/* * sonic.c * * (C) 1996 by Thomas Bogendoerfer (tsbogend@bigbug.franken.de) * * This driver is based on work from Andreas Busse, but most of * the code is rewritten. * * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) * * A driver for the onboard Sonic ethernet controller on Mips Jazz * systems (Acer Pica-61, Mips Magnum 4000, Olivetti M700 and * perhaps others, too) */ static const char *version = "sonic.c:v0.50 7.8.97 tsbogend@alpha.franken.de\n"; /* * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, * National Semiconductors data sheet for the DP83932B Sonic Ethernet * controller, and the files "8390.c" and "skeleton.c" in this directory. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sonic.h" /* use 0 for production, 1 for verification, >2 for debug */ #ifdef SONIC_DEBUG static unsigned int sonic_debug = SONIC_DEBUG; #else static unsigned int sonic_debug = 2; #endif /* * Some tunables for the buffer areas. Power of 2 is required * the current driver uses one receive buffer for each descriptor. */ #define SONIC_NUM_RRS 16 /* number of receive resources */ #define SONIC_NUM_RDS SONIC_NUM_RRS /* number of receive descriptors */ #define SONIC_NUM_TDS 16 /* number of transmit descriptors */ #define SONIC_RBSIZE 1520 /* size of one resource buffer */ #define SONIC_RDS_MASK (SONIC_NUM_RDS-1) #define SONIC_TDS_MASK (SONIC_NUM_TDS-1) /* * Base address and interupt of the SONIC controller on JAZZ boards */ static struct { unsigned int port; unsigned int irq; } sonic_portlist[] = { {JAZZ_ETHERNET_BASE, JAZZ_ETHERNET_IRQ}, {0, 0}}; /* Information that need to be kept for each board. */ struct sonic_local { sonic_cda_t cda; /* virtual CPU address of CDA */ sonic_td_t tda[SONIC_NUM_TDS]; /* transmit descriptor area */ sonic_rr_t rra[SONIC_NUM_RRS]; /* receive resource arrea */ sonic_rd_t rda[SONIC_NUM_RDS]; /* receive descriptor area */ struct sk_buff* tx_skb[SONIC_NUM_TDS]; /* skbuffs for packets to transmit */ unsigned int tx_laddr[SONIC_NUM_TDS]; /* logical DMA address fro skbuffs */ unsigned char *rba; /* start of receive buffer areas */ unsigned int cda_laddr; /* logical DMA address of CDA */ unsigned int tda_laddr; /* logical DMA address of TDA */ unsigned int rra_laddr; /* logical DMA address of RRA */ unsigned int rda_laddr; /* logical DMA address of RDA */ unsigned int rba_laddr; /* logical DMA address of RBA */ unsigned int cur_tx, cur_rx; /* current indexes to resource areas */ unsigned int dirty_tx,cur_rra; /* last unacked transmit packet */ char tx_full; struct enet_statistics stats; }; /* * We cannot use station (ethernet) address prefixes to detect the * sonic controller since these are board manufacturer depended. * So we check for known Silicon Revision IDs instead. */ static unsigned short known_revisions[] = { 0x04, /* Mips Magnum 4000 */ 0xffff /* end of list */ }; /* Index to functions, as function prototypes. */ extern int sonic_probe(struct device *dev); static int sonic_probe1(struct device *dev, unsigned int base_addr, unsigned int irq); static int sonic_open(struct device *dev); static int sonic_send_packet(struct sk_buff *skb, struct device *dev); static void sonic_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void sonic_rx(struct device *dev); static int sonic_close(struct device *dev); static struct enet_statistics *sonic_get_stats(struct device *dev); static void sonic_multicast_list(struct device *dev); static int sonic_init(struct device *dev); /* * Probe for a SONIC ethernet controller on a Mips Jazz board. * Actually probing is superfluous but we're paranoid. */ __initfunc(int sonic_probe(struct device *dev)) { unsigned int base_addr = dev ? dev->base_addr : 0; int i; /* * Don't probe if we're not running on a Jazz board. */ if (mips_machgroup != MACH_GROUP_JAZZ) return -ENODEV; if (base_addr > 0x1ff) /* Check a single specified location. */ return sonic_probe1(dev, base_addr, dev->irq); else if (base_addr != 0) /* Don't probe at all. */ return -ENXIO; for (i = 0; sonic_portlist[i].port; i++) { int base_addr = sonic_portlist[i].port; if (check_region(base_addr, 0x100)) continue; if (sonic_probe1(dev, base_addr, sonic_portlist[i].irq) == 0) return 0; } return -ENODEV; } __initfunc(static int sonic_probe1(struct device *dev, unsigned int base_addr, unsigned int irq)) { static unsigned version_printed = 0; unsigned int silicon_revision; unsigned int val; struct sonic_local *lp; int i; /* * get the Silicon Revision ID. If this is one of the known * one assume that we found a SONIC ethernet controller at * the expected location. */ silicon_revision = SONIC_READ(SONIC_SR); if (sonic_debug > 1) printk("SONIC Silicon Revision = 0x%04x\n",silicon_revision); i = 0; while ((known_revisions[i] != 0xffff) && (known_revisions[i] != silicon_revision)) i++; if (known_revisions[i] == 0xffff) { printk("SONIC ethernet controller not found (0x%4x)\n", silicon_revision); return -ENODEV; } request_region(base_addr, 0x100, "SONIC"); /* Allocate a new 'dev' if needed. */ if (dev == NULL) dev = init_etherdev(0, sizeof(struct sonic_local)); if (sonic_debug && version_printed++ == 0) printk(version); printk("%s: %s found at 0x%08x, ", dev->name, "SONIC ethernet", base_addr); /* Fill in the 'dev' fields. */ dev->base_addr = base_addr; dev->irq = irq; /* * Put the sonic into software reset, then * retrieve and print the ethernet address. */ SONIC_WRITE(SONIC_CMD,SONIC_CR_RST); SONIC_WRITE(SONIC_CEP,0); for (i=0; i<3; i++) { val = SONIC_READ(SONIC_CAP0-i); dev->dev_addr[i*2] = val; dev->dev_addr[i*2+1] = val >> 8; } printk("HW Address "); for (i = 0; i < 6; i++) { printk("%2.2x", dev->dev_addr[i]); if (i<5) printk(":"); } printk(" IRQ %d\n", irq); /* Initialize the device structure. */ if (dev->priv == NULL) { /* * the memory be located in the same 64kb segment */ lp = NULL; i = 0; do { lp = (struct sonic_local *)kmalloc(sizeof(*lp), GFP_KERNEL); if ((unsigned long)lp >> 16 != ((unsigned long)lp + sizeof(*lp) ) >> 16) { /* FIXME, free the memory later */ kfree (lp); lp = NULL; } } while (lp == NULL && i++ < 20); if (lp == NULL) { printk ("%s: couldn't allocate memory for descriptors\n", dev->name); return -ENOMEM; } memset(lp, 0, sizeof(struct sonic_local)); /* get the virtual dma address */ lp->cda_laddr = vdma_alloc(PHYSADDR(lp),sizeof(*lp)); if (lp->cda_laddr == ~0UL) { printk ("%s: couldn't get DMA page entry for descriptors\n", dev->name); return -ENOMEM; } lp->tda_laddr = lp->cda_laddr + sizeof (lp->cda); lp->rra_laddr = lp->tda_laddr + sizeof (lp->tda); lp->rda_laddr = lp->rra_laddr + sizeof (lp->rra); /* allocate receive buffer area */ /* FIXME, maybe we should use skbs */ if ((lp->rba = (char *)kmalloc(SONIC_NUM_RRS * SONIC_RBSIZE, GFP_KERNEL)) == NULL) { printk ("%s: couldn't allocate receive buffers\n",dev->name); return -ENOMEM; } /* get virtual dma address */ if ((lp->rba_laddr = vdma_alloc(PHYSADDR(lp->rba),SONIC_NUM_RRS * SONIC_RBSIZE)) == ~0UL) { printk ("%s: couldn't get DMA page entry for receive buffers\n",dev->name); return -ENOMEM; } /* now convert pointer to KSEG1 pointer */ lp->rba = (char *)KSEG1ADDR(lp->rba); flush_cache_all(); dev->priv = (struct sonic_local *)KSEG1ADDR(lp); } lp = (struct sonic_local *)dev->priv; dev->open = sonic_open; dev->stop = sonic_close; dev->hard_start_xmit = sonic_send_packet; dev->get_stats = sonic_get_stats; dev->set_multicast_list = &sonic_multicast_list; /* Fill in the fields of the device structure with ethernet values. */ ether_setup(dev); return 0; } /* * Open/initialize the SONIC controller. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int sonic_open(struct device *dev) { if (sonic_debug > 2) printk("sonic_open: initializing sonic driver.\n"); /* * We don't need to deal with auto-irq stuff since we * hardwire the sonic interrupt. */ /* * XXX Horrible work around: We install sonic_interrupt as fast interrupt. * This means that during execution of the handler interrupt are disabled * covering another bug otherwise corrupting data. This doesn't mean * this glue works ok under all situations. */ // if (request_irq(dev->irq, &sonic_interrupt, 0, "sonic", dev)) { if (request_irq(dev->irq, &sonic_interrupt, SA_INTERRUPT, "sonic", dev)) { printk ("\n%s: unable to get IRQ %d .\n", dev->name, dev->irq); return EAGAIN; } /* * Initialize the SONIC */ sonic_init(dev); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; if (sonic_debug > 2) printk("sonic_open: Initialization done.\n"); return 0; } /* * Close the SONIC device */ static int sonic_close(struct device *dev) { unsigned int base_addr = dev->base_addr; if (sonic_debug > 2) printk ("sonic_close\n"); dev->tbusy = 1; dev->start = 0; /* * stop the SONIC, disable interrupts */ SONIC_WRITE(SONIC_ISR,0x7fff); SONIC_WRITE(SONIC_IMR,0); SONIC_WRITE(SONIC_CMD,SONIC_CR_RST); free_irq(dev->irq, dev); /* release the IRQ */ return 0; } /* * transmit packet */ static int sonic_send_packet(struct sk_buff *skb, struct device *dev) { struct sonic_local *lp = (struct sonic_local *)dev->priv; unsigned int base_addr = dev->base_addr; unsigned int laddr; int entry,length; if (sonic_debug > 2) printk("sonic_send_packet: skb=%p, dev=%p\n",skb,dev); if (dev->tbusy) { int tickssofar = jiffies - dev->trans_start; /* If we get here, some higher level has decided we are broken. There should really be a "kick me" function call instead. */ if (sonic_debug > 1) printk("sonic_send_packet: called with dev->tbusy = 1 !\n"); if (tickssofar < 5) return 1; printk("%s: transmit timed out.\n", dev->name); /* Try to restart the adaptor. */ sonic_init(dev); dev->tbusy=0; dev->trans_start = jiffies; } /* * Block a timer-based transmit from overlapping. This could better be * done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { printk("%s: Transmitter access conflict.\n", dev->name); return 1; } /* * Map the packet data into the logical DMA address space */ if ((laddr = vdma_alloc(PHYSADDR(skb->data),skb->len)) == ~0UL) { printk("%s: no VDMA entry for transmit available.\n",dev->name); dev_kfree_skb(skb); dev->tbusy = 0; return 1; } entry = lp->cur_tx & SONIC_TDS_MASK; lp->tx_laddr[entry] = laddr; lp->tx_skb[entry] = skb; length = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len; flush_cache_all(); /* * Setup the transmit descriptor and issue the transmit command. */ lp->tda[entry].tx_status = 0; /* clear status */ lp->tda[entry].tx_frag_count = 1; /* single fragment */ lp->tda[entry].tx_pktsize = length; /* length of packet */ lp->tda[entry].tx_frag_ptr_l = laddr & 0xffff; lp->tda[entry].tx_frag_ptr_h = laddr >> 16; lp->tda[entry].tx_frag_size = length; /* if there are already packets queued, allow sending several packets at once */ if (lp->dirty_tx != lp->cur_tx++) lp->tda[(lp->cur_tx-2) & SONIC_TDS_MASK].link &= ~SONIC_END_OF_LINKS; if (sonic_debug > 2) printk("sonic_send_packet: issueing Tx command, cur_tx %d, ctda %x\n", lp->cur_tx,SONIC_READ(SONIC_CTDA)); /* * trigger a new transmission only when there are no outstanding transmits, * otherwise we may trigger a transmission without a valid descriptor which * messes up our dirty_tx */ if (lp->dirty_tx == lp->cur_tx-1 && !(SONIC_READ(SONIC_CMD) & SONIC_CR_TXP)) SONIC_WRITE(SONIC_CMD,SONIC_CR_TXP); dev->trans_start = jiffies; if (lp->cur_tx < lp->dirty_tx + SONIC_NUM_TDS) dev->tbusy = 0; else lp->tx_full = 1; return 0; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static void sonic_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct device *dev = (struct device *)dev_id; unsigned int base_addr = dev->base_addr; struct sonic_local *lp; int status; if (dev == NULL) { printk ("sonic_interrupt: irq %d for unknown device.\n", irq); return; } dev->interrupt = 1; lp = (struct sonic_local *)dev->priv; status = SONIC_READ(SONIC_ISR); if (sonic_debug > 2) printk("sonic_interrupt: ISR=%x\n",status); if (status & SONIC_INT_PKTRX) { sonic_rx(dev); /* got packet(s) */ } if (status & SONIC_INT_TXDN) { int dirty_tx = lp->dirty_tx; while (dirty_tx < lp->cur_tx) { int entry = dirty_tx & SONIC_TDS_MASK; int status = lp->tda[entry].tx_status; if (sonic_debug > 2) printk ("sonic_interrupt: status %d, cur_tx %d, dirty_tx %d, ctda %x\n", status,lp->cur_tx,dirty_tx,SONIC_READ(SONIC_CTDA)); if (status == 0) { /* * there is a small race, when we try to send more packets with one * transmission command. To solve this race, we trigger the transmission * again */ if (sonic_debug > 1) printk ("triggering lost transmission\n"); if (!(SONIC_READ(SONIC_CMD) & SONIC_CR_TXP)) SONIC_WRITE(SONIC_CMD,SONIC_CR_TXP); break; } /* put back EOL and free descriptor */ lp->tda[entry].link |= SONIC_END_OF_LINKS; lp->tda[entry].tx_status = 0; if (status & 0x0001) lp->stats.tx_packets++; else { lp->stats.tx_errors++; if (status & 0x0642) lp->stats.tx_aborted_errors++; if (status & 0x0180) lp->stats.tx_carrier_errors++; if (status & 0x0020) lp->stats.tx_window_errors++; if (status & 0x0004) lp->stats.tx_fifo_errors++; } /* We must free the original skb */ if (lp->tx_skb[entry]) { dev_kfree_skb(lp->tx_skb[entry]); lp->tx_skb[entry] = 0; } /* and the VDMA address */ vdma_free(lp->tx_laddr[entry]); dirty_tx++; } if (lp->tx_full && dev->tbusy && dirty_tx + SONIC_NUM_TDS > lp->cur_tx + 2) { /* The ring is no longer full, clear tbusy. */ lp->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); } lp->dirty_tx = dirty_tx; } /* * check error conditions */ if (status & SONIC_INT_RFO) { printk ("%s: receive fifo underrun\n",dev->name); lp->stats.rx_fifo_errors++; } if (status & SONIC_INT_RDE) { printk ("%s: receive descriptors exhausted\n",dev->name); lp->stats.rx_dropped++; } if (status & SONIC_INT_RBE) { printk ("%s: receive buffer exhausted\n",dev->name); lp->stats.rx_dropped++; } if (status & SONIC_INT_RBAE) { printk ("%s: receive buffer area exhausted\n",dev->name); lp->stats.rx_dropped++; } /* counter overruns; all counters are 16bit wide */ if (status & SONIC_INT_FAE) lp->stats.rx_frame_errors += 65536; if (status & SONIC_INT_CRC) lp->stats.rx_crc_errors += 65536; if (status & SONIC_INT_MP) lp->stats.rx_missed_errors += 65536; /* transmit error */ if (status & SONIC_INT_TXER) lp->stats.tx_errors++; /* * clear interrupt bits and return */ SONIC_WRITE(SONIC_ISR,status); dev->interrupt = 0; return; } /* * We have a good packet(s), get it/them out of the buffers. */ static void sonic_rx(struct device *dev) { unsigned int base_addr = dev->base_addr; struct sonic_local *lp = (struct sonic_local *)dev->priv; int entry = lp->cur_rx & SONIC_RDS_MASK; int status; while(lp->rda[entry].in_use == 0) { struct sk_buff *skb; int pkt_len; unsigned char *pkt_ptr; status = lp->rda[entry].rx_status; if (sonic_debug > 3) printk ("status %x, cur_rx %d, cur_rra %d\n",status,lp->cur_rx,lp->cur_rra); if (status & SONIC_RCR_PRX) { pkt_len = lp->rda[entry].rx_pktlen; pkt_ptr = (char *)KSEG1ADDR(vdma_log2phys((lp->rda[entry].rx_pktptr_h << 16) + lp->rda[entry].rx_pktptr_l)); if (sonic_debug > 3) printk ("pktptr %p (rba %p) h:%x l:%x, rra h:%x l:%x bsize h:%x l:%x\n", pkt_ptr,lp->rba, lp->rda[entry].rx_pktptr_h,lp->rda[entry].rx_pktptr_l, lp->rra[lp->cur_rra & 15].rx_bufadr_h,lp->rra[lp->cur_rra & 15].rx_bufadr_l, SONIC_READ(SONIC_RBWC1),SONIC_READ(SONIC_RBWC0)); /* Malloc up new buffer. */ skb = dev_alloc_skb(pkt_len+2); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb,2); /* 16 byte align */ skb_put(skb,pkt_len); /* Make room */ eth_copy_and_sum(skb, pkt_ptr, pkt_len, 0); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); /* pass the packet to upper layers */ lp->stats.rx_packets++; } else { /* This should only happen, if we enable accepting broken packets. */ lp->stats.rx_errors++; if (status & SONIC_RCR_FAER) lp->stats.rx_frame_errors++; if (status & SONIC_RCR_CRCR) lp->stats.rx_crc_errors++; } lp->rda[entry].in_use = 1; entry = (++lp->cur_rx) & SONIC_RDS_MASK; /* now give back the buffer to the receive buffer area */ if (status & SONIC_RCR_LPKT) { /* * this was the last packet out of the current receice buffer * give the buffer back to the SONIC */ SONIC_WRITE(SONIC_RWP,(lp->rra_laddr + (++lp->cur_rra & 15) * sizeof(sonic_rr_t)) & 0xffff); } } /* If any worth-while packets have been received, dev_rint() has done a mark_bh(NET_BH) for us and will work on them when we get to the bottom-half routine. */ return; } /* * Get the current statistics. * This may be called with the device open or closed. */ static struct enet_statistics * sonic_get_stats(struct device *dev) { struct sonic_local *lp = (struct sonic_local *)dev->priv; unsigned int base_addr = dev->base_addr; /* read the tally counter from the SONIC and reset them */ lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); SONIC_WRITE(SONIC_CRCT,0xffff); lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); SONIC_WRITE(SONIC_FAET,0xffff); lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); SONIC_WRITE(SONIC_MPT,0xffff); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. */ static void sonic_multicast_list(struct device *dev) { struct sonic_local *lp = (struct sonic_local *)dev->priv; unsigned int base_addr = dev->base_addr; unsigned int rcr; struct dev_mc_list *dmi = dev->mc_list; unsigned char *addr; int i; rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ rcr |= SONIC_RCR_PRO; } else { if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) { rcr |= SONIC_RCR_AMC; } else { if (sonic_debug > 2) printk ("sonic_multicast_list: mc_count %d\n",dev->mc_count); lp->cda.cam_enable = 1; /* always enable our own address */ for (i = 1; i <= dev->mc_count; i++) { addr = dmi->dmi_addr; dmi = dmi->next; lp->cda.cam_desc[i].cam_frag2 = addr[1] << 8 | addr[0]; lp->cda.cam_desc[i].cam_frag1 = addr[3] << 8 | addr[2]; lp->cda.cam_desc[i].cam_frag0 = addr[5] << 8 | addr[4]; lp->cda.cam_enable |= (1 << i); } /* number of CAM entries to load */ SONIC_WRITE(SONIC_CDC,dev->mc_count+1); /* issue Load CAM command */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CMD,SONIC_CR_LCAM); } } if (sonic_debug > 2) printk("sonic_multicast_list: setting RCR=%x\n",rcr); SONIC_WRITE(SONIC_RCR,rcr); } /* * Initialize the SONIC ethernet controller. */ static int sonic_init(struct device *dev) { unsigned int base_addr = dev->base_addr; unsigned int cmd; struct sonic_local *lp = (struct sonic_local *)dev->priv; unsigned int rra_start; unsigned int rra_end; int i; /* * put the Sonic into software-reset mode and * disable all interrupts */ SONIC_WRITE(SONIC_ISR,0x7fff); SONIC_WRITE(SONIC_IMR,0); SONIC_WRITE(SONIC_CMD,SONIC_CR_RST); /* * write data config register */ SONIC_WRITE(SONIC_DCR, 0x2423); /* * clear software reset flag, disable receiver, clear and * enable interrupts, then completely initialize the SONIC */ SONIC_WRITE(SONIC_CMD,0); SONIC_WRITE(SONIC_CMD,SONIC_CR_RXDIS); /* * initialize the receive resource area */ if (sonic_debug > 2) printk ("sonic_init: initialize receive resource area\n"); rra_start = lp->rra_laddr & 0xffff; rra_end = (rra_start + (SONIC_NUM_RRS * sizeof(sonic_rr_t))) & 0xffff; for (i = 0; i < SONIC_NUM_RRS; i++) { lp->rra[i].rx_bufadr_l = (lp->rba_laddr + i * SONIC_RBSIZE) & 0xffff; lp->rra[i].rx_bufadr_h = (lp->rba_laddr + i * SONIC_RBSIZE) >> 16; lp->rra[i].rx_bufsize_l = SONIC_RBSIZE >> 1; lp->rra[i].rx_bufsize_h = 0; } /* initialize all RRA registers */ SONIC_WRITE(SONIC_RSA,rra_start); SONIC_WRITE(SONIC_REA,rra_end); SONIC_WRITE(SONIC_RRP,rra_start); SONIC_WRITE(SONIC_RWP,rra_end); SONIC_WRITE(SONIC_URRA,lp->rra_laddr >> 16); SONIC_WRITE(SONIC_EOBC,(SONIC_RBSIZE-2) >> 1); lp->cur_rra = SONIC_NUM_RRS - 2; /* load the resource pointers */ if (sonic_debug > 3) printk("sonic_init: issueing RRRA command\n"); SONIC_WRITE(SONIC_CMD,SONIC_CR_RRRA); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA) break; } if (sonic_debug > 2) printk("sonic_init: status=%x\n",SONIC_READ(SONIC_CMD)); /* * Initialize the receive descriptors so that they * become a circular linked list, ie. let the last * descriptor point to the first again. */ if (sonic_debug > 2) printk ("sonic_init: initialize receive descriptors\n"); for (i=0; irda[i].rx_status = 0; lp->rda[i].rx_pktlen = 0; lp->rda[i].rx_pktptr_l = 0; lp->rda[i].rx_pktptr_h = 0; lp->rda[i].rx_seqno = 0; lp->rda[i].in_use = 1; lp->rda[i].link = lp->rda_laddr + (i+1) * sizeof (sonic_rd_t); } /* fix last descriptor */ lp->rda[SONIC_NUM_RDS-1].link = lp->rda_laddr; lp->cur_rx = 0; SONIC_WRITE(SONIC_URDA,lp->rda_laddr >> 16); SONIC_WRITE(SONIC_CRDA,lp->rda_laddr & 0xffff); /* * initialize transmit descriptors */ if (sonic_debug > 2) printk ("sonic_init: initialize transmit descriptors\n"); for (i = 0; i < SONIC_NUM_TDS; i++) { lp->tda[i].tx_status = 0; lp->tda[i].tx_config = 0; lp->tda[i].tx_pktsize = 0; lp->tda[i].tx_frag_count = 0; lp->tda[i].link = (lp->tda_laddr + (i+1) * sizeof (sonic_td_t)) | SONIC_END_OF_LINKS; } lp->tda[SONIC_NUM_TDS-1].link = (lp->tda_laddr & 0xffff) | SONIC_END_OF_LINKS; SONIC_WRITE(SONIC_UTDA,lp->tda_laddr >> 16); SONIC_WRITE(SONIC_CTDA,lp->tda_laddr & 0xffff); /* * put our own address to CAM desc[0] */ lp->cda.cam_desc[0].cam_frag2 = dev->dev_addr[1] << 8 | dev->dev_addr[0]; lp->cda.cam_desc[0].cam_frag1 = dev->dev_addr[3] << 8 | dev->dev_addr[2]; lp->cda.cam_desc[0].cam_frag0 = dev->dev_addr[5] << 8 | dev->dev_addr[4]; lp->cda.cam_enable = 1; for (i=0; i < 16; i++) lp->cda.cam_desc[i].cam_entry_pointer = i; /* * initialize CAM registers */ SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); SONIC_WRITE(SONIC_CDC,1); /* * load the CAM */ SONIC_WRITE(SONIC_CMD,SONIC_CR_LCAM); i = 0; while (i++ < 100) { if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD) break; } if (sonic_debug > 2) { printk("sonic_init: CMD=%x, ISR=%x\n", SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR)); } /* * enable receiver, disable loopback * and enable all interrupts */ SONIC_WRITE(SONIC_CMD,SONIC_CR_RXEN | SONIC_CR_STP); SONIC_WRITE(SONIC_RCR,SONIC_RCR_DEFAULT); SONIC_WRITE(SONIC_TCR,SONIC_TCR_DEFAULT); SONIC_WRITE(SONIC_ISR,0x7fff); SONIC_WRITE(SONIC_IMR,SONIC_IMR_DEFAULT); cmd = SONIC_READ(SONIC_CMD); if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0) printk("sonic_init: failed, status=%x\n",cmd); if (sonic_debug > 2) printk("sonic_init: new status=%x\n",SONIC_READ(SONIC_CMD)); return(0); } /* * Local variables: * compile-command: "mipsel-linux-gcc -D__KERNEL__ -D__mips64 -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O2 -mcpu=r4000 -c sonic.c" * version-control: t * kept-new-versions: 5 * tab-width: 4 * End: */