/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, * auto carrier detecting ethernet driver. Also known as the * "Happy Meal Ethernet" found on SunSwift SBUS cards. * * Copyright (C) 1996, 1998 David S. Miller (davem@caipfs.rutgers.edu) */ static char *version = "sunhme.c:v1.10 27/Jan/99 David S. Miller (davem@caipfs.rutgers.edu)\n"; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __sparc_v9__ #include #endif #include #include #include #include #include #ifdef CONFIG_PCI #include #include #endif #include "sunhme.h" #ifdef MODULE static struct happy_meal *root_happy_dev = NULL; #endif static struct quattro *qfe_sbus_list = NULL; #ifdef CONFIG_PCI static struct quattro *qfe_pci_list = NULL; #endif #undef HMEDEBUG #undef SXDEBUG #undef RXDEBUG #undef TXDEBUG #undef TXLOGGING #ifdef TXLOGGING struct hme_tx_logent { unsigned int tstamp; int tx_new, tx_old; unsigned int action; #define TXLOG_ACTION_IRQ 0x01 #define TXLOG_ACTION_TXMIT 0x02 #define TXLOG_ACTION_TBUSY 0x04 #define TXLOG_ACTION_NBUFS 0x08 unsigned int status; }; #define TX_LOG_LEN 128 static struct hme_tx_logent tx_log[TX_LOG_LEN]; static int txlog_cur_entry = 0; static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) { struct hme_tx_logent *tlp; unsigned long flags; save_and_cli(flags); tlp = &tx_log[txlog_cur_entry]; tlp->tstamp = (unsigned int)jiffies; tlp->tx_new = hp->tx_new; tlp->tx_old = hp->tx_old; tlp->action = a; tlp->status = s; txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); restore_flags(flags); } static __inline__ void tx_dump_log(void) { int i, this; this = txlog_cur_entry; for(i = 0; i < TX_LOG_LEN; i++) { printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, tx_log[this].tstamp, tx_log[this].tx_new, tx_log[this].tx_old, tx_log[this].action, tx_log[this].status); this = (this + 1) & (TX_LOG_LEN - 1); } } static __inline__ void tx_dump_ring(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; int i; for(i = 0; i < TX_RING_SIZE; i+=4) { printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", i, i + 4, le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); } } #else #define tx_add_log(hp, a, s) do { } while(0) #define tx_dump_log() do { } while(0) #define tx_dump_ring(hp) do { } while(0) #endif #ifdef HMEDEBUG #define HMD(x) printk x #else #define HMD(x) #endif /* #define AUTO_SWITCH_DEBUG */ #ifdef AUTO_SWITCH_DEBUG #define ASD(x) printk x #else #define ASD(x) #endif #define DEFAULT_IPG0 16 /* For lance-mode only */ #define DEFAULT_IPG1 8 /* For all modes */ #define DEFAULT_IPG2 4 /* For all modes */ #define DEFAULT_JAMSIZE 4 /* Toe jam */ /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ #define BB_PUT_BIT(hp, tregs, bit) \ do { hme_write32(hp, &(tregs)->bb_data, (bit)); \ hme_write32(hp, &(tregs)->bb_clock, 0); \ hme_write32(hp, &(tregs)->bb_clock, 1); \ } while(0) #define BB_GET_BIT(hp, tregs, internal) \ ({ \ hme_write32(hp, &(tregs)->bb_clock, 0); \ hme_write32(hp, &(tregs)->bb_clock, 1); \ if(internal) \ hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO0; \ else \ hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO1; \ }) #define BB_GET_BIT2(hp, tregs, internal) \ ({ \ int retval; \ hme_write32(hp, &(tregs)->bb_clock, 0); \ udelay(1); \ if(internal) \ retval = hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO0; \ else \ retval = hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO1; \ hme_write32(hp, &(tregs)->bb_clock, 1); \ retval; \ }) #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ static inline int happy_meal_bb_read(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg) { volatile int unused; unsigned long tmp; int retval = 0; int i; ASD(("happy_meal_bb_read: reg=%d ", reg)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 1); /* Force BitBang into the idle state. */ for(i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it the read sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); /* Give it the PHY address. */ tmp = hp->paddr & 0xff; for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we want to read. */ tmp = (reg & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 0); /* Now read in the value. */ unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); for(i = 15; i >= 0; i--) retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); ASD(("value=%x\n", retval)); return retval; } static inline void happy_meal_bb_write(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg, unsigned short value) { unsigned long tmp; int i; ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 1); /* Force BitBang into the idle state. */ for(i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it write sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); /* Give it the PHY address. */ tmp = (hp->paddr & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we will be writing. */ tmp = (reg & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it to become ready for the bits. */ BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); for(i = 15; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 0); } #define TCVR_READ_TRIES 16 static inline int happy_meal_tcvr_read(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg) { int tries = TCVR_READ_TRIES; int retval; ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); if(hp->tcvr_type == none) { ASD(("no transceiver, value=TCVR_FAILURE\n")); return TCVR_FAILURE; } if(!(hp->happy_flags & HFLAG_FENABLE)) { ASD(("doing bit bang\n")); return happy_meal_bb_read(hp, tregs, reg); } hme_write32(hp, &tregs->frame, (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); while(!(hme_read32(hp, &tregs->frame) & 0x10000) && --tries) udelay(20); if(!tries) { printk("happy meal: Aieee, transceiver MIF read bolixed\n"); return TCVR_FAILURE; } retval = hme_read32(hp, &tregs->frame) & 0xffff; ASD(("value=%04x\n", retval)); return retval; } #define TCVR_WRITE_TRIES 16 static inline void happy_meal_tcvr_write(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg, unsigned short value) { int tries = TCVR_WRITE_TRIES; ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); /* Welcome to Sun Microsystems, can I take your order please? */ if(!hp->happy_flags & HFLAG_FENABLE) return happy_meal_bb_write(hp, tregs, reg, value); /* Would you like fries with that? */ hme_write32(hp, &tregs->frame, (FRAME_WRITE | (hp->paddr << 23) | ((reg & 0xff) << 18) | (value & 0xffff))); while(!(hme_read32(hp, &tregs->frame) & 0x10000) && --tries) udelay(20); /* Anything else? */ if(!tries) printk("happy meal: Aieee, transceiver MIF write bolixed\n"); /* Fifty-two cents is your change, have a nice day. */ } /* Auto negotiation. The scheme is very simple. We have a timer routine * that keeps watching the auto negotiation process as it progresses. * The DP83840 is first told to start doing it's thing, we set up the time * and place the timer state machine in it's initial state. * * Here the timer peeks at the DP83840 status registers at each click to see * if the auto negotiation has completed, we assume here that the DP83840 PHY * will time out at some point and just tell us what (didn't) happen. For * complete coverage we only allow so many of the ticks at this level to run, * when this has expired we print a warning message and try another strategy. * This "other" strategy is to force the interface into various speed/duplex * configurations and we stop when we see a link-up condition before the * maximum number of "peek" ticks have occurred. * * Once a valid link status has been detected we configure the BigMAC and * the rest of the Happy Meal to speak the most efficient protocol we could * get a clean link for. The priority for link configurations, highest first * is: * 100 Base-T Full Duplex * 100 Base-T Half Duplex * 10 Base-T Full Duplex * 10 Base-T Half Duplex * * We start a new timer now, after a successful auto negotiation status has * been detected. This timer just waits for the link-up bit to get set in * the BMCR of the DP83840. When this occurs we print a kernel log message * describing the link type in use and the fact that it is up. * * If a fatal error of some sort is signalled and detected in the interrupt * service routine, and the chip is reset, or the link is ifconfig'd down * and then back up, this entire process repeats itself all over again. */ static int try_next_permutation(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); /* Downgrade from full to half duplex. Only possible * via ethtool. */ if(hp->sw_bmcr & BMCR_FULLDPLX) { hp->sw_bmcr &= ~(BMCR_FULLDPLX); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); return 0; } /* Downgrade from 100 to 10. */ if(hp->sw_bmcr & BMCR_SPEED100) { hp->sw_bmcr &= ~(BMCR_SPEED100); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); return 0; } /* We've tried everything. */ return -1; } static void display_link_mode(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { printk("%s: Link is up using ", hp->dev->name); if(hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); if(hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { if(hp->sw_lpa & LPA_100FULL) printk("100Mb/s, Full Duplex.