/* cs89x0.c: A Crystal Semiconductor CS89[02]0 driver for linux. */ /* Written 1996 by Russell Nelson, with reference to skeleton.c written 1993-1994 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. The author may be reached at nelson@crynwr.com, Crynwr Software, 11 Grant St., Potsdam, NY 13676 Changelog: Mike Cruse : mcruse@cti-ltd.com : Changes for Linux 2.0 compatibility. : Added dev_id parameter in net_interrupt(), : request_irq() and free_irq(). Just NULL for now. Mike Cruse : Added MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT macros : in net_open() and net_close() so kerneld would know : that the module is in use and wouldn't eject the : driver prematurely. Mike Cruse : Rewrote init_module() and cleanup_module using 8390.c : as an example. Disabled autoprobing in init_module(), : not a good thing to do to other devices while Linux : is running from all accounts. Alan Cox : Removed 1.2 support, added 2.1 extra counters. David Huggins-Daines Split this off into mac89x0.c, and gutted it of all parts which are not relevant to the existing CS8900 cards on the Macintosh (i.e. basically the Daynaport CS and LC cards). To be precise: * Removed all the media-detection stuff, because these cards are TP-only. * Lobotomized the ISA interrupt bogosity, because these cards use a hardwired NuBus interrupt and a magic ISAIRQ value in the card. * Basically eliminated everything not relevant to getting the cards minimally functioning on the Macintosh. I might add that these cards are badly designed even from the Mac standpoint, in that Dayna, in their infinite wisdom, used NuBus slot I/O space and NuBus interrupts for these cards, but neglected to provide anything even remotely resembling a NuBus ROM. Therefore we have to probe for them in a brain-damaged ISA-like fashion. */ static char *version = "cs89x0.c:v1.02 11/26/96 Russell Nelson \n"; /* ======================= configure the driver here ======================= */ /* use 0 for production, 1 for verification, >2 for debug */ #ifndef NET_DEBUG #define NET_DEBUG 0 #endif /* ======================= end of configuration ======================= */ /* Always include 'config.h' first in case the user wants to turn on or override something. */ #ifdef MODULE #include #include #else #define MOD_INC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #define PRINTK(x) printk x /* Sources: Crynwr packet driver epktisa. Crystal Semiconductor data sheets. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cs89x0.h" static unsigned int net_debug = NET_DEBUG; /* Information that need to be kept for each board. */ struct net_local { struct net_device_stats stats; int chip_type; /* one of: CS8900, CS8920, CS8920M */ char chip_revision; /* revision letter of the chip ('A'...) */ int send_cmd; /* the propercommand used to send a packet. */ int rx_mode; int curr_rx_cfg; int send_underrun; /* keep track of how many underruns in a row we get */ struct sk_buff *skb; }; /* Index to functions, as function prototypes. */ extern int mac89x0_probe(struct net_device *dev); extern void reset_chip(struct net_device *dev); static int net_open(struct net_device *dev); static int net_send_packet(struct sk_buff *skb, struct net_device *dev); static void net_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void set_multicast_list(struct net_device *dev); static void net_rx(struct net_device *dev); static int net_close(struct net_device *dev); static struct net_device_stats *net_get_stats(struct net_device *dev); static int set_mac_address(struct net_device *dev, void *addr); /* Example routines you must write ;->. */ #define tx_done(dev) 1 /* For reading/writing registers ISA-style */ static int inline readreg_io(struct net_device *dev, int portno) { writew(swab16(portno), dev->base_addr + ADD_PORT); return swab16(readw(dev->base_addr + DATA_PORT)); } static void inline writereg_io(struct net_device *dev, int portno, int value) { writew(swab16(portno), dev->base_addr + ADD_PORT); writew(swab16(value), dev->base_addr + DATA_PORT); } /* These are for reading/writing registers in shared memory */ static int inline readreg(struct net_device *dev, int portno) { return swab16(readw(dev->mem_start + portno)); } static void inline writereg(struct net_device *dev, int portno, int value) { writew(swab16(value), dev->mem_start + portno); } /* Probe for the CS8900 