/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ /* Written 1998-1999 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License (GPL), incorporated herein by reference. The author may be reached as becker@usra.edu, or Donald Becker 312 Severn Ave. #W302 Annapolis MD 21403 Support and updates available at http://cesdis.gsfc.nasa.gov/linux/drivers/starfire.html */ static const char *versionA = "starfire.c:v0.12 5/28/99 Written by Donald Becker\n", *versionB =" Undates and info at http://www.beowulf.org/linux/drivers.html\n"; /* A few user-configurable values. These may be modified when a driver module is loaded.*/ /* Used for tuning interrupt latency vs. overhead. */ static int interrupt_mitigation = 0x0; static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ static int max_interrupt_work = 20; static int min_pci_latency = 64; static int mtu = 0; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). The Starfire has a 512 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Used to pass the media type, etc. Both 'options[]' and 'full_duplex[]' exist for driver interoperability. The media type is usually passed in 'options[]'. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Operational parameters that are set at compile time. */ /* The "native" ring sizes are either 256 or 2048. However in some modes a descriptor may be marked to wrap the ring earlier. The driver allocates a single page for each descriptor ring, constraining the maximum size in an architecture-dependent way. */ #define RX_RING_SIZE 256 #define TX_RING_SIZE 32 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ #define DONE_Q_SIZE 1024 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (2*HZ) #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ #if !defined(__OPTIMIZE__) || !defined(__KERNEL__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif /* Include files, designed to support most kernel versions 2.0.0 and later. */ #include #ifdef MODULE #ifdef MODVERSIONS #include #endif #include #else #define MOD_INC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include /* Kernel compatibility defines, some common to David Hind's PCMCIA package. This is only in the support-all-kernels source code. */ #define RUN_AT(x) (jiffies + (x)) #ifdef MODULE MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(min_pci_latency, "i"); MODULE_PARM(mtu, "i"); MODULE_PARM(debug, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); #endif /* Theory of Operation I. Board Compatibility State the chips and boards this driver is known to work with. Note any similar chips or boards that will not work. This driver skeleton demonstrates the driver for an idealized descriptor-based bus-master PCI chip. II. Board-specific settings No jumpers exist on most PCI boards, so this section is usually empty. III. Driver operation IIIa. Ring buffers The Starfire hardware uses multiple fixed-size descriptor queues/rings. The ring sizes are set fixed by the hardware, but may optionally be wrapped earlier by the END bit in the descriptor. This driver uses that hardware queue size for the Rx ring, where a large number of entries has no ill effect beyond increases the potential backlog. The Tx ring is wrapped with the END bit, since a large hardware Tx queue disables the queue layer priority ordering and we have no mechanism to utilize the hardware two-level priority queue. When modifying the RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning levels. IIIb/c. Transmit/Receive Structure See the Adaptec manual for the many possible structures, and options for each structure. There are far too many to document here. For transmit this driver uses type 1 transmit descriptors, and relies on automatic minimum-length padding. It does not use the completion queue consumer index, but instead checks for non-zero status entries. For receive this driver uses type 0 receive descriptors. The driver allocates full frame size skbuffs for the Rx ring buffers, so all frames should fit in a single descriptor. The driver does not use the completion queue consumer index, but instead checks for non-zero status entries. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in a later phase of receive. A notable aspect of operation is that unaligned buffers are not permitted by the Starfire hardware. The IP header at offset 14 in an ethernet frame thus isn't longword aligned, which may cause problems on some machine e.g. Alphas. Copied frames are put into the skbuff at an offset of "+2", 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'lp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes IVb. References The Adaptec Starfire manuals. http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html IVc. Errata */ /* This table drives the PCI probe routines. It's mostly boilerplate in all PCI drivers, and will likely be provided by some future kernel. */ enum pci_flags_bit { PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3, }; struct pci_id_info { const char *name; u16 vendor_id, device_id, device_id_mask, flags; int io_size; struct net_device *(*probe1)(int pci_bus, int pci_devfn, long ioaddr, int irq, int chip_idx, int fnd_cnt); }; static struct net_device *starfire_probe1(int pci_bus, int pci_devfn, long ioaddr, int irq, int chp_idx, int fnd_cnt); #if 0 #define ADDR_64BITS 1 /* This chip uses 64 bit addresses. */ #endif #define MEM_ADDR_SZ 0x80000 /* And maps in 0.5MB(!). */ static struct pci_id_info pci_tbl[] = { { "Adaptec Starfire 6915", 0x9004, 0x6915, 0xffff, PCI_USES_MASTER, 128, starfire_probe1}, {0,}, /* 0 terminated list. */ }; /* A chip capabilities table, matching the entries in pci_tbl[] above. */ enum chip_capability_flags {CanHaveMII=1, }; struct chip_info { char *chip_name; int io_size; int flags; void (*media_timer)(unsigned long data); } static skel_netdrv_tbl[] = { {"Adaptec Starfire 6915", 128, CanHaveMII, 0, }, }; /* Offsets to the device registers. Unlike software-only systems, device drivers interact with complex hardware. It's not useful to define symbolic names for every register bit in the device. The name can only partially document the semantics and make the driver longer and more difficult to read. In general, only the important configuration values or bits changed multiple times should be defined symbolically. */ enum register_offsets { PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, MIICtrl=0x52000, StationAddr=0x50120, EEPROMCtrl=0x51000, TxDescCtrl=0x50090, TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ TxRingHiAddr=0x5009C, /* 64 bit address extension. */ TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, TxThreshold=0x500B0, CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, CompletionQConsumerIdx=0x500C4, RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, TxMode=0x55000, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrNormalSummary=0x8000, IntrAbnormalSummary=0x02000000, IntrRxDone=0x0300, IntrRxEmpty=0x10040, IntrRxPCIErr=0x80000, IntrTxDone=0x4000, IntrTxEmpty=0x1000, IntrTxPCIErr=0x80000, StatsMax=0x08000000, LinkChange=0xf0000000, IntrTxDataLow=0x00040000, }; /* Bits in the RxFilterMode register. */ enum rx_mode_bits { AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, AcceptMulticast=0x10, AcceptMyPhys=0xE040, }; /* The Rx and Tx buffer descriptors. */ struct starfire_rx_desc { u32 rxaddr; /* Optionally 64 bits. */ }; enum rx_desc_bits { RxDescValid=1, RxDescEndRing=2, }; /* Completion queue entry. You must update the page allocation, init_ring and the shift count in rx() if using a larger format. */ struct rx_done_desc { u32 status; /* Low 16 bits is length. */ #ifdef full_rx_status u32 status2; u16 vlanid; u16 csum; /* partial checksum */ u32 timestamp; #endif }; enum rx_done_bits { RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, }; /* Type 1 Tx descriptor. */ struct starfire_tx_desc { u32 status; /* Upper bits are status, lower 16 length. */ u32 addr; }; enum tx_desc_bits { TxDescID=0xB1010000, /* Also marks single fragment, add CRC. */ TxDescIntr=0x08000000, TxRingWrap=0x04000000, }; struct tx_done_report { u32 status; /* timestamp, index. */ #if 0 u32 intrstatus; /* interrupt status */ #endif }; struct netdev_private { /* Descriptor rings first for alignment. */ struct starfire_rx_desc *rx_ring; struct starfire_tx_desc *tx_ring; struct net_device *next_module; /* Link for devices of this type. */ const char *product_name; /* The addresses of rx/tx-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; /* Pointers to completion queues (full pages). I should cache line pad..*/ u8 pad0[100]; struct rx_done_desc *rx_done_q; unsigned int rx_done; struct tx_done_report *tx_done_q; unsigned int tx_done; struct net_device_stats stats; struct timer_list timer; /* Media monitoring timer. */ /* Frequently used values: keep some adjacent for cache effect. */ int chip_id; unsigned char pci_bus, pci_devfn; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int cur_tx, dirty_tx; unsigned int rx_buf_sz; /* Based on MTU+slack. */ unsigned int tx_full:1; /* The Tx queue is full. */ /* These values are keep track of the transceiver/media in use. */ unsigned int duplex_lock:1; unsigned int full_duplex:1, /* Full-duplex operation requested. */ rx_flowctrl:1, tx_flowctrl:1; /* Use 802.3x flow control. */ unsigned int medialock:1; /* Do not sense media. */ unsigned int default_port:4; /* Last dev->if_port value. */ u32 tx_mode; u8 tx_threshold; /* MII transceiver section. */ int mii_cnt; /* MII device addresses. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ u32 pad[4]; /* Used for 32-byte alignment */ }; static int mdio_read(struct net_device *dev, int phy_id, int location); static void mdio_write(struct net_device *dev, int phy_id, int location, int value); static int netdev_open(struct net_device *dev); static void check_duplex(struct net_device *dev, int startup); static void netdev_timer(unsigned long data); static void tx_timeout(struct net_device *dev); static void init_ring(struct net_device *dev); static int start_tx(struct sk_buff *skb, struct net_device *dev); static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs); static void netdev_error(struct net_device *dev, int intr_status); static int netdev_rx(struct net_device *dev); static void netdev_error(struct net_device *dev, int intr_status); static void set_rx_mode(struct net_device *dev); static struct net_device_stats *get_stats(struct net_device *dev); static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int netdev_close(struct net_device *dev); /* A list of our installed devices, for removing the driver module. */ static struct net_device *root_net_dev = NULL; /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well when dynamically adding drivers. So instead we detect just the cards we know about in slot order. */ static int pci_etherdev_probe(struct pci_id_info pci_tbl[]) { int cards_found = 0; int pci_index = 0; unsigned char pci_bus, pci_device_fn; struct net_device *dev; if ( ! pcibios_present()) return -ENODEV; for (;pci_index < 0xff; pci_index++) { u16 vendor, device, pci_command, new_command; int chip_idx, irq; long pciaddr; long ioaddr; if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) break; pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++) if (vendor == pci_tbl[chip_idx].vendor_id && (device & pci_tbl[chip_idx].device_id_mask) == pci_tbl[chip_idx].device_id) break; if (pci_tbl[chip_idx].vendor_id == 0) /* Compiled out! */ continue; { struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn); pciaddr = pdev->resource[0].start; #if defined(ADDR_64BITS) && defined(__alpha__) pciaddr |= ((long)pdev->base_address[1]) << 32; #endif irq = pdev->irq; } if (debug > 2) printk(KERN_INFO "Found %s at PCI address %#lx, IRQ %d.\n", pci_tbl[chip_idx].name, pciaddr, irq); if ((pci_tbl[chip_idx].flags & PCI_USES_IO)) { if (check_region(pciaddr, pci_tbl[chip_idx].io_size)) continue; ioaddr = pciaddr; } else if ((ioaddr = (long)ioremap(pciaddr&~0xf, MEM_ADDR_SZ)) == 0) { printk(KERN_INFO "Failed to map PCI address %#lx.\n", pciaddr); continue; } pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); new_command = pci_command | (pci_tbl[chip_idx].flags & 7); if (pci_command != new_command) { printk(KERN_INFO " The PCI BIOS has not enabled the" " device at %d/%d! Updating PCI command %4.4x->%4.4x.\n", pci_bus, pci_device_fn, pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } dev = pci_tbl[chip_idx].probe1(pci_bus, pci_device_fn, ioaddr, irq, chip_idx, cards_found); if (dev && (pci_tbl[chip_idx].flags & PCI_COMMAND_MASTER)) { u8 pci_latency; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < min_pci_latency) { printk(KERN_INFO " PCI latency timer (CFLT) is " "unreasonably low at %d. Setting to %d clocks.\n", pci_latency, min_pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, min_pci_latency); } } cards_found++; } return cards_found ? 0 : -ENODEV; } int starfire_probe(void) { if (pci_etherdev_probe(pci_tbl) < 0) return -ENODEV; printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB); return 0; } static struct net_device * starfire_probe1(int pci_bus, int pci_devfn, long ioaddr, int irq, int chip_id, int card_idx) { struct netdev_private *np; int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0; struct net_device *dev = init_etherdev(NULL, sizeof(struct netdev_private)); printk(KERN_INFO "%s: %s at 0x%lx, ", dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr); /* Serial EEPROM reads are hidden by the hardware. */ for (i = 0; i < 6; i++) dev->dev_addr[i] = readb(ioaddr + EEPROMCtrl + 20-i); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); #if ! defined(final_version) /* Dump the EEPROM contents during development. */ if (debug > 4) for (i = 0; i < 0x20; i++) printk("%2.2x%s", readb(ioaddr + EEPROMCtrl + i), i % 16 != 15 ? " " : "\n"); #endif /* Reset the chip to erase previous misconfiguration. */ writel(1, ioaddr + PCIDeviceConfig); dev->base_addr = ioaddr; dev->irq = irq; /* Make certain the