\n"); else printk("100Mb/s, Half Duplex.\n"); } else { if(hp->sw_lpa & LPA_10FULL) printk("10Mb/s, Full Duplex.\n"); else printk("10Mb/s, Half Duplex.\n"); } } static void display_forced_link_mode(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { printk("%s: Link has been forced up using ", hp->dev->name); if(hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(hp->sw_bmcr & BMCR_SPEED100) printk("100Mb/s, "); else printk("10Mb/s, "); if(hp->sw_bmcr & BMCR_FULLDPLX) printk("Full Duplex.\n"); else printk("Half Duplex.\n"); } static int set_happy_link_modes(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { int full; /* All we care about is making sure the bigmac tx_cfg has a * proper duplex setting. */ if(hp->timer_state == arbwait) { hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); if(!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) goto no_response; if(hp->sw_lpa & LPA_100FULL) full = 1; else if(hp->sw_lpa & LPA_100HALF) full = 0; else if(hp->sw_lpa & LPA_10FULL) full = 1; else full = 0; } else { /* Forcing a link mode. */ hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(hp->sw_bmcr & BMCR_FULLDPLX) full = 1; else full = 0; } /* Before changing other bits in the tx_cfg register, and in * general any of other the TX config registers too, you * must: * 1) Clear Enable * 2) Poll with reads until that bit reads back as zero * 3) Make TX configuration changes * 4) Set Enable once more */ hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) & ~(BIGMAC_TXCFG_ENABLE)); while(hme_read32(hp, &hp->bigmacregs->tx_cfg) & BIGMAC_TXCFG_ENABLE) barrier(); if(full) { hp->happy_flags |= HFLAG_FULL; hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) | BIGMAC_TXCFG_FULLDPLX); } else { hp->happy_flags &= ~(HFLAG_FULL); hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) & ~(BIGMAC_TXCFG_FULLDPLX)); } hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) | BIGMAC_TXCFG_ENABLE); return 0; no_response: return 1; } static int happy_meal_init(struct happy_meal *hp, int from_irq); static void happy_meal_timer(unsigned long data) { struct happy_meal *hp = (struct happy_meal *) data; struct hmeal_tcvregs *tregs = hp->tcvregs; int restart_timer = 0; hp->timer_ticks++; switch(hp->timer_state) { case arbwait: /* Only allow for 5 ticks, thats 10 seconds and much too * long to wait for arbitration to complete. */ if(hp->timer_ticks >= 10) { /* Enter force mode. */ do_force_mode: hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); printk("%s: Auto-Negotiation unsuccessful, trying force link mode\n", hp->dev->name); hp->sw_bmcr = BMCR_SPEED100; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); hp->timer_state = ltrywait; hp->timer_ticks = 0; restart_timer = 1; } else { /* Anything interesting happen? */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); if(hp->sw_bmsr & BMSR_ANEGCOMPLETE) { int ret; /* Just what we've been waiting for... */ ret = set_happy_link_modes(hp, tregs); if(ret) { /* Ooops, something bad happened, go to force * mode. * * XXX Broken hubs which don't support 802.3u * XXX auto-negotiation make this happen as well. */ goto do_force_mode; } /* Success, at least so far, advance our state engine. */ hp->timer_state = lupwait; restart_timer = 1; } else { restart_timer = 1; } } break; case lupwait: /* Auto negotiation was successful and we are awaiting a * link up status. I have decided to let this timer run * forever until some sort of error is signalled, reporting * a message to the user at 10 second intervals. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); if(hp->sw_bmsr & BMSR_LSTATUS) { /* Wheee, it's up, display the link mode in use and put * the timer to sleep. */ display_link_mode(hp, tregs); hp->timer_state = asleep; restart_timer = 0; } else { if(hp->timer_ticks >= 10) { printk("%s: Auto negotiation successful, link still " "not completely up.\n", hp->dev->name); hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case ltrywait: /* Making the timeout here too long can make it take * annoyingly long to attempt all of the link mode * permutations, but then again this is essentially * error recovery code for the most part. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); if(hp->timer_ticks == 1) { /* Re-enable transceiver, we'll re-enable the transceiver next * tick, then check link state on the following tick. */ hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); restart_timer = 1; break; } if(hp->timer_ticks == 2) { hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); restart_timer = 1; break; } if(hp->sw_bmsr & BMSR_LSTATUS) { /* Force mode selection success. */ display_forced_link_mode(hp, tregs); set_happy_link_modes(hp, tregs); /* XXX error? then what? */ hp->timer_state = asleep; restart_timer = 0; } else { if(hp->timer_ticks >= 4) { /* 6 seconds or so... */ int ret; ret = try_next_permutation(hp, tregs); if(ret == -1) { /* Aieee, tried them all, reset the * chip and try all over again. */ /* Let the user know... */ printk("%s: Link down, cable problem?\n", hp->dev->name); ret = happy_meal_init(hp, 0); if(ret) { /* ho hum... */ printk("%s: Error, cannot re-init the " "Happy Meal.\n", hp->dev->name); } return; } hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case asleep: default: /* Can't happens.... */ printk("%s: Aieee, link timer is asleep but we got one anyways!\n", hp->dev->name); restart_timer = 0; hp->timer_ticks = 0; hp->timer_state = asleep; /* foo on you */ break; }; if(restart_timer) { hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ add_timer(&hp->happy_timer); } } #define TX_RESET_TRIES 32 #define RX_RESET_TRIES 32 static inline void happy_meal_tx_reset(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { int tries = TX_RESET_TRIES; HMD(("happy_meal_tx_reset: reset, ")); /* Would you like to try our SMCC Delux? */ hme_write32(hp, &bregs->tx_swreset, 0); while((hme_read32(hp, &bregs->tx_swreset) & 1) && --tries) udelay(20); /* Lettuce, tomato, buggy hardware (no extra charge)? */ if(!tries) printk("happy meal: Transceiver BigMac ATTACK!"); /* Take care. */ HMD(("done\n")); } static inline void happy_meal_rx_reset(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { int tries = RX_RESET_TRIES; HMD(("happy_meal_rx_reset: reset, ")); /* We have a special on GNU/Viking hardware bugs today. */ hme_write32(hp, &bregs->rx_swreset, 0); while((hme_read32(hp, &bregs->rx_swreset) & 1) && --tries) udelay(20); /* Will that be all? */ if(!tries) printk("happy meal: Receiver BigMac ATTACK!"); /* Don't forget your vik_1137125_wa. Have a nice day. */ HMD(("done\n")); } #define STOP_TRIES 16 static inline void happy_meal_stop(struct happy_meal *hp, struct hmeal_gregs *gregs) { int tries = STOP_TRIES; HMD(("happy_meal_stop: reset, ")); /* We're consolidating our STB products, it's your lucky day. */ hme_write32(hp, &gregs->sw_reset, GREG_RESET_ALL); while(hme_read32(hp, &gregs->sw_reset) && --tries) udelay(20); /* Come back next week when we are "Sun Microelectronics". */ if(!tries) printk("happy meal: Fry guys."); /* Remember: "Different name, same old buggy as shit hardware." */ HMD(("done\n")); } static void happy_meal_get_counters(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { struct net_device_stats *stats = &hp->net_stats; stats->rx_crc_errors += hme_read32(hp, &bregs->rcrce_ctr); hme_write32(hp, &bregs->rcrce_ctr, 0); stats->rx_frame_errors += hme_read32(hp, &bregs->unale_ctr); hme_write32(hp, &bregs->unale_ctr, 0); stats->rx_length_errors += hme_read32(hp, &bregs->gle_ctr); hme_write32(hp, &bregs->gle_ctr, 0); stats->tx_aborted_errors += hme_read32(hp, &bregs->ex_ctr); stats->collisions += (hme_read32(hp, &bregs->ex_ctr) + hme_read32(hp, &bregs->lt_ctr)); hme_write32(hp, &bregs->ex_ctr, 0); hme_write32(hp, &bregs->lt_ctr, 0); } static inline void happy_meal_poll_start(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tmp; int speed; ASD(("happy_meal_poll_start: ")); if(!(hp->happy_flags & HFLAG_POLLENABLE)) { HMD(("polling disabled, return\n")); return; } /* Start the MIF polling on the external transceiver. */ ASD(("polling on, ")); tmp = hme_read32(hp, &tregs->cfg); tmp &= ~(TCV_CFG_PDADDR | TCV_CFG_PREGADDR); tmp |= ((hp->paddr & 0x1f) << 10); tmp |= (TCV_PADDR_ETX << 3); tmp |= TCV_CFG_PENABLE; hme_write32(hp, &tregs->cfg, tmp); /* Let the bits set. */ udelay(200); /* We are polling now. */ ASD(("now polling, ")); hp->happy_flags |= HFLAG_POLL; /* Clear the poll flags, get the basic status as of now. */ hp->poll_flag = 0; hp->poll_data = tregs->status >> 16; if(hp->happy_flags & HFLAG_AUTO) speed = hp->auto_speed; else speed = hp->forced_speed; /* Listen only for the MIF interrupts we want to hear. */ ASD(("mif ints on, ")); if(speed == 100) hme_write32(hp, &tregs->int_mask, 0xfffb); else hme_write32(hp, &tregs->int_mask, 0xfff9); ASD(("done\n")); } static inline void happy_meal_poll_stop(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { ASD(("happy_meal_poll_stop: ")); /* If polling disabled or not polling already, nothing to do. */ if((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != (HFLAG_POLLENABLE | HFLAG_POLL)) { HMD(("not polling, return\n")); return; } /* Shut up the MIF. */ ASD(("were polling, mif ints off, ")); hme_write32(hp, &tregs->int_mask, 0xffff); /* Turn off polling. */ ASD(("polling off, ")); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_PENABLE)); /* We are no longer polling. */ hp->happy_flags &= ~(HFLAG_POLL); /* Let the bits set. */ udelay(200); ASD(("done\n")); } /* Only Sun can take such nice parts and fuck up the programming interface * like this. Good job guys... */ #define TCVR_RESET_TRIES 16 /* It should reset quickly */ #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ static int happy_meal_tcvr_reset(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tconfig; int result, tries = TCVR_RESET_TRIES; tconfig = hme_read32(hp, &tregs->cfg); ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); if(hp->tcvr_type == external) { ASD(("external<")); hme_write32(hp, &tregs->cfg, tconfig & ~(TCV_CFG_PSELECT)); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; ASD(("ISOLATE,")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) { ASD(("phyread_fail>\n")); return -1; } ASD(("phyread_ok,PSELECT>")); hme_write32(hp, &tregs->cfg, tconfig | TCV_CFG_PSELECT); hp->tcvr_type = external; hp->paddr = TCV_PADDR_ETX; } else { if(tconfig & TCV_CFG_MDIO1) { ASD(("internalcfg, (tconfig | TCV_CFG_PSELECT)); ASD(("ISOLATE,")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) { ASD(("phyread_fail>\n")); return -1; } ASD(("phyread_ok,~PSELECT>")); hme_write32(hp, &tregs->cfg, (tconfig & ~(TCV_CFG_PSELECT))); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; } } ASD(("BMCR_RESET ")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, BMCR_RESET); while(--tries) { result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) return -1; hp->sw_bmcr = result; if(!(result & BMCR_RESET)) break; udelay(20); } if(!tries) { ASD(("BMCR RESET FAILED!\n")); return -1; } ASD(("RESET_OK\n")); /* Get fresh copies of the PHY registers. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID2); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); ASD(("UNISOLATE")); hp->sw_bmcr &= ~(BMCR_ISOLATE); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); tries = TCVR_UNISOLATE_TRIES; while(--tries) { result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) return -1; if(!(result & BMCR_ISOLATE)) break; udelay(20); } if(!tries) { ASD((" FAILED!\n")); return -1; } ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); result = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); return 0; } /* Figure out whether we have an internal or external transceiver. */ static void happy_meal_transceiver_check(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tconfig = hme_read32(hp, &tregs->cfg); ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); if(hp->happy_flags & HFLAG_POLL) { /* If we are polling, we must stop to get the transceiver type. */ ASD((" ")); if(hp->tcvr_type == internal) { if(tconfig & TCV_CFG_MDIO1) { ASD((" ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("\n")); tconfig &= ~(TCV_CFG_PENABLE); tconfig |= TCV_CFG_PSELECT; hme_write32(hp, &tregs->cfg, tconfig); } } else { if(hp->tcvr_type == external) { ASD((" ")); if(!(hme_read32(hp, &tregs->status) >> 16)) { ASD((" ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("\n")); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_PSELECT)); } ASD(("\n")); } else { ASD(("\n")); } } } else { unsigned long reread = hme_read32(hp, &tregs->cfg); /* Else we can just work off of the MDIO bits. */ ASD((" ")); if(reread & TCV_CFG_MDIO1) { hme_write32(hp, &tregs->cfg, tconfig | TCV_CFG_PSELECT); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("\n")); } else { if(reread & TCV_CFG_MDIO0) { hme_write32(hp, &tregs->cfg, tconfig & ~(TCV_CFG_PSELECT)); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("\n")); } else { printk("happy meal: Transceiver and a coke please."); hp->tcvr_type = none; /* Grrr... */ ASD(("\n")); } } } } /* The receive ring buffers are a bit tricky to get right. Here goes... * * The buffers we dma into must be 64 byte aligned. So we use a special * alloc_skb() routine for the happy meal to allocate 64 bytes more than * we really need. * * We use skb_reserve() to align the data block we get in the skb. We * also program the etxregs->cfg register to use an offset of 2. This * imperical constant plus the ethernet header size will always leave * us with a nicely aligned ip header once we pass things up to the * protocol layers. * * The numbers work out to: * * Max ethernet frame size 1518 * Ethernet header size 14 * Happy Meal base offset 2 * * Say a skb data area is at 0xf001b010, and its size alloced is * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. * * First our alloc_skb() routine aligns the data base to a 64 byte * boundry. We now have 0xf001b040 as our skb data address. We * plug this into the receive descriptor address. * * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. * So now the data we will end up looking at starts at 0xf001b042. When * the packet arrives, we will check out the size received and subtract * this from the skb->length. Then we just pass the packet up to the * protocols as is, and allocate a new skb to replace this slot we have * just received from. * * The ethernet layer will strip the ether header from the front of the * skb we just sent to it, this leaves us with the ip header sitting * nicely aligned at 0xf001b050. Also, for tcp and udp packets the * Happy Meal has even checksummed the tcp/udp data for us. The 16 * bit checksum is obtained from the low bits of the receive descriptor * flags, thus: * * skb->csum = rxd->rx_flags & 0xffff; * skb->ip_summed = CHECKSUM_HW; * * before sending off the skb to the protocols, and we are good as gold. */ static inline void happy_meal_clean_rings(struct happy_meal *hp) { int i; for(i = 0; i < RX_RING_SIZE; i++) { if(hp->rx_skbs[i] != NULL) { dev_kfree_skb(hp->rx_skbs[i]); hp->rx_skbs[i] = NULL; } } for(i = 0; i < TX_RING_SIZE; i++) { if(hp->tx_skbs[i] != NULL) { dev_kfree_skb(hp->tx_skbs[i]); hp->tx_skbs[i] = NULL; } } } static void happy_meal_init_rings(struct happy_meal *hp, int from_irq) { struct hmeal_init_block *hb = hp->happy_block; struct device *dev = hp->dev; int i, gfp_flags = GFP_KERNEL; if(from_irq || in_interrupt()) gfp_flags = GFP_ATOMIC; HMD(("happy_meal_init_rings: counters to zero, ")); hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; /* Free any skippy bufs left around in the rings. */ HMD(("clean, ")); happy_meal_clean_rings(hp); /* Now get new skippy bufs for the receive ring. */ HMD(("init rxring, ")); for(i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags | GFP_DMA); if(!skb) continue; hp->rx_skbs[i] = skb; skb->dev = dev; /* Because we reserve afterwards. */ skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET)); #ifdef CONFIG_PCI if(hp->happy_flags & HFLAG_PCI) { pcihme_write_rxd(&hb->happy_meal_rxd[i], (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)skb->data)); } else #endif #ifndef __sparc_v9__ if (sparc_cpu_model == sun4d) { __u32 va = (__u32)hp->sun4d_buffers + i * PAGE_SIZE; hb->happy_meal_rxd[i].rx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); } else #endif { hb->happy_meal_rxd[i].rx_addr = sbus_dvma_addr(skb->data); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); } skb_reserve(skb, RX_OFFSET); } HMD(("init txring, ")); for(i = 0; i < TX_RING_SIZE; i++) hb->happy_meal_txd[i].tx_flags = 0; HMD(("done\n")); } #ifndef __sparc_v9__ static void sun4c_happy_meal_init_rings(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; __u32 hbufs = hp->s4c_buf_dvma; int i; HMD(("happy_meal_init_rings: counters to zero, ")); hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; HMD(("init rxring, ")); for(i = 0; i < RX_RING_SIZE; i++) { hb->happy_meal_rxd[i].rx_addr = hbufs + hbuf_offset(rx_buf, i); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((SUN4C_RX_BUFF_SIZE - RX_OFFSET) << 16)); } HMD(("init txring, ")); for(i = 0; i < TX_RING_SIZE; i++) hb->happy_meal_txd[i].tx_flags = 0; HMD(("done\n")); } #endif static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, struct hmeal_tcvregs *tregs, struct ethtool_cmd *ep) { int timeout; /* Read all of the registers we are interested in now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID2); /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); if(ep == NULL || ep->autoneg == AUTONEG_ENABLE) { /* Advertise everything we can support. */ if(hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if(hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if(hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if(hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); happy_meal_tcvr_write(hp, tregs, DP83840_ADVERTISE, hp->sw_advertise); /* XXX Currently no Happy Meal cards I know off support 100BaseT4, * XXX and this is because the DP83840 does not support it, changes * XXX would need to be made to the tx/rx logic in the driver as well * XXX so I completely skip checking for it in the BMSR for now. */ #ifdef AUTO_SWITCH_DEBUG ASD(("%s: Advertising [ ", hp->dev->name)); if(hp->sw_advertise & ADVERTISE_10HALF) ASD(("10H ")); if(hp->sw_advertise & ADVERTISE_10FULL) ASD(("10F ")); if(hp->sw_advertise & ADVERTISE_100HALF) ASD(("100H ")); if(hp->sw_advertise & ADVERTISE_100FULL) ASD(("100F ")); #endif /* Enable Auto-Negotiation, this is usually on already... */ hp->sw_bmcr |= BMCR_ANENABLE; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* Restart it to make sure it is going. */ hp->sw_bmcr |= BMCR_ANRESTART; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* BMCR_ANRESTART self clears when the process has begun. */ timeout = 64; /* More than enough. */ while(--timeout) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(!(hp->sw_bmcr & BMCR_ANRESTART)) break; /* got it. */ udelay(10); } if(!timeout) { printk("%s: Happy Meal would not start auto negotiation " "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); printk("%s: Performing force link detection.\n", hp->dev->name); goto force_link; } else { hp->timer_state = arbwait; } } else { force_link: /* Force the link up, trying first a particular mode. * Either we are here at the request of ethtool or * because the Happy Meal would not start to autoneg. */ /* Disable auto-negotiation in BMCR, enable the duplex and * speed setting, init the timer state machine, and fire it off. */ if(ep == NULL || ep->autoneg == AUTONEG_ENABLE) { hp->sw_bmcr = BMCR_SPEED100; } else { if(ep->speed == SPEED_100) hp->sw_bmcr = BMCR_SPEED100; else hp->sw_bmcr = 0; if(ep->duplex == DUPLEX_FULL) hp->sw_bmcr |= BMCR_FULLDPLX; } happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); hp->timer_state = ltrywait; } hp->timer_ticks = 0; hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ hp->happy_timer.data = (unsigned long) hp; hp->happy_timer.function = &happy_meal_timer; add_timer(&hp->happy_timer); } #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ static int happy_meal_init(struct happy_meal *hp, int from_irq) { struct hmeal_gregs *gregs = hp->gregs; struct hmeal_etxregs *etxregs = hp->etxregs; struct hmeal_erxregs *erxregs = hp->erxregs; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned long regtmp, rxcfg; unsigned char *e = &hp->dev->dev_addr[0]; /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); HMD(("happy_meal_init: happy_flags[%08x] ", hp->happy_flags)); if(!(hp->happy_flags & HFLAG_INIT)) { HMD(("set HFLAG_INIT, ")); hp->happy_flags |= HFLAG_INIT; happy_meal_get_counters(hp, bregs); } /* Stop polling. */ HMD(("to happy_meal_poll_stop\n")); happy_meal_poll_stop(hp, tregs); /* Stop transmitter and receiver. */ HMD(("happy_meal_init: to happy_meal_stop\n")); happy_meal_stop(hp, gregs); /* Alloc and reset the tx/rx descriptor chains. */ HMD(("happy_meal_init: to happy_meal_init_rings\n")); #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) sun4c_happy_meal_init_rings(hp); else #endif happy_meal_init_rings(hp, from_irq); /* Shut up the MIF. */ HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", hme_read32(hp, &tregs->int_mask))); hme_write32(hp, &tregs->int_mask, 0xffff); /* See if we can enable the MIF frame on this card to speak to the DP83840. */ if(hp->happy_flags & HFLAG_FENABLE) { HMD(("use frame old[%08x], ", hme_read32(hp, &tregs->cfg))); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_BENABLE)); } else { HMD(("use bitbang old[%08x], ", hme_read32(hp, &tregs->cfg))); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) | TCV_CFG_BENABLE); } /* Check the state of the transceiver. */ HMD(("to happy_meal_transceiver_check\n")); happy_meal_transceiver_check(hp, tregs); /* Put the Big Mac into a sane state. */ HMD(("happy_meal_init: ")); switch(hp->tcvr_type) { case none: /* Cannot operate if we don't know the transceiver type! */ HMD(("AAIEEE no transceiver type, EAGAIN")); return -EAGAIN; case internal: /* Using the MII buffers. */ HMD(("internal, using MII, ")); hme_write32(hp, &bregs->xif_cfg, 0); break; case external: /* Not using the MII, disable it. */ HMD(("external, disable MII, ")); hme_write32(hp, &bregs->xif_cfg, BIGMAC_XCFG_MIIDISAB); break; }; if(happy_meal_tcvr_reset(hp, tregs)) return -EAGAIN; /* Reset the Happy Meal Big Mac transceiver and the receiver. */ HMD(("tx/rx reset, ")); happy_meal_tx_reset(hp, bregs); happy_meal_rx_reset(hp, bregs); /* Set jam size and inter-packet gaps to reasonable defaults. */ HMD(("jsize/ipg1/ipg2, ")); hme_write32(hp, &bregs->jsize, DEFAULT_JAMSIZE); hme_write32(hp, &bregs->ipkt_gap1, DEFAULT_IPG1); hme_write32(hp, &bregs->ipkt_gap2, DEFAULT_IPG2); /* Load up the MAC address and random seed. */ HMD(("rseed/macaddr, ")); /* The docs recommend to use the 10LSB of our MAC here. */ hme_write32(hp, &bregs->rand_seed, ((e[5] | e[4]<<8)&0x3ff)); hme_write32(hp, &bregs->mac_addr2, ((e[4] << 8) | e[5])); hme_write32(hp, &bregs->mac_addr1, ((e[2] << 8) | e[3])); hme_write32(hp, &bregs->mac_addr0, ((e[0] << 8) | e[1])); HMD(("htable, ")); if((hp->dev->flags & IFF_ALLMULTI) || (hp->dev->mc_count > 64)) { hme_write32(hp, &bregs->htable0, 0xffff); hme_write32(hp, &bregs->htable1, 0xffff); hme_write32(hp, &bregs->htable2, 0xffff); hme_write32(hp, &bregs->htable3, 0xffff); } else if((hp->dev->flags & IFF_PROMISC) == 0) { u16 hash_table[4]; struct dev_mc_list *dmi = hp->dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; for(i = 0; i < 4; i++) hash_table[i] = 0; for(i = 0; i < hp->dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if(!(*addrs & 1)) continue; crc = 0xffffffffU; for(byte = 0; byte < 6; byte++) { for(bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if(test) crc = crc ^ poly; } } crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, &bregs->htable0, hash_table[0]); hme_write32(hp, &bregs->htable1, hash_table[1]); hme_write32(hp, &bregs->htable2, hash_table[2]); hme_write32(hp, &bregs->htable3, hash_table[3]); } else { hme_write32(hp, &bregs->htable3, 0); hme_write32(hp, &bregs->htable2, 0); hme_write32(hp, &bregs->htable1, 0); hme_write32(hp, &bregs->htable0, 0); } /* Set the RX and TX ring ptrs. */ HMD(("ring ptrs rxr[%08x] txr[%08x]\n", (hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), (hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); hme_write32(hp, &erxregs->rx_ring, (hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); hme_write32(hp, &etxregs->tx_ring, (hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); /* Set the supported burst sizes. */ HMD(("happy_meal_init: old[%08x] bursts<", hme_read32(hp, &gregs->cfg))); #ifdef __sparc_v9__ /* XXX Can sun4d do these too? */ if(hp->happy_bursts & DMA_BURST64) { u32 gcfg = GREG_CFG_BURST64; /* I have no idea if I should set the extended * transfer mode bit for Cheerio, so for now I * do not. -DaveM */ if((hp->happy_flags & HFLAG_PCI) == 0) { mmu_set_sbus64(hp->happy_sbus_dev, hp->happy_bursts); gcfg |= GREG_CFG_64BIT; } HMD(("64>")); hme_write32(hp, &gregs->cfg, gcfg); } else #endif if(hp->happy_bursts & DMA_BURST32) { HMD(("32>")); hme_write32(hp, &gregs->cfg, GREG_CFG_BURST32); } else if(hp->happy_bursts & DMA_BURST16) { HMD(("16>")); hme_write32(hp, &gregs->cfg, GREG_CFG_BURST16); } else { HMD(("XXX>")); hme_write32(hp, &gregs->cfg, 0); } /* Turn off interrupts we do not want to hear. */ HMD((", enable global interrupts, ")); hme_write32(hp, &gregs->imask, (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); /* Set the transmit ring buffer size. */ HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, hme_read32(hp, &etxregs->tx_rsize))); hme_write32(hp, &etxregs->tx_rsize, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); /* Enable transmitter DVMA. */ HMD(("tx dma enable old[%08x], ", hme_read32(hp, &etxregs->cfg))); hme_write32(hp, &etxregs->cfg, hme_read32(hp, &etxregs->cfg) | ETX_CFG_DMAENABLE); /* This chip really rots, for the receiver sometimes when you * write to it's control registers not all the bits get there * properly. I cannot think of a sane way to provide complete * coverage for this hardware bug yet. */ HMD(("erx regs bug old[%08x]\n", hme_read32(hp, &erxregs->cfg))); hme_write32(hp, &erxregs->cfg, ERX_CFG_DEFAULT(RX_OFFSET)); regtmp = hme_read32(hp, &erxregs->cfg); hme_write32(hp, &erxregs->cfg, ERX_CFG_DEFAULT(RX_OFFSET)); if(hme_read32(hp, &erxregs->cfg) != ERX_CFG_DEFAULT(RX_OFFSET)) { printk("happy meal: Eieee, rx config register gets greasy fries.\n"); printk("happy meal: Trying to set %08x, reread gives %08lx\n", ERX_CFG_DEFAULT(RX_OFFSET), regtmp); /* XXX Should return failure here... */ } /* Enable Big Mac hash table filter. */ HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", hme_read32(hp, &bregs->rx_cfg))); rxcfg = BIGMAC_RXCFG_HENABLE; if(hp->dev->flags & IFF_PROMISC) rxcfg |= BIGMAC_RXCFG_PMISC; hme_write32(hp, &bregs->rx_cfg, rxcfg); /* Let the bits settle in the chip. */ udelay(10); /* Ok, configure the Big Mac transmitter. */ HMD(("BIGMAC init, ")); regtmp = 0; if(hp->happy_flags & HFLAG_FULL) regtmp |= BIGMAC_TXCFG_FULLDPLX; hme_write32(hp, &bregs->tx_cfg, regtmp | BIGMAC_TXCFG_DGIVEUP); /* Enable the output drivers no matter what. */ regtmp = BIGMAC_XCFG_ODENABLE; /* If card can do lance mode, enable it. */ if(hp->happy_flags & HFLAG_LANCE) regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; /* Disable the MII buffers if using external transceiver. */ if(hp->tcvr_type == external) regtmp |= BIGMAC_XCFG_MIIDISAB; HMD(("XIF config old[%08x], ", hme_read32(hp, &bregs->xif_cfg))); hme_write32(hp, &bregs->xif_cfg, regtmp); /* Start things up. */ HMD(("tx old[%08x] and rx [%08x] ON!\n", hme_read32(hp, &bregs->tx_cfg), hme_read32(hp, &bregs->rx_cfg))); hme_write32(hp, &bregs->tx_cfg, hme_read32(hp, &bregs->tx_cfg) | BIGMAC_TXCFG_ENABLE); hme_write32(hp, &bregs->rx_cfg, hme_read32(hp, &bregs->rx_cfg) | BIGMAC_RXCFG_ENABLE); /* Get the autonegotiation started, and the watch timer ticking. */ happy_meal_begin_auto_negotiation(hp, tregs, NULL); /* Success. */ return 0; } static void happy_meal_set_initial_advertisement(struct happy_meal *hp) { struct hmeal_tcvregs *tregs = hp->tcvregs; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct hmeal_gregs *gregs = hp->gregs; happy_meal_stop(hp, gregs); hme_write32(hp, &tregs->int_mask, 0xffff); if(hp->happy_flags & HFLAG_FENABLE) hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_BENABLE)); else hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) | TCV_CFG_BENABLE); happy_meal_transceiver_check(hp, tregs); switch(hp->tcvr_type) { case none: return; case internal: hme_write32(hp, &bregs->xif_cfg, 0); break; case external: hme_write32(hp, &bregs->xif_cfg, BIGMAC_XCFG_MIIDISAB); break; }; if(happy_meal_tcvr_reset(hp, tregs)) return; /* Latch PHY registers as of now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); /* Advertise everything we can support. */ if(hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if(hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if(hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if(hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); /* Update the PHY advertisement register. */ happy_meal_tcvr_write(hp, tregs, DP83840_ADVERTISE, hp->sw_advertise); } /* Once status is latched (by happy_meal_interrupt) it is cleared by * the hardware, so we cannot re-read it and get a correct value. */ static int happy_meal_is_not_so_happy(struct happy_meal *hp, struct hmeal_gregs *gregs, unsigned long status) { int reset = 0; /* Only print messages for non-counter related interrupts. */ if(status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | GREG_STAT_SLVPERR)) printk("%s: Error interrupt for happy meal, status = %08lx\n", hp->dev->name, status); if(status & GREG_STAT_RFIFOVF) { /* Receive FIFO overflow is harmless and the hardware will take care of it, just some packets are lost. Who cares. */ printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); } if(status & GREG_STAT_STSTERR) { /* BigMAC SQE link test failed. */ printk("%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_TFIFO_UND) { /* Transmit FIFO underrun, again DMA error likely. */ printk("%s: Happy Meal transmitter FIFO underrun, DMA error.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_MAXPKTERR) { /* Driver error, tried to transmit something larger * than ethernet max mtu. */ printk("%s: Happy Meal MAX Packet size error.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_NORXD) { /* This is harmless, it just means the system is * quite loaded and the incomming packet rate was * faster than the interrupt handler could keep up * with. */ printk(KERN_INFO "%s: Happy Meal out of receive " "descriptors, packet dropped.\n", hp->dev->name); } if(status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { /* All sorts of DMA receive errors. */ printk("%s: Happy Meal rx DMA errors [ ", hp->dev->name); if(status & GREG_STAT_RXERR) printk("GenericError "); if(status & GREG_STAT_RXPERR) printk("ParityError "); if(status & GREG_STAT_RXTERR) printk("RxTagBotch "); printk("]\n"); reset = 1; } if(status & GREG_STAT_EOPERR) { /* Driver bug, didn't set EOP bit in tx descriptor given * to the happy meal. */ printk("%s: EOP not set in happy meal transmit descriptor!\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_MIFIRQ) { /* MIF signalled an interrupt, were we polling it? */ printk("%s: Happy Meal MIF interrupt.\n", hp->dev->name); } if(status & (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { /* All sorts of transmit DMA errors. */ printk("%s: Happy Meal tx DMA errors [ ", hp->dev->name); if(status & GREG_STAT_TXEACK) printk("GenericError "); if(status & GREG_STAT_TXLERR) printk("LateError "); if(status & GREG_STAT_TXPERR) printk("ParityErro "); if(status & GREG_STAT_TXTERR) printk("TagBotch "); printk("]\n"); reset = 1; } if(status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { /* Bus or parity error when cpu accessed happy meal registers * or it's internal FIFO's. Should never see this. */ printk("%s: Happy Meal register access SBUS slave (%s) error.\n", hp->dev->name, (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); reset = 1; } if(reset) { printk("%s: Resetting...\n", hp->dev->name); happy_meal_init(hp, 1); return 1; } return 0; } static inline void happy_meal_mif_interrupt(struct happy_meal *hp, struct hmeal_gregs *gregs, struct hmeal_tcvregs *tregs) { printk("%s: Link status change.\n", hp->dev->name); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); /* Use the fastest transmission protocol possible. */ if(hp->sw_lpa & LPA_100FULL) { printk("%s: Switching to 100Mbps at full duplex.", hp->dev->name); hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); } else if(hp->sw_lpa & LPA_100HALF) { printk("%s: Switching to 100MBps at half duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_SPEED100; } else if(hp->sw_lpa & LPA_10FULL) { printk("%s: Switching to 10MBps at full duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_FULLDPLX; } else { printk("%s: Using 10Mbps at half duplex.", hp->dev->name); } happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* Finally stop polling and shut up the MIF. */ happy_meal_poll_stop(hp, tregs); } #ifdef TXDEBUG #define TXD(x) printk x #else #define TXD(x) #endif static inline void happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { struct sk_buff *skb; TXD(("[%d]", elem)); this = &txbase[elem]; if(this->tx_flags & TXFLAG_OWN) break; skb = hp->tx_skbs[elem]; hp->tx_skbs[elem] = NULL; hp->net_stats.tx_bytes+=skb->len; dev_kfree_skb(skb); hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #ifdef CONFIG_PCI static inline void pci_happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { struct sk_buff *skb; unsigned int flags; TXD(("[%d]", elem)); this = &txbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->tx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->tx_flags); #endif if(flags & TXFLAG_OWN) break; skb = hp->tx_skbs[elem]; hp->tx_skbs[elem] = NULL; hp->net_stats.tx_bytes+=skb->len; dev_kfree_skb(skb); hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #endif #ifndef __sparc_v9__ static inline void sun4c_happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { TXD(("[%d]", elem)); this = &txbase[elem]; if(this->tx_flags & TXFLAG_OWN) break; hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #endif #ifdef RXDEBUG #define RXD(x) printk x #else #define RXD(x) #endif /* Originally I used to handle the allocation failure by just giving back just * that one ring buffer to the happy meal. Problem is that usually when that * condition is triggered, the happy meal expects you to do something reasonable * with all of the packets it has DMA'd in. So now I just drop the entire * ring when we cannot get a new skb and give them all back to the happy meal, * maybe things will be "happier" now. */ static inline void happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; int len = flags >> 16; u16 csum = flags & RXFLAG_CSUM; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; this->rx_addr = kva_to_hva(hp, hp->rx_skbs[elem]->data); this->rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); goto next; } skb = hp->rx_skbs[elem]; #ifdef NEED_DMA_SYNCHRONIZATION mmu_sync_dma(kva_to_hva(hp, skb->data), skb->len, hp->happy_sbus_dev->my_bus); #endif if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA|GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); rxbase[elem].rx_addr = kva_to_hva(hp, new_skb->data); skb_reserve(new_skb, RX_OFFSET); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ rxbase[elem].rx_addr = kva_to_hva(hp, skb->data); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!(csum ^ 0xffff)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk("%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #ifdef CONFIG_PCI static inline void pci_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; unsigned int flags; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->rx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->rx_flags); /* FIXME */ #endif while(!(flags & RXFLAG_OWN)) { struct sk_buff *skb; int len; u16 csum; RXD(("[%d ", elem)); len = flags >> 16; csum = flags & RXFLAG_CSUM; /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; pcihme_write_rxd(this, (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32) virt_to_bus((volatile void *)hp->rx_skbs[elem]->data)); goto next; } skb = hp->rx_skbs[elem]; if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA|GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); pcihme_write_rxd(&rxbase[elem], (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)new_skb->data)); skb_reserve(new_skb, RX_OFFSET); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ pcihme_write_rxd(&rxbase[elem], (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)skb->data)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!~(csum)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->rx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->rx_flags); /* FIXME */ #endif } hp->rx_new = elem; if(drops) printk("%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #endif #ifndef __sparc_v9__ static inline void sun4c_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; struct hmeal_buffers *hbufs = hp->sun4c_buffers; __u32 hbufs_dvma = hp->s4c_buf_dvma; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; unsigned char *thisbuf = &hbufs->rx_buf[elem][0]; __u32 thisbuf_dvma = hbufs_dvma + hbuf_offset(rx_buf, elem); int len = flags >> 16; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } hp->net_stats.rx_dropped++; } else { skb = dev_alloc_skb(len + 2); if(skb == 0) { drops++; hp->net_stats.rx_dropped++; } else { RXD(("len=%d]", len)); skb->dev = hp->dev; skb_reserve(skb, 2); skb_put(skb, len); eth_copy_and_sum(skb, (thisbuf+2), len, 0); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; } } /* Return the buffer to the Happy Meal. */ this->rx_addr = thisbuf_dvma; this->rx_flags = (RXFLAG_OWN | ((SUN4C_RX_BUFF_SIZE - RX_OFFSET) << 16)); elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk("%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } static inline void sun4d_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; int elem = hp->rx_new, drops = 0; __u32 va; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; int len = flags >> 16; u16 csum = flags & RXFLAG_CSUM; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; this->rx_addr = iounit_map_dma_page(va, hp->rx_skbs[elem]->data, hp->happy_sbus_dev->my_bus); this->rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); goto next; } skb = hp->rx_skbs[elem]; if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA | GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; rxbase[elem].rx_addr = iounit_map_dma_page(va, new_skb->data, hp->happy_sbus_dev->my_bus); skb_reserve(new_skb, RX_OFFSET); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; rxbase[elem].rx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!(csum ^ 0xffff)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk("%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #endif static void happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } #ifdef CONFIG_PCI static void pci_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = readl((unsigned long)&gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); pci_happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); pci_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } tx_add_log(hp, TXLOG_ACTION_IRQ, happy_status); dev->interrupt = 0; HMD(("done\n")); } #endif #ifndef __sparc_v9__ static void sun4c_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); sun4c_happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); sun4c_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } static void sun4d_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); sun4d_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } #endif static void quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs) { struct quattro *qp = (struct quattro *)cookie; int i; for(i = 0; i < 4; i++) { struct device *hdev = qp->happy_meals[i]; struct happy_meal *hp = (struct happy_meal *) hdev->priv; volatile u32 *sreg = qp->irq_status[i]; if(sreg && (hme_read32(hp, sreg) & (GREG_STAT_ERRORS | GREG_STAT_MIFIRQ | GREG_STAT_TXALL | GREG_STAT_RXTOHOST)) != 0) qp->handler(irq, hdev, ptregs); } } static int happy_meal_open(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int res; HMD(("happy_meal_open: ")); /* On SBUS Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe time. */ if((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) == HFLAG_QUATTRO) { hp->qfe_parent->irq_status[hp->qfe_ent] = &hp->gregs->stat; goto after_request_irq; } #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) { if(request_irq(dev->irq, &sun4c_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *) dev)) { HMD(("EAGAIN\n")); printk("happy meal: Can't order irq %d to go.\n", dev->irq); return -EAGAIN; } } else if (sparc_cpu_model == sun4d) { if(request_irq(dev->irq, &sun4d_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *) dev)) { HMD(("EAGAIN\n")); printk("happy_meal(SBUS): Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } } else #endif #ifdef CONFIG_PCI if(hp->happy_flags & HFLAG_PCI) { if(request_irq(dev->irq, &pci_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL (PCI)", dev)) { HMD(("EAGAIN\n")); printk("happy_meal(PCI: Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } } else #endif if(request_irq(dev->irq, &happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *)dev)) { HMD(("EAGAIN\n")); printk("happy_meal(SBUS): Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } after_request_irq: HMD(("to happy_meal_init\n")); res = happy_meal_init(hp, 0); if(!res) { MOD_INC_USE_COUNT; } return res; } static int happy_meal_close(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; happy_meal_stop(hp, hp->gregs); happy_meal_clean_rings(hp); /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); /* On Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe * time and never unregister. */ if((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { free_irq(dev->irq, (void *)dev); } else { /* Zap the status register pointer. */ hp->qfe_parent->irq_status[hp->qfe_ent] = NULL; } MOD_DEC_USE_COUNT; return 0; } #ifdef SXDEBUG #define SXD(x) printk x #else #define SXD(x) #endif static int happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { printk ("%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; tx_dump_log(); printk ("%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, hme_read32(hp, &hp->gregs->stat), hme_read32(hp, &hp->etxregs->cfg), hme_read32(hp, &hp->bigmacregs->tx_cfg)); happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } #ifdef __sparc_v9__ if ((unsigned long)(skb->data + skb->len) >= MAX_DMA_ADDRESS) { struct sk_buff *new_skb = skb_copy(skb, GFP_DMA | GFP_ATOMIC); if (!new_skb) return 1; dev_kfree_skb(skb); skb = new_skb; } #endif len = skb->len; entry = hp->tx_new; SXD(("SX", len, entry)); #ifdef NEED_DMA_SYNCHRONIZATION mmu_sync_dma(kva_to_hva(hp, skb->data), skb->len, hp->happy_sbus_dev->my_bus); #endif hp->tx_skbs[entry] = skb; hp->happy_block->happy_meal_txd[entry].tx_addr = kva_to_hva(hp, skb->data); hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hme_write32(hp, &hp->etxregs->tx_pnding, ETX_TP_DMAWAKEUP); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #ifdef CONFIG_PCI static int pci_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { unsigned long flags; printk ("%s: transmit timed out, resetting\n", dev->name); save_and_cli(flags); tx_dump_log(); tx_dump_ring(hp); restore_flags(flags); hp->net_stats.tx_errors++; happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } len = skb->len; entry = hp->tx_new; SXD(("SX", len, entry)); hp->tx_skbs[entry] = skb; pcihme_write_txd(&hp->happy_block->happy_meal_txd[entry], (TXFLAG_OWN|TXFLAG_SOP|TXFLAG_EOP|(len & TXFLAG_SIZE)), (u32) virt_to_bus((volatile void *)skb->data)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; writel(ETX_TP_DMAWAKEUP, (unsigned long)&hp->etxregs->tx_pnding); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #endif #ifndef __sparc_v9__ static int sun4c_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_buffers *hbufs = hp->sun4c_buffers; __u32 txbuf_dvma, hbufs_dvma = hp->s4c_buf_dvma; unsigned char *txbuf; int len, entry; if(dev->tbusy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 40) { return 1; } else { printk ("%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; return 0; } } if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { printk("happy meal: Transmitter access conflict.\n"); return 1; } if(!TX_BUFFS_AVAIL(hp)) return 1; len = skb->len; entry = hp->tx_new; txbuf = &hbufs->tx_buf[entry][0]; memcpy(txbuf, skb->data, len); SXD(("SX", len, entry)); txbuf_dvma = hbufs_dvma + hbuf_offset(tx_buf, entry); hp->happy_block->happy_meal_txd[entry].tx_addr = txbuf_dvma; hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hp->etxregs->tx_pnding = ETX_TP_DMAWAKEUP; dev_kfree_skb(skb); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; return 0; } static int sun4d_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; __u32 va; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { printk ("%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; tx_dump_log(); printk ("%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, hme_read32(hp, &hp->gregs->stat), hme_read32(hp, &hp->etxregs->cfg), hme_read32(hp, &hp->bigmacregs->tx_cfg)); happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } len = skb->len; entry = hp->tx_new; SXD(("SX", len, entry)); hp->tx_skbs[entry] = skb; va = (__u32)hp->sun4d_buffers + (RX_RING_SIZE + entry) * PAGE_SIZE; hp->happy_block->happy_meal_txd[entry].tx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hme_write32(hp, &hp->etxregs->tx_pnding, ETX_TP_DMAWAKEUP); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #endif static struct net_device_stats *happy_meal_get_stats(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; happy_meal_get_counters(hp, hp->bigmacregs); return &hp->net_stats; } static void happy_meal_set_multicast(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; /* Lock out others. */ set_bit(0, (void *) &dev->tbusy); if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { hme_write32(hp, &bregs->htable0, 0xffff); hme_write32(hp, &bregs->htable1, 0xffff); hme_write32(hp, &bregs->htable2, 0xffff); hme_write32(hp, &bregs->htable3, 0xffff); } else if(dev->flags & IFF_PROMISC) { hme_write32(hp, &bregs->rx_cfg, hme_read32(hp, &bregs->rx_cfg) | BIGMAC_RXCFG_PMISC); } else { u16 hash_table[4]; for(i = 0; i < 4; i++) hash_table[i] = 0; for(i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if(!(*addrs & 1)) continue; crc = 0xffffffffU; for(byte = 0; byte < 6; byte++) { for(bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if(test) crc = crc ^ poly; } } crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, &bregs->htable0, hash_table[0]); hme_write32(hp, &bregs->htable1, hash_table[1]); hme_write32(hp, &bregs->htable2, hash_table[2]); hme_write32(hp, &bregs->htable3, hash_table[3]); } /* Let us get going again. */ dev->tbusy = 0; } /* Ethtool support... */ static int happy_meal_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct ethtool_cmd *ep_user = (struct ethtool_cmd *) rq->ifr_data; struct ethtool_cmd ecmd; if(cmd != SIOCETHTOOL) return -EOPNOTSUPP; if(copy_from_user(&ecmd, ep_user, sizeof(ecmd))) return -EFAULT; if(ecmd.cmd == SPARC_ETH_GSET) { ecmd.supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); /* XXX hardcoded stuff for now */ ecmd.port = PORT_TP; /* XXX no MII support */ ecmd.transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ ecmd.phy_address = 0; /* XXX fixed PHYAD */ /* Record PHY settings. */ hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, DP83840_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, DP83840_LPA); if(hp->sw_bmcr & BMCR_ANENABLE) { ecmd.autoneg = AUTONEG_ENABLE; ecmd.speed = (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? SPEED_100 : SPEED_10; if(ecmd.speed == SPEED_100) ecmd.duplex = (hp->sw_lpa & (LPA_100FULL)) ? DUPLEX_FULL : DUPLEX_HALF; else ecmd.duplex = (hp->sw_lpa & (LPA_10FULL)) ? DUPLEX_FULL : DUPLEX_HALF; } else { ecmd.autoneg = AUTONEG_DISABLE; ecmd.speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; ecmd.duplex = (hp->sw_bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } if(copy_to_user(ep_user, &ecmd, sizeof(ecmd))) return -EFAULT; return 0; } else if(ecmd.cmd == SPARC_ETH_SSET) { if(!capable(CAP_NET_ADMIN)) return -EPERM; /* Verify the settings we care about. */ if(ecmd.autoneg != AUTONEG_ENABLE && ecmd.autoneg != AUTONEG_DISABLE) return -EINVAL; if(ecmd.autoneg == AUTONEG_DISABLE && ((ecmd.speed != SPEED_100 && ecmd.speed != SPEED_10) || (ecmd.duplex != DUPLEX_HALF && ecmd.duplex != DUPLEX_FULL))) return -EINVAL; /* Ok, do it to it. */ del_timer(&hp->happy_timer); happy_meal_begin_auto_negotiation(hp, hp->tcvregs, &ecmd); return 0; } else return -EOPNOTSUPP; } void __init quattro_get_ranges(struct quattro *qp) { int err; err = prom_getproperty(qp->quattro_sbus_dev->prom_node, "ranges", (char *)&qp->ranges[0], sizeof(qp->ranges)); if(err == 0 || err == -1) { qp->nranges = 0; return; } qp->nranges = (err / sizeof(struct linux_prom_ranges)); } static void __init quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp) { struct linux_sbus_device *sdev = hp->happy_sbus_dev; int rng; for(rng = 0; rng < qp->nranges; rng++) { struct linux_prom_ranges *rngp = &qp->ranges[rng]; int reg; for(reg = 0; reg < 5; reg++) { if(sdev->reg_addrs[reg].which_io == rngp->ot_child_space) break; } if(reg == 5) continue; sdev->reg_addrs[reg].which_io = rngp->ot_parent_space; sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base; } } /* Given a happy meal sbus device, find it's quattro parent. * If none exist, allocate and return a new one. * * Return NULL on failure. */ static struct quattro * __init quattro_sbus_find(struct linux_sbus_device *goal_sdev) { struct linux_sbus *sbus; struct linux_sbus_device *sdev; struct quattro *qp; for(qp = qfe_sbus_list; qp != NULL; qp = qp->next) { for(sdev = qp->quattro_sbus_dev->child; sdev != NULL; sdev = sdev->next) { if(sdev == goal_sdev) return qp; } } for_each_sbus(sbus) { for_each_sbusdev(sdev, sbus) { if(sdev->child != NULL) { struct linux_sbus_device *p; for(p = sdev->child; p != NULL; p = p->next) if(p == goal_sdev) goto found; } } } /* Cannot find quattro parent, fail. */ return NULL; found: qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if(qp != NULL) { int i; for(i = 0; i < 4; i++) { qp->irq_status[i] = NULL; qp->happy_meals[i] = NULL; } qp->handler = NULL; qp->quattro_sbus_dev = sdev; #ifdef CONFIG_PCI qp->quattro_pci_dev = NULL; #endif qp->next = qfe_sbus_list; qfe_sbus_list = qp; quattro_get_ranges(qp); } return qp; } #ifdef CONFIG_PCI static struct quattro * __init quattro_pci_find(struct pci_dev *pdev) { struct pci_dev *bdev = pdev->bus->self; struct quattro *qp; if (!bdev) return NULL; for(qp = qfe_pci_list; qp != NULL; qp = qp->next) { if(qp->quattro_pci_dev == bdev) return qp; } qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if(qp != NULL) { int i; for(i = 0; i < 4; i++) { qp->irq_status[i] = NULL; qp->happy_meals[i] = NULL; } qp->handler = NULL; qp->quattro_sbus_dev = NULL; qp->quattro_pci_dev = bdev; qp->next = qfe_pci_list; qfe_pci_list = qp; /* No range tricks necessary on PCI. */ qp->nranges = 0; } return qp; } #endif /* After all quattro cards have been probed, we call these functions * to register the IRQ handlers. */ static void __init quattro_sbus_register_irqs(void) { struct quattro *qp; for(qp = qfe_sbus_list; qp != NULL; qp = qp->next) { int err; /* Set the handler. */ #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) qp->handler = sun4c_happy_meal_interrupt; else if(sparc_cpu_model == sun4c) qp->handler = sun4d_happy_meal_interrupt; else #endif #ifdef CONFIG_PCI if(qp->quattro_pci_dev != NULL) panic("QFE: PCI qfe in sbus_register_irqs!"); else #endif qp->handler = happy_meal_interrupt; err = request_irq(qp->quattro_sbus_dev->irqs[0], quattro_sbus_interrupt, SA_SHIRQ, "Quattro", qp); if(err != 0) { printk("Quattro: Fatal IRQ registery error %d.\n", err); panic("QFE request irq"); } } } static unsigned hme_version_printed = 0; static int __init happy_meal_ether_init(struct device *dev, struct linux_sbus_device *sdev, int is_qfe) { struct quattro *qp = NULL; struct happy_meal *hp; int i, qfe_slot = -1; if(is_qfe) { qp = quattro_sbus_find(sdev); if(qp == NULL) return ENODEV; for(qfe_slot = 0; qfe_slot < 4; qfe_slot++) if(qp->happy_meals[qfe_slot] == NULL) break; if(qfe_slot == 4) return ENODEV; } if(dev == NULL) { dev = init_etherdev(0, sizeof(struct happy_meal)); } else { dev->priv = kmalloc(sizeof(struct happy_meal), GFP_KERNEL); if(dev->priv == NULL) return -ENOMEM; } if(hme_version_printed++ == 0) printk(version); if(qfe_slot != -1) printk("%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet", dev->name, qfe_slot); else printk("%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", dev->name); dev->base_addr = (long) sdev; /* XXX Check for local-mac-address property on Quattro... -DaveM */ for(i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i] = idprom->id_ethaddr[i], i == 5 ? ' ' : ':'); printk("\n"); hp = (struct happy_meal *) dev->priv; memset(hp, 0, sizeof(*hp)); hp->happy_sbus_dev = sdev; #ifdef CONFIG_PCI hp->happy_pci_dev = NULL; #endif if(sdev->num_registers != 5) { printk("happymeal: Device does not have 5 regs, it has %d.\n", sdev->num_registers); printk("happymeal: Would you like that for here or to go?\n"); return ENODEV; } if(qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; quattro_apply_ranges(qp, hp); } prom_apply_sbus_ranges(sdev->my_bus, &sdev->reg_addrs[0], sdev->num_registers, sdev); hp->gregs = sparc_alloc_io(sdev->reg_addrs[0].phys_addr, 0, sizeof(struct hmeal_gregs), "Happy Meal Global Regs", sdev->reg_addrs[0].which_io, 0); if(!hp->gregs) { printk("happymeal: Cannot map Happy Meal global registers.\n"); return ENODEV; } hp->etxregs = sparc_alloc_io(sdev->reg_addrs[1].phys_addr, 0, sizeof(struct hmeal_etxregs), "Happy Meal MAC TX Regs", sdev->reg_addrs[1].which_io, 0); if(!hp->etxregs) { printk("happymeal: Cannot map Happy Meal MAC Transmit registers.\n"); return ENODEV; } hp->erxregs = sparc_alloc_io(sdev->reg_addrs[2].phys_addr, 0, sizeof(struct hmeal_erxregs), "Happy Meal MAC RX Regs", sdev->reg_addrs[2].which_io, 0); if(!hp->erxregs) { printk("happymeal: Cannot map Happy Meal MAC Receive registers.\n"); return ENODEV; } hp->bigmacregs = sparc_alloc_io(sdev->reg_addrs[3].phys_addr, 0, sizeof(struct hmeal_bigmacregs), "Happy Meal BIGMAC Regs", sdev->reg_addrs[3].which_io, 0); if(!hp->bigmacregs) { printk("happymeal: Cannot map Happy Meal BIGMAC registers.\n"); return ENODEV; } hp->tcvregs = sparc_alloc_io(sdev->reg_addrs[4].phys_addr, 0, sizeof(struct hmeal_tcvregs), "Happy Meal Tranceiver Regs", sdev->reg_addrs[4].which_io, 0); if(!hp->tcvregs) { printk("happymeal: Cannot map Happy Meal Tranceiver registers.\n"); return ENODEV; } hp->hm_revision = prom_getintdefault(sdev->prom_node, "hm-rev", 0xff); if(hp->hm_revision == 0xff) hp->hm_revision = 0xa0; /* Now enable the feature flags we can. */ if(hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if(hp->hm_revision != 0xa0) hp->happy_flags = HFLAG_NOT_A0; if(qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* Get the supported DVMA burst sizes from our Happy SBUS. */ hp->happy_bursts = prom_getintdefault(hp->happy_sbus_dev->my_bus->prom_node, "burst-sizes", 0x00); hp->happy_block = (struct hmeal_init_block *) sparc_dvma_malloc(PAGE_SIZE, "Happy Meal Init Block", &hp->hblock_dvma); #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) hp->sun4c_buffers = (struct hmeal_buffers *) sparc_dvma_malloc(sizeof(struct hmeal_buffers), "Happy Meal Bufs", &hp->s4c_buf_dvma); else if (sparc_cpu_model == sun4d) hp->sun4d_buffers = (struct hmeal_buffers *) iounit_map_dma_init(hp->happy_sbus_dev->my_bus, (RX_RING_SIZE + TX_RING_SIZE) * PAGE_SIZE); else #endif hp->sun4c_buffers = 0; /* Force check of the link first time we are brought up. */ hp->linkcheck = 0; /* Force timer state to 'asleep' with count of zero. */ hp->timer_state = asleep; hp->timer_ticks = 0; /* Grrr, Happy Meal comes up by default not advertising * full duplex 100baseT capabilities, fix this. */ happy_meal_set_initial_advertisement(hp); init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) dev->hard_start_xmit = &sun4c_happy_meal_start_xmit; else if (sparc_cpu_model == sun4d) dev->hard_start_xmit = &sun4d_happy_meal_start_xmit; else #endif dev->hard_start_xmit = &happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->do_ioctl = &happy_meal_ioctl; dev->irq = sdev->irqs[0]; dev->dma = 0; ether_setup(dev); #ifdef MODULE /* We are home free at this point, link us in to the happy * module device list. */ dev->ifindex = dev_new_index(); hp->next_module = root_happy_dev; root_happy_dev = hp; #endif return 0; } #ifdef CONFIG_PCI static int __init happy_meal_pci_init(struct device *dev, struct pci_dev *pdev) { struct quattro *qp = NULL; struct pcidev_cookie *pcp; struct happy_meal *hp; unsigned long hpreg_base; unsigned short pci_command; int i, node, qfe_slot = -1; char prom_name[64]; /* Now make sure pci_dev cookie is there. */ pcp = pdev->sysdata; if(pcp == NULL || pcp->prom_node == -1) { printk("happymeal(PCI): Some PCI device info missing\n"); return ENODEV; } node = pcp->prom_node; prom_getstring(node, "name", prom_name, sizeof(prom_name)); if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { qp = quattro_pci_find(pdev); if(qp == NULL) return ENODEV; for(qfe_slot = 0; qfe_slot < 4; qfe_slot++) if(qp->happy_meals[qfe_slot] == NULL) break; if(qfe_slot == 4) return ENODEV; } if(dev == NULL) { dev = init_etherdev(0, sizeof(struct happy_meal)); } else { dev->priv = kmalloc(sizeof(struct happy_meal), GFP_KERNEL); if(dev->priv == NULL) return -ENOMEM; } if(hme_version_printed++ == 0) printk(version); if (!qfe_slot) { prom_name[0] = 0; if (!strncmp(dev->name, "eth", 3)) { int i = simple_strtoul(dev->name + 3, NULL, 10); sprintf(prom_name, "-%d", i + 3); } printk("%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); if (qp->quattro_pci_dev->vendor == PCI_VENDOR_ID_DEC && qp->quattro_pci_dev->device == PCI_DEVICE_ID_DEC_21153) printk("DEC 21153 PCI Bridge\n"); else printk("unknown bridge %04x.%04x\n", qp->quattro_pci_dev->vendor, qp->quattro_pci_dev->device); } if(qfe_slot != -1) printk("%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, qfe_slot); else printk("%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", dev->name); dev->base_addr = (long) pdev; hp = (struct happy_meal *)dev->priv; memset(hp, 0, sizeof(*hp)); hp->happy_sbus_dev = NULL; hp->happy_pci_dev = pdev; if(qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; } hpreg_base = pdev->base_address[0]; if((hpreg_base & PCI_BASE_ADDRESS_SPACE) != PCI_BASE_ADDRESS_SPACE_MEMORY) { printk("happymeal(PCI): Cannot find proper PCI device base address.\n"); return ENODEV; } hpreg_base &= PCI_BASE_ADDRESS_MEM_MASK; if (qfe_slot != -1 && prom_getproplen(node, "local-mac-address") == 6) prom_getproperty(node, "local-mac-address", dev->dev_addr, 6); else memcpy(dev->dev_addr, idprom->id_ethaddr, 6); for(i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); /* Layout registers. */ hp->gregs = (struct hmeal_gregs *) (hpreg_base + 0x0000); hp->etxregs = (struct hmeal_etxregs *) (hpreg_base + 0x2000); hp->erxregs = (struct hmeal_erxregs *) (hpreg_base + 0x4000); hp->bigmacregs = (struct hmeal_bigmacregs *) (hpreg_base + 0x6000); hp->tcvregs = (struct hmeal_tcvregs *) (hpreg_base + 0x7000); hp->hm_revision = prom_getintdefault(node, "hm-rev", 0xff); if(hp->hm_revision == 0xff) hp->hm_revision = 0xa0; /* Now enable the feature flags we can. */ if(hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if(hp->hm_revision != 0xa0) hp->happy_flags = HFLAG_NOT_A0; if(qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* And of course, indicate this is PCI. */ hp->happy_flags |= HFLAG_PCI; /* Assume PCI happy meals can handle all burst sizes. */ hp->happy_bursts = DMA_BURSTBITS; hp->happy_block = (struct hmeal_init_block *) get_free_page(GFP_DMA); if(!hp->happy_block) { printk("happymeal(PCI): Cannot get hme init block.\n"); return ENODEV; } hp->hblock_dvma = (u32) virt_to_bus(hp->happy_block); #ifndef __sparc_v9__ /* This case we currently need to use 'sparc_alloc_io' */ hp->happy_block = sparc_alloc_io (hp->hblock_dvma, NULL, PAGE_SIZE, "sunhme", 0, 0); #endif hp->sun4c_buffers = 0; hp->linkcheck = 0; hp->timer_state = asleep; hp->timer_ticks = 0; happy_meal_set_initial_advertisement(hp); init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; dev->hard_start_xmit = &pci_happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->do_ioctl = &happy_meal_ioctl; dev->irq = pdev->irq; dev->dma = 0; ether_setup(dev); /* If we don't do this, nothing works. */ pci_read_config_word(pdev, PCI_COMMAND, &pci_command); pci_command |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, pci_command); /* Set the latency timer and cache line size as well, * PROM leaves it at zero. */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 128); #ifdef __sparc_v9__ /* NOTE: Cache line size is in 32-bit word units. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x10); #endif #ifdef MODULE /* We are home free at this point, link us in to the happy * module device list. */ dev->ifindex = dev_new_index(); hp->next_module = root_happy_dev; root_happy_dev = hp; #endif return 0; } #endif int __init happy_meal_probe(struct device *dev) { struct linux_sbus *bus; struct linux_sbus_device *sdev = 0; static int called = 0; int cards = 0, v; if(called) return ENODEV; called++; for_each_sbus(bus) { for_each_sbusdev(sdev, bus) { if(cards) dev = NULL; if(!strcmp(sdev->prom_name, "SUNW,hme")) { cards++; if((v = happy_meal_ether_init(dev, sdev, 0))) return v; } else if(!strcmp(sdev->prom_name, "qfe") || !strcmp(sdev->prom_name, "SUNW,qfe")) { cards++; if((v = happy_meal_ether_init(dev, sdev, 1))) return v; } } } if(cards != 0) quattro_sbus_register_irqs(); #ifdef CONFIG_PCI if(pci_present()) { struct pci_dev *pdev; pdev = pci_find_device(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL, 0); while (pdev) { if(cards) dev = NULL; cards++; if((v = happy_meal_pci_init(dev, pdev))) return v; pdev = pci_find_device(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL, pdev); } } #endif if(!cards) return ENODEV; return 0; } #ifdef MODULE int init_module(void) { root_happy_dev = NULL; return happy_meal_probe(NULL); } void cleanup_module(void) { struct happy_meal *sunshine; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_happy_dev) { struct happy_meal *hp = root_happy_dev; sunshine = root_happy_dev->next_module; sparc_free_io(hp->gregs, sizeof(struct hmeal_gregs)); sparc_free_io(hp->etxregs, sizeof(struct hmeal_etxregs)); sparc_free_io(hp->erxregs, sizeof(struct hmeal_erxregs)); sparc_free_io(hp->bigmacregs, sizeof(struct hmeal_bigmacregs)); sparc_free_io(hp->tcvregs, sizeof(struct hmeal_tcvregs)); #ifndef __sparc_v9__ if (sparc_cpu_model == sun4d) iounit_map_dma_finish(hp->happy_sbus_dev->my_bus, (__u32)hp->sun4d_buffers, (RX_RING_SIZE + TX_RING_SIZE) * PAGE_SIZE); #endif unregister_netdev(hp->dev); kfree(hp->dev); root_happy_dev = sunshine; } } #endif /* MODULE */