/* * Copyright 1996 The Board of Trustees of The Leland Stanford * Junior University. All Rights Reserved. * * Permission to use, copy, modify, and distribute this * software and its documentation for any purpose and without * fee is hereby granted, provided that the above copyright * notice appear in all copies. Stanford University * makes no representations about the suitability of this * software for any purpose. It is provided "as is" without * express or implied warranty. * * strip.c This module implements Starmode Radio IP (STRIP) * for kernel-based devices like TTY. It interfaces between a * raw TTY, and the kernel's INET protocol layers (via DDI). * * Version: @(#)strip.c 0.9.8 June 1996 * * Author: Stuart Cheshire * * Fixes: v0.9 12th Feb 1996. * New byte stuffing (2+6 run-length encoding) * New watchdog timer task * New Protocol key (SIP0) * * v0.9.1 3rd March 1996 * Changed to dynamic device allocation -- no more compile * time (or boot time) limit on the number of STRIP devices. * * v0.9.2 13th March 1996 * Uses arp cache lookups (but doesn't send arp packets yet) * * v0.9.3 17th April 1996 * Fixed bug where STR_ERROR flag was getting set unneccessarily * * v0.9.4 27th April 1996 * First attempt at using "&COMMAND" Starmode AT commands * * v0.9.5 29th May 1996 * First attempt at sending (unicast) ARP packets * * v0.9.6 5th June 1996 * Elliot put "message level" tags in every "printk" statement * * v0.9.7 13th June 1996 * Added support for the /proc fs (laik) * * v0.9.8 July 1996 * Added packet logging (Mema) */ /* * Undefine this symbol if you don't have PROC_NET_STRIP_STATUS * defined in include/linux/proc_fs.h */ #define DO_PROC_NET_STRIP_STATUS 1 /* * Define this symbol if you want to enable STRIP packet tracing. */ #define DO_PROC_NET_STRIP_TRACE 0 /************************************************************************/ /* Header files */ #include #ifdef MODULE #include #include #endif #include #include #include #include /* * isdigit() and isspace() use the ctype[] array, which is not available * to kernel modules. If compiling as a module, use a local definition * of isdigit() and isspace() until _ctype is added to ksyms. */ #ifdef MODULE # define isdigit(c) ('0' <= (c) && (c) <= '9') # define isspace(c) ((c) == ' ' || (c) == '\t') #else # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_INET #include #include #include #endif /************************************************************************/ /* Useful structures and definitions */ /* * A MetricomKey identifies the protocol being carried inside a Metricom * Starmode packet. */ typedef union { __u8 c[4]; __u32 l; } MetricomKey; /* * An IP address can be viewed as four bytes in memory (which is what it is) or as * a single 32-bit long (which is convenient for assignment, equality testing etc.) */ typedef union { __u8 b[4]; __u32 l; } IPaddr; /* * A MetricomAddressString is used to hold a printable representation of * a Metricom address. */ typedef struct { __u8 c[24]; } MetricomAddressString; /* * Note: A Metricom packet looks like this: *
* * eg. *0000-1234*SIP0 * A STRIP_Header is never really sent over the radio, but making a dummy header * for internal use within the kernel that looks like an Ethernet header makes * certain other software happier. For example, tcpdump already understands * Ethernet headers. */ typedef struct { MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */ MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */ unsigned short protocol; /* The protocol type, using Ethernet codes */ } STRIP_Header; typedef struct GeographicLocation { char s[18]; } GeographicLocation; typedef enum { NodeValid = 0x1, NodeHasWAN = 0x2, NodeIsRouter = 0x4 } NodeType; typedef struct MetricomNode { NodeType type; /* Some flags about the type of node */ GeographicLocation gl; /* The location of the node. */ MetricomAddress addr; /* The metricom address of this node */ int poll_latency; /* The latency to poll that node ? */ int rssi; /* The Receiver Signal Strength Indicator */ struct MetricomNode *next; /* The next node */ } MetricomNode; enum { FALSE = 0, TRUE = 1 }; /* * Holds the packet signature for an IP packet. */ typedef struct { IPaddr src; /* Data is stored in the following field in network byte order. */ __u16 id; } IPSignature; /* * Holds the packet signature for an ARP packet. */ typedef struct { IPaddr src; /* Data is stored in the following field in network byte order. */ __u16 op; } ARPSignature; /* * Holds the signature of a packet. */ typedef union { IPSignature ip_sig; ARPSignature arp_sig; __u8 print_sig[6]; } PacketSignature; typedef enum { EntrySend = 0, EntryReceive = 1 } LogEntry; /* Structure for Packet Logging */ typedef struct stripLog { LogEntry entry_type; u_long seqNum; int packet_type; PacketSignature sig; MetricomAddress src; MetricomAddress dest; struct timeval timeStamp; u_long rawSize; u_long stripSize; u_long slipSize; u_long valid; } StripLog; #define ENTRY_TYPE_TO_STRING(X) ((X) ? "r" : "s") #define BOOLEAN_TO_STRING(X) ((X) ? "true" : "false") /* * Holds the radio's firmware version. */ typedef struct { char c[50]; } MetricomFirmwareVersion; /* * Holds the radio's serial number. */ typedef struct { char c[18]; } MetricomSerialNumber; /* * Holds the radio's battery voltage. */ typedef struct { char c[11]; } MetricomBatteryVoltage; struct strip { int magic; /* * These are pointers to the malloc()ed frame buffers. */ unsigned char *rx_buff; /* buffer for received IP packet*/ unsigned char *sx_buff; /* buffer for received serial data*/ int sx_count; /* received serial data counter */ int sx_size; /* Serial buffer size */ unsigned char *tx_buff; /* transmitter buffer */ unsigned char *tx_head; /* pointer to next byte to XMIT */ int tx_left; /* bytes left in XMIT queue */ int tx_size; /* Serial buffer size */ /* * STRIP interface statistics. */ unsigned long rx_packets; /* inbound frames counter */ unsigned long tx_packets; /* outbound frames counter */ unsigned long rx_errors; /* Parity, etc. errors */ unsigned long tx_errors; /* Planned stuff */ unsigned long rx_dropped; /* No memory for skb */ unsigned long tx_dropped; /* When MTU change */ unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */ /* * Internal variables. */ struct strip *next; /* The next struct in the list */ struct strip **referrer; /* The pointer that points to us*/ int discard; /* Set if serial error */ int working; /* Is radio working correctly? */ int structured_messages; /* Parsable AT response msgs? */ int mtu; /* Our mtu (to spot changes!) */ long watchdog_doprobe; /* Next time to test the radio */ long watchdog_doreset; /* Time to do next reset */ long gratuitous_arp; /* Time to send next ARP refresh*/ long arp_interval; /* Next ARP interval */ struct timer_list idle_timer; /* For periodic wakeup calls */ MetricomNode *neighbor_list; /* The list of neighbor nodes */ int neighbor_list_locked; /* Indicates the list is locked */ MetricomFirmwareVersion firmware_version; /* The radio's firmware version */ MetricomSerialNumber serial_number; /* The radio's serial number */ MetricomBatteryVoltage battery_voltage; /* The radio's battery voltage */ /* * Other useful structures. */ struct tty_struct *tty; /* ptr to TTY structure */ char if_name[8]; /* Dynamically generated name */ struct device dev; /* Our device structure */ /* * Packet Logging Structures. */ u_long num_sent; u_long num_received; int next_entry; /* The index of the oldest packet; */ /* Also the next to be logged. */ StripLog packetLog[610]; }; /************************************************************************/ /* Constants */ #ifdef MODULE static const char StripVersion[] = "0.9.8-STUART.CHESHIRE-MODULAR"; #else static const char StripVersion[] = "0.9.8-STUART.CHESHIRE"; #endif static const char TickleString1[] = "***&COMMAND*ATS305?\r"; static const char TickleString2[] = "***&COMMAND*ATS305?\r\r" "*&COMMAND*ATS300?\r\r*&COMMAND*ATS325?\r\r*&COMMAND*AT~I2 nn\r\r"; static const char hextable[16] = "0123456789ABCDEF"; static const MetricomAddress zero_address; static const MetricomAddress broadcast_address = { { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } }; static const MetricomKey SIP0Key = { { "SIP0" } }; static const MetricomKey ARP0Key = { { "ARP0" } }; static const MetricomKey ERR_Key = { { "ERR_" } }; static const MetricomKey ATR_Key = { { "ATR " } }; static const long MaxARPInterval = 60 * HZ; /* One minute */ /* * Maximum Starmode packet length (including starmode address) is 1183 bytes. * Allowing 32 bytes for header, and 65/64 expansion for STRIP encoding, * that translates to a maximum payload MTU of 1132. */ static const unsigned short MAX_STRIP_MTU = 1132; static const unsigned short DEFAULT_STRIP_MTU = 1024; static const int STRIP_MAGIC = 0x5303; static const long LongTime = 0x7FFFFFFF; static const int STRIP_NODE_LEN = 64; static const char STRIP_PORTABLE_CHAR = 'P'; static const char STRIP_ROUTER_CHAR = 'r'; static const int STRIP_PROC_BUFFER_SIZE = 4096; static const int STRIP_LOG_INT_SIZE = 10; /************************************************************************/ /* Global variables */ static struct strip *struct_strip_list = NULL; /************************************************************************/ /* Macros */ #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \ (X)>='a' && (X)<='f' ? (X)-'a'+10 : \ (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 ) #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0) #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) #define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) #define ELEMENTS_OF(X) (sizeof(X) / sizeof((X)[0])) #define ARRAY_END(X) (&((X)[ELEMENTS_OF(X)])) /* Encapsulation can expand packet of size x to 65/64x + 1 */ /* Sent packet looks like "*
