/*****************************************************************************/ /* sis900.c: A SiS 900 PCI Fast Ethernet driver for Linux. */ /* */ /* Silicon Integrated System Corporation */ /* Revision: 1.05 Aug 7 1999 */ /* */ /*****************************************************************************/ /* Modified from the driver which is originally written by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License (GPL), incorporated herein by reference. Drivers based on this skeleton fall under the GPL and must retain the authorship (implicit copyright) notice. The author may be reached as becker@tidalwave.net, or Donald Becker 312 Severn Ave. #W302 Annapolis MD 21403 Support and updates [to the original skeleton] available at http://www.tidalwave.net/~becker/pci-skeleton.html */ static const char *version = "sis900.c:v1.05 8/07/99\n"; static int max_interrupt_work = 20; #define sis900_debug debug static int sis900_debug = 0; static int multicast_filter_limit = 128; #define MAX_UNITS 8 /* More are supported, limit only on options */ static int speeds[MAX_UNITS] = {100, 100, 100, 100, 100, 100, 100, 100}; static int full_duplex[MAX_UNITS] = {1, 1, 1, 1, 1, 1, 1, 1}; #define TX_BUF_SIZE 1536 #define RX_BUF_SIZE 1536 #define TX_DMA_BURST 0 #define RX_DMA_BURST 0 #define TX_FIFO_THRESH 16 #define TxDRNT_100 (1536>>5) #define TxDRNT_10 16 #define RxDRNT_100 8 #define RxDRNT_10 8 #define TRUE 1 #define FALSE 0 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (4*HZ) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include #define RUN_AT(x) (jiffies + (x)) #include #if LINUX_VERSION_CODE < 0x20123 #define test_and_set_bit(val, addr) set_bit(val, addr) #endif #if LINUX_VERSION_CODE <= 0x20139 #define net_device_stats enet_statistics #else #define NETSTATS_VER2 #endif #if LINUX_VERSION_CODE < 0x20155 || defined(CARDBUS) /* Grrrr, the PCI code changed, but did not consider CardBus... */ #include #define PCI_SUPPORT_VER1 #else #define PCI_SUPPORT_VER2 #endif #if LINUX_VERSION_CODE < 0x20159 #define dev_free_skb(skb) dev_kfree_skb(skb, FREE_WRITE); #else #define dev_free_skb(skb) dev_kfree_skb(skb); #endif /* The I/O extent. */ #define SIS900_TOTAL_SIZE 0x100 /* This table drives the PCI probe routines. It's mostly boilerplate in all of the drivers, and will likely be provided by some future kernel. Note the matching code -- the first table entry matchs all 56** cards but second only the 1234 card. */ enum pci_flags_bit { PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, }; struct pci_id_info { const char *name; u16 vendor_id, device_id, device_id_mask, flags; int io_size; struct net_device *(*probe1)(int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); }; static struct net_device * sis900_probe1(int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chp_idx, int fnd_cnt); static struct pci_id_info pci_tbl[] = {{ "SiS 900 PCI Fast Ethernet", 0x1039, 0x0900, 0xffff, PCI_USES_IO|PCI_USES_MASTER, 0x100, sis900_probe1}, { "SiS 7016 PCI Fast Ethernet", 0x1039, 0x7016, 0xffff, PCI_USES_IO|PCI_USES_MASTER, 0x100, sis900_probe1}, {0,}, /* 0 terminated list. */ }; /* The capability table matches the chip table above. */ enum {HAS_MII_XCVR=0x01, HAS_CHIP_XCVR=0x02, HAS_LNK_CHNG=0x04}; static int sis_cap_tbl[] = { HAS_MII_XCVR|HAS_CHIP_XCVR|HAS_LNK_CHNG, HAS_MII_XCVR|HAS_CHIP_XCVR|HAS_LNK_CHNG, }; /* The rest of these values should never change. */ #define NUM_TX_DESC 16 /* Number of Tx descriptor registers. */ #define NUM_RX_DESC 8 /* Number of Rx descriptor registers. */ /* Symbolic offsets to registers. */ enum SIS900_registers { cr=0x0, //Command Register cfg=0x4, //Configuration Register mear=0x8, //EEPROM Access Register ptscr=0xc, //PCI Test Control Register isr=0x10, //Interrupt Status Register imr=0x14, //Interrupt Mask Register ier=0x18, //Interrupt Enable Register epar=0x18, //Enhanced PHY Access Register txdp=0x20, //Transmit Descriptor Pointer Register txcfg=0x24, //Transmit Configuration Register rxdp=0x30, //Receive Descriptor Pointer Register rxcfg=0x34, //Receive Configuration Register flctrl=0x38, //Flow Control Register rxlen=0x3c, //Receive Packet Length Register rfcr=0x48, //Receive Filter Control Register rfdr=0x4C, //Receive Filter Data Register pmctrl=0xB0, //Power Management Control Register pmer=0xB4 //Power Management Wake-up Event Register }; #define RESET 0x00000100 #define SWI 0x00000080 #define RxRESET 0x00000020 #define TxRESET 0x00000010 #define RxDIS 0x00000008 #define RxENA 0x00000004 #define TxDIS 0x00000002 #define TxENA 0x00000001 #define BISE 0x80000000 #define EUPHCOM 0x00000100 #define REQALG 0x00000080 #define SB 0x00000040 #define POW 0x00000020 #define EXD 0x00000010 #define PESEL 0x00000008 #define LPM 0x00000004 #define BEM 0x00000001 /* Interrupt register bits, using my own meaningful names. */ #define WKEVT 0x10000000 #define TxPAUSEEND 0x08000000 #define TxPAUSE 0x04000000 #define TxRCMP 0x02000000 #define RxRCMP 0x01000000 #define DPERR 0x00800000 #define SSERR 0x00400000 #define RMABT 0x00200000 #define RTABT 0x00100000 #define RxSOVR 0x00010000 #define HIBERR 0x00008000 #define SWINT 0x00001000 #define MIBINT 0x00000800 #define TxURN 0x00000400 #define TxIDLE 0x00000200 #define TxERR 0x00000100 #define TxDESC 0x00000080 #define TxOK 0x00000040 #define RxORN 0x00000020 #define RxIDLE 0x00000010 #define RxEARLY 0x00000008 #define RxERR 0x00000004 #define RxDESC 0x00000002 #define RxOK 0x00000001 #define IE 0x00000001 #define TxCSI 0x80000000 #define TxHBI 0x40000000 #define TxMLB 0x20000000 #define TxATP 0x10000000 #define TxIFG 0x0C000000 #define TxMXF 0x03800000 #define TxMXF_shift 0x23 #define TxMXDMA 0x00700000 #define TxMXDMA_shift 