/***************************************************************************** * sdladrv.c SDLA Support Module. Main module. * * This module is a library of common hardware-specific functions * used by all Sangoma drivers. * * Author: Gene Kozin * * Copyright: (c) 1995-1996 Sangoma Technologies Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ============================================================================ * Dec 20, 1996 Gene Kozin Version 3.0.0. Complete overhaul. * Jul 12, 1996 Gene Kozin Changes for Linux 2.0 compatibility. * Jun 12, 1996 Gene Kozin Added support for S503 card. * Apr 30, 1996 Gene Kozin SDLA hardware interrupt is acknowledged before * calling protocolspecific ISR. * Register I/O ports with Linux kernel. * Miscellaneous bug fixes. * Dec 20, 1995 Gene Kozin Fixed a bug in interrupt routine. * Oct 14, 1995 Gene Kozin Initial version. *****************************************************************************/ /***************************************************************************** * Notes: * ------ * 1. This code is ment to be system-independent (as much as possible). To * achive this, various macros are used to hide system-specific interfaces. * To compile this code, one of the following constants must be defined: * * Platform Define * -------- ------ * Linux _LINUX_ * SCO Unix _SCO_UNIX_ * * 2. Supported adapter types: * * S502A * ES502A (S502E) * S503 * S507 * S508 (S509) * * 3. S502A Notes: * * There is no separate DPM window enable/disable control in S502A. It * opens immediately after a window number it written to the HMCR * register. To close the window, HMCR has to be written a value * ????1111b (e.g. 0x0F or 0xFF). * * S502A DPM window cannot be located at offset E000 (e.g. 0xAE000). * * There should be a delay of ??? before reading back S502A status * register. * * 4. S502E Notes: * * S502E has a h/w bug: although default IRQ line state is HIGH, enabling * interrupts by setting bit 1 of the control register (BASE) to '1' * causes it to go LOW! Therefore, disabling interrupts by setting that * bit to '0' causes low-to-high transition on IRQ line (ghosty * interrupt). The same occurs when disabling CPU by resetting bit 0 of * CPU control register (BASE+3) - see the next note. * * S502E CPU and DPM control is limited: * * o CPU cannot be stopped independently. Resetting bit 0 of the CPUi * control register (BASE+3) shuts the board down entirely, including * DPM; * * o DPM access cannot be controlled dynamically. Ones CPU is started, * bit 1 of the control register (BASE) is used to enable/disable IRQ, * so that access to shared memory cannot be disabled while CPU is * running. ****************************************************************************/ #define _LINUX_ #if defined(_LINUX_) /****** Linux *******************************/ #include /* printk(), and other useful stuff */ #include /* offsetof(), etc. */ #include /* return codes */ #include /* inline memset(), etc. */ #include /* support for loadable modules */ #include /* for jiffies, HZ, etc. */ #include /* API definitions */ #include /* SDLA firmware module definitions */ #include #include /* for inb(), outb(), etc. */ #define _INB(port) (inb(port)) #define _OUTB(port, byte) (outb((byte),(port))) #define SYSTEM_TICK jiffies #elif defined(_SCO_UNIX_) /****** SCO Unix ****************************/ #if !defined(INKERNEL) #error This code MUST be compiled in kernel mode! #endif #include /* API definitions */ #include /* SDLA firmware module definitions */ #include /* for inb(), outb(), etc. */ #define _INB(port) (inb(port)) #define _OUTB(port, byte) (outb((port),(byte))) #define SYSTEM_TICK lbolt #else #error Unknown system type! #endif #define MOD_VERSION 3 #define MOD_RELEASE 0 #define SDLA_IODELAY 100 /* I/O Rd/Wr delay, 10 works for 486DX2-66 */ #define EXEC_DELAY 20 /* shared memory access delay, mks */ #define EXEC_TIMEOUT (HZ*2) /* command timeout, in ticks */ /* I/O port address range */ #define S502A_IORANGE 3 #define S502E_IORANGE 4 #define S503_IORANGE 3 #define S507_IORANGE 4 #define S508_IORANGE 4 /* Maximum amount of memory */ #define S502_MAXMEM 0x10000L #define S503_MAXMEM 0x10000L #define S507_MAXMEM 0x40000L #define S508_MAXMEM 0x40000L /* Minimum amount of memory */ #define S502_MINMEM 0x8000L #define S503_MINMEM 0x8000L #define S507_MINMEM 0x20000L #define S508_MINMEM 0x20000L /****** Function Prototypes *************************************************/ /* Module entry points. These are called by the OS and must be public. */ int init_module (void); void cleanup_module (void); /* Hardware-specific functions */ static int sdla_detect (sdlahw_t* hw); static int sdla_autodpm (sdlahw_t* hw); static int sdla_setdpm (sdlahw_t* hw); static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len); static int sdla_init (sdlahw_t* hw); static unsigned long sdla_memtest (sdlahw_t* hw); static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo); static unsigned char make_config_byte (sdlahw_t* hw); static int sdla_start (sdlahw_t* hw, unsigned addr); static int init_s502a (sdlahw_t* hw); static int init_s502e (sdlahw_t* hw); static int init_s503 (sdlahw_t* hw); static int init_s507 (sdlahw_t* hw); static int init_s508 (sdlahw_t* hw); static int detect_s502a (int port); static int detect_s502e (int port); static int detect_s503 (int port); static int detect_s507 (int port); static int detect_s508 (int port); /* Miscellaneous functions */ static int calibrate_delay (int mks); static int get_option_index (unsigned* optlist, unsigned optval); static unsigned check_memregion (void* ptr, unsigned len); static unsigned test_memregion (void* ptr, unsigned len); static unsigned short checksum (unsigned char* buf, unsigned len); /****** Global Data ********************************************************** * Note: All data must be explicitly initialized!!! */ /* private data */ static char modname[] = "sdladrv"; static char fullname[] = "SDLA Support Module"; static char copyright[] = "(c) 1995-1996 Sangoma Technologies Inc."; static unsigned exec_idle; /* Hardware configuration options. * These are arrays of configuration options used by verification routines. * The first element of each array is its size (i.e. number of options). */ static unsigned s502_port_options[] = { 4, 0x250, 0x300, 0x350, 0x360 } ; static unsigned s503_port_options[] = { 8, 0x250, 0x254, 0x300, 0x304, 0x350, 0x354, 0x360, 0x364 } ; static unsigned s508_port_options[] = { 8, 0x250, 0x270, 0x280, 0x300, 0x350, 0x360, 0x380, 0x390 } ; static unsigned s502a_irq_options[] = { 0 }; static unsigned s502e_irq_options[] = { 4, 2, 3, 5, 7 }; static unsigned s503_irq_options[] = { 5, 2, 3, 4, 5, 7 }; static unsigned s508_irq_options[] = { 8, 3, 4, 5, 7, 10, 11, 12, 15 }; static unsigned s502a_dpmbase_options[] = { 28, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, }; static unsigned s507_dpmbase_options[] = { 32, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, 0xB0000, 0xB2000, 0xB4000, 0xB6000, 0xB8000, 0xBA000, 0xBC000, 0xBE000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, }; static unsigned s508_dpmbase_options[] = /* incl. S502E and S503 */ { 32, 0xA0000, 0xA2000, 0xA4000, 0xA6000, 0xA8000, 0xAA000, 0xAC000, 0xAE000, 0xC0000, 0xC2000, 0xC4000, 0xC6000, 0xC8000, 0xCA000, 0xCC000, 0xCE000, 0xD0000, 0xD2000, 0xD4000, 0xD6000, 0xD8000, 0xDA000, 0xDC000, 0xDE000, 0xE0000, 0xE2000, 0xE4000, 0xE6000, 0xE8000, 0xEA000, 0xEC000, 0xEE000, }; /* static unsigned s502_dpmsize_options[] = { 2, 0x2000, 0x10000 }; static unsigned s507_dpmsize_options[] = { 2, 0x2000, 0x4000 }; static unsigned s508_dpmsize_options[] = { 1, 0x2000 }; */ static unsigned s502a_pclk_options[] = { 2, 3600, 7200 }; static unsigned s502e_pclk_options[] = { 5, 3600, 5000, 7200, 8000, 10000 }; static unsigned s503_pclk_options[] = { 3, 7200, 8000, 10000 }; static unsigned s507_pclk_options[] = { 1, 12288 }; static unsigned s508_pclk_options[] = { 1, 16000 }; /* Host memory control register masks */ static unsigned char s502a_hmcr[] = { 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, /* A0000 - AC000 */ 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, /* C0000 - CC000 */ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, /* D0000 - DC000 */ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, /* E0000 - EC000 */ }; static unsigned char s502e_hmcr[] = { 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, /* A0000 - AE000 */ 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, /* C0000 - CE000 */ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* D0000 - DE000 */ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, /* E0000 - EE000 */ }; static unsigned char s507_hmcr[] = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, /* A0000 - AE000 */ 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, /* B0000 - BE000 */ 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, /* C0000 - CE000 */ 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, /* E0000 - EE000 */ }; static unsigned char s508_hmcr[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* A0000 - AE000 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* C0000 - CE000 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /* D0000 - DE000 */ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, /* E0000 - EE000 */ }; static unsigned char s507_irqmask[] = { 0x00, 0x20, 0x40, 0x60, 0x80, 0xA0, 0xC0, 0xE0 }; /******* Kernel Loadable Module Entry Points ********************************/ /*============================================================================ * Module 'insert' entry point. * o print announcement * o initialize static data * o calibrate SDLA shared memory access delay. * * Return: 0 Ok * < 0 error. * Context: process */ #ifdef MODULE int init_module (void) #else __initfunc(int wanpipe_init(void)) #endif { printk(KERN_INFO "%s v%u.