MAC and old hubs do not complete */ /* logout under traffic (even though all the status bits are cleared), */ /* do this workaround to get the Rev 1 MAC in its idle state */ if ( lp->chip==HP100_CHIPID_LASSEN ) { /* Reset VG MAC to insure it leaves the logoff state even if */ /* the Hub is still emitting tones */ hp100_andb(~HP100_VG_RESET, VG_LAN_CFG_1); udelay(1500); /* wait for >1ms */ hp100_orb(HP100_VG_RESET, VG_LAN_CFG_1); /* Release Reset */ udelay(1500); } /* New: For lassen, switch to 10 Mbps mac briefly to clear training ACK */ /* to get the VG mac to full reset. This is not req.d with later chips */ /* Note: It will take the between 1 and 2 seconds for the VG mac to be */ /* selected again! This will be left to the connect hub function to */ /* perform if desired. */ if (lp->chip==HP100_CHIPID_LASSEN) { /* Have to write to 10 and 100VG control registers simultaneously */ savelan=newlan=hp100_inl(10_LAN_CFG_1); /* read 10+100 LAN_CFG regs */ newlan &= ~(HP100_VG_SEL<<16); newlan |= (HP100_DOT3_MAC)<<8; hp100_andb( ~HP100_AUTO_MODE, MAC_CFG_3); /* Autosel off */ hp100_outl(newlan, 10_LAN_CFG_1); /* Conditionally stall for 5sec on VG selected. */ time=jiffies+(HZ*5); do{ if( !(hp100_inb(MAC_CFG_4) & HP100_MAC_SEL_ST) ) break; } while(time>jiffies); hp100_orb( HP100_AUTO_MODE, MAC_CFG_3); /* Autosel back on */ hp100_outl(savelan, 10_LAN_CFG_1); } time=jiffies+(3*HZ); /* Timeout 3s */ do { if ( (hp100_inb( VG_LAN_CFG_1 )&HP100_LINK_CABLE_ST) == 0) break; } while (time>jiffies); if(time<=jiffies) { #ifdef HP100_DEBUG printk( "hp100: %s: down_vg_link: timeout\n", dev->name ); #endif return -EIO; } time=jiffies+(2*HZ); /* This seems to take a while.... */ do {} while (time>jiffies); return 0; } static int hp100_login_to_vg_hub( struct device *dev, u_short force_relogin ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; u_short val=0; unsigned long time; int startst; #ifdef HP100_DEBUG_B hp100_outw( 0x4225, TRACE ); printk("hp100: %s: login_to_vg_hub\n", dev->name); #endif /* Initiate a login sequence iff VG MAC is enabled and either Load Address * bit is zero or the force relogin flag is set (e.g. due to MAC address or * promiscuous mode change) */ hp100_page( MAC_CTRL ); startst=hp100_inb( VG_LAN_CFG_1 ); if((force_relogin==TRUE)||(hp100_inb( MAC_CFG_4 )&HP100_MAC_SEL_ST)) { #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Start training\n", dev->name); #endif /* Ensure VG Reset bit is 1 (i.e., do not reset)*/ hp100_orb( HP100_VG_RESET , VG_LAN_CFG_1 ); /* If Lassen AND auto-select-mode AND VG tones were sensed on */ /* entry then temporarily put them into force 100Mbit mode */ if((lp->chip==HP100_CHIPID_LASSEN)&&( startst & HP100_LINK_CABLE_ST ) ) hp100_andb( ~HP100_DOT3_MAC, 10_LAN_CFG_2 ); /* Drop the VG link by zeroing Link Up Command and Load Address */ hp100_andb( ~(HP100_LINK_CMD/* |HP100_LOAD_ADDR */), VG_LAN_CFG_1); #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Bring down the link\n", dev->name); #endif /* Wait for link to drop */ time = jiffies + (HZ/10); do { if (~(hp100_inb( VG_LAN_CFG_1 )& HP100_LINK_UP_ST) ) break; } while (time>jiffies); /* Start an addressed training and optionally request promiscuous port */ if ( (dev->flags) & IFF_PROMISC ) { hp100_orb( HP100_PROM_MODE, VG_LAN_CFG_2); if(lp->chip==HP100_CHIPID_LASSEN) hp100_orw( HP100_MACRQ_PROMSC, TRAIN_REQUEST ); } else { hp100_andb( ~HP100_PROM_MODE, VG_LAN_CFG_2); /* For ETR parts we need to reset the prom. bit in the training * register, otherwise promiscious mode won't be disabled. */ if(lp->chip==HP100_CHIPID_LASSEN) { hp100_andw( ~HP100_MACRQ_PROMSC, TRAIN_REQUEST ); } } /* With ETR parts, frame format request bits can be set. */ if(lp->chip==HP100_CHIPID_LASSEN) hp100_orb( HP100_MACRQ_FRAMEFMT_EITHER, TRAIN_REQUEST); hp100_orb( HP100_LINK_CMD|HP100_LOAD_ADDR|HP100_VG_RESET, VG_LAN_CFG_1); /* Note: Next wait could be omitted for Hood and earlier chips under */ /* certain circumstances */ /* TODO: check if hood/earlier and skip wait. */ /* Wait for either short timeout for VG tones or long for login */ /* Wait for the card hardware to signalise link cable status ok... */ hp100_page( MAC_CTRL ); time = jiffies + ( 1*HZ ); /* 1 sec timeout for cable st */ do { if ( hp100_inb( VG_LAN_CFG_1 ) & HP100_LINK_CABLE_ST ) break; } while ( jiffies < time ); if ( jiffies >= time ) { #ifdef HP100_DEBUG_TRAINING printk( "hp100: %s: Link cable status not ok? Training aborted.\n", dev->name ); #endif } else { #ifdef HP100_DEBUG_TRAINING printk( "hp100: %s: HUB tones detected. Trying to train.\n", dev->name); #endif time = jiffies + ( 2*HZ ); /* again a timeout */ do { val = hp100_inb( VG_LAN_CFG_1 ); if ( (val & ( HP100_LINK_UP_ST )) ) { #ifdef HP100_DEBUG_TRAINING printk( "hp100: %s: Passed training.\n", dev->name); #endif break; } } while ( time > jiffies ); } /* If LINK_UP_ST is set, then we are logged into the hub. */ if ( (jiffies<=time) && (val & HP100_LINK_UP_ST) ) { #ifdef HP100_DEBUG_TRAINING printk( "hp100: %s: Successfully logged into the HUB.\n", dev->name); if(lp->chip==HP100_CHIPID_LASSEN) { val = hp100_inw(TRAIN_ALLOW); printk( "hp100: %s: Card supports 100VG MAC Version \"%s\" ", dev->name,(hp100_inw(TRAIN_REQUEST)&HP100_CARD_MACVER) ? "802.12" : "Pre"); printk( "Driver will use MAC Version \"%s\"\n", ( val & HP100_HUB_MACVER) ? "802.12" : "Pre" ); printk( "hp100: %s: Frame format is %s.\n",dev->name,(val&HP100_MALLOW_FRAMEFMT)?"802.5":"802.3"); } #endif } else { /* If LINK_UP_ST is not set, login was not successful */ printk("hp100: %s: Problem logging into the HUB.\n",dev->name); if(lp->chip==HP100_CHIPID_LASSEN) { /* Check allowed Register to find out why there is a problem. */ val = hp100_inw( TRAIN_ALLOW ); /* wont work on non-ETR card */ #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: MAC Configuration requested: 0x%04x, HUB allowed: 0x%04x\n", dev->name, hp100_inw(TRAIN_REQUEST), val); #endif if ( val & HP100_MALLOW_ACCDENIED ) printk("hp100: %s: HUB access denied.\n", dev->name); if ( val & HP100_MALLOW_CONFIGURE ) printk("hp100: %s: MAC Configuration is incompatible with the Network.\n", dev->name); if ( val & HP100_MALLOW_DUPADDR ) printk("hp100: %s: Duplicate MAC Address on the Network.\n", dev->name); } } /* If we have put the chip into forced 100 Mbit mode earlier, go back */ /* to auto-select mode */ if( (lp->chip==HP100_CHIPID_LASSEN)&&(startst & HP100_LINK_CABLE_ST) ) { hp100_page( MAC_CTRL ); hp100_orb( HP100_DOT3_MAC, 10_LAN_CFG_2 ); } val=hp100_inb(VG_LAN_CFG_1); /* Clear the MISC_ERROR Interrupt, which might be generated when doing the relogin */ hp100_page(PERFORMANCE); hp100_outw( HP100_MISC_ERROR, IRQ_STATUS); if (val&HP100_LINK_UP_ST) return(0); /* login was ok */ else { printk("hp100: %s: Training failed.\n", dev->name); hp100_down_vg_link( dev ); return -EIO; } } /* no forced relogin & already link there->no training. */ return -EIO; } static void hp100_cascade_reset( struct device *dev, u_short enable ) { int ioaddr = dev->base_addr; struct hp100_private *lp = (struct hp100_private *)dev->priv; int i; #ifdef HP100_DEBUG_B hp100_outw( 0x4226, TRACE ); printk("hp100: %s: cascade_reset\n", dev->name); #endif if (enable==TRUE) { hp100_outw( HP100_HW_RST | HP100_RESET_LB, OPTION_LSW ); if(lp->chip==HP100_CHIPID_LASSEN) { /* Lassen requires a PCI transmit fifo reset */ hp100_page( HW_MAP ); hp100_andb( ~HP100_PCI_RESET, PCICTRL2 ); hp100_orb( HP100_PCI_RESET, PCICTRL2 ); /* Wait for min. 300 ns */ /* we cant use jiffies here, because it