/* * Network device driver for the MACE ethernet controller on * Apple Powermacs. Assumes it's under a DBDMA controller. * * Copyright (C) 1996 Paul Mackerras. */ #include #include #include #include #include #include #include #include #include #include "mace.h" #define N_RX_RING 8 #define N_TX_RING 6 #define MAX_TX_ACTIVE 1 #define NCMDS_TX 1 /* dma commands per element in tx ring */ #define RX_BUFLEN (ETH_FRAME_LEN + 8) #define TX_TIMEOUT HZ /* 1 second */ /* Bits in transmit DMA status */ #define TX_DMA_ERR 0x80 struct mace_data { volatile struct mace *mace; volatile struct dbdma_regs *tx_dma; int tx_dma_intr; volatile struct dbdma_regs *rx_dma; int rx_dma_intr; volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ struct sk_buff *rx_bufs[N_RX_RING]; int rx_fill; int rx_empty; struct sk_buff *tx_bufs[N_TX_RING]; int tx_fill; int tx_empty; unsigned char maccc; unsigned char tx_fullup; unsigned char tx_active; unsigned char tx_bad_runt; struct net_device_stats stats; struct timer_list tx_timeout; int timeout_active; }; /* * Number of bytes of private data per MACE: allow enough for * the rx and tx dma commands plus a branch dma command each, * and another 16 bytes to allow us to align the dma command * buffers on a 16 byte boundary. */ #define PRIV_BYTES (sizeof(struct mace_data) \ + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd)) static int bitrev(int); static int mace_open(struct device *dev); static int mace_close(struct device *dev); static int mace_xmit_start(struct sk_buff *skb, struct device *dev); static struct net_device_stats *mace_stats(struct device *dev); static void mace_set_multicast(struct device *dev); static void mace_reset(struct device *dev); static int mace_set_address(struct device *dev, void *addr); static void mace_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void mace_txdma_intr(int irq, void *dev_id, struct pt_regs *regs); static void mace_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs); static void mace_set_timeout(struct device *dev); static void mace_tx_timeout(unsigned long data); /* * If we can't get a skbuff when we need it, we use this area for DMA. */ static unsigned char dummy_buf[RX_BUFLEN+2]; /* Bit-reverse one byte of an ethernet hardware address. */ static int bitrev(int b) { int d = 0, i; for (i = 0; i < 8; ++i, b >>= 1) d = (d << 1) | (b & 1); return d; } int mace_probe(struct device *dev) { int j, rev; struct mace_data *mp; struct device_node *maces; unsigned char *addr; maces = find_devices("mace"); if (maces == 0) return ENODEV; do { if (maces->n_addrs != 3 || maces->n_intrs != 3) { printk(KERN_ERR "can't use MACE %s: expect 3 addrs and 3 intrs\n", maces->full_name); continue; } if (dev == NULL) dev = init_etherdev(0, PRIV_BYTES); else { /* XXX this doesn't look right (but it's never used :-) */ dev->priv = kmalloc(PRIV_BYTES, GFP_KERNEL); if (dev->priv == 0) return -ENOMEM; } mp = (struct mace_data *) dev->priv; dev->base_addr = maces->addrs[0].address; mp->mace = (volatile struct mace *) maces->addrs[0].address; dev->irq = maces->intrs[0]; if (request_irq(dev->irq, mace_interrupt, 0, "MACE", dev)) { printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq); return -EAGAIN; } if (request_irq(maces->intrs[1], mace_txdma_intr, 0, "MACE-txdma", dev)) { printk(KERN_ERR "MACE: can't get irq %d\n", maces->intrs[1]); return -EAGAIN; } if (request_irq(maces->intrs[2], mace_rxdma_intr, 0, "MACE-rxdma", dev)) { printk(KERN_ERR "MACE: can't get irq %d\n", maces->intrs[2]); return -EAGAIN; } addr = get_property(maces, "mac-address", NULL); if (addr == NULL) { addr = get_property(maces, "local-mac-address", NULL); if (addr == NULL) { printk(KERN_ERR "Can't get mac-address for MACE at %lx\n", dev->base_addr); return -EAGAIN; } } printk(KERN_INFO "%s: MACE at", dev->name); rev = addr[0] == 0 && addr[1] == 0xA0; for (j = 0; j < 