descriptor lists are aligned. */ np = (void *)(((long)kmalloc(sizeof(*np), GFP_KERNEL) + 15) & ~15); memset(np, 0, sizeof(*np)); dev->priv = np; np->next_module = root_net_dev; root_net_dev = dev; np->pci_bus = pci_bus; np->pci_devfn = pci_devfn; np->chip_id = chip_id; if (dev->mem_start) option = dev->mem_start; /* The lower four bits are the media type. */ if (option > 0) { if (option & 0x200) np->full_duplex = 1; np->default_port = option & 15; if (np->default_port) np->medialock = 1; } if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) np->full_duplex = 1; if (np->full_duplex) np->duplex_lock = 1; /* The chip-specific entries in the device structure. */ dev->open = &netdev_open; dev->hard_start_xmit = &start_tx; dev->stop = &netdev_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; if (mtu) dev->mtu = mtu; if (skel_netdrv_tbl[np->chip_id].flags & CanHaveMII) { int phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(dev, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx++] = phy; np->advertising = mdio_read(dev, phy, 4); printk(KERN_INFO "%s: MII PHY found at address %d, status " "0x%4.4x advertising %4.4x.\n", dev->name, phy, mii_status, np->advertising); } } np->mii_cnt = phy_idx; } return dev; } /* Read the MII Management Data I/O (MDIO) interfaces. */ static int mdio_read(struct net_device *dev, int phy_id, int location) { long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2); int result, boguscnt=1000; /* ??? Must add a busy-wait here. */ do result = readl(mdio_addr); while ((result & 0xC0000000) != 0x80000000 && --boguscnt >= 0); return result & 0xffff; } static void mdio_write(struct net_device *dev, int phy_id, int location, int value) { long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2); writel(value, mdio_addr); /* The busy-wait will occur before a read. */ return; } static int netdev_open(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int i; /* Do we need to reset the chip??? */ if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) return -EAGAIN; /* Disable the Rx and Tx, and reset the chip. */ writel(0, ioaddr + GenCtrl); writel(1, ioaddr + PCIDeviceConfig); if (debug > 1) printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", dev->name, dev->irq); /* Allocate the various queues, failing gracefully. */ if (np->tx_done_q == 0) np->tx_done_q = (struct tx_done_report *)get_free_page(GFP_KERNEL); if (np->rx_done_q == 0) np->rx_done_q = (struct rx_done_desc *)get_free_page(GFP_KERNEL); if (np->tx_ring == 0) np->tx_ring = (struct starfire_tx_desc *)get_free_page(GFP_KERNEL); if (np->rx_ring == 0) np->rx_ring = (struct starfire_rx_desc *)get_free_page(GFP_KERNEL); if (np->tx_done_q == 0 || np->rx_done_q == 0 || np->rx_ring == 0 || np->tx_ring == 0) return -ENOMEM; MOD_INC_USE_COUNT; init_ring(dev); /* Set the size of the Rx buffers. */ writel((np->rx_buf_sz<<16) | 0xA000, ioaddr + RxDescQCtrl); /* Set Tx descriptor to type 1 and padding to 0 bytes. */ writel(0x02000401, ioaddr + TxDescCtrl); #if defined(ADDR_64BITS) && defined(__alpha__) writel(virt_to_bus(np->rx_ring) >> 32, ioaddr + RxDescQHiAddr); writel(virt_to_bus(np->tx_ring) >> 32, ioaddr + TxRingHiAddr); #else writel(0, ioaddr + RxDescQHiAddr); writel(0, ioaddr + TxRingHiAddr); writel(0, ioaddr + CompletionHiAddr); #endif writel(virt_to_bus(np->rx_ring), ioaddr + RxDescQAddr); writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr); writel(virt_to_bus(np->tx_done_q), ioaddr + TxCompletionAddr); writel(virt_to_bus(np->rx_done_q), ioaddr + RxCompletionAddr); if (debug > 1) printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); /* Fill both the unused Tx SA register and the Rx perfect filter. */ for (i = 0; i < 6; i++) writeb(dev->dev_addr[i], ioaddr + StationAddr + 6-i); for (i = 0; i < 16; i++) { u16 *eaddrs = (u16 *)dev->dev_addr; long setup_frm = ioaddr + 0x56000 + i*16; writew(eaddrs[0], setup_frm); setup_frm += 4; writew(eaddrs[1], setup_frm); setup_frm += 4; writew(eaddrs[2], setup_frm); setup_frm += 4; } /* Initialize other registers. */ /* Configure the PCI bus bursts and FIFO thresholds. */ np->tx_threshold = 4; writel(np->tx_threshold, ioaddr + TxThreshold); writel(interrupt_mitigation, ioaddr + IntrTimerCtrl); if (dev->if_port == 0) dev->if_port = np->default_port; dev->tbusy = 0; dev->interrupt = 0; if (debug > 1) printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); set_rx_mode(dev); check_duplex(dev, 1); dev->start = 1; /* Set the interrupt mask and enable PCI interrupts. */ writel(IntrRxDone | IntrRxEmpty | IntrRxPCIErr | IntrTxDone | IntrTxEmpty | IntrTxPCIErr | StatsMax | LinkChange | IntrNormalSummary | IntrAbnormalSummary | 0x0010 , ioaddr + IntrEnable); writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), ioaddr + PCIDeviceConfig); /* Enable the Rx and Tx units. */ writel(0x000F, ioaddr + GenCtrl); if (debug > 2) printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name); /* Set the timer to check for link beat. */ init_timer(&np->timer); np->timer.expires = RUN_AT(3*HZ); np->timer.data = (unsigned long)dev; np->timer.function = &netdev_timer; /* timer handler */ add_timer(&np->timer); return 0; } static void check_duplex(struct net_device *dev, int startup) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int mii_reg5 = mdio_read(dev, np->phys[0], 5); int duplex, new_tx_mode ; new_tx_mode = 0x0C04 | (np->tx_flowctrl ? 0x0800:0) | (np->rx_flowctrl ? 0x0400:0); if (np->duplex_lock) duplex = 1; else duplex = (mii_reg5 & 0x0100) || (mii_reg5 & 0x01C0) == 0x0040; if (duplex) new_tx_mode |= 2; if (np->full_duplex != duplex) { np->full_duplex = duplex; if (debug) printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link" " partner capability of %4.4x.\n", dev->name, duplex ? "full" : "half", np->phys[0], mii_reg5); } if (new_tx_mode != np->tx_mode) { np->tx_mode = new_tx_mode; writel(np->tx_mode | 0x8000, ioaddr + TxMode); writel(np->tx_mode, ioaddr + TxMode); } } static void netdev_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 60*HZ; /* Check before driver release. */ if (debug > 3) { printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x.\n", dev->name, readl(ioaddr + IntrStatus)); } check_duplex(dev, 0); #if ! defined(final_version) /* This is often falsely triggered. */ if (readl(ioaddr + IntrStatus) & 1) { int new_status = readl(ioaddr + IntrStatus); /* Bogus hardware IRQ: Fake an interrupt handler call. */ if (new_status & 1) { printk(KERN_ERR "%s: Interrupt blocked, status %8.8x/%8.8x.\n", dev->name, new_status, readl(ioaddr + IntrStatus)); intr_handler(dev->irq, dev, 0); } } #endif np->timer.expires = RUN_AT(next_tick); add_timer(&np->timer); } static void tx_timeout(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; printk(KERN_WARNING "%s: Transmit timed out, status %8.8x," " resetting...\n", dev->name, readl(ioaddr + IntrStatus)); #ifndef __alpha__ { int i; printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)le32_to_cpu(np->rx_ring[i].rxaddr)); printk("\n"KERN_DEBUG" Tx ring %p: ", np->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %4.4x", le32_to_cpu(np->tx_ring[i].status)); printk("\n"); } #endif /* Perhaps we should reinitialize the hardware here. */ dev->if_port = 0; /* Stop and restart the chip's Tx processes . */ /* Trigger an immediate transmit demand. */ dev->trans_start = jiffies; np->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void init_ring(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int i; np->tx_full = 0; np->cur_rx = np->cur_tx = 0; np->dirty_rx = np->rx_done = np->dirty_tx = np->tx_done = 0; np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); /* Fill in the Rx buffers. Handle allocation failure gracefully. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ /* Grrr, we cannot offset to correctly align the IP header. */ np->rx_ring[i].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid); } writew(i-1, dev->base_addr + RxDescQIdx); np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); /* Clear the remainder of the Rx buffer ring. */ for ( ; i < RX_RING_SIZE; i++) { np->rx_ring[i].rxaddr = 0; np->rx_skbuff[i] = 0; } /* Mark the last entry as wrapping the ring. */ np->rx_ring[i-1].rxaddr |= cpu_to_le32(RxDescEndRing); /* Clear the completion rings. */ for (i = 0; i < DONE_Q_SIZE; i++) { np->rx_done_q[i].status = 0; np->tx_done_q[i].status = 0; } for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = 0; np->tx_ring[i].status = 0; } return; } static int start_tx(struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; unsigned entry; /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { if (jiffies - dev->trans_start < TX_TIMEOUT) return 1; tx_timeout(dev); return 1; } /* Caution: the write order is important here, set the field with the "ownership" bits last. */ /* Calculate the next Tx descriptor entry. */ entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; np->tx_ring[entry].addr = cpu_to_le32(virt_to_bus(skb->data)); /* Add |TxDescIntr to generate Tx-done interrupts. */ np->tx_ring[entry].status = cpu_to_le32(skb->len | TxDescID); if (debug > 5) { printk(KERN_DEBUG "%s: Tx #%d slot %d %8.8x %8.8x.