card in slot E. We won't bother looking anywhere else until we have a really good reason to do so. */ int __init mac89x0_probe(struct net_device *dev) { static int once_is_enough = 0; struct net_local *lp; static unsigned version_printed = 0; int i, slot; unsigned rev_type = 0; unsigned long ioaddr; unsigned short sig; if (once_is_enough) return -ENODEV; once_is_enough = 1; /* We might have to parameterize this later */ slot = 0xE; /* Get out now if there's a real NuBus card in slot E */ if (nubus_find_slot(slot, NULL) != NULL) return -ENODEV; /* The pseudo-ISA bits always live at offset 0x300 (gee, wonder why...) */ ioaddr = (unsigned long) nubus_slot_addr(slot) | (((slot&0xf) << 20) + DEFAULTIOBASE); { unsigned long flags; int card_present; save_flags(flags); cli(); card_present = hwreg_present((void*) ioaddr+4) && hwreg_present((void*) ioaddr + DATA_PORT); restore_flags(flags); if (!card_present) return -ENODEV; } writew(0, ioaddr + ADD_PORT); sig = readw(ioaddr + DATA_PORT); if (sig != swab16(CHIP_EISA_ID_SIG)) return -ENODEV; /* Initialize the net_device structure. */ if (dev->priv == NULL) { dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); memset(dev->priv, 0, sizeof(struct net_local)); } lp = (struct net_local *)dev->priv; /* Fill in the 'dev' fields. */ dev->base_addr = ioaddr; dev->mem_start = (unsigned long) nubus_slot_addr(slot) | (((slot&0xf) << 20) + MMIOBASE); dev->mem_end = dev->mem_start + 0x1000; /* Turn on shared memory */ writereg_io(dev, PP_BusCTL, MEMORY_ON); /* get the chip type */ rev_type = readreg(dev, PRODUCT_ID_ADD); lp->chip_type = rev_type &~ REVISON_BITS; lp->chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A'; /* Check the chip type and revision in order to set the correct send command CS8920 revision C and CS8900 revision F can use the faster send. */ lp->send_cmd = TX_AFTER_381; if (lp->chip_type == CS8900 && lp->chip_revision >= 'F') lp->send_cmd = TX_NOW; if (lp->chip_type != CS8900 && lp->chip_revision >= 'C') lp->send_cmd = TX_NOW; if (net_debug && version_printed++ == 0) printk(version); printk(KERN_INFO "%s: cs89%c0%s rev %c found at %#8lx", dev->name, lp->chip_type==CS8900?'0':'2', lp->chip_type==CS8920M?"M":"", lp->chip_revision, dev->base_addr); /* Try to read the MAC address */ if ((readreg(dev, PP_SelfST) & (EEPROM_PRESENT | EEPROM_OK)) == 0) { printk("\nmac89x0: No EEPROM, giving up now.\n"); return -ENODEV; } else { for (i = 0; i < ETH_ALEN; i += 2) { /* Big-endian (why??!) */ unsigned short s = readreg(dev, PP_IA + i); dev->dev_addr[i] = s >> 8; dev->dev_addr[i+1] = s & 0xff; } } dev->irq = SLOT2IRQ(slot); printk(" IRQ %d ADDR ", dev->irq); /* print the ethernet address. */ for (i = 0; i < ETH_ALEN; i++) printk("%2.2x%s", dev->dev_addr[i], ((i < ETH_ALEN-1) ? ":" : "")); dev->open = net_open; dev->stop = net_close; dev->hard_start_xmit = net_send_packet; dev->get_stats = net_get_stats; dev->set_multicast_list = &set_multicast_list; dev->set_mac_address = &set_mac_address; /* Fill in the fields of the net_device structure with ethernet values. */ ether_setup(dev); printk("\n"); return 0; } /* This is useful for something, but I don't know what yet. */ void __init reset_chip(struct net_device *dev) { int reset_start_time; writereg(dev, PP_SelfCTL, readreg(dev, PP_SelfCTL) | POWER_ON_RESET); /* wait 30 ms */ current->state = TASK_INTERRUPTIBLE; schedule_timeout(30*HZ/1000); /* Wait until the chip is reset */ reset_start_time = jiffies; while( (readreg(dev, PP_SelfST) & INIT_DONE) == 0 && jiffies - reset_start_time < 2) ; } /* Open/initialize the board. This is called (in the current kernel) sometime after booting when the 'ifconfig' program is run. This routine should set everything up anew at each open, even registers that "should" only need to be set once at boot, so that there is non-reboot way to recover if something goes wrong. */ static int net_open(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; int i; /* Disable the interrupt for now */ writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) & ~ENABLE_IRQ); /* Grab the interrupt */ if (request_irq(dev->irq, &net_interrupt, 0, "cs89x0", dev)) return -EAGAIN; /* Set up the IRQ - Apparently magic */ if (lp->chip_type == CS8900) writereg(dev, PP_CS8900_ISAINT, 0); else writereg(dev, PP_CS8920_ISAINT, 0); /* set the Ethernet address */ for (i=0; i < ETH_ALEN/2; i++) writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8)); /* Turn on both receive and transmit operations */ writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON); /* Receive only error free packets addressed to this card */ lp->rx_mode = 0; writereg(dev, PP_RxCTL, DEF_RX_ACCEPT); lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL; writereg(dev, PP_RxCFG, lp->curr_rx_cfg); writereg(dev, PP_TxCFG, TX_LOST_CRS_ENBL | TX_SQE_ERROR_ENBL | TX_OK_ENBL | TX_LATE_COL_ENBL | TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL); writereg(dev, PP_BufCFG, READY_FOR_TX_ENBL | RX_MISS_COUNT_OVRFLOW_ENBL | TX_COL_COUNT_OVRFLOW_ENBL | TX_UNDERRUN_ENBL); /* now that we've got our act together, enable everything */ writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) | ENABLE_IRQ); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; MOD_INC_USE_COUNT; return 0; } static int net_send_packet(struct sk_buff *skb, struct net_device *dev) { if (dev->tbusy) { /* If we get here, some higher level has decided we are broken. There should really be a "kick me" function call instead. */ int tickssofar = jiffies - dev->trans_start; if (tickssofar < 5) return 1; if (net_debug > 0) printk("%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ conflict" : "network cable problem"); /* Try to restart the adaptor. */ dev->tbusy=0; dev->trans_start = jiffies; } /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) printk("%s: Transmitter access conflict.\n", dev->name); else { struct net_local *lp = (struct net_local *)dev->priv; unsigned long flags; if (net_debug > 3) printk("%s: sent %d byte packet of type %x\n", dev->name, skb->len, (skb->data[ETH_ALEN+ETH_ALEN] << 8) | skb->data[ETH_ALEN+ETH_ALEN+1]); /* keep the upload from being interrupted, since we ask the chip to start transmitting before the whole packet has been completely uploaded. */ save_flags(flags); cli(); /* initiate a transmit sequence */ writereg(dev, PP_TxCMD, lp->send_cmd); writereg(dev, PP_TxLength, skb->len); /* Test to see if the chip has allocated memory for the packet */ if ((readreg(dev, PP_BusST) & READY_FOR_TX_NOW) == 0) { /* Gasp! It hasn't. But that shouldn't happen since we're waiting for TxOk, so return 1 and requeue this packet. */ restore_flags(flags); return 1; } /* Write the contents of the packet */ memcpy_toio(dev->mem_start + PP_TxFrame, skb->data, skb->len+1); restore_flags(flags); dev->trans_start = jiffies; } dev_kfree_skb (skb); return 0; } /* The typical workload of the driver: Handle the network interface interrupts. */ static void net_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; struct net_local *lp; int ioaddr, status; if (dev == NULL) { printk ("net_interrupt(): irq %d for unknown device.\n", irq); return; } if (dev->interrupt) printk("%s: Re-entering the interrupt handler.\n", dev->name); dev->interrupt = 1; ioaddr = dev->base_addr; lp = (struct net_local *)dev->priv; /* we MUST read all the events out of the ISQ, otherwise we'll never get interrupted again. As a consequence, we can't have any limit on the number of times we loop in the interrupt handler. The hardware guarantees that eventually we'll run out of events. Of course, if you're on a slow machine, and packets are arriving faster than you can read them off, you're screwed. Hasta la vista, baby! */ while ((status = swab16(readw(dev->base_addr + ISQ_PORT)))) { if (net_debug > 4)printk("%s: event=%04x\n", dev->name, status); switch(status & ISQ_EVENT_MASK) { case ISQ_RECEIVER_EVENT: /* Got a packet(s). */ net_rx(dev); break; case ISQ_TRANSMITTER_EVENT: lp->stats.tx_packets++; dev->tbusy = 0; mark_bh(NET_BH); /* Inform upper layers. */ if ((status & TX_OK) == 0) lp->stats.tx_errors++; if (status & TX_LOST_CRS) lp->stats.tx_carrier_errors++; if (status & TX_SQE_ERROR) lp->stats.tx_heartbeat_errors++; if (status & TX_LATE_COL) lp->stats.tx_window_errors++; if (status & TX_16_COL) lp->stats.tx_aborted_errors++; break; case ISQ_BUFFER_EVENT: if (status & READY_FOR_TX) { /* we tried to transmit a packet earlier, but inexplicably ran out of buffers. That shouldn't happen since we only ever load one packet. Shrug. Do the right thing anyway. */ dev->tbusy = 0; mark_bh(NET_BH); /* Inform upper layers. */ } if (status & TX_UNDERRUN) { if (net_debug > 0) printk("%s: transmit underrun\n", dev->name); lp->send_underrun++; if (lp->send_underrun == 3) lp->send_cmd = TX_AFTER_381; else if (lp->send_underrun == 6) lp->send_cmd = TX_AFTER_ALL; } break; case ISQ_RX_MISS_EVENT: lp->stats.rx_missed_errors += (status >>6); break; case ISQ_TX_COL_EVENT: lp->stats.collisions += (status >>6); break; } } dev->interrupt = 0; return; } /* We have a good packet(s), get it/them out of the buffers. */ static void net_rx(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; struct sk_buff *skb; int status, length; status = readreg(dev, PP_RxStatus); if ((status & RX_OK) == 0) { lp->stats.rx_errors++; if (status & RX_RUNT) lp->stats.rx_length_errors++; if (status & RX_EXTRA_DATA) lp->stats.rx_length_errors++; if (status & RX_CRC_ERROR) if (!(status & (RX_EXTRA_DATA|RX_RUNT))) /* per str 172 */ lp->stats.rx_crc_errors++; if (status & RX_DRIBBLE) lp->stats.rx_frame_errors++; return; } length = readreg(dev, PP_RxLength); /* Malloc up new buffer. */ skb = alloc_skb(length, GFP_ATOMIC); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; return; } skb->len = length; skb->dev = dev; memcpy_fromio(skb->data, dev->mem_start + PP_RxFrame, length); if (net_debug > 3)printk("%s: received %d byte packet of type %x\n", dev->name, length, (skb->data[ETH_ALEN+ETH_ALEN] << 8) | skb->data[ETH_ALEN+ETH_ALEN+1]); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes+=skb->len; return; } /* The inverse routine to net_open(). */ static int net_close(struct net_device *dev) { writereg(dev, PP_RxCFG, 0); writereg(dev, PP_TxCFG, 0); writereg(dev, PP_BufCFG, 0); writereg(dev, PP_BusCTL, 0); dev->start = 0; free_irq(dev->irq, dev); /* Update the statistics here. */ MOD_DEC_USE_COUNT; return 0; } /* Get the current statistics. This may be called with the card open or closed. */ static struct net_device_stats * net_get_stats(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; cli(); /* Update the statistics from the device registers. */ lp->stats.rx_missed_errors += (readreg(dev, PP_RxMiss) >> 6); lp->stats.collisions += (readreg(dev, PP_TxCol) >> 6); sti(); return &lp->stats; } static void set_multicast_list(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; if(dev->flags&IFF_PROMISC) { lp->rx_mode = RX_ALL_ACCEPT; } else if((dev->flags&IFF_ALLMULTI)||dev->mc_list) { /* The multicast-accept list is initialized to accept-all, and we rely on higher-level filtering for now. */ lp->rx_mode = RX_MULTCAST_ACCEPT; } else lp->rx_mode = 0; writereg(dev, PP_RxCTL, DEF_RX_ACCEPT | lp->rx_mode); /* in promiscuous mode, we accept errored packets, so we have to enable interrupts on them also */ writereg(dev, PP_RxCFG, lp->curr_rx_cfg | (lp->rx_mode == RX_ALL_ACCEPT? (RX_CRC_ERROR_ENBL|RX_RUNT_ENBL|RX_EXTRA_DATA_ENBL) : 0)); } static int set_mac_address(struct net_device *dev, void *addr) { int i; if (dev->start) return -EBUSY; printk("%s: Setting MAC address to ", dev->name); for (i = 0; i < 6; i++) printk(" %2.2x", dev->dev_addr[i] = ((unsigned char *)addr)[i]); printk(".\n"); /* set the Ethernet address */ for (i=0; i < ETH_ALEN/2; i++) writereg(dev, PP_IA+i*2, dev->dev_addr[i*2] | (dev->dev_addr[i*2+1] << 8)); return 0; } #ifdef MODULE static char namespace[16] = ""; static struct net_device dev_cs89x0 = { NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL }; static int debug=0; MODULE_PARM(debug, "i"); EXPORT_NO_SYMBOLS; int init_module(void) { struct net_local *lp; net_debug = debug; dev_cs89x0.name = namespace; dev_cs89x0.init = mac89x0_probe; dev_cs89x0.priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); memset(dev_cs89x0.priv, 0, sizeof(struct net_local)); lp = (struct net_local *)dev_cs89x0.priv; if (register_netdev(&dev_cs89x0) != 0) { printk(KERN_WARNING "mac89x0.c: No card found\n"); return -ENXIO; } return 0; } void cleanup_module(void) { #endif #ifdef MODULE writew(0, dev_cs89x0.base_addr + ADD_PORT); #endif #ifdef MODULE if (dev_cs89x0.priv != NULL) { /* Free up the private structure, or leak memory :-) */ unregister_netdev(&dev_cs89x0); kfree(dev_cs89x0.priv); dev_cs89x0.priv = NULL; /* gets re-allocated by cs89x0_probe1 */ } } #endif /* MODULE */ /* * Local variables: * compile-command: "m68k-linux-gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -ffixed-a2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c -o mac89x0.o mac89x0.c" * version-control: t * kept-new-versions: 5 * c-indent-level: 8 * tab-width: 8 * End: * */