20 #define TxRTCNT 0x000F0000 #define TxRTCNT_shift 16 #define TxFILLT 0x00007F00 #define TxFILLT_shift 8 #define TxDRNT 0x0000007F #define RxAEP 0x80000000 #define RxARP 0x40000000 #define RxATP 0x10000000 #define RxAJAB 0x08000000 #define RxMXF 0x03800000 #define RxMXF_shift 23 #define RxMXDMA 0x00700000 #define RxMXDMA_shift 20 #define RxDRNT 0x0000007F #define RFEN 0x80000000 #define RFAAB 0x40000000 #define RFAAM 0x20000000 #define RFAAP 0x10000000 #define RFPromiscuous (RFAAB|RFAAM|RFAAP) #define RFAA_shift 28 #define RFEP 0x00070000 #define RFEP_shift 16 #define RFDAT 0x0000FFFF #define OWN 0x80000000 #define MORE 0x40000000 #define INTR 0x20000000 #define OK 0x08000000 #define DSIZE 0x00000FFF #define SUPCRC 0x10000000 #define ABORT 0x04000000 #define UNDERRUN 0x02000000 #define NOCARRIER 0x01000000 #define DEFERD 0x00800000 #define EXCDEFER 0x00400000 #define OWCOLL 0x00200000 #define EXCCOLL 0x00100000 #define COLCNT 0x000F0000 #define INCCRC 0x10000000 // ABORT 0x04000000 #define OVERRUN 0x02000000 #define DEST 0x01800000 #define BCAST 0x01800000 #define MCAST 0x01000000 #define UNIMATCH 0x00800000 #define TOOLONG 0x00400000 #define RUNT 0x00200000 #define RXISERR 0x00100000 #define CRCERR 0x00080000 #define FAERR 0x00040000 #define LOOPBK 0x00020000 #define RXCOL 0x00010000 #define EuphLiteEEMACAddr 0x08 #define EuphLiteEEVendorID 0x02 #define EuphLiteEEDeviceID 0x03 #define EuphLiteEECardTypeRev 0x0b #define EuphLiteEEPlexusRev 0x0c #define EuphLiteEEChecksum 0x0f #define RXSTS_shift 18 #define OWN 0x80000000 #define MORE 0x40000000 #define INTR 0x20000000 #define OK 0x08000000 #define DSIZE 0x00000FFF /* MII register offsets */ #define MII_CONTROL 0x0000 #define MII_STATUS 0x0001 #define MII_PHY_ID0 0x0002 #define MII_PHY_ID1 0x0003 #define MII_ANAR 0x0004 #define MII_ANLPAR 0x0005 #define MII_ANER 0x0006 /* MII Control register bit definitions. */ #define MIICNTL_FDX 0x0100 #define MIICNTL_RST_AUTO 0x0200 #define MIICNTL_ISOLATE 0x0400 #define MIICNTL_PWRDWN 0x0800 #define MIICNTL_AUTO 0x1000 #define MIICNTL_SPEED 0x2000 #define MIICNTL_LPBK 0x4000 #define MIICNTL_RESET 0x8000 /* MII Status register bit significance. */ #define MIISTAT_EXT 0x0001 #define MIISTAT_JAB 0x0002 #define MIISTAT_LINK 0x0004 #define MIISTAT_CAN_AUTO 0x0008 #define MIISTAT_FAULT 0x0010 #define MIISTAT_AUTO_DONE 0x0020 #define MIISTAT_CAN_T 0x0800 #define MIISTAT_CAN_T_FDX 0x1000 #define MIISTAT_CAN_TX 0x2000 #define MIISTAT_CAN_TX_FDX 0x4000 #define MIISTAT_CAN_T4 0x8000 /* MII NWAY Register Bits ... ** valid for the ANAR (Auto-Negotiation Advertisement) and ** ANLPAR (Auto-Negotiation Link Partner) registers */ #define MII_NWAY_NODE_SEL 0x001f #define MII_NWAY_CSMA_CD 0x0001 #define MII_NWAY_T 0x0020 #define MII_NWAY_T_FDX 0x0040 #define MII_NWAY_TX 0x0080 #define MII_NWAY_TX_FDX 0x0100 #define MII_NWAY_T4 0x0200 #define MII_NWAY_RF 0x2000 #define MII_NWAY_ACK 0x4000 #define MII_NWAY_NP 0x8000 /* MII Auto-Negotiation Expansion Register Bits */ #define MII_ANER_PDF 0x0010 #define MII_ANER_LP_NP_ABLE 0x0008 #define MII_ANER_NP_ABLE 0x0004 #define MII_ANER_RX_PAGE 0x0002 #define MII_ANER_LP_AN_ABLE 0x0001 #define HALF_DUPLEX 1 #define FDX_CAPABLE_DUPLEX_UNKNOWN 2 #define FDX_CAPABLE_HALF_SELECTED 3 #define FDX_CAPABLE_FULL_SELECTED 4 #define HW_SPEED_UNCONFIG 0 #define HW_SPEED_10_MBPS 10 #define HW_SPEED_100_MBPS 100 #define HW_SPEED_DEFAULT (HW_SPEED_10_MBPS) #define ACCEPT_ALL_PHYS 0x01 #define ACCEPT_ALL_MCASTS 0x02 #define ACCEPT_ALL_BCASTS 0x04 #define ACCEPT_ALL_ERRORS 0x08 #define ACCEPT_CAM_QUALIFIED 0x10 #define MAC_LOOPBACK 0x20 //#define FDX_CAPABLE_FULL_SELECTED 4 #define CRC_SIZE 4 #define MAC_HEADER_SIZE 14 typedef struct _EuphLiteDesc { u32 llink; unsigned char* buf; u32 physAddr; /* Hardware sees the physical address of descriptor */ u32 plink; u32 cmdsts; u32 bufPhys; } EuphLiteDesc; struct sis900_private { char devname[8]; /* Used only for kernel debugging. */ const char *product_name; struct net_device *next_module; int chip_id; int chip_revision; unsigned char pci_bus, pci_devfn; #if LINUX_VERSION_CODE > 0x20139 struct net_device_stats stats; #else struct enet_statistics stats; #endif struct timer_list timer; /* Media selection timer. */ unsigned int cur_rx; /* Index into the Rx buffer of next Rx pkt. */ unsigned int cur_tx, dirty_tx, tx_flag; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[NUM_TX_DESC]; EuphLiteDesc tx_buf[NUM_TX_DESC]; /* Tx bounce buffers */ EuphLiteDesc rx_buf[NUM_RX_DESC]; unsigned char *rx_bufs; unsigned char *tx_bufs; /* Tx bounce buffer region. */ char phys[4]; /* MII device addresses. */ int phy_idx; /* Support Max 4 PHY */ u16 pmd_status; unsigned int tx_full; /* The Tx queue is full. */ int MediaSpeed; /* user force speed */ int MediaDuplex; /* user force duplex */ int full_duplex; /* Full/Half-duplex. */ int speeds; /* 100/10 Mbps. */ u16 LinkOn; u16 LinkChange; }; #ifdef MODULE #if LINUX_VERSION_CODE > 0x20115 MODULE_AUTHOR("Jim Huang "); MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver"); MODULE_PARM(speeds, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(multicast_filter_limit, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(debug, "i"); #endif #endif static int sis900_open(struct net_device *dev); static u16 read_eeprom(long ioaddr, int location); static int mdio_read(struct net_device *dev, int phy_id, int location); static void mdio_write(struct net_device *dev, int phy_id, int location, int val); static void sis900_timer(unsigned long data); static void sis900_tx_timeout(struct net_device *dev); static void sis900_init_ring(struct net_device *dev); static int sis900_start_xmit(struct sk_buff *skb, struct net_device *dev); static int sis900_rx(struct net_device *dev); static void sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int sis900_close(struct net_device *dev); static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static struct enet_statistics *sis900_get_stats(struct net_device *dev); static void set_rx_mode(struct net_device *dev); static void sis900_reset(struct net_device *dev); static u16 elAutoNegotiate(struct net_device *dev, int phy_id, int *duplex, int *speed); static void elSetCapability(struct net_device *dev, int phy_id, int duplex, int speed); static u16 elPMDreadMode(struct net_device *dev, int phy_id, int *speed, int *duplex); static u16 elMIIpollBit(struct net_device *dev, int phy_id, int location, u16 mask, u16 polarity, u16 *value); static void elSetMediaType(struct net_device *dev, int speed, int duplex); /* A list of all installed SiS900 devices, for removing the driver module. */ static struct net_device *root_sis900_dev = NULL; /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well when dynamically adding drivers. So instead we detect just the SiS 900 cards in slot order. */ int sis900_probe(struct net_device *dev) { int cards_found = 0; int pci_index = 0; unsigned char pci_bus, pci_device_fn; if ( ! pcibios_present()) return -ENODEV; for (;pci_index < 0xff; pci_index++) { u16 vendor, device, pci_command, new_command; int chip_idx, irq; long ioaddr; if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) { break; } pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++) if (vendor == pci_tbl[chip_idx].vendor_id && (device & pci_tbl[chip_idx].device_id_mask) == pci_tbl[chip_idx].device_id) break; if (pci_tbl[chip_idx].vendor_id == 0) /* Compiled out! */ continue; { struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn); ioaddr = pdev->resource[0].start; irq = pdev->irq; } if ((pci_tbl[chip_idx].flags & PCI_USES_IO) && check_region(ioaddr, pci_tbl[chip_idx].io_size)) continue; /* Activate the card: fix for brain-damaged Win98 BIOSes. */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); new_command = pci_command | (pci_tbl[chip_idx].flags & 7); if (pci_command != new_command) { printk(KERN_INFO " The PCI BIOS has not enabled the" " device at %d/%d!" "Updating PCI command %4.4x->%4.4x.\n", pci_bus, pci_device_fn, pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } dev = pci_tbl[chip_idx].probe1(pci_bus, pci_device_fn, dev, ioaddr, irq, chip_idx, cards_found); if (dev && (pci_tbl[chip_idx].flags & PCI_COMMAND_MASTER)) { u8 pci_latency; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < 32) { printk(KERN_NOTICE " PCI latency timer (CFLT) is " "unreasonably low at %d. Setting to 64 clocks.\n", pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, 64); } } dev = 0; cards_found++; } return cards_found ? 0 : -ENODEV; } static struct net_device * sis900_probe1( int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chip_idx, int found_cnt) { static int did_version = 0; /* Already printed version info. */ struct sis900_private *tp; u16 status; int duplex = found_cnt < MAX_UNITS ? full_duplex[found_cnt] : 0 ; int speed = found_cnt < MAX_UNITS ? speeds[found_cnt] : 0 ; int phy=0, phy_idx=0, i; if (did_version++ == 0) printk(KERN_INFO "%s", version); dev = init_etherdev(dev, 0); if(dev==NULL) return NULL; printk(KERN_INFO "%s: %s at %#lx, IRQ %d, ", dev->name, pci_tbl[chip_idx].name, ioaddr, irq); if ((u16)read_eeprom(ioaddr, EuphLiteEEVendorID) != 0xffff) { for (i = 0; i < 3; i++) ((u16 *)(dev->dev_addr))[i] = read_eeprom(ioaddr,i+EuphLiteEEMACAddr); for (i = 0; i < 5; i++) printk("%2.2x:", (u8)dev->dev_addr[i]); printk("%2.2x.\n", dev->dev_addr[i]); } else printk(KERN_INFO "Error EEPROM read\n"); /* We do a request_region() to register /proc/ioports info. */ request_region(ioaddr, pci_tbl[chip_idx].io_size, dev->name); dev->base_addr = ioaddr; dev->irq = irq; /* Some data structures must be quadword aligned. */ tp = kmalloc(sizeof(*tp), GFP_KERNEL | GFP_DMA); if(tp==NULL) { release_region(ioaddr, pci_tbl[chip_idx].io_size); return NULL; } memset(tp, 0, sizeof(*tp)); dev->priv = tp; tp->next_module = root_sis900_dev; root_sis900_dev = dev; tp->chip_id = chip_idx; tp->pci_bus = pci_bus; tp->pci_devfn = pci_devfn; /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes too much time. */ if (sis_cap_tbl[chip_idx] & HAS_MII_XCVR) { for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) { int mii_status ; mii_status = mdio_read(dev, phy, MII_STATUS); if (mii_status != 0xffff && mii_status != 0x0000) { tp->phy_idx = phy_idx; tp->phys[phy_idx++] = phy; tp->pmd_status=mdio_read(dev, phy, MII_STATUS); printk(KERN_INFO "%s: MII transceiver found " "at address %d.\n", dev->name, phy); break; } } if (phy_idx == 0) { printk(KERN_INFO "%s: No MII transceivers found!\n", dev->name); tp->phys[0] = -1; tp->pmd_status = 0; } } else { tp->phys[0] = -1; tp->pmd_status = 0; } if ((tp->pmd_status > 0) && (phy_idx > 0)) { if (sis900_debug > 1) { printk(KERN_INFO "duplex=%d, speed=%d\n", duplex, speed); } if (!duplex && !speed) { // auto-config media type // Set full capability if (sis900_debug > 1) { printk(KERN_INFO "Auto Config ...\n"); } elSetCapability(dev, tp->phys[tp->phy_idx], 1, 100); tp->pmd_status=elAutoNegotiate(dev, tp->phys[tp->phy_idx], &tp->full_duplex, &tp->speeds); } else { tp->MediaSpeed = speed; tp->MediaDuplex = duplex; elSetCapability(dev, tp->phys[tp->phy_idx], duplex, speed); elAutoNegotiate(dev, tp->phys[tp->phy_idx], &tp->full_duplex, &tp->speeds); status = mdio_read(dev, phy, MII_ANLPAR); if ( !(status & (MII_NWAY_T | MII_NWAY_T_FDX | MII_NWAY_TX | MII_NWAY_TX_FDX ))) { u16 cmd=0; cmd |= ( speed == 100 ? MIICNTL_SPEED : 0 ); cmd |= ( duplex ? MIICNTL_FDX : 0 ); mdio_write(dev, phy, MII_CONTROL, cmd); elSetMediaType(dev, speed==100 ? HW_SPEED_100_MBPS : HW_SPEED_10_MBPS, duplex ? FDX_CAPABLE_FULL_SELECTED: FDX_CAPABLE_HALF_SELECTED); elMIIpollBit(dev, phy, MII_STATUS, MIISTAT_LINK, TRUE, &status); } else { status = mdio_read(dev, phy, MII_STATUS); } } if (tp->pmd_status & MIISTAT_LINK) tp->LinkOn = TRUE; else tp->LinkOn = FALSE; tp->LinkChange = FALSE; } if (sis900_debug > 1) { if (tp->full_duplex == FDX_CAPABLE_FULL_SELECTED) { printk(KERN_INFO "%s: Media type is Full Duplex.\n", dev->name); } else { printk(KERN_INFO "%s: Media type is Half Duplex.\n", dev->name); } if (tp->speeds == HW_SPEED_100_MBPS) { printk(KERN_INFO "%s: Speed is 100mbps.\n", dev->name); } else { printk(KERN_INFO "%s: Speed is 10mbps.\n", dev->name); } } /* The SiS900-specific entries in the device structure. */ dev->open = &sis900_open; dev->hard_start_xmit = &sis900_start_xmit; dev->stop = &sis900_close; dev->get_stats = &sis900_get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; return dev; } /* Serial EEPROM section. */ /* EEPROM_Ctrl bits. */ #define EECLK 0x00000004 /* EEPROM shift clock. */ #define EECS 0x00000008 /* EEPROM chip select. */ #define EEDO 0x00000002 /* EEPROM chip data out. */ #define EEDI 0x00000001 /* EEPROM chip data in. */ /* Delay between EEPROM clock transitions. No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. */ #define eeprom_delay() inl(ee_addr) /* The EEPROM commands include the alway-set leading bit. */ #define EEread 0x0180 #define EEwrite 0x0140 #define EEerase 0x01C0 #define EEwriteEnable 0x0130 #define EEwriteDisable 0x0100 #define EEeraseAll 0x0120 #define EEwriteAll 0x0110 #define EEaddrMask 0x013F #define EEcmdShift 16 static u16 read_eeprom(long ioaddr, int location) { int i; u16 retval = 0; long ee_addr = ioaddr + mear; u32 read_cmd = location | EEread; outl(0, ee_addr); eeprom_delay(); outl(EECLK, ee_addr); eeprom_delay(); /* Shift the read command bits out. */ for (i = 8; i >= 0; i--) { u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS; outl(dataval, ee_addr); eeprom_delay(); outl(dataval | EECLK, ee_addr); eeprom_delay(); } outb(EECS, ee_addr); eeprom_delay(); for (i = 16; i > 0; i--) { outl(EECS, ee_addr); eeprom_delay(); outl(EECS | EECLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0); eeprom_delay(); } /* Terminate the EEPROM access. */ outl(0, ee_addr); eeprom_delay(); outl(EECLK, ee_addr); return (retval); } /* MII serial management: mostly bogus for now. */ /* Read and write the MII management registers using software-generated serial MDIO protocol. The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back PCI I/O cycles, but we insert a delay to avoid "overclocking" issues. */ #define mdio_delay() inl(mdio_addr) #define MIIread 0x6000 #define MIIwrite 0x6002 #define MIIpmdMask 0x0F80 #define MIIpmdShift 7 #define MIIregMask 0x007C #define MIIregShift 2 #define MIIturnaroundBits 2 #define MIIcmdLen 16 #define MIIcmdShift 16 #define MIIreset 0xFFFFFFFF #define MIIwrLen 32 #define MDC 0x00000040 #define MDDIR 0x00000020 #define MDIO 0x00000010 static void mdio_idle(long mdio_addr) { outl(MDIO | MDDIR, mdio_addr); mdio_delay(); outl(MDIO | MDDIR | MDC, mdio_addr); } /* Syncronize the MII management interface by shifting 32 one bits out. */ static void mdio_reset(long mdio_addr) { int i; for (i = 31; i >= 0; i--) { outl(MDDIR | MDIO, mdio_addr); mdio_delay(); outl(MDDIR | MDIO | MDC, mdio_addr); mdio_delay(); } return; } static int mdio_read(struct net_device *dev, int phy_id, int location) { long mdio_addr = dev->base_addr + mear; int mii_cmd = MIIread|(phy_id<= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; outl(dataval, mdio_addr); outl(dataval | MDC, mdio_addr); } /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 16; i > 0; i--) { outl(0, mdio_addr); //mdio_delay(); retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0); outl(MDC, mdio_addr); mdio_delay(); } return retval; } static void mdio_write(struct net_device *dev, int phy_id, int location, int value) { long mdio_addr = dev->base_addr + mear; int mii_cmd = MIIwrite|(phy_id<= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR; outb(dataval, mdio_addr); mdio_delay(); outb(dataval | MDC, mdio_addr); mdio_delay(); } mdio_delay(); /* Clear out extra bits. */ for (i = 2; i > 0; i--) { outb(0, mdio_addr); mdio_delay(); outb(MDC, mdio_addr); mdio_delay(); } return; } static int sis900_open(struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; long ioaddr = dev->base_addr; if (sis900_debug > 0) printk(KERN_INFO "%s sis900_open, IO Addr=%x, Irq=%x\n", dev->name, (unsigned int)ioaddr, dev->irq); /* Soft reset the chip. */ outl(0, ioaddr + imr); outl(0, ioaddr + ier); outl(0, ioaddr + rfcr); outl(RESET | RxRESET | TxRESET, ioaddr + cr); if (request_irq(dev->irq, &sis900_interrupt, SA_SHIRQ, dev->name, dev)) { return -EAGAIN; } MOD_INC_USE_COUNT; tp->tx_bufs = kmalloc(TX_BUF_SIZE * NUM_TX_DESC, GFP_KERNEL); tp->rx_bufs = kmalloc(RX_BUF_SIZE * NUM_RX_DESC, GFP_KERNEL); if (tp->tx_bufs == NULL || tp->rx_bufs == NULL) { if (tp->tx_bufs) kfree(tp->tx_bufs); if (tp->rx_bufs) kfree(tp->rx_bufs); if (!tp->tx_bufs) { printk(KERN_ERR "%s: Can't allocate a %d byte TX Bufs.\n", dev->name, TX_BUF_SIZE * NUM_TX_DESC); } if (!tp->rx_bufs) { printk(KERN_ERR "%s: Can't allocate a %d byte RX Bufs.\n", dev->name, RX_BUF_SIZE * NUM_RX_DESC); } return -ENOMEM; } { u32 rfcrSave; u32 w; u32 i; rfcrSave = inl(rfcr); outl(rfcrSave & ~RFEN, rfcr); for (i=0 ; i<3 ; i++) { w = (u16)*((u16*)(dev->dev_addr)+i); outl((((u32) i) << RFEP_shift), ioaddr + rfcr); outl((u32)w, ioaddr + rfdr); if (sis900_debug > 4) { printk(KERN_INFO "Filter Addr[%d]=%x\n", i, inl(ioaddr + rfdr)); } } outl(rfcrSave, rfcr); } sis900_init_ring(dev); outl((u32)tp->tx_buf[0].physAddr, ioaddr + txdp); outl((u32)tp->rx_buf[0].physAddr, ioaddr + rxdp); if (sis900_debug > 4) printk(KERN_INFO "txdp:%8.8x\n", inl(ioaddr + txdp)); /* Check that the chip has finished the reset. */ { u32 status; int j=0; status = TxRCMP | RxRCMP; while (status && (j++ < 30000)) { status ^= (inl(isr) & status); } } outl(PESEL, ioaddr + cfg); /* Must enable Tx/Rx before setting transfer thresholds! */ /* * #define TX_DMA_BURST 0 * #define RX_DMA_BURST 0 * #define TX_FIFO_THRESH 16 * #define TxDRNT_100 (1536>>5) * #define TxDRNT_10 (1536>>5) * #define RxDRNT_100 (1536>>5) * #define RxDRNT_10 (1536>>5) */ outl((RX_DMA_BURST<<20) | (RxDRNT_10 << 1), ioaddr+rxcfg); outl(TxATP | (TX_DMA_BURST << 20) | (TX_FIFO_THRESH<<8) | TxDRNT_10, ioaddr + txcfg); if (sis900_debug > 1) { if (tp->LinkOn) { printk(KERN_INFO"%s: Media Type %s%s-duplex.\n", dev->name, tp->speeds==HW_SPEED_100_MBPS ? "100mbps " : "10mbps ", tp->full_duplex== FDX_CAPABLE_FULL_SELECTED ? "full" : "half"); } else printk(KERN_INFO"%s: Media Link Off\n", dev->name); } set_rx_mode(dev); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; /* Enable all known interrupts by setting the interrupt mask. */ outl((RxOK|RxERR|RxORN|RxSOVR|TxOK|TxERR|TxURN), ioaddr + imr); outl(RxENA, ioaddr + cr); outl(IE, ioaddr + ier); if (sis900_debug > 3) printk(KERN_INFO "%s: sis900_open() ioaddr %#lx IRQ %d \n", dev->name, ioaddr, dev->irq); /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ init_timer(&tp->timer); tp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ tp->timer.data = (unsigned long)dev; tp->timer.function = &sis900_timer; /* timer handler */ add_timer(&tp->timer); return 0; } static void sis900_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct sis900_private *tp = (struct sis900_private *)dev->priv; int next_tick = 0; u16 status; if (!tp->LinkOn) { status = mdio_read(dev, tp->phys[tp->phy_idx], MII_STATUS); if (status & MIISTAT_LINK) { elPMDreadMode(dev, tp->phys[tp->phy_idx], &tp->speeds, &tp->full_duplex); tp->LinkOn = TRUE; printk(KERN_INFO "%s: Media Link On %s%s-duplex ", dev->name, tp->speeds == HW_SPEED_100_MBPS ? "100mbps " : "10mbps ", tp->full_duplex==FDX_CAPABLE_FULL_SELECTED ? "full" : "half"); } } else { // previous link on status = mdio_read(dev, tp->phys[tp->phy_idx], MII_STATUS); if (!(status & MIISTAT_LINK)) { tp->LinkOn = FALSE; printk(KERN_INFO "%s: Media Link Off\n", dev->name); } } next_tick = 2*HZ; if (next_tick) { tp->timer.expires = RUN_AT(next_tick); add_timer(&tp->timer); } } static void sis900_tx_timeout(struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; long ioaddr = dev->base_addr; int i; if (sis900_debug > 0) printk(KERN_INFO "%s: Transmit timeout, status %2.2x %4.4x \n", dev->name, inl(ioaddr + cr), inl(ioaddr + isr)); /* Disable interrupts by clearing the interrupt mask. */ outl(0x0000, ioaddr + imr); /* Emit info to figure out what went wrong. */ if (sis900_debug > 1) { printk(KERN_INFO "%s:Tx queue start entry %d dirty entry %d.\n", dev->name, tp->cur_tx, tp->dirty_tx); for (i = 0; i < NUM_TX_DESC; i++) printk(KERN_INFO "%s: Tx descriptor %d is %8.8x.%s\n", dev->name, i, (unsigned int)&tp->tx_buf[i], i == tp->dirty_tx % NUM_TX_DESC ? " (queue head)" : ""); } /* Soft reset the chip. */ //outb(RESET, ioaddr + cr); /* Check that the chip has finished the reset. */ /* for (i = 1000; i > 0; i--) if ((inb(ioaddr + cr) & RESET) == 0) break; */ tp->cur_rx = 0; /* Must enable Tx/Rx before setting transfer thresholds! */ /* set_rx_mode(dev); */ { /* Save the unsent Tx packets. */ struct sk_buff *saved_skb[NUM_TX_DESC], *skb; int j; for (j = 0; tp->cur_tx - tp->dirty_tx > 0 ; j++, tp->dirty_tx++) saved_skb[j]=tp->tx_skbuff[tp->dirty_tx % NUM_TX_DESC]; tp->dirty_tx = tp->cur_tx = 0; for (i = 0; i < j; i++) { skb = tp->tx_skbuff[i] = saved_skb[i]; /* Always alignment */ memcpy((unsigned char*)(tp->tx_buf[i].buf), skb->data, skb->len); tp->tx_buf[i].cmdsts = OWN | skb->len; /* Note: the chip doesn't have auto-pad! */ /* outl(tp->tx_flag|(skb->len>=ETH_ZLEN?skb->len:ETH_ZLEN), ioaddr + TxStatus0 + i*4); */ } outl(TxENA, ioaddr + cr); tp->cur_tx = i; while (i < NUM_TX_DESC) tp->tx_skbuff[i++] = 0; if (tp->cur_tx - tp->dirty_tx < NUM_TX_DESC) {/* Typical path */ dev->tbusy = 0; tp->tx_full = 0; } else { tp->tx_full = 1; } } dev->trans_start = jiffies; tp->stats.tx_errors++; /* Enable all known interrupts by setting the interrupt mask. */ outl((RxOK|RxERR|RxORN|RxSOVR|TxOK|TxERR|TxURN), ioaddr + imr); return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void sis900_init_ring(struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; int i; tp->tx_full = 0; tp->cur_rx = 0; tp->dirty_tx = tp->cur_tx = 0; /* Tx Buffer */ for (i = 0; i < NUM_TX_DESC; i++) { tp->tx_skbuff[i] = 0; tp->tx_buf[i].buf = &tp->tx_bufs[i*TX_BUF_SIZE]; tp->tx_buf[i].bufPhys = virt_to_bus(&tp->tx_bufs[i*TX_BUF_SIZE]); } /* Tx Descriptor */ for (i = 0; i< NUM_TX_DESC; i++) { tp->tx_buf[i].llink = (u32) &(tp->tx_buf[((i+1) < NUM_TX_DESC) ? (i+1) : 0]); tp->tx_buf[i].plink = (u32) virt_to_bus(&(tp->tx_buf[((i+1) < NUM_TX_DESC) ? (i+1) : 0].plink)); tp->tx_buf[i].physAddr= virt_to_bus(&(tp->tx_buf[i].plink)); tp->tx_buf[i].cmdsts=0; } /* Rx Buffer */ for (i = 0; i < NUM_RX_DESC; i++) { tp->rx_buf[i].buf = &tp->rx_bufs[i*RX_BUF_SIZE]; tp->rx_buf[i].bufPhys = virt_to_bus(&tp->rx_bufs[i*RX_BUF_SIZE]); } /* Rx Descriptor */ for (i = 0; i< NUM_RX_DESC; i++) { tp->rx_buf[i].llink = (u32) &(tp->rx_buf[((i+1) < NUM_RX_DESC) ? (i+1) : 0]); tp->rx_buf[i].plink = (u32) virt_to_bus(&(tp->rx_buf[((i+1) < NUM_RX_DESC) ? (i+1) : 0].plink)); tp->rx_buf[i].physAddr= virt_to_bus(&(tp->rx_buf[i].plink)); tp->rx_buf[i].cmdsts=RX_BUF_SIZE; } } static int sis900_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; long ioaddr = dev->base_addr; int entry; /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { if (jiffies - dev->trans_start < TX_TIMEOUT) return 1; sis900_tx_timeout(dev); return 1; } /* Calculate the next Tx descriptor entry. ????? */ entry = tp->cur_tx % NUM_TX_DESC; tp->tx_skbuff[entry] = skb; if (sis900_debug > 5) { int i; printk(KERN_INFO "%s: SKB Tx Frame contents:(len=%d)", dev->name,skb->len); for (i = 0; i < skb->len; i++) { printk("%2.2x ", (u8)skb->data[i]); } printk(".