\n", dev->name, np->cur_tx, entry, le32_to_cpu(np->tx_ring[entry].status), le32_to_cpu(np->tx_ring[entry].addr)); } np->cur_tx++; #if 1 if (entry >= TX_RING_SIZE-1) { /* Wrap ring */ np->tx_ring[entry].status |= cpu_to_le32(TxRingWrap | TxDescIntr); entry = -1; } #endif /* Non-x86: explicitly flush descriptor cache lines here. */ /* Update the producer index. */ writel(++entry, dev->base_addr + TxProducerIdx); if (np->cur_tx - np->dirty_tx >= TX_RING_SIZE - 1) np->tx_full = 1; if (! np->tx_full) clear_bit(0, (void*)&dev->tbusy); dev->trans_start = jiffies; if (debug > 4) { printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", dev->name, np->cur_tx, entry); } return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) { struct net_device *dev = (struct net_device *)dev_instance; struct netdev_private *np; long ioaddr, boguscnt = max_interrupt_work; #ifndef final_version /* Can never occur. */ if (dev == NULL) { printk (KERN_ERR "Netdev interrupt handler(): IRQ %d for unknown " "device.\n", irq); return; } #endif ioaddr = dev->base_addr; np = (struct netdev_private *)dev->priv; #if defined(__i386__) /* A lock to prevent simultaneous entry bug on Intel SMP machines. */ if (test_and_set_bit(0, (void*)&dev->interrupt)) { printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", dev->name); dev->interrupt = 0; /* Avoid halting machine. */ return; } #else if (dev->interrupt) { printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name); return; } dev->interrupt = 1; #endif do { u32 intr_status = readl(ioaddr + IntrClear); if (debug > 4) printk(KERN_DEBUG "%s: Interrupt status %4.4x.\n", dev->name, intr_status); if (intr_status == 0) break; if (intr_status & IntrRxDone) netdev_rx(dev); /* Scavenge the skbuff list based on the Tx-done queue. There are redundant checks here that may be cleaned up when after the driver has proven reliable. */ { int consumer = readl(ioaddr + TxConsumerIdx); int tx_status; if (debug > 4) printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", dev->name, consumer); #if 0 if (np->tx_done >= 250 || np->tx_done == 0) printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x, " "%d is %8.8x.\n", dev->name, np->tx_done, le32_to_cpu(np->tx_done_q[np->tx_done].status), (np->tx_done+1) & (DONE_Q_SIZE-1), le32_to_cpu(np->tx_done_q[(np->tx_done+1)&(DONE_Q_SIZE-1)].status)); #endif while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { if (debug > 4) printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x.\n", dev->name, np->tx_done, tx_status); if ((tx_status & 0xe0000000) == 0xa0000000) { np->stats.tx_packets++; } else if ((tx_status & 0xe0000000) == 0x80000000) { u16 entry = tx_status; /* Implicit truncate */ entry >>= 3; /* Scavenge the descriptor. */ dev_kfree_skb(np->tx_skbuff[entry]); np->tx_skbuff[entry] = 0; np->dirty_tx++; } np->tx_done_q[np->tx_done].status = 0; np->tx_done = (np->tx_done+1) & (DONE_Q_SIZE-1); } writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); } if (np->tx_full && np->cur_tx - np->dirty_tx < TX_RING_SIZE - 4) { /* The ring is no longer full, clear tbusy. */ np->tx_full = 0; clear_bit(0, (void*)&dev->tbusy); mark_bh(NET_BH); } /* Abnormal error summary/uncommon events handlers. */ if (intr_status & IntrAbnormalSummary) netdev_error(dev, intr_status); if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "status=0x%4.4x.\n", dev->name, intr_status); break; } } while (1); if (debug > 4) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, readl(ioaddr + IntrStatus)); #ifndef final_version /* Code that should never be run! Remove after testing.. */ { static int stopit = 10; if (dev->start == 0 && --stopit < 0) { printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n", dev->name); free_irq(irq, dev); } } #endif #if defined(__i386__) clear_bit(0, (void*)&dev->interrupt); #else dev->interrupt = 0; #endif return; } /* This routine is logically part of the interrupt handler, but seperated for clarity and better register allocation. */ static int netdev_rx(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; u32 desc_status; if (np->rx_done_q == 0) { printk(KERN_ERR "%s: rx_done_q is NULL! rx_done is %d. %p.\n", dev->name, np->rx_done, np->tx_done_q); return 0; } /* If EOP is set on the next entry, it's a new packet. Send it up. */ while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { if (debug > 4) printk(KERN_DEBUG " netdev_rx() status of %d was %8.8x.\n", np->rx_done, desc_status); if (--boguscnt < 0) break; if (! (desc_status & RxOK)) { /* There was a error. */ if (debug > 2) printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", desc_status); np->stats.rx_errors++; if (desc_status & RxFIFOErr) np->stats.rx_fifo_errors++; } else { struct sk_buff *skb; u16 pkt_len = desc_status; /* Implicitly Truncate */ int entry = (desc_status >> 16) & 0x7ff; #ifndef final_version if (debug > 4) printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" ", bogus_cnt %d.