may be */ /* that we have disabled the timer... */ for (i=0; i<0xffff; i++); hp100_andb( ~HP100_PCI_RESET, PCICTRL2 ); hp100_page( PERFORMANCE ); } } else { /* bring out of reset */ hp100_outw(HP100_HW_RST|HP100_SET_LB, OPTION_LSW); for (i=0; i<0xffff; i++ ); hp100_page(PERFORMANCE); } } #ifdef HP100_DEBUG void hp100_RegisterDump( struct device *dev ) { int ioaddr=dev->base_addr; int Page; int Register; /* Dump common registers */ printk("hp100: %s: Cascade Register Dump\n", dev->name); printk("hardware id #1: 0x%.2x\n",hp100_inb(HW_ID)); printk("hardware id #2/paging: 0x%.2x\n",hp100_inb(PAGING)); printk("option #1: 0x%.4x\n",hp100_inw(OPTION_LSW)); printk("option #2: 0x%.4x\n",hp100_inw(OPTION_MSW)); /* Dump paged registers */ for (Page = 0; Page < 8; Page++) { /* Dump registers */ printk("page: 0x%.2x\n",Page); outw( Page, ioaddr+0x02); for (Register = 0x8; Register < 0x22; Register += 2) { /* Display Register contents except data port */ if (((Register != 0x10) && (Register != 0x12)) || (Page > 0)) { printk("0x%.2x = 0x%.4x\n",Register,inw(ioaddr+Register)); } } } hp100_page(PERFORMANCE); } #endif /* * module section */ #ifdef MODULE /* Parameters set by insmod */ int hp100_port[5] = { 0, -1, -1, -1, -1 }; #ifdef LINUX_2_1 MODULE_PARM(hp100_port, "1-5i"); #endif #ifdef LINUX_2_1 char hp100_name[5][IFNAMSIZ] = { "", "", "", "", "" }; MODULE_PARM(hp100_name, "1-5c" __MODULE_STRING(IFNAMSIZ)); #else static char devname[5][IFNAMSIZ] = { "", "", "", "", "" }; static char *hp100_name[5] = { devname[0], devname[1], devname[2], devname[3], devname[4] }; #endif /* List of devices */ static struct device *hp100_devlist[5] = { NULL, NULL, NULL, NULL, NULL }; /* * Note: if you have more than five 100vg cards in your pc, feel free to * increase this value */ /* * Note: to register three eisa or pci devices, use: * option hp100 hp100_port=0,0,0 * to register one card at io 0x280 as eth239, use: * option hp100 hp100_port=0x280 hp100_name=eth239 */ int init_module( void ) { int i, cards; if (hp100_port == 0 && !EISA_bus && !pcibios_present()) printk("hp100: You should not use auto-probing with insmod!\n"); /* Loop on all possible base addresses */ i = -1; cards = 0; while((hp100_port[++i] != -1) && (i < 5)) { /* Create device and set basics args */ hp100_devlist[i] = kmalloc(sizeof(struct device), GFP_KERNEL); memset(hp100_devlist[i], 0x00, sizeof(struct device)); hp100_devlist[i]->name = hp100_name[i]; hp100_devlist[i]->base_addr = hp100_port[i]; hp100_devlist[i]->init = &hp100_probe; /* Try to create the device */ if(register_netdev(hp100_devlist[i]) != 0) { /* DeAllocate everything */ /* Note: if dev->priv is mallocated, there is no way to fail */ kfree_s(hp100_devlist[i], sizeof(struct device)); hp100_devlist[i] = (struct device *) NULL; } else cards++; } /* Loop over all devices */ return cards > 0 ? 0 : -ENODEV; } void cleanup_module( void ) { int i; /* TODO: Check if all skb's are released/freed. */ for(i = 0; i < 5; i++) if(hp100_devlist[i] != (struct device *) NULL) { unregister_netdev( hp100_devlist[i] ); release_region( hp100_devlist[i]->base_addr, HP100_REGION_SIZE ); if( ((struct hp100_private *)hp100_devlist[i]->priv)->mode==1 ) /* busmaster */ kfree_s( ((struct hp100_private *)hp100_devlist[i]->priv)->page_vaddr, MAX_RINGSIZE+0x0f); if ( ((struct hp100_private *)hp100_devlist[i]->priv) -> mem_ptr_virt ) iounmap( ((struct hp100_private *)hp100_devlist[i]->priv) -> mem_ptr_virt ); kfree_s( hp100_devlist[i]->priv, sizeof( struct hp100_private ) ); hp100_devlist[i]->priv = NULL; kfree_s(hp100_devlist[i], sizeof(struct device)); hp100_devlist[i] = (struct device *) NULL; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -m486 -c hp100.c" * c-indent-level: 2 * tab-width: 8 * End: */