6; ++j) { dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j]; printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]); } printk("\n"); mp = (struct mace_data *) dev->priv; mp->maccc = ENXMT | ENRCV; mp->tx_dma = (volatile struct dbdma_regs *) maces->addrs[1].address; mp->tx_dma_intr = maces->intrs[1]; mp->rx_dma = (volatile struct dbdma_regs *) maces->addrs[2].address; mp->rx_dma_intr = maces->intrs[2]; mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1); mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1; memset(&mp->stats, 0, sizeof(mp->stats)); memset((char *) mp->tx_cmds, 0, (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd)); init_timer(&mp->tx_timeout); mp->timeout_active = 0; mace_reset(dev); dev->open = mace_open; dev->stop = mace_close; dev->hard_start_xmit = mace_xmit_start; dev->get_stats = mace_stats; dev->set_multicast_list = mace_set_multicast; dev->set_mac_address = mace_set_address; ether_setup(dev); } while ((maces = maces->next) != 0); return 0; } static void mace_reset(struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; int i; /* soft-reset the chip */ mb->biucc = SWRST; eieio(); udelay(100); mb->biucc = XMTSP_64; mb->imr = 0xff; /* disable all intrs for now */ i = mb->ir; mb->maccc = 0; /* turn off tx, rx */ mb->utr = RTRD; mb->fifocc = RCVFW_64; mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ /* load up the hardware address */ mb->iac = ADDRCHG | PHYADDR; eieio(); while ((mb->iac & ADDRCHG) != 0) eieio(); for (i = 0; i < 6; ++i) { mb->padr = dev->dev_addr[i]; eieio(); } /* clear the multicast filter */ mb->iac = ADDRCHG | LOGADDR; eieio(); while ((mb->iac & ADDRCHG) != 0) eieio(); for (i = 0; i < 8; ++i) { mb->ladrf = 0; eieio(); } mb->plscc = PORTSEL_GPSI + ENPLSIO; } static int mace_set_address(struct device *dev, void *addr) { unsigned char *p = addr; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; int i; unsigned long flags; save_flags(flags); cli(); /* load up the hardware address */ mb->iac = ADDRCHG | PHYADDR; eieio(); while ((mb->iac & ADDRCHG) != 0) eieio(); for (i = 0; i < 6; ++i) { mb->padr = dev->dev_addr[i] = p[i]; eieio(); } /* note: setting ADDRCHG clears ENRCV */ mb->maccc = mp->maccc; eieio(); restore_flags(flags); return 0; } static int mace_open(struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; volatile struct dbdma_regs *rd = mp->rx_dma; volatile struct dbdma_regs *td = mp->tx_dma; volatile struct dbdma_cmd *cp; int i; struct sk_buff *skb; unsigned char *data; /* initialize list of sk_buffs for receiving and set up recv dma */ memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd)); cp = mp->rx_cmds; for (i = 0; i < N_RX_RING - 1; ++i) { skb = dev_alloc_skb(RX_BUFLEN + 2); if (skb == 0) { data = dummy_buf; } else { skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */ data = skb->data; } mp->rx_bufs[i] = skb; st_le16(&cp->req_count, RX_BUFLEN); st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); st_le32(&cp->phy_addr, virt_to_bus(data)); cp->xfer_status = 0; ++cp; } mp->rx_bufs[i] = 0; st_le16(&cp->command, DBDMA_STOP); mp->rx_fill = i; mp->rx_empty = 0; /* Put a branch back to the beginning of the receive command list */ ++cp; st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds)); /* start rx dma */ out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds)); out_le32(&rd->control, (RUN << 16) | RUN); /* put a branch at the end of the tx command list */ cp = mp->tx_cmds + NCMDS_TX * N_TX_RING; st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds)); /* reset tx dma */ out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds)); mp->tx_fill = 0; mp->tx_empty = 0; mp->tx_fullup = 0; mp->tx_active = 0; mp->tx_bad_runt = 0; /* turn it on! */ mb->maccc = mp->maccc; eieio(); /* enable all interrupts except receive interrupts */ mb->imr = RCVINT; eieio(); return 0; } static int mace_close(struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; volatile struct dbdma_regs *rd = mp->rx_dma; volatile struct dbdma_regs *td = mp->tx_dma; int i; /* disable rx and tx */ mb->maccc = 0; mb->imr = 0xff; /* disable all intrs */ /* disable rx and tx dma */ st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ /* free some skb's */ for (i = 0; i < N_RX_RING; ++i) { if (mp->rx_bufs[i] != 0) { dev_kfree_skb(mp->rx_bufs[i], FREE_READ); mp->rx_bufs[i] = 0; } } for (i = mp->tx_empty; i != mp->tx_fill; ) { dev_kfree_skb(mp->tx_bufs[i], FREE_WRITE); if (++i >= N_TX_RING) i = 0; } return 0; } static inline void mace_set_timeout(struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; unsigned long flags; save_flags(flags); cli(); if (mp->timeout_active) del_timer(&mp->tx_timeout); mp->tx_timeout.expires = jiffies + TX_TIMEOUT; mp->tx_timeout.function = mace_tx_timeout; mp->tx_timeout.data = (unsigned long) dev; add_timer(&mp->tx_timeout); mp->timeout_active = 1; restore_flags(flags); } static int mace_xmit_start(struct sk_buff *skb, struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct dbdma_regs *td = mp->tx_dma; volatile struct dbdma_cmd *cp, *np; unsigned long flags; int fill, next, len; /* see if there's a free slot in the tx ring */ save_flags(flags); cli(); fill = mp->tx_fill; next = fill + 1; if (next >= N_TX_RING) next = 0; if (next == mp->tx_empty) { dev->tbusy = 1; mp->tx_fullup = 1; restore_flags(flags); return -1; /* can't take it at the moment */ } restore_flags(flags); /* partially fill in the dma command block */ len = skb->len; if (len > ETH_FRAME_LEN) { printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len); len = ETH_FRAME_LEN; } mp->tx_bufs[fill] = skb; cp = mp->tx_cmds + NCMDS_TX * fill; st_le16(&cp->req_count, len); st_le32(&cp->phy_addr, virt_to_bus(skb->data)); np = mp->tx_cmds + NCMDS_TX * next; out_le16(&np->command, DBDMA_STOP); /* poke the tx dma channel */ save_flags(flags); cli(); mp->tx_fill = next; if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) { out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); ++mp->tx_active; mace_set_timeout(dev); } restore_flags(flags); return 0; } static struct net_device_stats *mace_stats(struct device *dev) { struct mace_data *p = (struct mace_data *) dev->priv; return &p->stats; } /* * CRC polynomial - used in working out multicast filter bits. */ #define CRC_POLY 0xedb88320 static void mace_set_multicast(struct device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; int i, j, k, b; unsigned long crc; mp->maccc &= ~PROM; if (dev->flags & IFF_PROMISC) { mp->maccc |= PROM; } else { unsigned char multicast_filter[8]; struct dev_mc_list *dmi = dev->mc_list; if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < 8; i++) multicast_filter[i] = 0xff; } else { for (i = 0; i < 8; i++) multicast_filter[i] = 0; for (i = 0; i < dev->mc_count; i++) { crc = ~0; for (j = 0; j < 6; ++j) { b = dmi->dmi_addr[j]; for (k = 0; k < 8; ++k) { if ((crc ^ b) & 1) crc = (crc >> 1) ^ CRC_POLY; else crc >>= 1; b >>= 1; } } j = crc >> 26; /* bit number in multicast_filter */ multicast_filter[j >> 3] |= 1 << (j & 7); dmi = dmi->next; } } #if 0 printk("Multicast filter :"); for (i = 0; i < 8; i++) printk("%02x ", multicast_filter[i]); printk("\n"); #endif mb->iac = ADDRCHG | LOGADDR; eieio(); while ((mb->iac & ADDRCHG) != 0) eieio(); for (i = 0; i < 8; ++i) { mb->ladrf = multicast_filter[i]; eieio(); } } /* reset maccc */ mb->maccc = mp->maccc; eieio(); } static void mace_handle_misc_intrs(struct mace_data *mp, int intr) { volatile struct mace *mb = mp->mace; static int mace_babbles, mace_jabbers; if (intr & MPCO) mp->stats.rx_missed_errors += 256; mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */ if (intr & RNTPCO) mp->stats.rx_length_errors += 256; mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */ if (intr & CERR) ++mp->stats.tx_heartbeat_errors; if (intr & BABBLE) if (mace_babbles++ < 4) printk(KERN_DEBUG "mace: babbling transmitter\n"); if (intr & JABBER) if (mace_jabbers++ < 4) printk(KERN_DEBUG "mace: jabbering transceiver\n"); } static void mace_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; volatile struct dbdma_regs *td = mp->tx_dma; volatile struct dbdma_cmd *cp; int intr, fs, i, stat, x; int xcount, dstat; static int mace_last_fs, mace_last_xcount; intr = mb->ir; /* read interrupt register */ mace_handle_misc_intrs(mp, intr); i = mp->tx_empty; while (mb->pr & XMTSV) { /* * Clear any interrupt indication associated with this status * word. This appears to unlatch any error indication from * the DMA controller. */ intr = mb->ir; if (intr != 0) mace_handle_misc_intrs(mp, intr); if (mp->tx_bad_runt) { fs = mb->xmtfs; eieio(); mp->tx_bad_runt = 0; mb->xmtfc = AUTO_PAD_XMIT; del_timer(&mp->tx_timeout); mp->timeout_active = 0; continue; } dstat = ld_le32(&td->status); /* stop DMA controller */ out_le32(&td->control, RUN << 16); /* * xcount is the number of complete frames which have been * written to the fifo but for which status has not been read. */ xcount = (mb->fifofc >> XMTFC_SH) & XMTFC_MASK; if (xcount == 0 || (dstat & DEAD)) { /* * If a packet was aborted before the DMA controller has * finished transferring it, it seems that there are 2 bytes * which are stuck in some buffer somewhere. These will get * transmitted as soon as we read the frame status (which * reenables the transmit data transfer request). Turning * off the DMA controller and/or resetting the MACE doesn't * help. So we disable auto-padding and FCS transmission * so the two bytes will only be a runt packet which should * be ignored by other stations. */ mb->xmtfc = DXMTFCS; eieio(); } fs = mb->xmtfs; if ((fs & XMTSV) == 0) { printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n", fs, xcount, dstat); } cp = mp->tx_cmds + NCMDS_TX * i; stat = ld_le16(&cp->xfer_status); if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) { /* * Check whether there were in fact 2 bytes written to * the transmit FIFO. */ x = (mb->fifofc >> XMTFC_SH) & XMTFC_MASK; if (x != 0) { /* there were two bytes with an end-of-packet indication */ mp->tx_bad_runt = 1; mace_set_timeout(dev); } else { /* * Either there weren't the two bytes buffered up, or they * didn't have an end-of-packet indication. Maybe we ought * to flush the transmit FIFO just in case (by setting the * XMTFWU bit with the transmitter disabled). */ mb->xmtfc = AUTO_PAD_XMIT; eieio(); } } /* dma should have finished */ if (i == mp->tx_fill) { printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n", fs, xcount, dstat); continue; } /* Update stats */ if (fs & (UFLO|LCOL|LCAR|RTRY)) { ++mp->stats.tx_errors; if (fs & LCAR) ++mp->stats.tx_carrier_errors; if (fs & (UFLO|LCOL|RTRY)) ++mp->stats.tx_aborted_errors; } else ++mp->stats.tx_packets; dev_kfree_skb(mp->tx_bufs[i], FREE_WRITE); --mp->tx_active; if (++i >= N_TX_RING) i = 0; mace_last_fs = fs; mace_last_xcount = xcount; del_timer(&mp->tx_timeout); mp->timeout_active = 0; } if (i != mp->tx_empty && mp->tx_fullup) { mp->tx_fullup = 0; dev->tbusy = 0; mark_bh(NET_BH); } mp->tx_empty = i; i += mp->tx_active; if (i >= N_TX_RING) i -= N_TX_RING; if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) { do { /* set up the next one */ cp = mp->tx_cmds + NCMDS_TX * i; out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); ++mp->tx_active; if (++i >= N_TX_RING) i = 0; } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE); out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); mace_set_timeout(dev); } } static void mace_tx_timeout(unsigned long data) { struct device *dev = (struct device *) data; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace *mb = mp->mace; volatile struct dbdma_regs *td = mp->tx_dma; volatile struct dbdma_regs *rd = mp->rx_dma; volatile struct dbdma_cmd *cp; unsigned long flags; int i; save_flags(flags); cli(); mp->timeout_active = 0; if (mp->tx_active == 0 && !mp->tx_bad_runt) goto out; /* update various counters */ mace_handle_misc_intrs(mp, mb->ir); cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty; printk(KERN_DEBUG "mace: tx dmastat=%x %x bad_runt=%d pr=%x fs=%x fc=%x\n", ld_le32(&td->status), ld_le16(&cp->xfer_status), mp->tx_bad_runt, mb->pr, mb->xmtfs, mb->fifofc); /* turn off both tx and rx and reset the chip */ mb->maccc = 0; out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); printk(KERN_ERR "mace: transmit timeout - resetting\n"); mace_reset(dev); /* restart rx dma */ cp = bus_to_virt(ld_le32(&rd->cmdptr)); out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); out_le16(&cp->xfer_status, 0); out_le32(&rd->cmdptr, virt_to_bus(cp)); out_le32(&rd->control, (RUN << 16) | RUN); /* fix up the transmit side */ i = mp->tx_empty; mp->tx_active = 0; ++mp->stats.tx_errors; if (mp->tx_bad_runt) { mp->tx_bad_runt = 0; } else if (i != mp->tx_fill) { dev_kfree_skb(mp->tx_bufs[i], FREE_WRITE); if (++i >= N_TX_RING) i = 0; mp->tx_empty = i; } if (mp->tx_fullup) { mp->tx_fullup = 0; dev->tbusy = 0; mark_bh(NET_BH); } if (i != mp->tx_fill) { cp = mp->tx_cmds + NCMDS_TX * i; out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); out_le32(&td->cmdptr, virt_to_bus(cp)); out_le32(&td->control, (RUN << 16) | RUN); ++mp->tx_active; mace_set_timeout(dev); } /* turn it back on */ out_8(&mb->imr, RCVINT); out_8(&mb->maccc, mp->maccc); out: restore_flags(flags); } static void mace_txdma_intr(int irq, void *dev_id, struct pt_regs *regs) { } static void mace_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct dbdma_regs *rd = mp->rx_dma; volatile struct dbdma_cmd *cp, *np; int i, nb, stat, next; struct sk_buff *skb; unsigned frame_status; static int mace_lost_status; unsigned char *data; for (i = mp->rx_empty; i != mp->rx_fill; ) { cp = mp->rx_cmds + i; stat = ld_le16(&cp->xfer_status); if ((stat & ACTIVE) == 0) { next = i + 1; if (next >= N_RX_RING) next = 0; np = mp->rx_cmds + next; if (next != mp->rx_fill && (ld_le16(&np->xfer_status) & ACTIVE) != 0) { printk(KERN_DEBUG "mace: lost a status word\n"); ++mace_lost_status; } else break; } nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count); out_le16(&cp->command, DBDMA_STOP); /* got a packet, have a look at it */ skb = mp->rx_bufs[i]; if (skb == 0) { ++mp->stats.rx_dropped; } else if (nb > 8) { data = skb->data; frame_status = (data[nb-3] << 8) + data[nb-4]; if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) { ++mp->stats.rx_errors; if (frame_status & RS_OFLO) ++mp->stats.rx_over_errors; if (frame_status & RS_FRAMERR) ++mp->stats.rx_frame_errors; if (frame_status & RS_FCSERR) ++mp->stats.rx_crc_errors; } else { nb -= 8; skb_put(skb, nb); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); mp->rx_bufs[i] = 0; ++mp->stats.rx_packets; } } else { ++mp->stats.rx_errors; ++mp->stats.rx_length_errors; } /* advance to next */ if (++i >= N_RX_RING) i = 0; } mp->rx_empty = i; i = mp->rx_fill; for (;;) { next = i + 1; if (next >= N_RX_RING) next = 0; if (next == mp->rx_empty) break; cp = mp->rx_cmds + i; skb = mp->rx_bufs[i]; if (skb == 0) { skb = dev_alloc_skb(RX_BUFLEN + 2); if (skb != 0) { skb_reserve(skb, 2); mp->rx_bufs[i] = skb; } } st_le16(&cp->req_count, RX_BUFLEN); data = skb? skb->data: dummy_buf; st_le32(&cp->phy_addr, virt_to_bus(data)); out_le16(&cp->xfer_status, 0); out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); #if 0 if ((ld_le32(&rd->status) & ACTIVE) != 0) { out_le32(&rd->control, (PAUSE << 16) | PAUSE); while ((in_le32(&rd->status) & ACTIVE) != 0) ; } #endif i = next; } if (i != mp->rx_fill) { out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE)); mp->rx_fill = i; } }