%u %s\n", fullname, MOD_VERSION, MOD_RELEASE, copyright); exec_idle = calibrate_delay(EXEC_DELAY); #ifdef WANDEBUG printk(KERN_DEBUG "%s: exec_idle = %d\n", modname, exec_idle); #endif return 0; } #ifdef MODULE /*============================================================================ * Module 'remove' entry point. * o release all remaining system resources */ void cleanup_module (void) { } #endif /******* Kernel APIs ********************************************************/ /*============================================================================ * Set up adapter. * o detect adapter type * o verify hardware configuration options * o check for hardware conflicts * o set up adapter shared memory * o test adapter memory * o load firmware * Return: 0 ok. * < 0 error */ EXPORT_SYMBOL(sdla_setup); int sdla_setup (sdlahw_t* hw, void* sfm, unsigned len) { unsigned* irq_opt = NULL; /* IRQ options */ unsigned* dpmbase_opt = NULL; /* DPM window base options */ unsigned* pclk_opt = NULL; /* CPU clock rate options */ int err; if (sdla_detect(hw)) { printk(KERN_ERR "%s: adapter S%04u not found at port 0x%X!\n", modname, hw->type, hw->port) ; return -EINVAL; } printk(KERN_INFO "%s: found S%04u card at port 0x%X.\n", modname, hw->type, hw->port) ; hw->dpmsize = SDLA_WINDOWSIZE; switch (hw->type) { case SDLA_S502A: hw->io_range = S502A_IORANGE; irq_opt = s502a_irq_options; dpmbase_opt = s502a_dpmbase_options; pclk_opt = s502a_pclk_options; break; case SDLA_S502E: hw->io_range = S502E_IORANGE; irq_opt = s502e_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s502e_pclk_options; break; case SDLA_S503: hw->io_range = S503_IORANGE; irq_opt = s503_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s503_pclk_options; break; case SDLA_S507: hw->io_range = S507_IORANGE; irq_opt = s508_irq_options; dpmbase_opt = s507_dpmbase_options; pclk_opt = s507_pclk_options; break; case SDLA_S508: hw->io_range = S508_IORANGE; irq_opt = s508_irq_options; dpmbase_opt = s508_dpmbase_options; pclk_opt = s508_pclk_options; break; } /* Verify IRQ configuration options */ if (!get_option_index(irq_opt, hw->irq)) { printk(KERN_ERR "%s: IRQ %d is illegal!\n", modname, hw->irq) ; return -EINVAL; } /* Verify CPU clock rate configuration options */ if (hw->pclk == 0) hw->pclk = pclk_opt[1] /* use default */ ; else if (!get_option_index(pclk_opt, hw->pclk)) { printk(KERN_ERR "%s: CPU clock %u is illegal!\n", modname, hw->pclk) ; return -EINVAL; } printk(KERN_INFO "%s: assuming CPU clock rate of %u kHz.\n", modname, hw->pclk) ; /* Setup adapter dual-port memory window and test memory */ if (hw->dpmbase == 0) { err = sdla_autodpm(hw); if (err) { printk(KERN_ERR "%s: can't find available memory region!\n", modname) ; return err; } } else if (!get_option_index(dpmbase_opt, hw->dpmbase)) { printk(KERN_ERR "%s: memory address 0x%lX is illegal!\n", modname, hw->dpmbase) ; return -EINVAL; } else if (sdla_setdpm(hw)) { printk(KERN_ERR "%s: 8K memory region at 0x%lX is not available!\n", modname, hw->dpmbase) ; return -EINVAL; } printk(KERN_INFO "%s: dual-port memory window is set at 0x%lX.\n", modname, hw->dpmbase) ; printk(KERN_INFO "%s: found %luK bytes of on-board memory.\n", modname, hw->memory / 1024) ; /* Load firmware. If loader fails then shut down adapter */ err = sdla_load(hw, sfm, len); if (err) sdla_down(hw); /* shutdown adapter */ return err; } /*============================================================================ * Shut down SDLA: disable shared memory access and interrupts, stop CPU, etc. */ EXPORT_SYMBOL(sdla_down); int sdla_down (sdlahw_t* hw) { unsigned port = hw->port; int i; if (!port) return -EFAULT; switch (hw->type) { case SDLA_S502A: _OUTB(port, 0x08); /* halt CPU */ _OUTB(port, 0x08); _OUTB(port, 0x08); hw->regs[0] = 0x08; _OUTB(port + 1, 0xFF); /* close memory window */ hw->regs[1] = 0xFF; break; case SDLA_S502E: _OUTB(port + 3, 0); /* stop CPU */ _OUTB(port, 0); /* reset board */ for (i = 0; i < S502E_IORANGE; ++i) hw->regs[i] = 0 ; break; case SDLA_S503: case SDLA_S507: case SDLA_S508: _OUTB(port, 0); /* reset board logic */ hw->regs[0] = 0; break; default: return -EINVAL; } return 0; } /*============================================================================ * Map shared memory window into SDLA adress space. */ EXPORT_SYMBOL(sdla_mapmem); int sdla_mapmem (sdlahw_t* hw, unsigned long addr) { unsigned port = hw->port; register int tmp; switch (hw->type) { case SDLA_S502A: case SDLA_S502E: if (addr < S502_MAXMEM) /* verify parameter */ { tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; case SDLA_S503: if (addr < S503_MAXMEM) /* verify parameter */ { tmp = (hw->regs[0] & 0x8F) | ((addr >> 9) & 0x70); _OUTB(port, tmp); hw->regs[0] = tmp; } else return -EINVAL; break; case SDLA_S507: if (addr < S507_MAXMEM) { if (!(_INB(port) & 0x02)) return -EIO ; tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; case SDLA_S508: if (addr < S508_MAXMEM) { tmp = addr >> 13; /* convert to register mask */ _OUTB(port + 2, tmp); hw->regs[2] = tmp; } else return -EINVAL; break; default: return -EINVAL; } hw->vector = addr & 0xFFFFE000L; return 0; } /*============================================================================ * Enable interrupt generation. */ EXPORT_SYMBOL(sdla_inten); int sdla_inten (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; switch (hw->type) { case SDLA_S502E: /* Note thar interrupt control operations on S502E are allowed * only if CPU is enabled (bit 0 of status register is set). */ if (_INB(port) & 0x01) { _OUTB(port, 0x02); /* bit1 = 1, bit2 = 0 */ _OUTB(port, 0x06); /* bit1 = 1, bit2 = 1 */ hw->regs[0] = 0x06; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] | 0x04; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port) & 0x02)) /* verify */ return -EIO ; break; case SDLA_S508: tmp = hw->regs[0] | 0x10; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port + 1) & 0x10)) /* verify */ return -EIO ; break; case SDLA_S502A: case SDLA_S507: break; default: return -EINVAL; } return 0; } /*============================================================================ * Disable interrupt generation. */ EXPORT_SYMBOL(sdla_intde); int sdla_intde (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; switch (hw->type) { case SDLA_S502E: /* Notes: * 1) interrupt control operations are allowed only if CPU is * enabled (bit 0 of status register is set). * 2) disabling interrupts using bit 1 of control register * causes IRQ line go high, therefore we are going to use * 0x04 instead: lower it to inhibit interrupts to PC. */ if (_INB(port) & 0x01) { _OUTB(port, hw->regs[0] & ~0x04); hw->regs[0] &= ~0x04; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] & ~0x04; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) & 0x02) /* verify */ return -EIO ; break; case SDLA_S508: tmp = hw->regs[0] & ~0x10; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) & 0x10) /* verify */ return -EIO ; break; case SDLA_S502A: case SDLA_S507: break; default: return -EINVAL; } return 0; } /*============================================================================ * Acknowledge SDLA hardware interrupt. */ EXPORT_SYMBOL(sdla_intack); int sdla_intack (sdlahw_t* hw) { unsigned port = hw->port; int tmp; switch (hw->type) { case SDLA_S502E: /* To acknoledge hardware interrupt we have to toggle bit 3 of * control register: \_/ * Note that interrupt control operations on S502E are allowed * only if CPU is enabled (bit 1 of status register is set). */ if (_INB(port) & 0x01) { tmp = hw->regs[0] & ~0x04; _OUTB(port, tmp); tmp |= 0x04; _OUTB(port, tmp); hw->regs[0] = tmp; } else return -EIO; break; case SDLA_S503: if (_INB(port) & 0x04) { tmp = hw->regs[0] & ~0x08; _OUTB(port, tmp); tmp |= 0x08; _OUTB(port, tmp); hw->regs[0] = tmp; } break; case SDLA_S502A: case SDLA_S507: case SDLA_S508: break; default: return -EINVAL; } return 0; } /*============================================================================ * Generate an interrupt to adapter's CPU. */ EXPORT_SYMBOL(sdla_intr); int sdla_intr (sdlahw_t* hw) { unsigned port = hw->port; switch (hw->type) { case SDLA_S502A: if (!(_INB(port) & 0x40)) { _OUTB(port, 0x10); /* issue NMI to CPU */ hw->regs[0] = 0x10; } else return -EIO; break; case SDLA_S507: if ((_INB(port) & 0x06) == 0x06) { _OUTB(port + 3, 0); } else return -EIO; break; case SDLA_S508: if (_INB(port + 1) & 0x02) { _OUTB(port, 0x08); } else return -EIO; break; case SDLA_S502E: case SDLA_S503: default: return -EINVAL; } return 0; } /*============================================================================ * Execute Adapter Command. * o Set exec flag. * o Busy-wait until flag is reset. * o Return number of loops made, or 0 if command timed out. */ EXPORT_SYMBOL(sdla_exec); int sdla_exec (void* opflag) { volatile unsigned char* flag = opflag; unsigned long tstop; int nloops; if (*flag) return 0; /* ???? */ *flag = 1; tstop = SYSTEM_TICK + EXEC_TIMEOUT; for (nloops = 1; *flag; ++nloops) { unsigned delay = exec_idle; while (--delay); /* delay */ if (SYSTEM_TICK > tstop) return 0; /* time is up! */ } return nloops; } /*============================================================================ * Read absolute adapter memory. * Transfer data from adapter's memory to data buffer. * * Note: * Care should be taken when crossing dual-port memory window boundary. * This function is not atomic, so caller must disable interrupt if * interrupt routines are accessing adapter shared memory. */ EXPORT_SYMBOL(sdla_peek); int sdla_peek (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) { unsigned long oldvec = hw->vector; unsigned winsize = hw->dpmsize; unsigned curpos, curlen; /* current offset and block size */ unsigned long curvec; /* current DPM window vector */ int err = 0; if (addr + len > hw->memory) /* verify arguments */ return -EINVAL ; while (len && !err) { curpos = addr % winsize; /* current window offset */ curvec = addr - curpos; /* current window vector */ curlen = (len > (winsize - curpos)) ? (winsize - curpos) : len; /* Relocate window and copy block of data */ err = sdla_mapmem(hw, curvec); memcpy((void*)buf, (void*)(hw->dpmbase + curpos), curlen); addr += curlen; (char*)buf += curlen; len -= curlen; } /* Restore DPM window position */ sdla_mapmem(hw, oldvec); return err; } /*============================================================================ * Write Absolute Adapter Memory. * Transfer data from data buffer to adapter's memory. * * Note: * Care should be taken when crossing dual-port memory window boundary. * This function is not atomic, so caller must disable interrupt if * interrupt routines are accessing adapter shared memory. */ EXPORT_SYMBOL(sdla_poke); int sdla_poke (sdlahw_t* hw, unsigned long addr, void* buf, unsigned len) { unsigned long oldvec = hw->vector; unsigned winsize = hw->dpmsize; unsigned curpos, curlen; /* current offset and block size */ unsigned long curvec; /* current DPM window vector */ int err = 0; if (addr + len > hw->memory) /* verify arguments */ return -EINVAL ; while (len && !err) { curpos = addr % winsize; /* current window offset */ curvec = addr - curpos; /* current window vector */ curlen = (len > (winsize - curpos)) ? (winsize - curpos) : len; /* Relocate window and copy block of data */ sdla_mapmem(hw, curvec); memcpy((void*)(hw->dpmbase + curpos), (void*)buf, curlen); addr += curlen; (char*)buf += curlen; len -= curlen; } /* Restore DPM window position */ sdla_mapmem(hw, oldvec); return err; } #ifdef DONT_COMPIPLE_THIS #endif /* DONT_COMPIPLE_THIS */ /****** Hardware-Specific Functions *****************************************/ /*============================================================================ * Detect adapter type. * o if adapter type is specified then call detection routine for that adapter * type. Otherwise call detection routines for every adapter types until * adapter is detected. * * Notes: * 1) Detection tests are destructive! Adapter will be left in shutdown state * after the test. */ static int sdla_detect (sdlahw_t* hw) { unsigned port = hw->port; int err = 0; if (!port) return -EFAULT ; switch (hw->type) { case SDLA_S502A: if (!detect_s502a(port)) err = -ENODEV; break; case SDLA_S502E: if (!detect_s502e(port)) err = -ENODEV; break; case SDLA_S503: if (!detect_s503(port)) err = -ENODEV; break; case SDLA_S507: if (!detect_s507(port)) err = -ENODEV; break; case SDLA_S508: if (!detect_s508(port)) err = -ENODEV; break; default: if (detect_s502a(port)) hw->type = SDLA_S502A ; else if (detect_s502e(port)) hw->type = SDLA_S502E ; else if (detect_s503(port)) hw->type = SDLA_S503 ; else if (detect_s507(port)) hw->type = SDLA_S507 ; else if (detect_s508(port)) hw->type = SDLA_S508 ; else err = -ENODEV; } return err; } /*============================================================================ * Autoselect memory region. * o try all available DMP address options from the top down until success. */ static int sdla_autodpm (sdlahw_t* hw) { int i, err = -EINVAL; unsigned* opt; switch (hw->type) { case SDLA_S502A: opt = s502a_dpmbase_options; break; case SDLA_S502E: case SDLA_S503: case SDLA_S508: opt = s508_dpmbase_options; break; case SDLA_S507: opt = s507_dpmbase_options; break; default: return -EINVAL; } for (i = opt[0]; i && err; --i) { hw->dpmbase = opt[i]; err = sdla_setdpm(hw); } return err; } /*============================================================================ * Set up adapter dual-port memory window. * o shut down adapter * o make sure that no physical memory exists in this region, i.e entire * region reads 0xFF and is not writable when adapter is shut down. * o initialize adapter hardware * o make sure that region is usable with SDLA card, i.e. we can write to it * when adapter is configured. */ static int sdla_setdpm (sdlahw_t* hw) { int err; /* Shut down card and verify memory region */ sdla_down(hw); if (check_memregion((void*)hw->dpmbase, hw->dpmsize)) return -EINVAL ; /* Initialize adapter and test on-board memory segment by segment. * If memory size appears to be less than shared memory window size, * assume that memory region is unusable. */ err = sdla_init(hw); if (err) return err; if (sdla_memtest(hw) < hw->dpmsize) /* less than window size */ { sdla_down(hw); return -EIO; } sdla_mapmem(hw, 0L); /* set window vector at bottom */ return 0; } /*============================================================================ * Load adapter from the memory image of the SDLA firmware module. * o verify firmware integrity and compatibility * o start adapter up */ static int sdla_load (sdlahw_t* hw, sfm_t* sfm, unsigned len) { int i; /* Verify firmware signature */ if (strcmp(sfm->signature, SFM_SIGNATURE)) { printk(KERN_ERR "%s: not SDLA firmware!\n", modname) ; return -EINVAL; } /* Verify firmware module format version */ if (sfm->version != SFM_VERSION) { printk(KERN_ERR "%s: firmware format %u rejected! Expecting %u.\n", modname, sfm->version, SFM_VERSION) ; return -EINVAL; } /* Verify firmware module length and checksum */ if ((len - offsetof(sfm_t, image) != sfm->info.codesize) || (checksum((void*)&sfm->info, sizeof(sfm_info_t) + sfm->info.codesize) != sfm->checksum)) { printk(KERN_ERR "%s: firmware corrupted!\n", modname); return -EINVAL; } /* Announce */ printk(KERN_INFO "%s: loading %s (ID=%u)...\n", modname, (sfm->descr[0] != '\0') ? sfm->descr : "unknown firmware", sfm->info.codeid) ; /* Scan through the list of compatible adapters and make sure our * adapter type is listed. */ for (i = 0; (i < SFM_MAX_SDLA) && (sfm->info.adapter[i] != hw->type); ++i) ; if (i == SFM_MAX_SDLA) { printk(KERN_ERR "%s: firmware is not compatible with S%u!\n", modname, hw->type) ; return -EINVAL; } /* Make sure there is enough on-board memory */ if (hw->memory < sfm->info.memsize) { printk(KERN_ERR "%s: firmware needs %lu bytes of on-board memory!\n", modname, sfm->info.memsize) ; return -EINVAL; } /* Move code onto adapter */ if (sdla_poke(hw, sfm->info.codeoffs, sfm->image, sfm->info.codesize)) { printk(KERN_ERR "%s: failed to load code segment!\n", modname) ; return -EIO; } /* Prepare boot-time configuration data and kick-off CPU */ sdla_bootcfg(hw, &sfm->info); if (sdla_start(hw, sfm->info.startoffs)) { printk(KERN_ERR "%s: Damn... Adapter won't start!\n", modname) ; return -EIO; } /* position DPM window over the mailbox and enable interrupts */ if (sdla_mapmem(hw, sfm->info.winoffs) || sdla_inten(hw)) { printk(KERN_ERR "%s: adapter hardware failure!\n", modname) ; return -EIO; } hw->fwid = sfm->info.codeid; /* set firmware ID */ return 0; } /*============================================================================ * Initialize SDLA hardware: setup memory window, IRQ, etc. */ static int sdla_init (sdlahw_t* hw) { int i; for (i = 0; i < SDLA_MAXIORANGE; ++i) hw->regs[i] = 0 ; switch (hw->type) { case SDLA_S502A: return init_s502a(hw); case SDLA_S502E: return init_s502e(hw); case SDLA_S503: return init_s503(hw); case SDLA_S507: return init_s507(hw); case SDLA_S508: return init_s508(hw); } return -EINVAL; } /*============================================================================ * Test adapter on-board memory. * o slide DPM window from the bottom up and test adapter memory segment by * segment. * Return adapter memory size. */ static unsigned long sdla_memtest (sdlahw_t* hw) { unsigned long memsize; unsigned winsize; for (memsize = 0, winsize = hw->dpmsize; !sdla_mapmem(hw, memsize) && (test_memregion((void*)hw->dpmbase, winsize) == winsize) ; memsize += winsize) ; hw->memory = memsize; return memsize; } /*============================================================================ * Prepare boot-time firmware configuration data. * o position DPM window * o initialize configuration data area */ static int sdla_bootcfg (sdlahw_t* hw, sfm_info_t* sfminfo) { unsigned char* data; if (!sfminfo->datasize) return 0; /* nothing to do */ if (sdla_mapmem(hw, sfminfo->dataoffs) != 0) return -EIO ; data = (void*)(hw->dpmbase + (sfminfo->dataoffs - hw->vector)); memset(data, 0, sfminfo->datasize); data[0x00] = make_config_byte(hw); switch (sfminfo->codeid) { case SFID_X25_502: case SFID_X25_508: data[0x01] = 3; /* T1 timer */ data[0x03] = 10; /* N2 */ data[0x06] = 7; /* HDLC window size */ data[0x0B] = 1; /* DTE */ data[0x0C] = 2; /* X.25 packet window size */ *(short*)&data[0x0D] = 128; /* default X.25 data size */ *(short*)&data[0x0F] = 128; /* maximum X.25 data size */ break; } return 0; } /*============================================================================ * Prepare configuration byte identifying adapter type and CPU clock rate. */ static unsigned char make_config_byte (sdlahw_t* hw) { unsigned char byte = 0; switch (hw->pclk) { case 5000: byte = 0x01; break; case 7200: byte = 0x02; break; case 8000: byte = 0x03; break; case 10000: byte = 0x04; break; case 16000: byte = 0x05; break; } switch (hw->type) { case SDLA_S502E: byte |= 0x80; break; case SDLA_S503: byte |= 0x40; break; } return byte; } /*============================================================================ * Start adapter's CPU. * o calculate a pointer to adapter's cold boot entry point * o position DPM window * o place boot instruction (jp addr) at cold boot entry point * o start CPU */ static int sdla_start (sdlahw_t* hw, unsigned addr) { unsigned port = hw->port; unsigned char* bootp; int err, tmp, i; if (!port) return -EFAULT; switch (hw->type) { case SDLA_S502A: bootp = (void*)(hw->dpmbase + 0x66); break; case SDLA_S502E: case SDLA_S503: case SDLA_S507: case SDLA_S508: bootp = (void*)hw->dpmbase; break; default: return -EINVAL; } err = sdla_mapmem(hw, 0); if (err) return err; *bootp = 0xC3; /* Z80: 'jp' opcode */ bootp++; *((unsigned short*)(bootp)) = addr; switch (hw->type) { case SDLA_S502A: _OUTB(port, 0x10); /* issue NMI to CPU */ hw->regs[0] = 0x10; break; case SDLA_S502E: _OUTB(port + 3, 0x01); /* start CPU */ hw->regs[3] = 0x01; for (i = 0; i < SDLA_IODELAY; ++i); if (_INB(port) & 0x01) /* verify */ { /* * Enabling CPU changes functionality of the * control register, so we have to reset its * mirror. */ _OUTB(port, 0); /* disable interrupts */ hw->regs[0] = 0; } else return -EIO; break; case SDLA_S503: tmp = hw->regs[0] | 0x09; /* set bits 0 and 3 */ _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port) & 0x01)) /* verify */ return -EIO ; break; case SDLA_S507: tmp = hw->regs[0] | 0x02; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port) & 0x04)) /* verify */ return -EIO ; break; case SDLA_S508: tmp = hw->regs[0] | 0x02; _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); if (!(_INB(port + 1) & 0x02)) /* verify */ return -EIO ; break; default: return -EINVAL; } return 0; } /*============================================================================ * Initialize S502A adapter. */ static int init_s502a (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s502a(port)) return -ENODEV ; hw->regs[0] = 0x08; hw->regs[1] = 0xFF; /* Verify configuration options */ i = get_option_index(s502a_dpmbase_options, hw->dpmbase); if (i == 0) return -EINVAL ; tmp = s502a_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window (this also enables memory access) */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; hw->regs[0] = 0x08; return 0; } /*============================================================================ * Initialize S502E adapter. */ static int init_s502e (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s502e(port)) return -ENODEV ; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, hw->dpmbase); if (i == 0) return -EINVAL ; tmp = s502e_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x02); hw->regs[0] = 0x02; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port) & 0x02) ? 0 : -EIO; } /*============================================================================ * Initialize S503 adapter. * --------------------------------------------------------------------------- */ static int init_s503 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s503(port)) return -ENODEV ; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, hw->dpmbase); if (i == 0) return -EINVAL ; tmp = s502e_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x02); hw->regs[0] = 0x02; /* update mirror */ return 0; } /*============================================================================ * Initialize S507 adapter. */ static int init_s507 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s507(port)) return -ENODEV ; /* Verify configuration options */ i = get_option_index(s507_dpmbase_options, hw->dpmbase); if (i == 0) return -EINVAL ; tmp = s507_hmcr[i - 1]; switch (hw->dpmsize) { case 0x2000: tmp |= 0x01; break; case 0x10000L: break; default: return -EINVAL; } /* Enable adapter's logic */ _OUTB(port, 0x01); hw->regs[0] = 0x01; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (!(_INB(port) & 0x20)) return -EIO ; /* Setup dual-port memory window */ _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ tmp = hw->regs[0] | 0x04; if (hw->irq) { i = get_option_index(s508_irq_options, hw->irq); if (i) tmp |= s507_irqmask[i - 1]; } _OUTB(port, tmp); hw->regs[0] = tmp; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port) & 0x08) ? 0 : -EIO; } /*============================================================================ * Initialize S508 adapter. */ static int init_s508 (sdlahw_t* hw) { unsigned port = hw->port; int tmp, i; if (!detect_s508(port)) return -ENODEV ; /* Verify configuration options */ i = get_option_index(s508_dpmbase_options, hw->dpmbase); if (i == 0) return -EINVAL ; /* Setup memory configuration */ tmp = s508_hmcr[i - 1]; _OUTB(port + 1, tmp); hw->regs[1] = tmp; /* Enable memory access */ _OUTB(port, 0x04); hw->regs[0] = 0x04; /* update mirror */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ return (_INB(port + 1) & 0x04) ? 0 : -EIO; } /*============================================================================ * Detect S502A adapter. * Following tests are used to detect S502A adapter: * 1. All registers other than status (BASE) should read 0xFF * 2. After writing 00001000b to control register, status register should * read 01000000b. * 3. After writing 0 to control register, status register should still * read 01000000b. * 4. After writing 00000100b to control register, status register should * read 01000100b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s502a (int port) { int i, j; if (!get_option_index(s502_port_options, port)) return 0 ; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0 ; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0x08); /* halt CPU */ _OUTB(port, 0x08); _OUTB(port, 0x08); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x40) return 0 ; _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x40) return 0 ; _OUTB(port, 0x04); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0x44) return 0 ; /* Reset adapter */ _OUTB(port, 0x08); _OUTB(port, 0x08); _OUTB(port, 0x08); _OUTB(port + 1, 0xFF); return 1; } /*============================================================================ * Detect S502E adapter. * Following tests are used to verify adapter presence: * 1. All registers other than status (BASE) should read 0xFF. * 2. After writing 0 to CPU control register (BASE+3), status register * (BASE) should read 11111000b. * 3. After writing 00000100b to port BASE (set bit 2), status register * (BASE) should read 11111100b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s502e (int port) { int i, j; if (!get_option_index(s502_port_options, port)) return 0 ; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0 ; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port + 3, 0); /* CPU control reg. */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF8) /* read status */ return 0 ; _OUTB(port, 0x04); /* set bit 2 */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xFC) /* verify */ return 0 ; /* Reset adapter */ _OUTB(port, 0); return 1; } /*============================================================================ * Detect s503 adapter. * Following tests are used to verify adapter presence: * 1. All registers other than status (BASE) should read 0xFF. * 2. After writing 0 to control register (BASE), status register (BASE) * should read 11110000b. * 3. After writing 00000100b (set bit 2) to control register (BASE), * status register should read 11110010b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s503 (int port) { int i, j; if (!get_option_index(s503_port_options, port)) return 0 ; for (j = 1; j < SDLA_MAXIORANGE; ++j) { if (_INB(port + j) != 0xFF) return 0 ; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0); /* reset control reg.*/ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF0) /* read status */ return 0 ; _OUTB(port, 0x04); /* set bit 2 */ for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if (_INB(port) != 0xF2) /* verify */ return 0 ; /* Reset adapter */ _OUTB(port, 0); return 1; } /*============================================================================ * Detect s507 adapter. * Following tests are used to detect s507 adapter: * 1. All ports should read the same value. * 2. After writing 0x00 to control register, status register should read * ?011000?b. * 3. After writing 0x01 to control register, status register should read * ?011001?b. * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s507 (int port) { int tmp, i, j; if (!get_option_index(s508_port_options, port)) return 0 ; tmp = _INB(port); for (j = 1; j < S507_IORANGE; ++j) { if (_INB(port + j) != tmp) return 0 ; for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ } _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port) & 0x7E) != 0x30) return 0 ; _OUTB(port, 0x01); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port) & 0x7E) != 0x32) return 0 ; /* Reset adapter */ _OUTB(port, 0x00); return 1; } /*============================================================================ * Detect s508 adapter. * Following tests are used to detect s508 adapter: * 1. After writing 0x00 to control register, status register should read * ??000000b. * 2. After writing 0x10 to control register, status register should read * ??010000b * Return 1 if detected o.k. or 0 if failed. * Note: This test is destructive! Adapter will be left in shutdown * state after the test. */ static int detect_s508 (int port) { int i; if (!get_option_index(s508_port_options, port)) return 0 ; _OUTB(port, 0x00); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port + 1) & 0x3F) != 0x00) return 0 ; _OUTB(port, 0x10); for (i = 0; i < SDLA_IODELAY; ++i); /* delay */ if ((_INB(port + 1) & 0x3F) != 0x10) return 0 ; /* Reset adapter */ _OUTB(port, 0x00); return 1; } /******* Miscellaneous ******************************************************/ /*============================================================================ * Calibrate SDLA memory access delay. * Count number of idle loops made within 1 second and then calculate the * number of loops that should be made to achive desired delay. */ static int calibrate_delay (int mks) { unsigned int delay; unsigned long stop; for (delay = 0, stop = SYSTEM_TICK + HZ; SYSTEM_TICK < stop; ++delay); return (delay/(1000000L/mks) + 1); } /*============================================================================ * Get option's index into the options list. * Return option's index (1 .. N) or zero if option is invalid. */ static int get_option_index (unsigned* optlist, unsigned optval) { int i; for (i = 1; i <= optlist[0]; ++i) if (optlist[i] == optval) return i ; return 0; } /*============================================================================ * Check memory region to see if it's available. * Return: 0 ok. */ static unsigned check_memregion (void* ptr, unsigned len) { volatile unsigned char* p = ptr; for (; len && (*p == 0xFF); --len, ++p) { *p = 0; /* attempt to write 0 */ if (*p != 0xFF) /* still has to read 0xFF */ { *p = 0xFF; /* restore original value */ break; /* not good */ } } return len; } /*============================================================================ * Test memory region. * Return: size of the region that passed the test. * Note: Region size must be multiple of 2 ! */ static unsigned test_memregion (void* ptr, unsigned len) { volatile unsigned short* w_ptr; unsigned len_w = len >> 1; /* region len in words */ unsigned i; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) *w_ptr = 0xAA55 ; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) if (*w_ptr != 0xAA55) { len_w = i; break; } ; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) *w_ptr = 0x55AA ; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) if (*w_ptr != 0x55AA) { len_w = i; break; } ; for (i = 0, w_ptr = ptr; i < len_w; ++i, ++w_ptr) *w_ptr = 0; return len_w << 1; } /*============================================================================ * Calculate 16-bit CRC using CCITT polynomial. */ static unsigned short checksum (unsigned char* buf, unsigned len) { unsigned short crc = 0; unsigned mask, flag; for (; len; --len, ++buf) { for (mask = 0x80; mask; mask >>= 1) { flag = (crc & 0x8000); crc <<= 1; crc |= ((*buf & mask) ? 1 : 0); if (flag) crc ^= 0x1021; } } return crc; } /****** End *****************************************************************/