*" */ /* 1 1-18 1 4 ? 1 */ /* We allow 31 bytes for the stars, the key, the address and the */ #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L) #define IS_RADIO_ADDRESS(p) ( \ isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \ (p)[4] == '-' && \ isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) ) #define JIFFIE_TO_SEC(X) ((X) / HZ) /************************************************************************/ /* Utility routines */ typedef unsigned long InterruptStatus; extern __inline__ InterruptStatus DisableInterrupts(void) { InterruptStatus x; save_flags(x); cli(); return(x); } extern __inline__ void RestoreInterrupts(InterruptStatus x) { restore_flags(x); } static void DumpData(char *msg, struct strip *strip_info, __u8 *ptr, __u8 *end) { static const int MAX_DumpData = 80; __u8 pkt_text[MAX_DumpData], *p = pkt_text; *p++ = '\"'; while (ptr= 32 && *ptr <= 126) { *p++ = *ptr; } else { sprintf(p, "\\%02X", *ptr); p+= 3; } } ptr++; } if (ptr == end) { *p++ = '\"'; } *p++ = 0; printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev.name, msg, pkt_text); } #if 0 static void HexDump(char *msg, struct strip *strip_info, __u8 *start, __u8 *end) { __u8 *ptr = start; printk(KERN_INFO "%s: %s: %d bytes\n", strip_info->dev.name, msg, end-ptr); while (ptr < end) { long offset = ptr - start; __u8 text[80], *p = text; while (ptr < end && p < &text[16*3]) { *p++ = hextable[*ptr >> 4]; *p++ = hextable[*ptr++ & 0xF]; *p++ = ' '; } p[-1] = 0; printk(KERN_INFO "%s: %4lX %s\n", strip_info->dev.name, offset, text); } } #endif /************************************************************************/ /* Byte stuffing/unstuffing routines */ /* Stuffing scheme: * 00 Unused (reserved character) * 01-3F Run of 2-64 different characters * 40-7F Run of 1-64 different characters plus a single zero at the end * 80-BF Run of 1-64 of the same character * C0-FF Run of 1-64 zeroes (ASCII 0) */ typedef enum { Stuff_Diff = 0x00, Stuff_DiffZero = 0x40, Stuff_Same = 0x80, Stuff_Zero = 0xC0, Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */ Stuff_CodeMask = 0xC0, Stuff_CountMask = 0x3F, Stuff_MaxCount = 0x3F, Stuff_Magic = 0x0D /* The value we are eliminating */ } StuffingCode; /* StuffData encodes the data starting at "src" for "length" bytes. * It writes it to the buffer pointed to by "dst" (which must be at least * as long as 1 + 65/64 of the input length). The output may be up to 1.6% * larger than the input for pathological input, but will usually be smaller. * StuffData returns the new value of the dst pointer as its result. * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state * between calls, allowing an encoded packet to be incrementally built up * from small parts. On the first call, the "__u8 *" pointed to should be * initialized to NULL; between subsequent calls the calling routine should * leave the value alone and simply pass it back unchanged so that the * encoder can recover its current state. */ #define StuffData_FinishBlock(X) \ (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode) static __u8 *StuffData(__u8 *src, __u32 length, __u8 *dst, __u8 **code_ptr_ptr) { __u8 *end = src + length; __u8 *code_ptr = *code_ptr_ptr; __u8 code = Stuff_NoCode, count = 0; if (!length) return(dst); if (code_ptr) { /* * Recover state from last call, if applicable */ code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask; count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask; } while (src < end) { switch (code) { /* Stuff_NoCode: If no current code, select one */ case Stuff_NoCode: /* Record where we're going to put this code */ code_ptr = dst++; count = 0; /* Reset the count (zero means one instance) */ /* Tentatively start a new block */ if (*src == 0) { code = Stuff_Zero; src++; } else { code = Stuff_Same; *dst++ = *src++ ^ Stuff_Magic; } /* Note: We optimistically assume run of same -- */ /* which will be fixed later in Stuff_Same */ /* if it turns out not to be true. */ break; /* Stuff_Zero: We already have at least one zero encoded */ case Stuff_Zero: /* If another zero, count it, else finish this code block */ if (*src == 0) { count++; src++; } else { StuffData_FinishBlock(Stuff_Zero + count); } break; /* Stuff_Same: We already have at least one byte encoded */ case Stuff_Same: /* If another one the same, count it */ if ((*src ^ Stuff_Magic) == code_ptr[1]) { count++; src++; break; } /* else, this byte does not match this block. */ /* If we already have two or more bytes encoded, finish this code block */ if (count) { StuffData_FinishBlock(Stuff_Same + count); break; } /* else, we only have one so far, so switch to Stuff_Diff code */ code = Stuff_Diff; /* and fall through to Stuff_Diff case below */ /* Stuff_Diff: We have at least two *different* bytes encoded */ case Stuff_Diff: /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */ if (*src == 0) { StuffData_FinishBlock(Stuff_DiffZero + count); } /* else, if we have three in a row, it is worth starting a Stuff_Same block */ else if ((*src ^ Stuff_Magic)==dst[-1] && dst[-1]==dst[-2]) { /* Back off the last two characters we encoded */ code += count-2; /* Note: "Stuff_Diff + 0" is an illegal code */ if (code == Stuff_Diff + 0) { code = Stuff_Same + 0; } StuffData_FinishBlock(code); code_ptr = dst-2; /* dst[-1] already holds the correct value */ count = 2; /* 2 means three bytes encoded */ code = Stuff_Same; } /* else, another different byte, so add it to the block */ else { *dst++ = *src ^ Stuff_Magic; count++; } src++; /* Consume the byte */ break; } if (count == Stuff_MaxCount) { StuffData_FinishBlock(code + count); } } if (code == Stuff_NoCode) { *code_ptr_ptr = NULL; } else { *code_ptr_ptr = code_ptr; StuffData_FinishBlock(code + count); } return(dst); } /* * UnStuffData decodes the data at "src", up to (but not including) "end". * It writes the decoded data into the buffer pointed to by "dst", up to a * maximum of "dst_length", and returns the new value of "src" so that a * follow-on call can read more data, continuing from where the first left off. * * There are three types of results: * 1. The source data runs out before extracting "dst_length" bytes: * UnStuffData returns NULL to indicate failure. * 2. The source data produces exactly "dst_length" bytes: * UnStuffData returns new_src = end to indicate that all bytes were consumed. * 3. "dst_length" bytes are extracted, with more remaining. * UnStuffData returns new_src < end to indicate that there are more bytes * to be read. * * Note: The decoding may be destructive, in that it may alter the source * data in the process of decoding it (this is necessary to allow a follow-on * call to resume correctly). */ static __u8 *UnStuffData(__u8 *src, __u8 *end, __u8 *dst, __u32 dst_length) { __u8 *dst_end = dst + dst_length; /* Sanity check */ if (!src || !end || !dst || !dst_length) return(NULL); while (src < end && dst < dst_end) { int count = (*src ^ Stuff_Magic) & Stuff_CountMask; switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) { case Stuff_Diff: if (src+1+count >= end) return(NULL); do { *dst++ = *++src ^ Stuff_Magic; } while(--count >= 0 && dst < dst_end); if (count < 0) src += 1; else { if (count == 0) *src = Stuff_Same ^ Stuff_Magic; else *src = (Stuff_Diff + count) ^ Stuff_Magic; } break; case Stuff_DiffZero: if (src+1+count >= end) return(NULL); do { *dst++ = *++src ^ Stuff_Magic; } while(--count >= 0 && dst < dst_end); if (count < 0) *src = Stuff_Zero ^ Stuff_Magic; else *src = (Stuff_DiffZero + count) ^ Stuff_Magic; break; case Stuff_Same: if (src+1 >= end) return(NULL); do { *dst++ = src[1] ^ Stuff_Magic; } while(--count >= 0 && dst < dst_end); if (count < 0) src += 2; else *src = (Stuff_Same + count) ^ Stuff_Magic; break; case Stuff_Zero: do { *dst++ = 0; } while(--count >= 0 && dst < dst_end); if (count < 0) src += 1; else *src = (Stuff_Zero + count) ^ Stuff_Magic; break; } } if (dst < dst_end) return(NULL); else return(src); } /************************************************************************/ /* General routines for STRIP */ /* * Convert a string to a Metricom Address. */ static void string_to_radio_address(MetricomAddress *addr, __u8 *p) { addr->c[0] = 0; addr->c[1] = 0; addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]); addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]); addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]); addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]); } /* * Convert