\n"); } memcpy(tp->tx_buf[entry].buf, skb->data, skb->len); tp->tx_buf[entry].cmdsts=(OWN | skb->len); //tp->tx_buf[entry].plink = 0; outl(TxENA, ioaddr + cr); if (++tp->cur_tx - tp->dirty_tx < NUM_TX_DESC) {/* Typical path */ clear_bit(0, (void*)&dev->tbusy); } else { tp->tx_full = 1; } /* Note: the chip doesn't have auto-pad! */ dev->trans_start = jiffies; if (sis900_debug > 4) printk(KERN_INFO "%s: Queued Tx packet at " "%p size %d to slot %d.\n", dev->name, skb->data, (int)skb->len, entry); return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_instance; struct sis900_private *tp = (struct sis900_private *)dev->priv; int boguscnt = max_interrupt_work; int status; long ioaddr = dev->base_addr; #if defined(__i386__) /* A lock to prevent simultaneous entry bug on Intel SMP machines. */ if (test_and_set_bit(0, (void*)&dev->interrupt)) { printk(KERN_INFO "%s: SMP simultaneous entry of " "an interrupt handler.\n", dev->name); dev->interrupt = 0; /* Avoid halting machine. */ return; } #else if (dev->interrupt) { printk(KERN_INFO "%s: Re-entering the " "interrupt handler.\n", dev->name); return; } dev->interrupt = 1; #endif do { status = inl(ioaddr + isr); /* Acknowledge all of the current interrupt sources ASAP. */ outl(status, ioaddr + isr); // ????? if (sis900_debug > 4) printk(KERN_INFO "%s: interrupt status=%#4.4x " "new intstat=%#4.4x.\n", dev->name, status, inl(ioaddr + isr)); if ((status & (TxURN|TxERR|TxOK | RxORN|RxERR|RxOK)) == 0) { break; } if (status & (RxOK|RxORN|RxERR)) /* Rx interrupt */ sis900_rx(dev); if (status & (TxOK | TxERR)) { unsigned int dirty_tx; if (sis900_debug > 5) { printk(KERN_INFO "TxOK:tp->cur_tx:%d," "tp->dirty_tx:%x\n", tp->cur_tx, tp->dirty_tx); } for (dirty_tx = tp->dirty_tx; dirty_tx < tp->cur_tx; dirty_tx++) { int i; int entry = dirty_tx % NUM_TX_DESC; int txstatus = tp->tx_buf[entry].cmdsts; if (sis900_debug > 4) { printk(KERN_INFO "%s: Tx Frame contents:" "(len=%d)", dev->name, (txstatus & DSIZE)); for (i = 0; i < (txstatus & DSIZE) ; i++) { printk("%2.2x ", (u8)(tp->tx_buf[entry].buf[i])); } printk(".\n"); } if ( ! (txstatus & (OK | UNDERRUN))) { if (sis900_debug > 1) printk(KERN_INFO "Tx NOT (OK," "UnderRun)\n"); break; /* It still hasn't been Txed */ } /* Note: TxCarrierLost is always asserted at 100mbps. */ if (txstatus & (OWCOLL | ABORT)) { /* There was an major error, log it. */ if (sis900_debug > 1) printk(KERN_INFO "Tx Out of " " Window,Abort\n"); #ifndef final_version if (sis900_debug > 1) printk(KERN_INFO "%s: Transmit " "error, Tx status %8.8x.\n", dev->name, txstatus); #endif tp->stats.tx_errors++; if (txstatus & ABORT) { tp->stats.tx_aborted_errors++; } if (txstatus & NOCARRIER) tp->stats.tx_carrier_errors++; if (txstatus & OWCOLL) tp->stats.tx_window_errors++; #ifdef ETHER_STATS if ((txstatus & COLCNT)==COLCNT) tp->stats.collisions16++; #endif } else { #ifdef ETHER_STATS /* No count for tp->stats.tx_deferred */ #endif if (txstatus & UNDERRUN) { if (sis900_debug > 2) printk(KERN_INFO "Tx UnderRun\n"); } tp->stats.collisions += (txstatus >> 16) & 0xF; #if LINUX_VERSION_CODE > 0x20119 tp->stats.tx_bytes += txstatus & DSIZE; #endif if (sis900_debug > 2) printk(KERN_INFO "Tx Transmit OK\n"); tp->stats.tx_packets++; } /* Free the original skb. */ if (sis900_debug > 2) printk(KERN_INFO "Free original skb\n"); dev_free_skb(tp->tx_skbuff[entry]); tp->tx_skbuff[entry] = 0; } // for dirty #ifndef final_version if (tp->cur_tx - dirty_tx > NUM_TX_DESC) { printk(KERN_INFO"%s: Out-of-sync dirty pointer," " %d vs. %d, full=%d.\n", dev->name, dirty_tx, tp->cur_tx, tp->tx_full); dirty_tx += NUM_TX_DESC; } #endif if (tp->tx_full && dirty_tx > tp->cur_tx-NUM_TX_DESC) { /* The ring is no longer full, clear tbusy. */ if (sis900_debug > 3) printk(KERN_INFO "Tx Ring NO LONGER Full\n"); tp->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); } tp->dirty_tx = dirty_tx; if (sis900_debug > 2) printk(KERN_INFO "TxOK,tp->cur_tx:%d,tp->dirty:%d\n", tp->cur_tx, tp->dirty_tx); } // if (TxOK | TxERR) /* Check uncommon events with one test. */ if (status & (RxORN | TxERR | RxERR)) { if (sis900_debug > 2) printk(KERN_INFO "%s: Abnormal interrupt," "status %8.8x.\n", dev->name, status); if (status == 0xffffffff) break; if (status & (RxORN | RxERR)) tp->stats.rx_errors++; if (status & RxORN) { tp->stats.rx_over_errors++; } } if (--boguscnt < 0) { printk(KERN_INFO "%s: Too much work at interrupt, " "IntrStatus=0x%4.4x.\n", dev->name, status); break; } } while (1); if (sis900_debug > 3) printk(KERN_INFO "%s: exiting interrupt, intr_status=%#4.4x.\n", dev->name, inl(ioaddr + isr)); #if defined(__i386__) clear_bit(0, (void*)&dev->interrupt); #else dev->interrupt = 0; #endif return; } /* The data sheet doesn't describe the Rx ring at all, so I'm guessing at the field alignments and semantics. */ static int sis900_rx(struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; long ioaddr = dev->base_addr; u16 cur_rx = tp->cur_rx % NUM_RX_DESC; int rx_status=tp->rx_buf[cur_rx].cmdsts; if (sis900_debug > 4) printk(KERN_INFO "%s: sis900_rx, current %4.4x," " rx status=%8.8x\n", dev->name, cur_rx, rx_status); while (rx_status & OWN) { int rx_size = rx_status & DSIZE; rx_size -= CRC_SIZE; if (sis900_debug > 4) { int i; printk(KERN_INFO "%s: sis900_rx, rx status %8.8x," " size %4.4x, cur %4.4x.\n", dev->name, rx_status, rx_size, cur_rx); printk(KERN_INFO "%s: Rx Frame contents:", dev->name); for (i = 0; i < rx_size; i++) { printk("%2.2x ", (u8)(tp->rx_buf[cur_rx].buf[i])); } printk(".\n"); } if (rx_status & TOOLONG) { if (sis900_debug > 1) printk(KERN_INFO "%s: Oversized Ethernet frame," " status %4.4x!\n", dev->name, rx_status); tp->stats.rx_length_errors++; } else if (rx_status & (RXISERR | RUNT | CRCERR | FAERR)) { if (sis900_debug > 1) printk(KERN_INFO"%s: Ethernet frame had errors," " status %4.4x.\n", dev->name, rx_status); tp->stats.rx_errors++; if (rx_status & (RXISERR | FAERR)) tp->stats.rx_frame_errors++; if (rx_status & (RUNT | TOOLONG)) tp->stats.rx_length_errors++; if (rx_status & CRCERR) tp->stats.rx_crc_errors++; } else { /* Malloc up new buffer, compatible with net-2e. */ /* Omit the four octet CRC from the length. */ struct sk_buff *skb; skb = dev_alloc_skb(rx_size + 2); if (skb == NULL) { printk(KERN_INFO "%s: Memory squeeze," "deferring packet.\n", dev->name); /* We should check that some rx space is free. If not, free one and mark stats->rx_dropped++. */ tp->stats.rx_dropped++; tp->rx_buf[cur_rx].cmdsts = RX_BUF_SIZE; break; } skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP fields. */ if (rx_size+CRC_SIZE > RX_BUF_SIZE) { /* int semi_count = RX_BUF_LEN - ring_offset - 4; memcpy(skb_put(skb, semi_count), &rx_bufs[ring_offset + 4], semi_count); memcpy(skb_put(skb, rx_size-semi_count), rx_bufs, rx_size - semi_count); if (sis900_debug > 4) { int i; printk(KERN_DEBUG"%s: Frame wrap @%d", dev->name, semi_count); for (i = 0; i < 16; i++) printk(" %2.2x", rx_bufs[i]); printk(".\n"); memset(rx_bufs, 0xcc, 16); } */ } else { #if 0 /* USE_IP_COPYSUM */ eth_copy_and_sum(skb, tp->rx_buf[cur_rx].buf, rx_size, 0); skb_put(skb, rx_size); #else memcpy(skb_put(skb, rx_size), tp->rx_buf[cur_rx].buf, rx_size); #endif } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); #if LINUX_VERSION_CODE > 0x20119 tp->stats.rx_bytes += rx_size; #endif tp->stats.rx_packets++; } tp->rx_buf[cur_rx].cmdsts = RX_BUF_SIZE; cur_rx = ((cur_rx+1) % NUM_RX_DESC); rx_status = tp->rx_buf[cur_rx].cmdsts; } // while if (sis900_debug > 4) printk(KERN_INFO "%s: Done sis900_rx(), current %4.4x " "Cmd %2.2x.\n", dev->name, cur_rx, inb(ioaddr + cr)); tp->cur_rx = cur_rx; return 0; } static int sis900_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct sis900_private *tp = (struct sis900_private *)dev->priv; int i; dev->start = 0; dev->tbusy = 1; if (sis900_debug > 1) printk(KERN_DEBUG"%s: Shutting down ethercard, status was 0x%4.4x.\n", dev->name, inl(ioaddr + isr)); /* Disable interrupts by clearing the interrupt mask. */ outl(0x0000, ioaddr + imr); /* Stop the chip's Tx and Rx DMA processes. */ outl(0x00, ioaddr + cr); del_timer(&tp->timer); free_irq(dev->irq, dev); for (i = 0; i < NUM_TX_DESC; i++) { if (tp->tx_skbuff[i]) dev_free_skb(tp->tx_skbuff[i]); tp->tx_skbuff[i] = 0; } kfree(tp->rx_bufs); kfree(tp->tx_bufs); /* Green! Put the chip in low-power mode. */ MOD_DEC_USE_COUNT; return 0; } static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct sis900_private *tp = (struct sis900_private *)dev->priv; u16 *data = (u16 *)&rq->ifr_data; switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = tp->phys[tp->phy_idx]; /* Fall Through */ case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f); return 0; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!suser()) return -EPERM; mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]); return 0; default: return -EOPNOTSUPP; } } static struct enet_statistics * sis900_get_stats(struct net_device *dev) { struct sis900_private *tp = (struct sis900_private *)dev->priv; return &tp->stats; } /* Set or clear the multicast filter for this adaptor. This routine is not state sensitive and need not be SMP locked. */ static u16 elComputeHashTableIndex(u8 *addr) { #define POLYNOMIAL 0x04C11DB6L u32 crc = 0xffffffff, msb; int i, j; u8 byte; for( i=0; i<6; i++ ) { byte = *addr++; for( j=0; j<8; j++ ) { msb = crc >> 31; crc <<= 1; if( msb ^ ( byte & 1 )) { crc ^= POLYNOMIAL; crc |= 1; } byte >>= 1; } } // 7 bit crc for 128 bit hash table return( (int)(crc >> 25) ); } static u16 elMIIpollBit(struct net_device *dev, int phy_id, int location, u16 mask, u16 polarity, u16 *value) { u32 i; i=0; while (1) { *value = mdio_read(dev, phy_id, location); if (polarity) { if (mask & *value) return(TRUE); } else { if (mask & ~(*value)) return(TRUE); } if (++i == 1200) break; } return(FALSE); } static u16 elPMDreadMode(struct net_device *dev, int phy_id, int *speed, int *duplex) { u16 status, OurCap; *speed = HW_SPEED_10_MBPS; *duplex = FDX_CAPABLE_HALF_SELECTED; status = mdio_read(dev, phy_id, MII_ANLPAR); OurCap = mdio_read(dev, phy_id, MII_ANAR); if (sis900_debug > 1) { printk(KERN_INFO "Link Part Status %4X\n", status); printk(KERN_INFO "Our Status %4X\n", OurCap); printk(KERN_INFO "Status Reg %4X\n", mdio_read(dev, phy_id, MII_STATUS)); } status &= OurCap; if ( !( status & (MII_NWAY_T|MII_NWAY_T_FDX | MII_NWAY_TX | MII_NWAY_TX_FDX ))) { if (sis900_debug > 1) { printk(KERN_INFO "The other end NOT support NWAY...\n"); } while (( status = mdio_read(dev, phy_id, 18)) & 0x4000) ; while (( status = mdio_read(dev, phy_id, 18)) & 0x0020) ; if (status & 0x80) *speed = HW_SPEED_100_MBPS; if (status & 0x40) *duplex = FDX_CAPABLE_FULL_SELECTED; if (sis900_debug > 3) { printk(KERN_INFO"%s: Setting %s%s-duplex.\n", dev->name, *speed == HW_SPEED_100_MBPS ? "100mbps " : "10mbps ", *duplex == FDX_CAPABLE_FULL_SELECTED ? "full" : "half"); } } else { if (sis900_debug > 1) { printk(KERN_INFO "The other end support NWAY...\n"); } if (status & (MII_NWAY_TX_FDX | MII_NWAY_T_FDX)) { *duplex = FDX_CAPABLE_FULL_SELECTED; } if (status & (MII_NWAY_TX_FDX | MII_NWAY_TX)) { *speed = HW_SPEED_100_MBPS; } if (sis900_debug > 3) { printk(KERN_INFO"%s: Setting %s%s-duplex based on" " auto-negotiated partner ability.\n", dev->name, *speed == HW_SPEED_100_MBPS ? "100mbps " : "10mbps ", *duplex == FDX_CAPABLE_FULL_SELECTED ? "full" : "half"); } } return (status); } static u16 elAutoNegotiate(struct net_device *dev, int phy_id, int *duplex, int *speed) { u16 status, retnVal; if (sis900_debug > 1) { printk(KERN_INFO "AutoNegotiate...\n"); } mdio_write(dev, phy_id, MII_CONTROL, 0); mdio_write(dev, phy_id, MII_CONTROL, MIICNTL_AUTO | MIICNTL_RST_AUTO); retnVal = elMIIpollBit(dev, phy_id, MII_CONTROL, MIICNTL_RST_AUTO, FALSE,&status); if (!retnVal) { printk(KERN_INFO "Not wait for Reset Complete\n"); } retnVal = elMIIpollBit(dev, phy_id, MII_STATUS, MIISTAT_AUTO_DONE, TRUE, &status); if (!retnVal) { printk(KERN_INFO "Not wait for AutoNego Complete\n"); } retnVal = elMIIpollBit(dev, phy_id, MII_STATUS, MIISTAT_LINK, TRUE, &status); if (!retnVal) { printk(KERN_INFO "Not wait for Link Complete\n"); } if (status & MIISTAT_LINK) { elPMDreadMode(dev, phy_id, speed, duplex); elSetMediaType(dev, *speed, *duplex); } return(status); } static void elSetCapability(struct net_device *dev, int phy_id, int duplex, int speed) { u16 cap = ( MII_NWAY_T | MII_NWAY_T_FDX | MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_CSMA_CD ); if (speed != 100) { cap &= ~( MII_NWAY_TX | MII_NWAY_TX_FDX ); if (sis900_debug > 1) { printk(KERN_INFO "UNSET 100Mbps\n"); } } if (!duplex) { cap &= ~( MII_NWAY_T_FDX | MII_NWAY_TX_FDX ); if (sis900_debug > 1) { printk(KERN_INFO "UNSET full-duplex\n"); } } mdio_write(dev, phy_id, MII_ANAR, cap); } static void elSetMediaType(struct net_device *dev, int speed, int duplex) { long ioaddr = dev->base_addr; u32 txCfgOn = 0, txCfgOff = TxDRNT; u32 rxCfgOn = 0, rxCfgOff = 0; if (speed == HW_SPEED_100_MBPS) { txCfgOn |= (TxDRNT_100 | TxHBI); } else { txCfgOn |= TxDRNT_10; } if (duplex == FDX_CAPABLE_FULL_SELECTED) { txCfgOn |= (TxCSI | TxHBI); rxCfgOn |= RxATP; } else { txCfgOff |= (TxCSI | TxHBI); rxCfgOff |= RxATP; } outl( (inl(ioaddr + txcfg) & ~txCfgOff) | txCfgOn, ioaddr + txcfg); outl( (inl(ioaddr + rxcfg) & ~rxCfgOff) | rxCfgOn, ioaddr + rxcfg); } static void set_rx_mode(struct net_device *dev) { long ioaddr = dev->base_addr; u16 mc_filter[8]; int i; int rx_mode; u32 rxCfgOn = 0, rxCfgOff = 0; u32 txCfgOn = 0, txCfgOff = 0; if (sis900_debug > 3) printk(KERN_INFO "%s: set_rx_mode (%4.4x) done--" "RxCfg %8.8x.\n", dev->name, dev->flags, inl(ioaddr + rxcfg)); /* Note: do not reorder, GCC is clever about common statements. */ if (dev->flags & IFF_PROMISC) { printk(KERN_NOTICE"%s: Promiscuous mode enabled.\n", dev->name); rx_mode = ACCEPT_ALL_BCASTS | ACCEPT_ALL_MCASTS | ACCEPT_CAM_QUALIFIED | ACCEPT_ALL_PHYS; for (i=0 ; i<8 ; i++) mc_filter[i]=0xffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { rx_mode = ACCEPT_ALL_BCASTS | ACCEPT_ALL_MCASTS | ACCEPT_CAM_QUALIFIED; for (i=0 ; i<8 ; i++) mc_filter[i]=0xffff; } else { struct dev_mc_list *mclist; rx_mode = ACCEPT_ALL_BCASTS | ACCEPT_ALL_MCASTS | ACCEPT_CAM_QUALIFIED; for (i=0 ; i<8 ; i++) mc_filter[i]=0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) set_bit(elComputeHashTableIndex(mclist->dmi_addr), mc_filter); } for (i=0 ; i<8 ; i++) { outl((u32)(0x00000004+i) << 16, ioaddr + rfcr); outl(mc_filter[i], ioaddr + rfdr); } /* We can safely update without stopping the chip. */ //rx_mode = ACCEPT_CAM_QUALIFIED | ACCEPT_ALL_BCASTS | ACCEPT_ALL_PHYS; //rx_mode = ACCEPT_CAM_QUALIFIED | ACCEPT_ALL_BCASTS; outl(RFEN | ((rx_mode & (ACCEPT_ALL_MCASTS | ACCEPT_ALL_BCASTS | ACCEPT_ALL_PHYS)) << RFAA_shift), ioaddr + rfcr); if (rx_mode & ACCEPT_ALL_ERRORS) { rxCfgOn = RxAEP | RxARP | RxAJAB; } else { rxCfgOff = RxAEP | RxARP | RxAJAB; } if (rx_mode & MAC_LOOPBACK) { rxCfgOn |= RxATP; txCfgOn |= TxMLB; } else { if (!(( (struct sis900_private *)(dev->priv) )->full_duplex)) rxCfgOff |= RxATP; txCfgOff |= TxMLB; } if (sis900_debug > 2) { printk(KERN_INFO "Before Set TxCfg=%8.8x\n",inl(ioaddr+txcfg)); printk(KERN_INFO "Before Set RxCfg=%8.8x\n",inl(ioaddr+rxcfg)); } outl((inl(ioaddr + rxcfg) | rxCfgOn) & ~rxCfgOff, ioaddr + rxcfg); outl((inl(ioaddr + txcfg) | txCfgOn) & ~txCfgOff, ioaddr + txcfg); if (sis900_debug > 2) { printk(KERN_INFO "After Set TxCfg=%8.8x\n",inl(ioaddr+txcfg)); printk(KERN_INFO "After Set RxCfg=%8.8x\n",inl(ioaddr+rxcfg)); printk(KERN_INFO "Receive Filter Register:%8.8x\n", inl(ioaddr + rfcr)); } return; } static void sis900_reset(struct net_device *dev) { long ioaddr = dev->base_addr; outl(0, ioaddr + ier); outl(0, ioaddr + imr); outl(0, ioaddr + rfcr); outl(RxRESET | TxRESET | RESET, ioaddr + cr); outl(PESEL, ioaddr + cfg); set_rx_mode(dev); } #ifdef MODULE int init_module(void) { return sis900_probe(0); } void cleanup_module(void) { struct net_device *next_dev; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_sis900_dev) { struct sis900_private *tp = (struct sis900_private *)root_sis900_dev->priv; next_dev = tp->next_module; unregister_netdev(root_sis900_dev); release_region(root_sis900_dev->base_addr, pci_tbl[tp->chip_id].io_size); kfree(tp); kfree(root_sis900_dev); root_sis900_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c sis900.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c sis900.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */