/* * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. * * Written 1998 by Jes Sorensen, . * * Thanks to Essential Communication for providing us with hardware * and very comprehensive documentation without which I would not have * been able to write this driver. A special thank you to John Gibbon * for sorting out the legal issues, with the NDA, allowing the code to * be released under the GPL. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #define DEBUG 1 #define RX_DMA_SKBUFF 1 #define PKT_COPY_THRESHOLD 512 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rrunner.h" /* * Implementation notes: * * The DMA engine only allows for DMA within physical 64KB chunks of * memory. The current approach of the driver (and stack) is to use * linear blocks of memory for the skbuffs. However, as the data block * is always the first part of the skb and skbs are 2^n aligned so we * are guarantted to get the whole block within one 64KB align 64KB * chunk. * * On the long term, relying on being able to allocate 64KB linear * chunks of memory is not feasible and the skb handling code and the * stack will need to know about I/O vectors or something similar. */ static const char *version = "rrunner.c: v0.09 12/14/98 Jes Sorensen (Jes.Sorensen@cern.ch)\n"; static unsigned int read_eeprom(struct rr_private *rrpriv, unsigned long offset, unsigned char *buf, unsigned long length); static u32 read_eeprom_word(struct rr_private *rrpriv, void * offset); static int rr_load_firmware(struct device *dev); /* * These are checked at init time to see if they are at least 256KB * and increased to 256KB if they are not. This is done to avoid ending * up with socket buffers smaller than the MTU size, */ extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; __initfunc(int rr_hippi_probe (struct device *dev)) { static int i = 0; int boards_found = 0; int version_disp; /* was version info already displayed? */ u8 pci_bus; /* PCI bus number (0-255) */ u8 pci_dev_fun; /* PCI device and function numbers (0-255) */ u8 pci_latency; u16 command; /* PCI Configuration space Command register */ unsigned int tmp; u8 irq; struct rr_private *rrpriv; if (!pci_present()) /* is PCI BIOS even present? */ return -ENODEV; version_disp = 0; for (; i < 255; i++) { if (pcibios_find_device(PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, i, &pci_bus, &pci_dev_fun) != 0) break; pcibios_read_config_word(pci_bus, pci_dev_fun, PCI_COMMAND, &command); /* Enable mastering */ command |= PCI_COMMAND_MASTER; pcibios_write_config_word(pci_bus, pci_dev_fun, PCI_COMMAND, command); if (!(command & PCI_COMMAND_MEMORY)){ printk("shared mem not enabled - unable to configure RoadRunner\n"); break; } /* * So we found our HIPPI ... time to tell the system. */ dev = init_hippi_dev(dev, sizeof(struct rr_private)); if (dev == NULL) break; if (!dev->priv) dev->priv = kmalloc(sizeof(*rrpriv), GFP_KERNEL); rrpriv = (struct rr_private *)dev->priv; /* Read register base address from PCI Configuration Space */ pcibios_read_config_dword(pci_bus, pci_dev_fun, PCI_BASE_ADDRESS_0, &tmp); pcibios_read_config_byte(pci_bus, pci_dev_fun, PCI_INTERRUPT_LINE, &irq); dev->irq = irq; rrpriv->pci_bus = pci_bus; rrpriv->pci_dev_fun = pci_dev_fun; sprintf(rrpriv->name, "RoadRunner serial HIPPI"); #ifdef __SMP__ spin_lock_init(&rrpriv->lock); #endif dev->open = &rr_open; dev->hard_start_xmit = &rr_start_xmit; dev->stop = &rr_close; dev->get_stats = &rr_get_stats; dev->do_ioctl = &rr_ioctl; /* * Dummy value. */ dev->base_addr = 42; /* display version info if adapter is found */ if (!version_disp) { /* set display flag to TRUE so that */ /* we only display this string ONCE */ version_disp = 1; printk(version); } printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI at 0x%08x, irq %i\n", dev->name, tmp, dev->irq); pcibios_read_config_byte(pci_bus, pci_dev_fun, PCI_LATENCY_TIMER, &pci_latency); #if 0 if (pci_latency <= 48){ printk(" PCI latency counter too low (%i), setting to 48 clocks\n", pci_latency); pcibios_write_config_byte(pci_bus, pci_dev_fun, PCI_LATENCY_TIMER, 48); } #else if (pci_latency <= 0x58) pcibios_write_config_byte(pci_bus, pci_dev_fun, PCI_LATENCY_TIMER, 0x58); #endif /* * Remap the regs into kernel space. */ rrpriv->regs = (struct rr_regs *)ioremap(tmp, 0x1000); if (!rrpriv->regs){ printk(KERN_ERR "%s: Unable to map I/O register, RoadRunner %i will be disabled.\n", dev->name, i); break; } /* * Don't access any registes before this point! */ #ifdef __BIG_ENDIAN regs->HostCtrl |= NO_SWAP; #endif /* * Need to add a case for little-endian 64-bit hosts here. */ rr_init(dev); boards_found++; dev->base_addr = 0; dev = NULL; } /* * If we're at this point we're going through rr_hippi_probe() * for the first time. Return success (0) if we've initialized * 1 or more boards. Otherwise, return failure (-ENODEV). */ if (boards_found > 0) return 0; else return -ENODEV; } /* * Commands are considered to be slow, thus there is no reason to * inline this. */ static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) { struct rr_regs *regs; u32 idx; regs = rrpriv->regs; /* * This is temporary - it will go away in the final version. * We probably also want to make this function inline. */ if (regs->HostCtrl & NIC_HALTED){ printk("issuing command for halted NIC, code 0x%x, HostCtrl %08x\n", cmd->code, regs->HostCtrl); if (regs->Mode & FATAL_ERR) printk("error code %02x\n", regs->Fail1); } idx = rrpriv->info->cmd_ctrl.pi; regs->CmdRing[idx] = *(u32*)(cmd); idx = (idx - 1) % CMD_RING_ENTRIES; rrpriv->info->cmd_ctrl.pi = idx; if (regs->Mode & FATAL_ERR) printk("error code %02x\n", regs->Fail1); } /* * Reset the board in a sensible manner. The NIC is already halted * when we get here and a spin-lock is held. */ static int rr_reset(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; struct eeprom *hw = NULL; u32 start_pc; int i; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; rr_load_firmware(dev); regs->TX_state = 0x01000000; regs->RX_state = 0xff800000; regs->AssistState = 0; regs->LocalCtrl = CLEAR_INTA; regs->BrkPt = 0x01; regs->Timer = 0; regs->TimerRef = 0; regs->DmaReadState = RESET_DMA; regs->DmaWriteState = RESET_DMA; regs->DmaWriteHostHi = 0; regs->DmaWriteHostLo = 0; regs->DmaReadHostHi = 0; regs->DmaReadHostLo = 0; regs->DmaReadLen = 0; regs->DmaWriteLen = 0; regs->DmaWriteLcl = 0; regs->DmaWriteIPchecksum = 0; regs->DmaReadLcl = 0; regs->DmaReadIPchecksum = 0; regs->PciState = 0; /* 0x90 for GE? */ regs->Mode = SWAP_DATA; #if 0 /* * Don't worry, this is just black magic. */ regs->RxBase = 0xdf000; regs->RxPrd = 0xdf000; regs->RxCon = 0xdf000; regs->TxBase = 0xce000; regs->TxPrd = 0xce000; regs->TxCon = 0xce000; regs->RxIndPro = 0; regs->RxIndCon = 0; regs->RxIndRef = 0; regs->TxIndPro = 0; regs->TxIndCon = 0; regs->TxIndRef = 0; regs->pad10[0] = 0xcc000; regs->DrCmndPro = 0; regs->DrCmndCon = 0; regs->DwCmndPro = 0; regs->DwCmndCon = 0; regs->DwCmndRef = 0; regs->DrDataPro = 0; regs->DrDataCon = 0; regs->DrDataRef = 0; regs->DwDataPro = 0; regs->DwDataCon = 0; regs->DwDataRef = 0; #endif regs->MbEvent = 0xffffffff; regs->Event = 0; regs->TxPi = 0; regs->IpRxPi = 0; regs->EvtCon = 0; regs->EvtPrd = 0; rrpriv->info->evt_ctrl.pi = 0; for (i = 0; i < CMD_RING_ENTRIES; i++) regs->CmdRing[i] = 0; regs->PciState = 0; start_pc = read_eeprom_word(rrpriv, &hw->rncd_info.FwStart); #if (DEBUG > 1) printk("%s: Executing firmware at address 0x%06x\n", dev->name, start_pc); #endif regs->Pc = start_pc + 0x800; udelay(5); regs->Pc = start_pc; return 0; } /* * Read a string from the EEPROM. */ static unsigned int read_eeprom(struct rr_private *rrpriv, unsigned long offset, unsigned char *buf, unsigned long length) { struct rr_regs *regs = rrpriv->regs; u32 misc, io, host, i; io = regs->ExtIo; regs->ExtIo = 0; misc = regs->LocalCtrl; regs->LocalCtrl = 0; host = regs->HostCtrl; regs->HostCtrl |= HALT_NIC; for (i = 0; i < length; i++){ regs->WinBase = (EEPROM_BASE + ((offset+i) << 3)); buf[i] = (regs->WinData >> 24) & 0xff; } regs->HostCtrl = host; regs->LocalCtrl = misc; regs->ExtIo = io; return i; } /* * Shortcut to read one word (4 bytes) out of the EEPROM and convert * it to our CPU byte-order. */ static u32 read_eeprom_word(struct rr_private *rrpriv, void * offset) { u32 word; if ((read_eeprom(rrpriv, (unsigned long)offset, (char *)&word, 4) == 4)) return be32_to_cpu(word); return 0; } /* * Write a string to the EEPROM. * * This is only called when the firmware is not running. */ static unsigned int write_eeprom(struct rr_private *rrpriv, unsigned long offset, unsigned char *buf, unsigned long length) { struct rr_regs *regs = rrpriv->regs; u32 misc, io, data, i, j, ready, error = 0; io = regs->ExtIo; regs->ExtIo = 0; misc = regs->LocalCtrl; regs->LocalCtrl = ENABLE_EEPROM_WRITE; for (i = 0; i < length; i++){ regs->WinBase = (EEPROM_BASE + ((offset+i) << 3)); data = buf[i] << 24; /* * Only try to write the data if it is not the same * value already. */ if ((regs->WinData & 0xff000000) != data){ regs->WinData = data; ready = 0; j = 0; mb(); while(!ready){ udelay(1000); if ((regs->WinData & 0xff000000) == data) ready = 1; if (j++ > 5000){ printk("data mismatch: %08x, " "WinData %08x\n", data, regs->WinData); ready = 1; error = 1; } } } } regs->LocalCtrl = misc; regs->ExtIo = io; return error; } __initfunc(static int rr_init(struct device *dev)) { struct rr_private *rrpriv; struct rr_regs *regs; u32 sram_size, rev; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; rev = regs->FwRev; if (rev > 0x00020024) printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); else if (rev >= 0x00020000) { printk(" Firmware revision: %i.%i.%i (2.0.37 or " "later is recommended)\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); }else{ printk(" Firmware revision too old: %i.%i.%i, please " "upgrade to 2.0.37 or later.\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); return -EFAULT; } printk(" Maximum receive rings %i\n", regs->MaxRxRng); sram_size = read_eeprom_word(rrpriv, (void *)8); printk(" SRAM size 0x%06x\n", sram_size); if (sysctl_rmem_max < 262144){ printk(" Receive socket buffer limit too low (%i), " "setting to 262144\n", sysctl_rmem_max); sysctl_rmem_max = 262144; } if (sysctl_wmem_max < 262144){ printk(" Transmit socket buffer limit too low (%i), " "setting to 262144\n", sysctl_wmem_max); sysctl_wmem_max = 262144; } return 0; } static int rr_init1(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; u32 hostctrl; unsigned long myjif, flags, tmp_ptr; struct cmd cmd; short i; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; spin_lock_irqsave(&rrpriv->lock, flags); hostctrl = regs->HostCtrl; regs->HostCtrl |= HALT_NIC; if (hostctrl & PARITY_ERR){ printk("%s: Parity error halting NIC - this is serious!\n", dev->name); spin_unlock_irqrestore(&rrpriv->lock, flags); return -EFAULT; } memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); memset(rrpriv->info, 0, sizeof(struct rr_info)); tmp_ptr = virt_to_bus((void *)rrpriv->rx_ctrl); #if (BITS_PER_LONG == 64) regs->RxRingHi = (tmp_ptr >> 32); #else regs->RxRingHi = 0; #endif regs->RxRingLo = ((tmp_ptr) & 0xffffffff); tmp_ptr = virt_to_bus((void *)rrpriv->info); #if (BITS_PER_LONG == 64) regs->InfoPtrHi = (tmp_ptr >> 32); #else regs->InfoPtrHi = 0; #endif regs->InfoPtrLo = ((tmp_ptr) & 0xffffffff); rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; rrpriv->info->evt_ctrl.mode = 0; rrpriv->info->evt_ctrl.pi = 0; rrpriv->info->evt_ctrl.rngptr = virt_to_bus(rrpriv->evt_ring); rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; rrpriv->info->cmd_ctrl.mode = 0; rrpriv->info->cmd_ctrl.pi = 15; for (i = 0; i < CMD_RING_ENTRIES; i++) { regs->CmdRing[i] = 0; } for (i = 0; i < TX_RING_ENTRIES; i++) { rrpriv->tx_ring[i].size = 0; rrpriv->tx_ring[i].addr = 0; rrpriv->tx_skbuff[i] = 0; } rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; rrpriv->info->tx_ctrl.mode = 0; rrpriv->info->tx_ctrl.pi = 0; rrpriv->info->tx_ctrl.rngptr = virt_to_bus(rrpriv->tx_ring); /* * Set dirty_tx before we start receiving interrupts, otherwise * the interrupt handler might think it is supposed to process * tx ints before we are up and running, which may cause a null * pointer access in the int handler. */ rrpriv->tx_full = 0; rrpriv->cur_rx = 0; rrpriv->dirty_rx = rrpriv->dirty_tx = 0; rr_reset(dev); regs->IntrTmr = 0x60; regs->WriteDmaThresh = 0x80 | 0x1f; regs->ReadDmaThresh = 0x80 | 0x1f; rrpriv->fw_running = 0; hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); regs->HostCtrl = hostctrl; spin_unlock_irqrestore(&rrpriv->lock, flags); udelay(1000); /* * Now start the FirmWare. */ cmd.code = C_START_FW; cmd.ring = 0; cmd.index = 0; rr_issue_cmd(rrpriv, &cmd); /* * Give the FirmWare time to chew on the `get running' command. */ myjif = jiffies + 5 * HZ; while ((jiffies < myjif) && !rrpriv->fw_running); for (i = 0; i < RX_RING_ENTRIES; i++) { struct sk_buff *skb; rrpriv->rx_ring[i].mode = 0; skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); rrpriv->rx_skbuff[i] = skb; /* * Sanity test to see if we conflict with the DMA * limitations of the Roadrunner. */ if ((((unsigned long)skb->data) & 0xfff) > ~65320) printk("skb alloc error\n"); #if (BITS_PER_LONG == 32) rrpriv->rx_ring[i].zero = 0; #endif rrpriv->rx_ring[i].addr = virt_to_bus(skb->data); rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; } rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; rrpriv->rx_ctrl[4].mode = 8; rrpriv->rx_ctrl[4].pi = 0; rrpriv->rx_ctrl[4].rngptr = virt_to_bus(rrpriv->rx_ring); cmd.code = C_NEW_RNG; cmd.ring = 4; cmd.index = 0; rr_issue_cmd(rrpriv, &cmd); #if 0 { u32 tmp; tmp = regs->ExtIo; regs->ExtIo = 0x80; i = jiffies + 1 * HZ; while (jiffies < i); regs->ExtIo = tmp; } #endif dev->tbusy = 0; #if 0 dev->interrupt = 0; #endif dev->start = 1; return 0; } /* * All events are considered to be slow (RX/TX ints do not generate * events) and are handled here, outside the main interrupt handler, * to reduce the size of the handler. */ static u32 rr_handle_event(struct device *dev, u32 prodidx) { struct rr_private *rrpriv; struct rr_regs *regs; u32 tmp, eidx; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; eidx = rrpriv->info->evt_ctrl.pi; while (prodidx != eidx){ switch (rrpriv->evt_ring[eidx].code){ case E_NIC_UP: tmp = regs->FwRev; printk("%s: Firmware revision %i.%i.%i up and running\n", dev->name, (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); rrpriv->fw_running = 1; break; case E_LINK_ON: printk("%s: Optical link ON\n", dev->name); break; case E_LINK_OFF: printk("%s: Optical link OFF\n", dev->name); break; case E_RX_IDLE: printk("%s: RX data not moving\n", dev->name); break; case E_WATCHDOG: printk("%s: The watchdog is here to see us\n", dev->name); break; /* * TX events. */ case E_CON_REJ: printk("%s: Connection rejected\n", dev->name); rrpriv->stats.tx_aborted_errors++; break; case E_CON_TMOUT: printk("%s: Connection timeout\n", dev->name); break; case E_DISC_ERR: printk("%s: HIPPI disconnect error\n", dev->name); rrpriv->stats.tx_aborted_errors++; break; case E_TX_IDLE: printk("%s: Transmitter idle\n", dev->name); break; case E_TX_LINK_DROP: printk("%s: Link lost during transmit\n", dev->name); rrpriv->stats.tx_aborted_errors++; break; /* * RX events. */ case E_VAL_RNG: /* Should be ignored */ #if (DEBUG > 2) printk("%s: RX ring valid event\n", dev->name); #endif regs->IpRxPi = RX_RING_ENTRIES - 1; break; case E_INV_RNG: printk("%s: RX ring invalid event\n", dev->name); break; case E_RX_RNG_OUT: printk("%s: Receive ring full\n", dev->name); break; case E_RX_PAR_ERR: printk("%s: Receive parity error.\n", dev->name); break; case E_RX_LLRC_ERR: printk("%s: Receive LLRC error.\n", dev->name); break; case E_PKT_LN_ERR: printk("%s: Receive packet length error.\n", dev->name); break; default: printk("%s: Unhandled event 0x%02x\n", dev->name, rrpriv->evt_ring[eidx].code); } eidx = (eidx + 1) % EVT_RING_ENTRIES; } rrpriv->info->evt_ctrl.pi = eidx; return eidx; } static int rx_int(struct device *dev, u32 rxlimit) { struct rr_private *rrpriv = (struct rr_private *)dev->priv; u32 index, pkt_len; struct rr_regs *regs = rrpriv->regs; index = rrpriv->cur_rx; while(index != rxlimit){ pkt_len = rrpriv->rx_ring[index].size; #if (DEBUG > 2) printk("index %i, rxlimit %i\n", index, rxlimit); printk("len %x, mode %x\n", pkt_len, rrpriv->rx_ring[index].mode); #endif #if 0 /* * I have never seen this occur */ if(!(rrpriv->rx_skbuff[index])){ printk("Trying to receive in empty skbuff\n"); goto out; } #endif if (pkt_len > 0){ struct sk_buff *skb; if (pkt_len < PKT_COPY_THRESHOLD) { skb = alloc_skb(pkt_len, GFP_ATOMIC); if (skb == NULL){ printk("%s: Out of memory deferring " "packet\n", dev->name); rrpriv->stats.rx_dropped++; goto defer; }else memcpy(skb_put(skb, pkt_len), rrpriv->rx_skbuff[index]->data, pkt_len); }else{ struct sk_buff *newskb; newskb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); if (newskb){ skb = rrpriv->rx_skbuff[index]; skb_put(skb, pkt_len); rrpriv->rx_skbuff[index] = newskb; rrpriv->rx_ring[index].addr = virt_to_bus(newskb->data); }else{ printk("%s: Out of memory, deferring " "packet\n", dev->name); rrpriv->stats.rx_dropped++; goto defer; } } skb->dev = dev; skb->protocol = hippi_type_trans(skb, dev); netif_rx(skb); /* send it up */ rrpriv->stats.rx_packets++; rrpriv->stats.rx_bytes += skb->len; } defer: rrpriv->rx_ring[index].mode = 0; rrpriv->rx_ring[index].size = dev->mtu + HIPPI_HLEN; if ((index & 7) == 7) regs->IpRxPi = index; index = (index + 1) % RX_RING_ENTRIES; } rrpriv->cur_rx = index; return index; } static void rr_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) { struct rr_private *rrpriv; struct rr_regs *regs; struct device *dev = (struct device *)dev_id; u32 prodidx, eidx, txcsmr, rxlimit, txcon; unsigned long flags; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; if (!(regs->HostCtrl & RR_INT)) return; #if 0 if (test_and_set_bit(0, (void*)&dev->interrupt) != 0) { printk("%s: Re-entering the interrupt handler.\n", dev->name); return; } #endif spin_lock_irqsave(&rrpriv->lock, flags); prodidx = regs->EvtPrd; txcsmr = (prodidx >> 8) & 0xff; rxlimit = (prodidx >> 16) & 0xff; prodidx &= 0xff; #if (DEBUG > 2) printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, prodidx, rrpriv->info->evt_ctrl.pi); #endif txcon = rrpriv->dirty_tx; if (txcsmr != txcon) { do { rrpriv->stats.tx_packets++; rrpriv->stats.tx_bytes +=rrpriv->tx_skbuff[txcon]->len; dev_kfree_skb(rrpriv->tx_skbuff[txcon]); rrpriv->tx_skbuff[txcon] = NULL; rrpriv->tx_ring[txcon].size = 0; rrpriv->tx_ring[txcon].addr = 0; rrpriv->tx_ring[txcon].mode = 0; txcon = (txcon + 1) % TX_RING_ENTRIES; } while (txcsmr != txcon); rrpriv->dirty_tx = txcon; if (rrpriv->tx_full && dev->tbusy && (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) != rrpriv->dirty_tx)){ rrpriv->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); } } rx_int(dev, rxlimit); eidx = rrpriv->info->evt_ctrl.pi; if (prodidx != eidx) eidx = rr_handle_event(dev, prodidx); eidx |= ((txcsmr << 8) | (rxlimit << 16)); regs->EvtCon = eidx; spin_unlock_irqrestore(&rrpriv->lock, flags); #if 0 dev->interrupt = 0; #endif } static int rr_open(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; #if 0 regs->HostCtrl |= (HALT_NIC | RR_CLEAR_INT); #endif if (request_irq(dev->irq, rr_interrupt, SA_SHIRQ, rrpriv->name, dev)) { printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); return -EAGAIN; } rrpriv->rx_ctrl = kmalloc(256*sizeof(struct ring_ctrl), GFP_KERNEL | GFP_DMA); rrpriv->info = kmalloc(sizeof(struct rr_info), GFP_KERNEL | GFP_DMA); rr_init1(dev); dev->tbusy = 0; #if 0 dev->interrupt = 0; #endif dev->start = 1; MOD_INC_USE_COUNT; return 0; } static void rr_dump(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; u32 index, cons; short i; int len; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; printk("%s: dumping NIC TX rings\n", dev->name); printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", regs->RxPrd, regs->TxPrd, regs->EvtPrd, regs->TxPi, rrpriv->info->tx_ctrl.pi); printk("Error code 0x%x\n", regs->Fail1); index = (((regs->EvtPrd >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES; cons = rrpriv->dirty_tx; printk("TX ring index %i, TX consumer %i\n", index, cons); if (rrpriv->tx_skbuff[index]){ len = min(0x80, rrpriv->tx_skbuff[index]->len); printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); for (i = 0; i < len; i++){ if (!(i & 7)) printk("\n"); printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); } printk("\n"); } if (rrpriv->tx_skbuff[cons]){ len = min(0x80, rrpriv->tx_skbuff[cons]->len); printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); printk("mode 0x%x, size 0x%x,\n phys %08x (virt %08x), skbuff-addr %08x, truesize 0x%x\n", rrpriv->tx_ring[cons].mode, rrpriv->tx_ring[cons].size, rrpriv->tx_ring[cons].addr, (unsigned int)bus_to_virt(rrpriv->tx_ring[cons].addr), (unsigned int)rrpriv->tx_skbuff[cons]->data, (unsigned int)rrpriv->tx_skbuff[cons]->truesize); for (i = 0; i < len; i++){ if (!(i & 7)) printk("\n"); printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); } printk("\n"); } printk("dumping TX ring info:\n"); for (i = 0; i < TX_RING_ENTRIES; i++) printk("mode 0x%x, size 0x%x, phys-addr %08x\n", rrpriv->tx_ring[i].mode, rrpriv->tx_ring[i].size, rrpriv->tx_ring[i].addr); } static int rr_close(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; u32 tmp; short i; dev->start = 0; set_bit(0, (void*)&dev->tbusy); rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; /* * Lock to make sure we are not cleaning up while another CPU * handling interrupts. */ spin_lock(&rrpriv->lock); tmp = regs->HostCtrl; if (tmp & NIC_HALTED){ printk("%s: NIC already halted\n", dev->name); rr_dump(dev); }else tmp |= HALT_NIC; regs->HostCtrl = tmp; rrpriv->fw_running = 0; regs->TxPi = 0; regs->IpRxPi = 0; regs->EvtCon = 0; regs->EvtPrd = 0; for (i = 0; i < CMD_RING_ENTRIES; i++) regs->CmdRing[i] = 0; rrpriv->info->tx_ctrl.entries = 0; rrpriv->info->cmd_ctrl.pi = 0; rrpriv->info->evt_ctrl.pi = 0; rrpriv->rx_ctrl[4].entries = 0; for (i = 0; i < TX_RING_ENTRIES; i++) { if (rrpriv->tx_skbuff[i]) { rrpriv->tx_ring[i].size = 0; rrpriv->tx_ring[i].addr = 0; dev_kfree_skb(rrpriv->tx_skbuff[i]); } } for (i = 0; i < RX_RING_ENTRIES; i++) { if (rrpriv->rx_skbuff[i]) { rrpriv->rx_ring[i].size = 0; rrpriv->rx_ring[i].addr = 0; dev_kfree_skb(rrpriv->rx_skbuff[i]); } } kfree(rrpriv->rx_ctrl); kfree(rrpriv->info); free_irq(dev->irq, dev); spin_unlock(&rrpriv->lock); MOD_DEC_USE_COUNT; return 0; } static int rr_start_xmit(struct sk_buff *skb, struct device *dev) { struct rr_private *rrpriv = (struct rr_private *)dev->priv; struct rr_regs *regs = rrpriv->regs; struct ring_ctrl *txctrl; unsigned long flags; u32 index, len = skb->len; u32 *ifield; struct sk_buff *new_skb; /* * We probably need to deal with tbusy here to prevent overruns. */ if (skb_headroom(skb) < 8){ printk("incoming skb too small - reallocating\n"); if (!(new_skb = dev_alloc_skb(len + 8))) { dev_kfree_skb(skb); dev->tbusy = 0; return -EBUSY; } skb_reserve(new_skb, 8); skb_put(new_skb, len); memcpy(new_skb->data, skb->data, len); dev_kfree_skb(skb); skb = new_skb; } ifield = (u32 *)skb_push(skb, 8); ifield[0] = 0; ifield[1] = skb->private.ifield; /* * We don't need the lock before we are actually going to start * fiddling with the control blocks. */ spin_lock_irqsave(&rrpriv->lock, flags); txctrl = &rrpriv->info->tx_ctrl; index = txctrl->pi; rrpriv->tx_skbuff[index] = skb; rrpriv->tx_ring[index].addr = virt_to_bus(skb->data); rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; txctrl->pi = (index + 1) % TX_RING_ENTRIES; regs->TxPi = txctrl->pi; if (txctrl->pi == rrpriv->dirty_tx){ rrpriv->tx_full = 1; set_bit(0, (void*)&dev->tbusy); } spin_unlock_irqrestore(&rrpriv->lock, flags); dev->trans_start = jiffies; return 0; } static struct net_device_stats *rr_get_stats(struct device *dev) { struct rr_private *rrpriv; rrpriv = (struct rr_private *)dev->priv; return(&rrpriv->stats); } /* * Read the firmware out of the EEPROM and put it into the SRAM * (or from user space - later) * * This operation requires the NIC to be halted and is performed with * interrupts disabled and with the spinlock hold. */ static int rr_load_firmware(struct device *dev) { struct rr_private *rrpriv; struct rr_regs *regs; int i, j; u32 localctrl, eptr, sptr, segptr, len, tmp; u32 p2len, p2size, nr_seg, revision, io, sram_size; struct eeprom *hw = NULL; rrpriv = (struct rr_private *)dev->priv; regs = rrpriv->regs; if (dev->flags & IFF_UP) return -EBUSY; if (!(regs->HostCtrl & NIC_HALTED)){ printk("%s: Trying to load firmware to a running NIC.\n", dev->name); return -EBUSY; } localctrl = regs->LocalCtrl; regs->LocalCtrl = 0; regs->EvtPrd = 0; regs->RxPrd = 0; regs->TxPrd = 0; /* * First wipe the entire SRAM, otherwise we might run into all * kinds of trouble ... sigh, this took almost all afternoon * to track down ;-( */ io = regs->ExtIo; regs->ExtIo = 0; sram_size = read_eeprom_word(rrpriv, (void *)8); for (i = 200; i < sram_size / 4; i++){ regs->WinBase = i * 4; regs->WinData = 0; } regs->ExtIo = io; eptr = read_eeprom_word(rrpriv, &hw->rncd_info.AddrRunCodeSegs); eptr = ((eptr & 0x1fffff) >> 3); p2len = read_eeprom_word(rrpriv, (void *)(0x83*4)); p2len = (p2len << 2); p2size = read_eeprom_word(rrpriv, (void *)(0x84*4)); p2size = ((p2size & 0x1fffff) >> 3); if ((eptr < p2size) || (eptr > (p2size + p2len))){ printk("%s: eptr is invalid\n", dev->name); goto out; } revision = read_eeprom_word(rrpriv, &hw->manf.HeaderFmt); if (revision != 1){ printk("%s: invalid firmware format (%i)\n", dev->name, revision); goto out; } nr_seg = read_eeprom_word(rrpriv, (void *)eptr); eptr +=4; #if (DEBUG > 1) printk("%s: nr_seg %i\n", dev->name, nr_seg); #endif for (i = 0; i < nr_seg; i++){ sptr = read_eeprom_word(rrpriv, (void *)eptr); eptr += 4; len = read_eeprom_word(rrpriv, (void *)eptr); eptr += 4; segptr = read_eeprom_word(rrpriv, (void *)eptr); segptr = ((segptr & 0x1fffff) >> 3); eptr += 4; #if (DEBUG > 1) printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", dev->name, i, sptr, len, segptr); #endif for (j = 0; j < len; j++){ tmp = read_eeprom_word(rrpriv, (void *)segptr); regs->WinBase = sptr; regs->WinData = tmp; segptr += 4; sptr += 4; } } out: regs->LocalCtrl = localctrl; return 0; } static int rr_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct rr_private *rrpriv; unsigned char *image, *oldimage; unsigned int i; int error = -EOPNOTSUPP; rrpriv = (struct rr_private *)dev->priv; spin_lock(&rrpriv->lock); switch(cmd){ case SIOCRRGFW: if (!suser()){ error = -EPERM; goto out; } if (rrpriv->fw_running){ printk("%s: Firmware already running\n", dev->name); error = -EPERM; goto out; } image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); if (!image){ printk(KERN_ERR "%s: Unable to allocate memory " "for EEPROM image\n", dev->name); error = -ENOMEM; goto out; } i = read_eeprom(rrpriv, 0, image, EEPROM_BYTES); if (i != EEPROM_BYTES){ kfree(image); printk(KERN_ERR "%s: Error reading EEPROM\n", dev->name); error = -EFAULT; goto out; } error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); if (error) error = -EFAULT; kfree(image); break; case SIOCRRPFW: if (!suser()){ error = -EPERM; goto out; } if (rrpriv->fw_running){ printk("%s: Firmware already running\n", dev->name); error = -EPERM; goto out; } image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); if (!image){ printk(KERN_ERR "%s: Unable to allocate memory " "for EEPROM image\n", dev->name); error = -ENOMEM; goto out; } oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); if (!image){ printk(KERN_ERR "%s: Unable to allocate memory " "for old EEPROM image\n", dev->name); error = -ENOMEM; goto out; } error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); if (error) error = -EFAULT; printk("%s: Updating EEPROM firmware\n", dev->name); error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); if (error) printk(KERN_ERR "%s: Error writing EEPROM\n", dev->name); i = read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); if (i != EEPROM_BYTES) printk(KERN_ERR "%s: Error reading back EEPROM " "image\n", dev->name); error = memcmp(image, oldimage, EEPROM_BYTES); if (error){ printk(KERN_ERR "%s: Error verifying EEPROM image\n", dev->name); error = -EFAULT; } kfree(image); kfree(oldimage); break; case SIOCRRID: error = put_user(0x52523032, (int *)(&rq->ifr_data[0])); if (error) error = -EFAULT; break; default: } out: spin_unlock(&rrpriv->lock); return error; } /* * Local variables: * compile-command: "gcc -D__SMP__ -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DCPU=686 -c rrunner.c" * End: */