a Metricom Address to a string. */ static __u8 *radio_address_to_string(const MetricomAddress *addr, MetricomAddressString *p) { sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], addr->c[4], addr->c[5]); return(p->c); } /* * Note: Must make sure sx_size is big enough to receive a stuffed * MAX_STRIP_MTU packet. Additionally, we also want to ensure that it's * big enough to receive a large radio neighbour list (currently 4K). */ static int allocate_buffers(struct strip *strip_info) { struct device *dev = &strip_info->dev; int stuffedlen = STRIP_ENCAP_SIZE(dev->mtu); int sx_size = MAX(stuffedlen, 4096); int tx_size = stuffedlen + sizeof(TickleString2); __u8 *r = kmalloc(MAX_STRIP_MTU, GFP_ATOMIC); __u8 *s = kmalloc(sx_size, GFP_ATOMIC); __u8 *t = kmalloc(tx_size, GFP_ATOMIC); if (r && s && t) { strip_info->rx_buff = r; strip_info->sx_buff = s; strip_info->tx_buff = t; strip_info->sx_size = sx_size; strip_info->tx_size = tx_size; strip_info->mtu = dev->mtu; return(1); } if (r) kfree(r); if (s) kfree(s); if (t) kfree(t); return(0); } /* * MTU has been changed by the IP layer. Unfortunately we are not told * about this, but we spot it ourselves and fix things up. We could be in * an upcall from the tty driver, or in an ip packet queue. */ static void strip_changedmtu(struct strip *strip_info) { int old_mtu = strip_info->mtu; struct device *dev = &strip_info->dev; unsigned char *orbuff = strip_info->rx_buff; unsigned char *osbuff = strip_info->sx_buff; unsigned char *otbuff = strip_info->tx_buff; InterruptStatus intstat; if (dev->mtu > MAX_STRIP_MTU) { printk(KERN_ERR "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n", strip_info->dev.name, MAX_STRIP_MTU); dev->mtu = old_mtu; return; } /* * Have to disable interrupts here because we're reallocating and resizing * the serial buffers, and we can't have data arriving in them while we're * moving them around in memory. This may cause data to be lost on the serial * port, but hopefully people won't change MTU that often. * Also note, this may not work on a symmetric multi-processor system. */ intstat = DisableInterrupts(); if (!allocate_buffers(strip_info)) { RestoreInterrupts(intstat); printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n", strip_info->dev.name); dev->mtu = old_mtu; return; } if (strip_info->sx_count) { if (strip_info->sx_count <= strip_info->sx_size) memcpy(strip_info->sx_buff, osbuff, strip_info->sx_count); else { strip_info->sx_count = 0; strip_info->rx_over_errors++; strip_info->discard = 1; } } if (strip_info->tx_left) { if (strip_info->tx_left <= strip_info->tx_size) memcpy(strip_info->tx_buff, strip_info->tx_head, strip_info->tx_left); else { strip_info->tx_left = 0; strip_info->tx_dropped++; } } strip_info->tx_head = strip_info->tx_buff; RestoreInterrupts(intstat); printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n", strip_info->dev.name, old_mtu, strip_info->mtu); if (orbuff) kfree(orbuff); if (osbuff) kfree(osbuff); if (otbuff) kfree(otbuff); } static void strip_unlock(struct strip *strip_info) { /* * Set the time to go off in one second. */ strip_info->idle_timer.expires = jiffies + HZ; add_timer(&strip_info->idle_timer); if (!clear_bit(0, (void *)&strip_info->dev.tbusy)) printk(KERN_ERR "%s: trying to unlock already unlocked device!\n", strip_info->dev.name); } /************************************************************************/ /* Callback routines for exporting information through /proc */ #if DO_PROC_NET_STRIP_STATUS | DO_PROC_NET_STRIP_TRACE /* * This function updates the total amount of data printed so far. It then * determines if the amount of data printed into a buffer has reached the * offset requested. If it hasn't, then the buffer is shifted over so that * the next bit of data can be printed over the old bit. If the total * amount printed so far exceeds the total amount requested, then this * function returns 1, otherwise 0. */ static int shift_buffer(char *buffer, int requested_offset, int requested_len, int *total, int *slop, char **buf) { int printed; /* printk(KERN_DEBUG "shift: buffer: %d o: %d l: %d t: %d buf: %d\n", (int) buffer, requested_offset, requested_len, *total, (int) *buf); */ printed = *buf - buffer; if (*total + printed <= requested_offset) { *total += printed; *buf = buffer; } else { if (*total < requested_offset) { *slop = requested_offset - *total; } *total = requested_offset + printed - *slop; } if (*total > requested_offset + requested_len) { return 1; } else { return 0; } } /* * This function calculates the actual start of the requested data * in the buffer. It also calculates actual length of data returned, * which could be less that the amount of data requested. */ static int calc_start_len(char *buffer, char **start, int requested_offset, int requested_len, int total, char *buf) { int return_len, buffer_len; buffer_len = buf - buffer; if (buffer_len >= STRIP_PROC_BUFFER_SIZE - 1) { printk(KERN_ERR "STRIP: exceeded /proc buffer size\n"); } /* * There may be bytes before and after the * chunk that was actually requested. */ return_len = total - requested_offset; if (return_len < 0) { return_len = 0; } *start = buf - return_len; if (return_len > requested_len) { return_len = requested_len; } /* printk(KERN_DEBUG "return_len: %d\n", return_len); */ return return_len; } #endif DO_PROC_NET_STRIP_STATUS | DO_PROC_NET_STRIP_TRACE #if DO_PROC_NET_STRIP_STATUS /* * If the time is in the near future, time_delta prints the number of * seconds to go into the buffer and returns the address of the buffer. * If the time is not in the near future, it returns the address of the * string "Not scheduled" The buffer must be long enough to contain the * ascii representation of the number plus 9 charactes for the " seconds" * and the null character. */ static char *time_delta(char buffer[], long time) { time -= jiffies; if (time > LongTime / 2) return("Not scheduled"); if(time < 0) time = 0; /* Don't print negative times */ sprintf(buffer, "%ld seconds", time / HZ); return(buffer); } /* * This function prints radio status information into the specified * buffer. */ static int sprintf_status_info(char *buffer, struct strip *strip_info) { char temp_buffer[32]; MetricomAddressString addr_string; char *buf; buf = buffer; buf += sprintf(buf, "Interface name\t\t%s\n", strip_info->if_name); buf += sprintf(buf, " Radio working:\t\t%s\n", strip_info->working && (long)jiffies - strip_info->watchdog_doreset < 0 ? "Yes" : "No"); (void) radio_address_to_string((MetricomAddress *) &strip_info->dev.dev_addr, &addr_string); buf += sprintf(buf, " Device address:\t%s\n", addr_string.c); buf += sprintf(buf, " Firmware version:\t%s\n", !strip_info->working ? "Unknown" : !strip_info->structured_messages ? "Should be upgraded" : strip_info->firmware_version.c); buf += sprintf(buf, " Serial number:\t\t%s\n", strip_info->serial_number.c); buf += sprintf(buf, " Battery voltage:\t%s\n", strip_info->battery_voltage.c); buf += sprintf(buf, " Transmit queue (bytes):%d\n", strip_info->tx_left); buf += sprintf(buf, " Next watchdog probe:\t%s\n", time_delta(temp_buffer, strip_info->watchdog_doprobe)); buf += sprintf(buf, " Next watchdog reset:\t%s\n", time_delta(temp_buffer, strip_info->watchdog_doreset)); buf += sprintf(buf, " Next gratuitous ARP:\t%s\n", time_delta(temp_buffer, strip_info->gratuitous_arp)); buf += sprintf(buf, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(strip_info->arp_interval)); return buf - buffer; } static int sprintf_portables(char *buffer, struct strip *strip_info) { MetricomAddressString addr_string; MetricomNode *node; char *buf; buf = buffer; buf += sprintf(buf, " portables: name\t\tpoll_latency\tsignal strength\n"); for (node = strip_info->neighbor_list; node != NULL; node = node->next) { if (!(node->type & NodeValid)) { break; } if (node->type & NodeHasWAN) { continue; } (void) radio_address_to_string(&node->addr, &addr_string); buf += sprintf(buf, " %s\t\t\t\t%d\t\t%d\n", addr_string.c, node->poll_latency, node->rssi); } return buf - buffer; } static int sprintf_poletops(char *buffer, struct strip *strip_info) { MetricomNode *node; char *buf; buf = buffer; buf += sprintf(buf, " poletops: GPS\t\t\tpoll_latency\tsignal strength\n"); for (node = strip_info->neighbor_list; node != NULL; node = node->next) { if (!(node->type & NodeValid)) { break; } if (!(node->type & NodeHasWAN)) { continue; } buf += sprintf(buf, " %s\t\t\t%d\t\t%d\n", node->gl.s, node->poll_latency, node->rssi); } return buf - buffer; } /* * This function is exports status information from the STRIP driver through * the /proc file system. /proc filesystem should be fixed: * 1) slow (sprintfs here, a memory copy in the proc that calls this one) * 2) length of buffer not passed * 3) dummy isn't client data set when the callback was registered * 4) poorly documented (this function is called until the requested amount * of data is returned, buffer is only 4K long, dummy is the permissions * of the file (?), the proc_dir_entry passed to proc_net_register must * be kmalloc-ed) */ static int strip_get_status_info(char *buffer, char **start, off_t requested_offset, int requested_len, int dummy) { char *buf; int total = 0, slop = 0, len_exceeded; InterruptStatus i_status; struct strip *strip_info; buf = buffer; buf += sprintf(buf, "strip_version: %s\n", StripVersion); i_status = DisableInterrupts(); strip_info = struct_strip_list; RestoreInterrupts(i_status); while (strip_info != NULL) { i_status = DisableInterrupts(); buf += sprintf_status_info(buf, strip_info); RestoreInterrupts(i_status); len_exceeded = shift_buffer(buffer, requested_offset, requested_len, &total, &slop, &buf); if (len_exceeded) { goto done; } strip_info->neighbor_list_locked = TRUE; buf += sprintf_portables(buf, strip_info); strip_info->neighbor_list_locked = FALSE; len_exceeded = shift_buffer(buffer, requested_offset, requested_len, &total, &slop, &buf); if (len_exceeded) { goto done; } strip_info->neighbor_list_locked = TRUE; buf += sprintf_poletops(buf, strip_info); strip_info->neighbor_list_locked = FALSE; len_exceeded = shift_buffer(buffer, requested_offset, requested_len, &total, &slop, &buf); if (len_exceeded) { goto done; } strip_info = strip_info->next; } done: return calc_start_len(buffer, start, requested_offset, requested_len, total, buf); } #endif DO_PROC_NET_STRIP_STATUS #if DO_PROC_NET_STRIP_TRACE /* * Convert an Ethernet protocol to a string * Returns the number of characters printed. */ static int protocol_to_string(int protocol, __u8 *p) { int printed; switch (protocol) { case ETH_P_IP: printed = sprintf(p, "IP"); break; case ETH_P_ARP: printed = sprintf(p, "ARP"); break; default: printed = sprintf(p, "%d", protocol); } return printed; } static int sprintf_log_entry(char *buffer, struct strip *strip_info, int packet_index) { StripLog *entry; MetricomAddressString addr_string; __u8 sig_buf[24], *s; char *buf, proto_buf[10]; entry = &strip_info->packetLog[packet_index]; if (!entry->valid) { return 0; } buf = buffer; buf += sprintf(buf, "%-4s %s %7lu ", strip_info->if_name, ENTRY_TYPE_TO_STRING(entry->entry_type), entry->seqNum); (void) protocol_to_string(entry->packet_type, proto_buf); buf += sprintf(buf, "%-4s", proto_buf); s = entry->sig.print_sig; sprintf(sig_buf, "%d.%d.%d.%d.%d.%d", s[0], s[1], s[2], s[3], s[4], s[5]); buf += sprintf(buf, "%-24s", sig_buf); (void) radio_address_to_string((MetricomAddress *) &entry->src, &addr_string); buf += sprintf(buf, "%-10s", addr_string.c); (void) radio_address_to_string((MetricomAddress *) &entry->dest, &addr_string); buf += sprintf(buf, "%-10s", addr_string.c); buf += sprintf(buf, "%8d %6d %5lu %6lu %5lu\n", entry->timeStamp.tv_sec, entry->timeStamp.tv_usec, entry->rawSize, entry->stripSize, entry->slipSize); return buf - buffer; } /* * This function exports trace information from the STRIP driver through the * /proc file system. */ static int strip_get_trace_info(char *buffer, char **start, off_t requested_offset, int requested_len, int dummy) { char *buf; int len_exceeded, total = 0, slop = 0, packet_index, oldest; InterruptStatus i_status; struct strip *strip_info; buf = buffer; buf += sprintf(buf, "if s/r seqnum t signature "); buf += sprintf(buf, "src dest sec usec raw strip slip\n"); i_status = DisableInterrupts(); strip_info = struct_strip_list; oldest = strip_info->next_entry; RestoreInterrupts(i_status); /* * If we disable interrupts for this entire loop, * characters from the serial port could be lost, * so we only disable interrupts when accessing * a log entry. If more than STRIP_LOG_INT_SIZE * packets are logged before the first entry is * printed, then some of the entries could be * printed out of order. */ while (strip_info != NULL) { for (packet_index = oldest + STRIP_LOG_INT_SIZE; packet_index != oldest; packet_index = (packet_index + 1) % ELEMENTS_OF(strip_info->packetLog)) { i_status = DisableInterrupts(); buf += sprintf_log_entry(buf, strip_info, packet_index); RestoreInterrupts(i_status); len_exceeded = shift_buffer(buffer, requested_offset, requested_len, &total, &slop, &buf); if (len_exceeded) { goto done; } } strip_info = strip_info->next; } done: return calc_start_len(buffer, start, requested_offset, requested_len, total, buf); } static int slip_len(unsigned char *data, int len) { static const unsigned char SLIP_END=0300; /* indicates end of SLIP frame */ static const unsigned char SLIP_ESC=0333; /* indicates SLIP byte stuffing */ int count = len; while (--len >= 0) { if (*data == SLIP_END || *data == SLIP_ESC) count++; data++; } return(count); } /* Copied from kernel/sched.c */ static void jiffiestotimeval(unsigned long jiffies, struct timeval *value) { value->tv_usec = (jiffies % HZ) * (1000000.0 / HZ); value->tv_sec = jiffies / HZ; return; } /* * This function logs a packet. * A pointer to the packet itself is passed so that some of the data can be * used to compute a signature. The pointer should point the the * part of the packet following the STRIP_header. */ static void packet_log(struct strip *strip_info, __u8 *packet, LogEntry entry_type, STRIP_Header *hdr, int raw_size, int strip_size, int slip_size) { StripLog *entry; struct iphdr *iphdr; struct arphdr *arphdr; entry = &strip_info->packetLog[strip_info->next_entry]; if (entry_type == EntrySend) { entry->seqNum = strip_info->num_sent++; } else { entry->seqNum = strip_info->num_received++; } entry->entry_type = entry_type; entry->packet_type = ntohs(hdr->protocol); switch (entry->packet_type) { case ETH_P_IP: /* * The signature for IP is the sender's ip address and * the identification field. */ iphdr = (struct iphdr *) packet; entry->sig.ip_sig.id = iphdr->id; entry->sig.ip_sig.src.l = iphdr->saddr; break; case ETH_P_ARP: /* * The signature for ARP is the sender's ip address and * the operation. */ arphdr = (struct arphdr *) packet; entry->sig.arp_sig.op = arphdr->ar_op; memcpy(&entry->sig.arp_sig.src.l, packet + 8 + arphdr->ar_hln, sizeof(entry->sig.arp_sig.src.l)); entry->sig.arp_sig.src.l = entry->sig.arp_sig.src.l; break; default: printk(KERN_DEBUG "STRIP: packet_log: unknown packet type: %d\n", entry->packet_type); break; } memcpy(&entry->src, &hdr->src_addr, sizeof(MetricomAddress)); memcpy(&entry->dest, &hdr->dst_addr, sizeof(MetricomAddress)); jiffiestotimeval(jiffies, &(entry->timeStamp)); entry->rawSize = raw_size; entry->stripSize = strip_size; entry->slipSize = slip_size; entry->valid = 1; strip_info->next_entry = (strip_info->next_entry + 1) % ELEMENTS_OF(strip_info->packetLog); } #endif DO_PROC_NET_STRIP_TRACE /* * This function parses the response to the ATS300? command, * extracting the radio version and serial number. */ static void get_radio_version(struct strip *strip_info, __u8 *ptr, __u8 *end) { __u8 *p, *value_begin, *value_end; int len; /* Determine the beginning of the second line of the payload */ p = ptr; while (p < end && *p != 10) p++; if (p >= end) return; p++; value_begin = p; /* Determine the end of line */ while (p < end && *p != 10) p++; if (p >= end) return; value_end = p; p++; len = value_end - value_begin; len = MIN(len, sizeof(MetricomFirmwareVersion) - 1); sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin); /* Look for the first colon */ while (p < end && *p != ':') p++; if (p >= end) return; /* Skip over the space */ p += 2; len = sizeof(MetricomSerialNumber) - 1; if (p + len <= end) { sprintf(strip_info->serial_number.c, "%.*s", len, p); } else { printk(KERN_ERR "STRIP: radio serial number shorter (%d) than expected (%d)\n", end - p, len); } } /* * This function parses the response to the ATS325? command, * extracting the radio battery voltage. */ static void get_radio_voltage(struct strip *strip_info, __u8 *ptr, __u8 *end) { int len; len = sizeof(MetricomBatteryVoltage) - 1; if (ptr + len <= end) { sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr); } else { printk(KERN_ERR "STRIP: radio voltage string shorter (%d) than expected (%d)\n", end - ptr, len); } } /* * This function parses the response to the AT~I2 command, * which gives the names of the radio's nearest neighbors. * It relies on the format of the response. */ static void get_radio_neighbors(struct strip *strip_info, __u8 *ptr, __u8 *end) { __u8 *p, *line_begin; int num_nodes_reported, num_nodes_counted; MetricomNode *node, *last; /* Check if someone is reading the list */ if (strip_info->neighbor_list_locked) { return; } /* Determine the number of Nodes */ p = ptr; num_nodes_reported = simple_strtoul(p, NULL, 10); /* printk(KERN_DEBUG "num_nodes: %d\n", num_nodes_reported); */ /* Determine the beginning of the next line */ while (p < end && *p != 10) p++; if (p >= end) return; p++; /* * The node list should never be empty because we allocate one empty * node when the strip_info is allocated. The nodes which were allocated * when the number of neighbors was high but are no longer needed because * there aren't as many neighbors any more are marked invalid. Invalid nodes * are kept at the end of the list. */ node = strip_info->neighbor_list; last = node; if (node == NULL) { DumpData("Neighbor list is NULL:", strip_info, p, end); return; } line_begin = p; num_nodes_counted = 0; while (line_begin < end) { /* Check to see if the format is what we expect. */ if ((line_begin + STRIP_NODE_LEN) > end) { printk(KERN_ERR "STRIP: radio neighbor node string shorter (%d) than expected (%d)\n", end - line_begin, STRIP_NODE_LEN); break; } /* Get a node */ if (node == NULL) { node = kmalloc(sizeof(MetricomNode), GFP_ATOMIC); node->next = NULL; } node->type = NodeValid; /* Fill the node in */ /* Determine if it has a GPS location and fill it in if it does. */ p = line_begin; /* printk(KERN_DEBUG "node: %64s\n", p); */ if (p[0] != STRIP_PORTABLE_CHAR) { node->type |= NodeHasWAN; sprintf(node->gl.s, "%.*s", (int) sizeof(GeographicLocation) - 1, p); } /* Determine if it is a router */ p = line_begin + 18; if (p[0] == STRIP_ROUTER_CHAR) { node->type |= NodeIsRouter; } /* Could be a radio address or some weird poletop address. */ p = line_begin + 20; /* printk(KERN_DEBUG "before addr: %6s\n", p); */ string_to_radio_address(&node->addr, p); /* radio_address_to_string(&node->addr, addr_string); printk(KERN_DEBUG "after addr: %s\n", addr_string); */ if (IS_RADIO_ADDRESS(p)) { string_to_radio_address(&node->addr, p); } else { memset(&node->addr, 0, sizeof(MetricomAddress)); } /* Get the poll latency. %$#!@ simple_strtoul can't skip white space */ p = line_begin + 41; while (isspace(*p) && (p < end)) { p++; } node->poll_latency = simple_strtoul(p, NULL, 10); /* Get the signal strength. simple_strtoul doesn't do minus signs */ p = line_begin + 60; node->rssi = -simple_strtoul(p, NULL, 10); if (last != node) { last->next = node; last = node; } node = node->next; line_begin += STRIP_NODE_LEN; num_nodes_counted++; } /* invalidate all remaining nodes */ for (;node != NULL; node = node->next) { node->type &= ~NodeValid; } /* * If the number of nodes reported is different * from the number counted, might need to up the number * requested. */ if (num_nodes_reported != num_nodes_counted) { printk(KERN_DEBUG "nodes reported: %d \tnodes counted: %d\n", num_nodes_reported, num_nodes_counted); } } /************************************************************************/ /* Sending routines */ static void ResetRadio(struct strip *strip_info) { static const char InitString[] = "\rat\r\rate0q1dt**starmode\r\r**"; /* If the radio isn't working anymore, we should clear the old status information. */ if (strip_info->working) { printk(KERN_INFO "%s: No response: Resetting radio.\n", strip_info->dev.name); strip_info->firmware_version.c[0] = '\0'; strip_info->serial_number.c[0] = '\0'; strip_info->battery_voltage.c[0] = '\0'; } /* Mark radio address as unknown */ *(MetricomAddress*)&strip_info->dev.dev_addr = zero_address; strip_info->working = FALSE; strip_info->structured_messages = FALSE; strip_info->watchdog_doprobe = jiffies + 10 * HZ; strip_info->watchdog_doreset = jiffies + 1 * HZ; strip_info->tty->driver.write(strip_info->tty, 0, (char *)InitString, sizeof(InitString)-1); } /* * Called by the driver when there's room for more data. If we have * more packets to send, we send them here. */ static void strip_write_some_more(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC || !strip_info->dev.start) return; if (strip_info->tx_left > 0) { /* * If some data left, send it * Note: There's a kernel design bug here. The write_wakeup routine has to * know how many bytes were written in the previous call, but the number of * bytes written is returned as the result of the tty->driver.write call, * and there's no guarantee that the tty->driver.write routine will have * returned before the write_wakeup routine is invoked. If the PC has fast * Serial DMA hardware, then it's quite possible that the write could complete * almost instantaneously, meaning that my write_wakeup routine could be * called immediately, before tty->driver.write has had a chance to return * the number of bytes that it wrote. In an attempt to guard against this, * I disable interrupts around the call to tty->driver.write, although even * this might not work on a symmetric multi-processor system. */ InterruptStatus intstat = DisableInterrupts(); int num_written = tty->driver.write(tty, 0, strip_info->tx_head, strip_info->tx_left); strip_info->tx_left -= num_written; strip_info->tx_head += num_written; RestoreInterrupts(intstat); } else /* Else start transmission of another packet */ { tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); strip_unlock(strip_info); mark_bh(NET_BH); } } static unsigned char *strip_make_packet(unsigned char *ptr, struct strip *strip_info, struct sk_buff *skb) { #if DO_PROC_NET_STRIP_TRACE unsigned char *start_ptr; #endif DO_PROC_NET_STRIP_TRACE __u8 *stuffstate = NULL; STRIP_Header *header = (STRIP_Header *)skb->data; MetricomAddress haddr = header->dst_addr; int len = skb->len - sizeof(STRIP_Header); MetricomKey key; /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len);*/ if (header->protocol == htons(ETH_P_IP)) key = SIP0Key; else if (header->protocol == htons(ETH_P_ARP)) key = ARP0Key; else { printk(KERN_ERR "%s: strip_make_packet: Unknown packet type 0x%04X\n", strip_info->dev.name, ntohs(header->protocol)); strip_info->tx_dropped++; return(NULL); } if (len > strip_info->mtu) { printk(KERN_ERR "%s: Dropping oversized transmit packet: %d bytes\n", strip_info->dev.name, len); strip_info->tx_dropped++; return(NULL); } /* * If this is a broadcast packet, send it to our designated Metricom * 'broadcast hub' radio (First byte of address being 0xFF means broadcast) */ if (haddr.c[0] == 0xFF) { memcpy(haddr.c, strip_info->dev.broadcast, sizeof(haddr)); if (haddr.c[0] == 0xFF) { strip_info->tx_dropped++; return(NULL); } } *ptr++ = '*'; *ptr++ = hextable[haddr.c[2] >> 4]; *ptr++ = hextable[haddr.c[2] & 0xF]; *ptr++ = hextable[haddr.c[3] >> 4]; *ptr++ = hextable[haddr.c[3] & 0xF]; *ptr++ = '-'; *ptr++ = hextable[haddr.c[4] >> 4]; *ptr++ = hextable[haddr.c[4] & 0xF]; *ptr++ = hextable[haddr.c[5] >> 4]; *ptr++ = hextable[haddr.c[5] & 0xF]; *ptr++ = '*'; *ptr++ = key.c[0]; *ptr++ = key.c[1]; *ptr++ = key.c[2]; *ptr++ = key.c[3]; #if DO_PROC_NET_STRIP_TRACE start_ptr = ptr; #endif DO_PROC_NET_STRIP_TRACE ptr = StuffData(skb->data + sizeof(STRIP_Header), len, ptr, &stuffstate); #if DO_PROC_NET_STRIP_TRACE packet_log(strip_info, skb->data + sizeof(STRIP_Header), EntrySend, header, len, ptr-start_ptr, slip_len(skb->data + sizeof(STRIP_Header), len)); #endif DO_PROC_NET_STRIP_TRACE *ptr++ = 0x0D; return(ptr); } static void strip_send(struct strip *strip_info, struct sk_buff *skb) { unsigned char *ptr = strip_info->tx_buff; /* If we have a packet, encapsulate it and put it in the buffer */ if (skb) { ptr = strip_make_packet(ptr, strip_info, skb); /* If error, unlock and return */ if (!ptr) { strip_unlock(strip_info); return; } strip_info->tx_packets++; /* Count another successful packet */ /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr);*/ /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr);*/ } /* Set up the strip_info ready to send the data */ strip_info->tx_head = strip_info->tx_buff; strip_info->tx_left = ptr - strip_info->tx_buff; strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP); /* If watchdog has expired, reset the radio */ if ((long)jiffies - strip_info->watchdog_doreset >= 0) { ResetRadio(strip_info); return; /* Note: if there's a packet to send, strip_write_some_more will do it after the reset has finished */ } /* No reset. * If it is time for another tickle, tack it on the end of the packet */ if ((long)jiffies - strip_info->watchdog_doprobe >= 0) { /* Send tickle to make radio protest */ /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev.name);*/ const char *TickleString = TickleString1; int length = sizeof(TickleString1)-1; if (strip_info->structured_messages) { TickleString = TickleString2; length = sizeof(TickleString2)-1; } memcpy(ptr, TickleString, length); strip_info->tx_left += length; strip_info->watchdog_doprobe = jiffies + 10 * HZ; strip_info->watchdog_doreset = jiffies + 1 * HZ; } /* * If it is time for a periodic ARP, queue one up to be sent */ if (strip_info->working && (long)jiffies - strip_info->gratuitous_arp >= 0 && memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address))) { /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n", strip_info->dev.name, strip_info->arp_interval / HZ);*/ strip_info->gratuitous_arp = jiffies + strip_info->arp_interval; strip_info->arp_interval *= 2; if (strip_info->arp_interval > MaxARPInterval) strip_info->arp_interval = MaxARPInterval; arp_send(ARPOP_REPLY, ETH_P_ARP, strip_info->dev.pa_addr, &strip_info->dev, strip_info->dev.pa_addr, NULL, strip_info->dev.dev_addr, NULL); } if (strip_info->tx_size - strip_info->tx_left < 20) printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", strip_info->dev.name, strip_info->tx_left, strip_info->tx_size - strip_info->tx_left); /* All ready. Start the transmission */ strip_write_some_more(strip_info->tty); } /* Encapsulate a datagram and kick it into a TTY queue. */ static int strip_xmit(struct sk_buff *skb, struct device *dev) { struct strip *strip_info = (struct strip *)(dev->priv); if (!dev->start) { printk(KERN_ERR "%s: xmit call when iface is down\n", dev->name); return(1); } if (set_bit(0, (void *) &strip_info->dev.tbusy)) return(1); del_timer(&strip_info->idle_timer); /* See if someone has been ifconfigging */ if (strip_info->mtu != strip_info->dev.mtu) strip_changedmtu(strip_info); strip_send(strip_info, skb); if (skb) dev_kfree_skb(skb, FREE_WRITE); return(0); } /* * Create the MAC header for an arbitrary protocol layer * * saddr!=NULL means use this specific address (n/a for Metricom) * saddr==NULL means use default device source address * daddr!=NULL means use this destination address * daddr==NULL means leave destination address alone * (e.g. unresolved arp -- kernel will call * rebuild_header later to fill in the address) */ static int strip_header(struct sk_buff *skb, struct device *dev, unsigned short type, void *daddr, void *saddr, unsigned len) { STRIP_Header *header = (STRIP_Header *)skb_push(skb, sizeof(STRIP_Header)); /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type, type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : "");*/ memcpy(header->src_addr.c, dev->dev_addr, dev->addr_len); header->protocol = htons(type); /*HexDump("strip_header", (struct strip *)(dev->priv), skb->data, skb->data + skb->len);*/ if (!daddr) return(-dev->hard_header_len); memcpy(header->dst_addr.c, daddr, dev->addr_len); return(dev->hard_header_len); } /* * Rebuild the MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * I think this should return zero if packet is ready to send, * or non-zero if it needs more time to do an address lookup */ static int strip_rebuild_header(struct sk_buff *skb) { STRIP_Header *header = (STRIP_Header *)skb->data; /*printk(KERN_INFO "%s: strip_rebuild_header\n", skb->dev->name);*/ #ifdef CONFIG_INET /* Arp find returns zero if if knows the address, */ /* or if it doesn't know the address it sends an ARP packet and returns non-zero */ return arp_find(header->dst_addr.c, skb)? 1 : 0; #else return 0; #endif } /* * IdleTask periodically calls strip_xmit, so even when we have no IP packets * to send for an extended period of time, the watchdog processing still gets * done to ensure that the radio stays in Starmode */ static void strip_IdleTask(unsigned long parameter) { strip_xmit(NULL, (struct device *)parameter); } /************************************************************************/ /* Receiving routines */ static int strip_receive_room(struct tty_struct *tty) { return 0x10000; /* We can handle an infinite amount of data. :-) */ } static void get_radio_address(struct strip *strip_info, __u8 *p) { MetricomAddress addr; string_to_radio_address(&addr, p); /* See if our radio address has changed */ if (memcmp(strip_info->dev.dev_addr, addr.c, sizeof(addr))) { MetricomAddressString addr_string; radio_address_to_string(&addr, &addr_string); printk(KERN_INFO "%s: My radio address = %s\n", strip_info->dev.name, addr_string.c); memcpy(strip_info->dev.dev_addr, addr.c, sizeof(addr)); /* Give the radio a few seconds to get its head straight, then send an arp */ strip_info->gratuitous_arp = jiffies + 6 * HZ; strip_info->arp_interval = 1 * HZ; } } static void RecvErr(char *msg, struct strip *strip_info) { __u8 *ptr = strip_info->sx_buff; __u8 *end = strip_info->sx_buff + strip_info->sx_count; DumpData(msg, strip_info, ptr, end); strip_info->rx_errors++; } static void RecvErr_Message(struct strip *strip_info, __u8 *sendername, const __u8 *msg) { static const char ERR_001[] = "001"; /* Not in StarMode! */ static const char ERR_002[] = "002"; /* Remap handle */ static const char ERR_003[] = "003"; /* Can't resolve name */ static const char ERR_004[] = "004"; /* Name too small or missing */ static const char ERR_005[] = "005"; /* Bad count specification */ static const char ERR_006[] = "006"; /* Header too big */ static const char ERR_007[] = "007"; /* Body too big */ static const char ERR_008[] = "008"; /* Bad character in name */ static const char ERR_009[] = "009"; /* No count or line terminator */ if (!strncmp(msg, ERR_001, sizeof(ERR_001)-1)) { RecvErr("Error Msg:", strip_info); printk(KERN_INFO "%s: Radio %s is not in StarMode\n", strip_info->dev.name, sendername); } else if (!strncmp(msg, ERR_002, sizeof(ERR_002)-1)) { RecvErr("Error Msg:", strip_info); #ifdef notyet /*Kernel doesn't have scanf!*/ int handle; __u8 newname[64]; sscanf(msg, "ERR_002 Remap handle &%d to name %s", &handle, newname); printk(KERN_INFO "%s: Radio name %s is handle %d\n", strip_info->dev.name, newname, handle); #endif } else if (!strncmp(msg, ERR_003, sizeof(ERR_003)-1)) { RecvErr("Error Msg:", strip_info); printk(KERN_INFO "%s: Destination radio name is unknown\n", strip_info->dev.name); } else if (!strncmp(msg, ERR_004, sizeof(ERR_004)-1)) { strip_info->watchdog_doreset = jiffies + LongTime; if (!strip_info->working) { strip_info->working = TRUE; printk(KERN_INFO "%s: Radio now in starmode\n", strip_info->dev.name); /* * If the radio has just entered a working state, we should do our first * probe ASAP, so that we find out our radio address etc. without delay. */ strip_info->watchdog_doprobe = jiffies; } if (!strip_info->structured_messages && sendername) { strip_info->structured_messages = TRUE; printk(KERN_INFO "%s: Radio provides structured messages\n", strip_info->dev.name); } } else if (!strncmp(msg, ERR_005, sizeof(ERR_005)-1)) RecvErr("Error Msg:", strip_info); else if (!strncmp(msg, ERR_006, sizeof(ERR_006)-1)) RecvErr("Error Msg:", strip_info); else if (!strncmp(msg, ERR_007, sizeof(ERR_007)-1)) { /* * Note: This error knocks the radio back into * command mode. */ RecvErr("Error Msg:", strip_info); printk(KERN_ERR "%s: Error! Packet size too big for radio.", strip_info->dev.name); strip_info->watchdog_doreset = jiffies; /* Do reset ASAP */ } else if (!strncmp(msg, ERR_008, sizeof(ERR_008)-1)) { RecvErr("Error Msg:", strip_info); printk(KERN_ERR "%s: Radio name contains illegal character\n", strip_info->dev.name); } else if (!strncmp(msg, ERR_009, sizeof(ERR_009)-1)) RecvErr("Error Msg:", strip_info); else RecvErr("Error Msg:", strip_info); } static void process_AT_response(struct strip *strip_info, __u8 *ptr, __u8 *end) { static const char ATS305[] = "ATS305?"; static const char ATS300[] = "ATS300?"; static const char ATS325[] = "ATS325?"; static const char ATI2[] = "AT~I2 nn"; /* Skip to the first newline character */ __u8 *p = ptr; while (p < end && *p != 10) p++; if (p >= end) return; p++; if (!strncmp(ptr, ATS305, sizeof(ATS305)-1)) { if (IS_RADIO_ADDRESS(p)) get_radio_address(strip_info, p); } else if (!strncmp(ptr, ATS300, sizeof(ATS300)-1)) { get_radio_version(strip_info, p, end); } else if (!strncmp(ptr, ATS325, sizeof(ATS325)-1)) { get_radio_voltage(strip_info, p, end); } else if (!strncmp(ptr, ATI2, sizeof(ATI2)-1)) { get_radio_neighbors(strip_info, p, end); } else RecvErr("Unknown AT Response:", strip_info); } /* * Send one completely decapsulated datagram to the next layer. */ static void deliver_packet(struct strip *strip_info, STRIP_Header *header, __u16 packetlen) { struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen); if (!skb) { printk(KERN_INFO "%s: memory squeeze, dropping packet.\n", strip_info->dev.name); strip_info->rx_dropped++; } else { memcpy(skb_put(skb, sizeof(STRIP_Header)), header, sizeof(STRIP_Header)); memcpy(skb_put(skb, packetlen), strip_info->rx_buff, packetlen); skb->dev = &strip_info->dev; skb->protocol = header->protocol; skb->mac.raw = skb->data; /* Having put a fake header on the front of the sk_buff for the */ /* benefit of tools like tcpdump, skb_pull now 'consumes' that */ /* fake header before we hand the packet up to the next layer. */ skb_pull(skb, sizeof(STRIP_Header)); /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */ strip_info->rx_packets++; netif_rx(skb); } } static void process_IP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end) { __u16 packetlen; #if DO_PROC_NET_STRIP_TRACE __u8 *start_ptr = ptr; #endif DO_PROC_NET_STRIP_TRACE /* Decode start of the IP packet header */ ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4); if (!ptr) { RecvErr("IP Packet too short", strip_info); return; } packetlen = ((__u16)strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3]; if (packetlen > MAX_STRIP_MTU) { printk(KERN_ERR "%s: Dropping oversized receive packet: %d bytes\n", strip_info->dev.name, packetlen); strip_info->rx_dropped++; return; } /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev.name, packetlen);*/ /* Decode remainder of the IP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff+4, packetlen-4); if (!ptr) { RecvErr("IP Packet too short", strip_info); return; } if (ptr < end) { RecvErr("IP Packet too long", strip_info); return; } header->protocol = htons(ETH_P_IP); #if DO_PROC_NET_STRIP_TRACE packet_log(strip_info, strip_info->rx_buff, EntryReceive, header, packetlen, end-start_ptr, slip_len(strip_info->rx_buff, packetlen)); #endif DO_PROC_NET_STRIP_TRACE deliver_packet(strip_info, header, packetlen); } static void process_ARP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end) { __u16 packetlen; struct arphdr *arphdr = (struct arphdr *)strip_info->rx_buff; #if DO_PROC_NET_STRIP_TRACE __u8 *start_ptr = ptr; #endif DO_PROC_NET_STRIP_TRACE /* Decode start of the ARP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8); if (!ptr) { RecvErr("ARP Packet too short", strip_info); return; } packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2; if (packetlen > MAX_STRIP_MTU) { printk(KERN_ERR "%s: Dropping oversized receive packet: %d bytes\n", strip_info->dev.name, packetlen); strip_info->rx_dropped++; return; } /*printk(KERN_INFO "%s: Got %d byte ARP %s\n", strip_info->dev.name, packetlen, ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply");*/ /* Decode remainder of the ARP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff+8, packetlen-8); if (!ptr) { RecvErr("ARP Packet too short", strip_info); return; } if (ptr < end) { RecvErr("ARP Packet too long", strip_info); return; } header->protocol = htons(ETH_P_ARP); #if DO_PROC_NET_STRIP_TRACE packet_log(strip_info, strip_info->rx_buff, EntryReceive, header, packetlen, end-start_ptr, slip_len(strip_info->rx_buff, packetlen)); #endif DO_PROC_NET_STRIP_TRACE deliver_packet(strip_info, header, packetlen); } static void process_packet(struct strip *strip_info) { STRIP_Header header = { zero_address, zero_address, 0 }; __u8 *ptr = strip_info->sx_buff; __u8 *end = strip_info->sx_buff + strip_info->sx_count; __u8 sendername[32], *sptr = sendername; MetricomKey key; /* Ignore 'OK' responses from prior commands */ if (strip_info->sx_count == 2 && ptr[0] == 'O' && ptr[1] == 'K') return; /* Check for anything that looks like it might be our radio name: dddd-dddd */ /* (This is here for backwards compatibility with old firmware) */ if (strip_info->sx_count == 9 && IS_RADIO_ADDRESS(ptr)) { get_radio_address(strip_info, ptr); return; } /*HexDump("Receiving", strip_info, ptr, end);*/ /* Check for start of address marker, and then skip over it */ if (*ptr != '*') { /* Catch other error messages */ if (ptr[0] == 'E' && ptr[1] == 'R' && ptr[2] == 'R' && ptr[3] == '_') RecvErr_Message(strip_info, NULL, &ptr[4]); else RecvErr("No initial *", strip_info); return; } ptr++; /* Skip the initial '*' */ /* Copy out the return address */ while (ptr < end && *ptr != '*' && sptr < ARRAY_END(sendername)-1) *sptr++ = *ptr++; *sptr = 0; /* Null terminate the sender name */ /* Check for end of address marker, and skip over it */ if (ptr >= end || *ptr != '*') { RecvErr("No second *", strip_info); return; } ptr++; /* Skip the second '*' */ /* If the sender name is "&COMMAND", ignore this 'packet' */ /* (This is here for backwards compatibility with old firmware) */ if (!strcmp(sendername, "&COMMAND")) { strip_info->structured_messages = FALSE; return; } if (ptr+4 >= end) { RecvErr("No proto key", strip_info); return; } /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev.name, sendername);*/ /* * Fill in (pseudo) source and destination addresses in the packet. * We assume that the destination address was our address (the radio does not * tell us this). If the radio supplies a source address, then we use it. */ memcpy(&header.dst_addr, strip_info->dev.dev_addr, sizeof(MetricomAddress)); if (IS_RADIO_ADDRESS(sendername)) string_to_radio_address(&header.src_addr, sendername); /* Get the protocol key out of the buffer */ key.c[0] = *ptr++; key.c[1] = *ptr++; key.c[2] = *ptr++; key.c[3] = *ptr++; if (key.l == SIP0Key.l) process_IP_packet(strip_info, &header, ptr, end); else if (key.l == ARP0Key.l) process_ARP_packet(strip_info, &header, ptr, end); else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end); else if (key.l == ERR_Key.l) RecvErr_Message(strip_info, sendername, ptr); else /* RecvErr("Unrecognized protocol key", strip_info); */ /* Note, this "else" block is temporary, until Metricom fix their */ /* packet corruption bug */ { RecvErr("Unrecognized protocol key (retrying)", strip_info); ptr -= 3; /* Back up and try again */ key.c[0] = *ptr++; key.c[1] = *ptr++; key.c[2] = *ptr++; key.c[3] = *ptr++; if (key.l == SIP0Key.l) process_IP_packet(strip_info, &header, ptr, end); else if (key.l == ARP0Key.l) process_ARP_packet(strip_info, &header, ptr, end); else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end); else if (key.l == ERR_Key.l) RecvErr_Message(strip_info, sendername, ptr); else RecvErr("Unrecognized protocol key", strip_info); } } /* * Handle the 'receiver data ready' interrupt. * This function is called by the 'tty_io' module in the kernel when * a block of STRIP data has been received, which can now be decapsulated * and sent on to some IP layer for further processing. */ static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count) { struct strip *strip_info = (struct strip *) tty->disc_data; const unsigned char *end = cp + count; if (!strip_info || strip_info->magic != STRIP_MAGIC || !strip_info->dev.start) return; /* Argh! mtu change time! - costs us the packet part received at the change */ if (strip_info->mtu != strip_info->dev.mtu) strip_changedmtu(strip_info); #if 0 { struct timeval tv; do_gettimeofday(&tv); printk(KERN_INFO "**** strip_receive_buf: %3d bytes at %d.%06d\n", count, tv.tv_sec % 100, tv.tv_usec); } #endif /* Read the characters out of the buffer */ while (cp < end) { if (fp && *fp++ && !strip_info->discard) /* If there's a serial error, record it */ { strip_info->discard = 1; strip_info->rx_errors++; } /* Leading control characters (CR, NL, Tab, etc.) are ignored */ if (strip_info->sx_count > 0 || *cp >= ' ') { if (*cp == 0x0D) /* If end of packet, decide what to do with it */ { if (strip_info->sx_count > 3000) printk(KERN_INFO "Cut a %d byte packet (%d bytes remaining)%s\n", strip_info->sx_count, end-cp-1, strip_info->discard ? " (discarded)" : ""); if (strip_info->sx_count > strip_info->sx_size) { strip_info->discard = 1; strip_info->rx_over_errors++; printk(KERN_INFO "%s: sx_buff overflow (%d bytes total)\n", strip_info->dev.name, strip_info->sx_count); } if (!strip_info->discard) process_packet(strip_info); strip_info->discard = 0; strip_info->sx_count = 0; } else if (!strip_info->discard) /* If we're not discarding, store the character */ { /* Make sure we have space in the buffer */ if (strip_info->sx_count < strip_info->sx_size) strip_info->sx_buff[strip_info->sx_count] = *cp; strip_info->sx_count++; } } cp++; } } /************************************************************************/ /* General control routines */ static int strip_set_dev_mac_address(struct device *dev, void *addr) { return -1; /* You cannot override a Metricom radio's address */ } static struct net_device_stats *strip_get_stats(struct device *dev) { static struct net_device_stats stats; struct strip *strip_info = (struct strip *)(dev->priv); memset(&stats, 0, sizeof(struct net_device_stats)); stats.rx_packets = strip_info->rx_packets; stats.tx_packets = strip_info->tx_packets; stats.rx_dropped = strip_info->rx_dropped; stats.tx_dropped = strip_info->tx_dropped; stats.tx_errors = strip_info->tx_errors; stats.rx_errors = strip_info->rx_errors; stats.rx_over_errors = strip_info->rx_over_errors; return(&stats); } /************************************************************************/ /* Opening and closing */ /* * Here's the order things happen: * When the user runs "slattach -p strip ..." * 1. The TTY module calls strip_open * 2. strip_open calls strip_alloc * 3. strip_alloc calls register_netdev * 4. register_netdev calls strip_dev_init * 5. then strip_open finishes setting up the strip_info * * When the user runs "ifconfig st up address netmask ..." * 6. strip_open_low gets called * * When the user runs "ifconfig st down" * 7. strip_close_low gets called * * When the user kills the slattach process * 8. strip_close gets called * 9. strip_close calls dev_close * 10. if the device is still up, then dev_close calls strip_close_low * 11. strip_close calls strip_free */ /* Open the low-level part of the STRIP channel. Easy! */ static int strip_open_low(struct device *dev) { struct strip *strip_info = (struct strip *)(dev->priv); if (strip_info->tty == NULL) return(-ENODEV); if (!allocate_buffers(strip_info)) return(-ENOMEM); strip_info->discard = 0; strip_info->working = FALSE; strip_info->structured_messages = FALSE; strip_info->sx_count = 0; strip_info->tx_left = 0; dev->tbusy = 0; dev->start = 1; printk(KERN_INFO "%s: Initializing Radio.\n", strip_info->dev.name); ResetRadio(strip_info); strip_info->idle_timer.expires = jiffies + 2 * HZ; add_timer(&strip_info->idle_timer); return(0); } /* * Close the low-level part of the STRIP channel. Easy! */ static int strip_close_low(struct device *dev) { struct strip *strip_info = (struct strip *)(dev->priv); if (strip_info->tty == NULL) return -EBUSY; strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); dev->tbusy = 1; dev->start = 0; /* * Free all STRIP frame buffers. */ if (strip_info->rx_buff) { kfree(strip_info->rx_buff); strip_info->rx_buff = NULL; } if (strip_info->sx_buff) { kfree(strip_info->sx_buff); strip_info->sx_buff = NULL; } if (strip_info->tx_buff) { kfree(strip_info->tx_buff); strip_info->tx_buff = NULL; } del_timer(&strip_info->idle_timer); return 0; } /* * This routine is called by DDI when the * (dynamically assigned) device is registered */ static int strip_dev_init(struct device *dev) { /* * Finish setting up the DEVICE info. */ dev->trans_start = 0; dev->last_rx = 0; dev->tx_queue_len = 30; /* Drop after 30 frames queued */ dev->flags = 0; dev->family = AF_INET; dev->metric = 0; dev->mtu = DEFAULT_STRIP_MTU; dev->type = ARPHRD_METRICOM; /* dtang */ dev->hard_header_len = sizeof(STRIP_Header); /* * dev->priv Already holds a pointer to our struct strip */ *(MetricomAddress*)&dev->broadcast = broadcast_address; dev->dev_addr[0] = 0; dev->addr_len = sizeof(MetricomAddress); dev->pa_addr = 0; dev->pa_brdaddr = 0; dev->pa_mask = 0; dev->pa_alen = sizeof(unsigned long); /* * Pointer to the interface buffers. */ dev_init_buffers(dev); /* * Pointers to interface service routines. */ dev->open = strip_open_low; dev->stop = strip_close_low; dev->hard_start_xmit = strip_xmit; dev->hard_header = strip_header; dev->rebuild_header = strip_rebuild_header; /* dev->type_trans unused */ /* dev->set_multicast_list unused */ dev->set_mac_address = strip_set_dev_mac_address; /* dev->do_ioctl unused */ /* dev->set_config unused */ dev->get_stats = strip_get_stats; return 0; } /* * Free a STRIP channel. */ static void strip_free(struct strip *strip_info) { MetricomNode *node, *free; *(strip_info->referrer) = strip_info->next; if (strip_info->next) strip_info->next->referrer = strip_info->referrer; strip_info->magic = 0; for (node = strip_info->neighbor_list; node != NULL; ) { free = node; node = node->next; kfree(free); } kfree(strip_info); } /* * Allocate a new free STRIP channel */ static struct strip *strip_alloc(void) { int channel_id = 0; struct strip **s = &struct_strip_list; struct strip *strip_info = (struct strip *) kmalloc(sizeof(struct strip), GFP_KERNEL); if (!strip_info) return(NULL); /* If no more memory, return */ /* * Clear the allocated memory */ memset(strip_info, 0, sizeof(struct strip)); /* * Search the list to find where to put our new entry * (and in the process decide what channel number it is * going to be) */ while (*s && (*s)->dev.base_addr == channel_id) { channel_id++; s = &(*s)->next; } /* * Fill in the link pointers */ strip_info->next = *s; if (*s) (*s)->referrer = &strip_info->next; strip_info->referrer = s; *s = strip_info; strip_info->magic = STRIP_MAGIC; strip_info->tty = NULL; strip_info->gratuitous_arp = jiffies + LongTime; strip_info->arp_interval = 0; init_timer(&strip_info->idle_timer); strip_info->idle_timer.data = (long)&strip_info->dev; strip_info->idle_timer.function = strip_IdleTask; strip_info->neighbor_list = kmalloc(sizeof(MetricomNode), GFP_KERNEL); strip_info->neighbor_list->type = 0; strip_info->neighbor_list->next = NULL; /* Note: strip_info->if_name is currently 8 characters long */ sprintf(strip_info->if_name, "st%d", channel_id); strip_info->dev.name = strip_info->if_name; strip_info->dev.base_addr = channel_id; strip_info->dev.priv = (void*)strip_info; strip_info->dev.next = NULL; strip_info->dev.init = strip_dev_init; return(strip_info); } /* * Open the high-level part of the STRIP channel. * This function is called by the TTY module when the * STRIP line discipline is called for. Because we are * sure the tty line exists, we only have to link it to * a free STRIP channel... */ static int strip_open(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* * First make sure we're not already connected. */ if (strip_info && strip_info->magic == STRIP_MAGIC) return -EEXIST; /* * OK. Find a free STRIP channel to use. */ if ((strip_info = strip_alloc()) == NULL) return -ENFILE; /* * Register our newly created device so it can be ifconfig'd * strip_dev_init() will be called as a side-effect */ if (register_netdev(&strip_info->dev) != 0) { printk(KERN_ERR "strip: register_netdev() failed.\n"); strip_free(strip_info); return -ENFILE; } strip_info->tty = tty; tty->disc_data = strip_info; if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); /* * Restore default settings */ strip_info->dev.type = ARPHRD_METRICOM; /* dtang */ /* * Set tty options */ tty->termios->c_iflag |= IGNBRK |IGNPAR;/* Ignore breaks and parity errors. */ tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */ tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */ #ifdef MODULE MOD_INC_USE_COUNT; #endif /* * Done. We have linked the TTY line to a channel. */ return(strip_info->dev.base_addr); } /* * Close down a STRIP channel. * This means flushing out any pending queues, and then restoring the * TTY line discipline to what it was before it got hooked to STRIP * (which usually is TTY again). */ static void strip_close(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* * First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC) return; dev_close(&strip_info->dev); unregister_netdev(&strip_info->dev); tty->disc_data = 0; strip_info->tty = NULL; strip_free(strip_info); tty->disc_data = NULL; #ifdef MODULE MOD_DEC_USE_COUNT; #endif } /************************************************************************/ /* Perform I/O control calls on an active STRIP channel. */ static int strip_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { struct strip *strip_info = (struct strip *) tty->disc_data; int err; /* * First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC) return -EINVAL; switch(cmd) { case SIOCGIFNAME: err = verify_area(VERIFY_WRITE, (void*)arg, 16); if (err) return -err; copy_to_user((void*)arg, strip_info->dev.name, strlen(strip_info->dev.name) + 1); return 0; case SIOCSIFHWADDR: return -EINVAL; /* * Allow stty to read, but not set, the serial port */ case TCGETS: case TCGETA: return n_tty_ioctl(tty, (struct file *) file, cmd, (unsigned long) arg); default: return -ENOIOCTLCMD; } } /************************************************************************/ /* Initialization */ /* * Registers with the /proc file system to create different /proc/net files. */ static int strip_proc_net_register(unsigned short type, char *file_name, int (*get_info)(char *, char **, off_t, int, int)) { struct proc_dir_entry *strip_entry; strip_entry = kmalloc(sizeof(struct proc_dir_entry), GFP_ATOMIC); memset(strip_entry, 0, sizeof(struct proc_dir_entry)); strip_entry->low_ino = type; strip_entry->namelen = strlen(file_name); strip_entry->name = file_name; strip_entry->mode = S_IFREG | S_IRUGO; strip_entry->nlink = 1; strip_entry->uid = 0; strip_entry->gid = 0; strip_entry->size = 0; strip_entry->ops = &proc_net_inode_operations; strip_entry->get_info = get_info; return proc_net_register(strip_entry); } /* * Initialize the STRIP driver. * This routine is called at boot time, to bootstrap the multi-channel * STRIP driver */ #ifdef MODULE static #endif int strip_init_ctrl_dev(struct device *dummy) { static struct tty_ldisc strip_ldisc; int status; printk("STRIP: version %s (unlimited channels)\n", StripVersion); /* * Fill in our line protocol discipline, and register it */ memset(&strip_ldisc, 0, sizeof(strip_ldisc)); strip_ldisc.magic = TTY_LDISC_MAGIC; strip_ldisc.flags = 0; strip_ldisc.open = strip_open; strip_ldisc.close = strip_close; strip_ldisc.read = NULL; strip_ldisc.write = NULL; strip_ldisc.ioctl = strip_ioctl; strip_ldisc.poll = NULL; strip_ldisc.receive_buf = strip_receive_buf; strip_ldisc.receive_room = strip_receive_room; strip_ldisc.write_wakeup = strip_write_some_more; status = tty_register_ldisc(N_STRIP, &strip_ldisc); if (status != 0) { printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", status); } /* * Register the status and trace files with /proc */ #if DO_PROC_NET_STRIP_STATUS if (strip_proc_net_register(PROC_NET_STRIP_STATUS, "strip_status", &strip_get_status_info) != 0) { printk(KERN_ERR "strip: status strip_proc_net_register() failed.\n"); } #endif #if DO_PROC_NET_STRIP_TRACE if (strip_proc_net_register(PROC_NET_STRIP_TRACE, "strip_trace", &strip_get_trace_info) != 0) { printk(KERN_ERR "strip: trace strip_proc_net_register() failed.\n"); } #endif #ifdef MODULE return status; #else /* Return "not found", so that dev_init() will unlink * the placeholder device entry for us. */ return ENODEV; #endif } /************************************************************************/ /* From here down is only used when compiled as an external module */ #ifdef MODULE int init_module(void) { return strip_init_ctrl_dev(0); } void cleanup_module(void) { int i; while (struct_strip_list) strip_free(struct_strip_list); /* Unregister with the /proc/net files here. */ #if DO_PROC_NET_STRIP_TRACE proc_net_unregister(PROC_NET_STRIP_TRACE); #endif #if DO_PROC_NET_STRIP_STATUS proc_net_unregister(PROC_NET_STRIP_STATUS); #endif if ((i = tty_register_ldisc(N_STRIP, NULL))) printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i); } #endif /* MODULE */