\n", pkt_len, boguscnt); #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ #if HAS_IP_COPYSUM /* Call copy + cksum if available. */ eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail, pkt_len); #endif } else { char *temp = skb_put(skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; #ifndef final_version /* Remove after testing. */ if (bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr) & ~3) != temp) printk(KERN_ERR "%s: Internal fault: The skbuff addresses " "do not match in netdev_rx: %p vs. %p / %p.\n", dev->name, bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr)), skb->head, temp); #endif } #ifndef final_version /* Remove after testing. */ /* You will want this info for the initial debug. */ if (debug > 5) printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:" "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x " "%d.%d.%d.%d.\n", skb->data[0], skb->data[1], skb->data[2], skb->data[3], skb->data[4], skb->data[5], skb->data[6], skb->data[7], skb->data[8], skb->data[9], skb->data[10], skb->data[11], skb->data[12], skb->data[13], skb->data[14], skb->data[15], skb->data[16], skb->data[17]); #endif skb->protocol = eth_type_trans(skb, dev); #ifdef full_rx_status if (le32_to_cpu(np->rx_done_q[np->rx_done].status2) & 0x01000000) skb->ip_summed = CHECKSUM_UNNECESSARY; #endif netif_rx(skb); dev->last_rx = jiffies; np->stats.rx_packets++; } np->cur_rx++; np->rx_done_q[np->rx_done].status = 0; np->rx_done = (np->rx_done + 1) & (DONE_Q_SIZE-1); } writew(np->rx_done, dev->base_addr + CompletionQConsumerIdx); /* Refill the Rx ring buffers. */ for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { struct sk_buff *skb; int entry = np->dirty_rx % RX_RING_SIZE; if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ np->rx_ring[entry].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid); } if (entry == RX_RING_SIZE - 1) np->rx_ring[entry].rxaddr |= cpu_to_le32(RxDescEndRing); /* We could defer this until later... */ writew(entry, dev->base_addr + RxDescQIdx); } if (debug > 5 || memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1)) printk(KERN_DEBUG " exiting netdev_rx() status of %d was %8.8x %d.\n", np->rx_done, desc_status, memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1)); /* Restart Rx engine if stopped. */ return 0; } static void netdev_error(struct net_device *dev, int intr_status) { struct netdev_private *np = (struct netdev_private *)dev->priv; if (intr_status & LinkChange) { printk(KERN_ERR "%s: Link changed: Autonegotiation advertising" " %4.4x partner %4.4x.\n", dev->name, mdio_read(dev, np->phys[0], 4), mdio_read(dev, np->phys[0], 5)); check_duplex(dev, 0); } if (intr_status & StatsMax) { get_stats(dev); } /* Came close to underrunning the Tx FIFO, increase threshold. */ if (intr_status & IntrTxDataLow) writel(++np->tx_threshold, dev->base_addr + TxThreshold); if ((intr_status & ~(IntrAbnormalSummary|LinkChange|StatsMax|IntrTxDataLow|1)) && debug) printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* Hmmmmm, it's not clear how to recover from PCI faults. */ if (intr_status & IntrTxPCIErr) np->stats.tx_fifo_errors++; if (intr_status & IntrRxPCIErr) np->stats.rx_fifo_errors++; } static struct enet_statistics *get_stats(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; /* We should lock this segment of code for SMP eventually, although the vulnerability window is very small and statistics are non-critical. */ #if LINUX_VERSION_CODE > 0x20119 np->stats.tx_bytes = readl(ioaddr + 0x57010); np->stats.rx_bytes = readl(ioaddr + 0x57044); #endif np->stats.tx_packets = readl(ioaddr + 0x57000); np->stats.tx_aborted_errors = readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); np->stats.tx_window_errors = readl(ioaddr + 0x57018); np->stats.collisions = readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); /* The chip only need report frame silently dropped. */ np->stats.rx_dropped += readw(ioaddr + RxDMAStatus); writew(0, ioaddr + RxDMAStatus); np->stats.rx_crc_errors = readl(ioaddr + 0x5703C); np->stats.rx_frame_errors = readl(ioaddr + 0x57040); np->stats.rx_length_errors = readl(ioaddr + 0x57058); np->stats.rx_missed_errors = readl(ioaddr + 0x5707C); return &np->stats; } /* The little-endian AUTODIN II ethernet CRC calculations. A big-endian version is also available. This is slow but compact code. Do not use this routine for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c. Chips may use the upper or lower CRC bits, and may reverse and/or invert them. Select the endian-ness that results in minimal calculations. */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline unsigned ether_crc_le(int length, unsigned char *data) { unsigned int crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static void set_rx_mode(struct net_device *dev) { long ioaddr = dev->base_addr; u32 rx_mode; struct dev_mc_list *mclist; int i; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptAll|AcceptMyPhys; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to match, or accept all multicasts. */ rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptMyPhys; } else if (dev->mc_count <= 15) { /* Use the 16 element perfect filter. */ long filter_addr = ioaddr + 0x56000 + 1*16; for (i = 1, mclist = dev->mc_list; mclist && i <= dev->mc_count; i++, mclist = mclist->next) { u16 *eaddrs = (u16 *)mclist->dmi_addr; writew(*eaddrs++, filter_addr); filter_addr += 4; writew(*eaddrs++, filter_addr); filter_addr += 4; writew(*eaddrs++, filter_addr); filter_addr += 8; } while (i++ < 16) { writew(0xffff, filter_addr); filter_addr += 4; writew(0xffff, filter_addr); filter_addr += 4; writew(0xffff, filter_addr); filter_addr += 8; } rx_mode = AcceptBroadcast | AcceptMyPhys; } else { /* Must use a multicast hash table. */ long filter_addr; u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ memset(mc_filter, 0, sizeof(mc_filter)); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23, mc_filter); } /* Clear the perfect filter list. */ filter_addr = ioaddr + 0x56000 + 1*16; for (i = 1; i < 16; i++) { writew(0xffff, filter_addr); filter_addr += 4; writew(0xffff, filter_addr); filter_addr += 4; writew(0xffff, filter_addr); filter_addr += 8; } for (filter_addr=ioaddr + 0x56100, i=0; i < 32; filter_addr+= 16, i++) writew(mc_filter[i], filter_addr); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; } writel(rx_mode|AcceptAll, ioaddr + RxFilterMode); } static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { u16 *data = (u16 *)&rq->ifr_data; switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f; /* Fall Through */ case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f); return 0; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]); return 0; default: return -EOPNOTSUPP; } } static int netdev_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; int i; dev->start = 0; dev->tbusy = 1; if (debug > 1) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was Int %4.4x.\n", dev->name, readl(ioaddr + IntrStatus)); printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); } /* Disable interrupts by clearing the interrupt mask. */ writel(0, ioaddr + IntrEnable); /* Stop the chip's Tx and Rx processes. */ del_timer(&np->timer); #ifdef __i386__ if (debug > 2) { printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n", (int)virt_to_bus(np->tx_ring)); for (i = 0; i < 8 /* TX_RING_SIZE */; i++) printk(KERN_DEBUG " #%d desc. %8.8x %8.8x -> %8.8x.\n", i, le32_to_cpu(np->tx_ring[i].status), le32_to_cpu(np->tx_ring[i].addr), le32_to_cpu(np->tx_done_q[i].status)); printk(KERN_DEBUG " Rx ring at %8.8x -> %p:\n", (int)virt_to_bus(np->rx_ring), np->rx_done_q); if (np->rx_done_q) for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { printk(KERN_DEBUG " #%d desc. %8.8x -> %8.8x\n", i, le32_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); } } #endif /* __i386__ debugging only */ free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].rxaddr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ if (np->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 np->rx_skbuff[i]->free = 1; #endif dev_kfree_skb(np->rx_skbuff[i]); } np->rx_skbuff[i] = 0; } for (i = 0; i < TX_RING_SIZE; i++) { if (np->tx_skbuff[i]) dev_kfree_skb(np->tx_skbuff[i]); np->tx_skbuff[i] = 0; } MOD_DEC_USE_COUNT; return 0; } #ifdef MODULE int init_module(void) { if (debug) /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB); #ifdef CARDBUS register_driver(ðerdev_ops); return 0; #else if (pci_etherdev_probe(pci_tbl)) { printk(KERN_INFO " No Starfire adapters detected, driver not loaded.\n"); return -ENODEV; } return 0; #endif } void cleanup_module(void) { struct net_device *next_dev; #ifdef CARDBUS unregister_driver(ðerdev_ops); #endif /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_net_dev) { struct netdev_private *np = (struct netdev_private *)root_net_dev->priv; next_dev = np->next_module; unregister_netdev(root_net_dev); iounmap((char *)root_net_dev->base_addr); if (np->tx_done_q) free_page((long)np->tx_done_q); if (np->rx_done_q) free_page((long)np->rx_done_q); kfree(root_net_dev); root_net_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * simple-compile-command: "gcc -DMODULE -D__KERNEL__ -O6 -c starfire.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */