/* * ==FILEVERSION 980319== * * ppp_deflate.c - interface the zlib procedures for Deflate compression * and decompression (as used by gzip) to the PPP code. * This version is for use with Linux kernel 1.3.X. * * Copyright (c) 1994 The Australian National University. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, provided that the above copyright * notice appears in all copies. This software is provided without any * warranty, express or implied. The Australian National University * makes no representations about the suitability of this software for * any purpose. * * IN NO EVENT SHALL THE AUSTRALIAN NATIONAL UNIVERSITY BE LIABLE TO ANY * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF * THE AUSTRALIAN NATIONAL UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * THE AUSTRALIAN NATIONAL UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE AUSTRALIAN NATIONAL UNIVERSITY HAS NO * OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, * OR MODIFICATIONS. * * From: deflate.c,v 1.1 1996/01/18 03:17:48 paulus Exp */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* used in new tty drivers */ #include /* used in new tty drivers */ #include #include #include #include #include #include #include #include "zlib.c" /* * State for a Deflate (de)compressor. */ struct ppp_deflate_state { int seqno; int w_size; int unit; int mru; int debug; z_stream strm; struct compstat stats; }; #define DEFLATE_OVHD 2 /* Deflate overhead/packet */ static void *zalloc __P((void *, unsigned int items, unsigned int size)); static void *zalloc_init __P((void *, unsigned int items, unsigned int size)); static void zfree __P((void *, void *ptr)); static void *z_comp_alloc __P((unsigned char *options, int opt_len)); static void *z_decomp_alloc __P((unsigned char *options, int opt_len)); static void z_comp_free __P((void *state)); static void z_decomp_free __P((void *state)); static int z_comp_init __P((void *state, unsigned char *options, int opt_len, int unit, int hdrlen, int debug)); static int z_decomp_init __P((void *state, unsigned char *options, int opt_len, int unit, int hdrlen, int mru, int debug)); static int z_compress __P((void *state, unsigned char *rptr, unsigned char *obuf, int isize, int osize)); static void z_incomp __P((void *state, unsigned char *ibuf, int icnt)); static int z_decompress __P((void *state, unsigned char *ibuf, int isize, unsigned char *obuf, int osize)); static void z_comp_reset __P((void *state)); static void z_decomp_reset __P((void *state)); static void z_comp_stats __P((void *state, struct compstat *stats)); struct chunk_header { int valloced; /* allocated with valloc, not kmalloc */ int guard; /* check for overwritten header */ }; #define GUARD_MAGIC 0x77a8011a #define MIN_VMALLOC 2048 /* use kmalloc for blocks < this */ /* * Space allocation and freeing routines for use by zlib routines. */ void zfree(arg, ptr) void *arg; void *ptr; { struct chunk_header *hdr = ((struct chunk_header *)ptr) - 1; if (hdr->guard != GUARD_MAGIC) { printk(KERN_WARNING "zfree: header corrupted (%x %x) at %p\n", hdr->valloced, hdr->guard, hdr); return; } if (hdr->valloced) vfree(hdr); else kfree(hdr); } void * zalloc(arg, items, size) void *arg; unsigned int items, size; { struct chunk_header *hdr; unsigned nbytes; nbytes = items * size + sizeof(*hdr); hdr = kmalloc(nbytes, GFP_ATOMIC); if (hdr == 0) return 0; hdr->valloced = 0; hdr->guard = GUARD_MAGIC; return (void *) (hdr + 1); } void * zalloc_init(arg, items, size) void *arg; unsigned int items, size; { struct chunk_header *hdr; unsigned nbytes; nbytes = items * size + sizeof(*hdr); if (nbytes >= MIN_VMALLOC) hdr = vmalloc(nbytes); else hdr = kmalloc(nbytes, GFP_KERNEL); if (hdr == 0) return 0; hdr->valloced = nbytes >= MIN_VMALLOC; hdr->guard = GUARD_MAGIC; return (void *) (hdr + 1); } static void z_comp_free(arg) void *arg; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; if (state) { deflateEnd(&state->strm); kfree(state); MOD_DEC_USE_COUNT; } } /* * Allocate space for a compressor. */ static void * z_comp_alloc(options, opt_len) unsigned char *options; int opt_len; { struct ppp_deflate_state *state; int w_size; if (opt_len != CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || options[3] != DEFLATE_CHK_SEQUENCE) return NULL; w_size = DEFLATE_SIZE(options[2]); if (w_size < DEFLATE_MIN_SIZE || w_size > DEFLATE_MAX_SIZE) return NULL; state = (struct ppp_deflate_state *) kmalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return NULL; MOD_INC_USE_COUNT; memset (state, 0, sizeof (struct ppp_deflate_state)); state->strm.next_in = NULL; state->strm.zalloc = zalloc_init; state->strm.zfree = zfree; state->w_size = w_size; if (deflateInit2(&state->strm, Z_DEFAULT_COMPRESSION, DEFLATE_METHOD_VAL, -w_size, 8, Z_DEFAULT_STRATEGY) != Z_OK) goto out_free; state->strm.zalloc = zalloc; return (void *) state; out_free: z_comp_free(state); MOD_DEC_USE_COUNT; return NULL; } static int z_comp_init(arg, options, opt_len, unit, hdrlen, debug) void *arg; unsigned char *options; int opt_len, unit, hdrlen, debug; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; if (opt_len < CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || DEFLATE_SIZE(options[2]) != state->w_size || options[3] != DEFLATE_CHK_SEQUENCE) return 0; state->seqno = 0; state->unit = unit; state->debug = debug; deflateReset(&state->strm); return 1; } static void z_comp_reset(arg) void *arg; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; state->seqno = 0; deflateReset(&state->strm); } int z_compress(arg, rptr, obuf, isize, osize) void *arg; unsigned char *rptr; /* uncompressed packet (in) */ unsigned char *obuf; /* compressed packet (out) */ int isize, osize; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int r, proto, off, olen, oavail; unsigned char *wptr; /* * Check that the protocol is in the range we handle. */ proto = PPP_PROTOCOL(rptr); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) return 0; /* Don't generate compressed packets which are larger than the uncompressed packet. */ if (osize > isize) osize = isize; wptr = obuf; /* * Copy over the PPP header and store the 2-byte sequence number. */ wptr[0] = PPP_ADDRESS(rptr); wptr[1] = PPP_CONTROL(rptr); wptr[2] = PPP_COMP >> 8; wptr[3] = PPP_COMP; wptr += PPP_HDRLEN; wptr[0] = state->seqno >> 8; wptr[1] = state->seqno; wptr += DEFLATE_OVHD; olen = PPP_HDRLEN + DEFLATE_OVHD; state->strm.next_out = wptr; state->strm.avail_out = oavail = osize - olen; ++state->seqno; off = (proto > 0xff) ? 2 : 3; /* skip 1st proto byte if 0 */ rptr += off; state->strm.next_in = rptr; state->strm.avail_in = (isize - off); for (;;) { r = deflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_ERR "z_compress: deflate returned %d\n", r); break; } if (state->strm.avail_out == 0) { olen += oavail; state->strm.next_out = NULL; state->strm.avail_out = oavail = 1000000; } else { break; /* all done */ } } olen += oavail - state->strm.avail_out; /* * See if we managed to reduce the size of the packet. */ if (olen < isize) { state->stats.comp_bytes += olen; state->stats.comp_packets++; } else { state->stats.inc_bytes += isize; state->stats.inc_packets++; olen = 0; } state->stats.unc_bytes += isize; state->stats.unc_packets++; return olen; } static void z_comp_stats(arg, stats) void *arg; struct compstat *stats; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; *stats = state->stats; } static void z_decomp_free(arg) void *arg; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; if (state) { inflateEnd(&state->strm); kfree(state); MOD_DEC_USE_COUNT; } } /* * Allocate space for a decompressor. */ static void * z_decomp_alloc(options, opt_len) unsigned char *options; int opt_len; { struct ppp_deflate_state *state; int w_size; if (opt_len != CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || options[3] != DEFLATE_CHK_SEQUENCE) return NULL; w_size = DEFLATE_SIZE(options[2]); if (w_size < DEFLATE_MIN_SIZE || w_size > DEFLATE_MAX_SIZE) return NULL; state = (struct ppp_deflate_state *) kmalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return NULL; MOD_INC_USE_COUNT; memset (state, 0, sizeof (struct ppp_deflate_state)); state->w_size = w_size; state->strm.next_out = NULL; state->strm.zalloc = zalloc_init; state->strm.zfree = zfree; if (inflateInit2(&state->strm, -w_size) != Z_OK) goto out_free; state->strm.zalloc = zalloc; return (void *) state; out_free: z_decomp_free(state); MOD_DEC_USE_COUNT; return NULL; } static int z_decomp_init(arg, options, opt_len, unit, hdrlen, mru, debug) void *arg; unsigned char *options; int opt_len, unit, hdrlen, mru, debug; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; if (opt_len < CILEN_DEFLATE || (options[0] != CI_DEFLATE && options[0] != CI_DEFLATE_DRAFT) || options[1] != CILEN_DEFLATE || DEFLATE_METHOD(options[2]) != DEFLATE_METHOD_VAL || DEFLATE_SIZE(options[2]) != state->w_size || options[3] != DEFLATE_CHK_SEQUENCE) return 0; state->seqno = 0; state->unit = unit; state->debug = debug; state->mru = mru; inflateReset(&state->strm); return 1; } static void z_decomp_reset(arg) void *arg; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; state->seqno = 0; inflateReset(&state->strm); } /* * Decompress a Deflate-compressed packet. * * Because of patent problems, we return DECOMP_ERROR for errors * found by inspecting the input data and for system problems, but * DECOMP_FATALERROR for any errors which could possibly be said to * be being detected "after" decompression. For DECOMP_ERROR, * we can issue a CCP reset-request; for DECOMP_FATALERROR, we may be * infringing a patent of Motorola's if we do, so we take CCP down * instead. * * Given that the frame has the correct sequence number and a good FCS, * errors such as invalid codes in the input most likely indicate a * bug, so we return DECOMP_FATALERROR for them in order to turn off * compression, even though they are detected by inspecting the input. */ int z_decompress(arg, ibuf, isize, obuf, osize) void *arg; unsigned char *ibuf; int isize; unsigned char *obuf; int osize; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int olen, seq, r; int decode_proto, overflow; unsigned char overflow_buf[1]; if (isize <= PPP_HDRLEN + DEFLATE_OVHD) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: short pkt (%d)\n", state->unit, isize); return DECOMP_ERROR; } /* Check the sequence number. */ seq = (ibuf[PPP_HDRLEN] << 8) + ibuf[PPP_HDRLEN+1]; if (seq != state->seqno) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: bad seq # %d, expected %d\n", state->unit, seq, state->seqno); return DECOMP_ERROR; } ++state->seqno; /* * Fill in the first part of the PPP header. The protocol field * comes from the decompressed data. */ obuf[0] = PPP_ADDRESS(ibuf); obuf[1] = PPP_CONTROL(ibuf); obuf[2] = 0; /* * Set up to call inflate. We set avail_out to 1 initially so we can * look at the first byte of the output and decide whether we have * a 1-byte or 2-byte protocol field. */ state->strm.next_in = ibuf + PPP_HDRLEN + DEFLATE_OVHD; state->strm.avail_in = isize - (PPP_HDRLEN + DEFLATE_OVHD); state->strm.next_out = obuf + 3; state->strm.avail_out = 1; decode_proto = 1; overflow = 0; /* * Call inflate, supplying more input or output as needed. */ for (;;) { r = inflate(&state->strm, Z_PACKET_FLUSH); if (r != Z_OK) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: inflate returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); return DECOMP_FATALERROR; } if (state->strm.avail_out != 0) break; /* all done */ if (decode_proto) { state->strm.avail_out = osize - PPP_HDRLEN; if ((obuf[3] & 1) == 0) { /* 2-byte protocol field */ obuf[2] = obuf[3]; --state->strm.next_out; ++state->strm.avail_out; } decode_proto = 0; } else if (!overflow) { /* * We've filled up the output buffer; the only way to * find out whether inflate has any more characters * left is to give it another byte of output space. */ state->strm.next_out = overflow_buf; state->strm.avail_out = 1; overflow = 1; } else { if (state->debug) printk(KERN_DEBUG "z_decompress%d: ran out of mru\n", state->unit); return DECOMP_FATALERROR; } } if (decode_proto) { if (state->debug) printk(KERN_DEBUG "z_decompress%d: didn't get proto\n", state->unit); return DECOMP_ERROR; } olen = osize + overflow - state->strm.avail_out; state->stats.unc_bytes += olen; state->stats.unc_packets++; state->stats.comp_bytes += isize; state->stats.comp_packets++; return olen; } /* * Incompressible data has arrived - add it to the history. */ static void z_incomp(arg, ibuf, icnt) void *arg; unsigned char *ibuf; int icnt; { struct ppp_deflate_state *state = (struct ppp_deflate_state *) arg; int proto, r; /* * Check that the protocol is one we handle. */ proto = PPP_PROTOCOL(ibuf); if (proto > 0x3fff || proto == 0xfd || proto == 0xfb) return; ++state->seqno; /* * We start at the either the 1st or 2nd byte of the protocol field, * depending on whether the protocol value is compressible. */ state->strm.next_in = ibuf + 3; state->strm.avail_in = icnt - 3; if (proto > 0xff) { --state->strm.next_in; ++state->strm.avail_in; } r = inflateIncomp(&state->strm); if (r != Z_OK) { /* gak! */ if (state->debug) { printk(KERN_DEBUG "z_incomp%d: inflateIncomp returned %d (%s)\n", state->unit, r, (state->strm.msg? state->strm.msg: "")); } return; } /* * Update stats. */ state->stats.inc_bytes += icnt; state->stats.inc_packets++; state->stats.unc_bytes += icnt; state->stats.unc_packets++; } /************************************************************* * Module interface table *************************************************************/ /* These are in ppp.c */ extern int ppp_register_compressor (struct compressor *cp); extern void ppp_unregister_compressor (struct compressor *cp); /* * Procedures exported to if_ppp.c. */ struct compressor ppp_deflate = { CI_DEFLATE, /* compress_proto */ z_comp_alloc, /* comp_alloc */ z_comp_free, /* comp_free */ z_comp_init, /* comp_init */ z_comp_reset, /* comp_reset */ z_compress, /* compress */ z_comp_stats, /* comp_stat */ z_decomp_alloc, /* decomp_alloc */ z_decomp_free, /* decomp_free */ z_decomp_init, /* decomp_init */ z_decomp_reset, /* decomp_reset */ z_decompress, /* decompress */ z_incomp, /* incomp */ z_comp_stats, /* decomp_stat */ }; struct compressor ppp_deflate_draft = { CI_DEFLATE_DRAFT, /* compress_proto */ z_comp_alloc, /* comp_alloc */ z_comp_free, /* comp_free */ z_comp_init, /* comp_init */ z_comp_reset, /* comp_reset */ z_compress, /* compress */ z_comp_stats, /* comp_stat */ z_decomp_alloc, /* decomp_alloc */ z_decomp_free, /* decomp_free */ z_decomp_init, /* decomp_init */ z_decomp_reset, /* decomp_reset */ z_decompress, /* decompress */ z_incomp, /* incomp */ z_comp_stats, /* decomp_stat */ }; #ifdef MODULE /************************************************************* * Module support routines *************************************************************/ int init_module(void) { int answer = ppp_register_compressor (&ppp_deflate); if (answer == 0) printk (KERN_INFO "PPP Deflate Compression module registered\n"); ppp_register_compressor(&ppp_deflate_draft); return answer; } void cleanup_module(void) { if (MOD_IN_USE) printk (KERN_INFO "Deflate Compression module busy, remove delayed\n"); else { ppp_unregister_compressor (&ppp_deflate); ppp_unregister_compressor (&ppp_deflate_draft); } } #endif