/* $Id: sunlance.c,v 1.88 1999/08/20 00:31:45 davem Exp $ * lance.c: Linux/Sparc/Lance driver * * Written 1995, 1996 by Miguel de Icaza * Sources: * The Linux depca driver * The Linux lance driver. * The Linux skeleton driver. * The NetBSD Sparc/Lance driver. * Theo de Raadt (deraadt@openbsd.org) * NCR92C990 Lan Controller manual * * 1.4: * Added support to run with a ledma on the Sun4m * * 1.5: * Added multiple card detection. * * 4/17/96: Burst sizes and tpe selection on sun4m by Eddie C. Dost * (ecd@skynet.be) * * 5/15/96: auto carrier detection on sun4m by Eddie C. Dost * (ecd@skynet.be) * * 5/17/96: lebuffer on scsi/ether cards now work David S. Miller * (davem@caip.rutgers.edu) * * 5/29/96: override option 'tpe-link-test?', if it is 'false', as * this disables auto carrier detection on sun4m. Eddie C. Dost * (ecd@skynet.be) * * 1.7: * 6/26/96: Bug fix for multiple ledmas, miguel. * * 1.8: * Stole multicast code from depca.c, fixed lance_tx. * * 1.9: * 8/21/96: Fixed the multicast code (Pedro Roque) * * 8/28/96: Send fake packet in lance_open() if auto_select is true, * so we can detect the carrier loss condition in time. * Eddie C. Dost (ecd@skynet.be) * * 9/15/96: Align rx_buf so that eth_copy_and_sum() won't cause an * MNA trap during chksum_partial_copy(). (ecd@skynet.be) * * 11/17/96: Handle LE_C0_MERR in lance_interrupt(). (ecd@skynet.be) * * 12/22/96: Don't loop forever in lance_rx() on incomplete packets. * This was the sun4c killer. Shit, stupid bug. * (ecd@skynet.be) * * 1.10: * 1/26/97: Modularize driver. (ecd@skynet.be) * * 1.11: * 12/27/97: Added sun4d support. (jj@sunsite.mff.cuni.cz) * * 1.12: * 11/3/99: Fixed SMP race in lance_start_xmit found by davem. * Anton Blanchard (anton@progsoc.uts.edu.au) */ #undef DEBUG_DRIVER static char *version = "sunlance.c:v1.12 11/Mar/99 Miguel de Icaza (miguel@nuclecu.unam.mx)\n"; static char *lancestr = "LANCE"; static char *lancedma = "LANCE DMA"; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Used by the checksum routines */ /* Used for the temporal inet entries and routing */ #include #include #include #include #include #include #include /* For tpe-link-test? setting */ #include #include #include #include #include /* Define: 2^4 Tx buffers and 2^4 Rx buffers */ #ifndef LANCE_LOG_TX_BUFFERS #define LANCE_LOG_TX_BUFFERS 4 #define LANCE_LOG_RX_BUFFERS 4 #endif #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ #define LE_CSR0 0 #define LE_CSR1 1 #define LE_CSR2 2 #define LE_CSR3 3 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */ #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */ #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */ #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */ #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */ #define LE_C0_MERR 0x0800 /* ME: Memory error */ #define LE_C0_RINT 0x0400 /* Received interrupt */ #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */ #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */ #define LE_C0_INTR 0x0080 /* Interrupt or error */ #define LE_C0_INEA 0x0040 /* Interrupt enable */ #define LE_C0_RXON 0x0020 /* Receiver on */ #define LE_C0_TXON 0x0010 /* Transmitter on */ #define LE_C0_TDMD 0x0008 /* Transmitter demand */ #define LE_C0_STOP 0x0004 /* Stop the card */ #define LE_C0_STRT 0x0002 /* Start the card */ #define LE_C0_INIT 0x0001 /* Init the card */ #define LE_C3_BSWP 0x4 /* SWAP */ #define LE_C3_ACON 0x2 /* ALE Control */ #define LE_C3_BCON 0x1 /* Byte control */ /* Receive message descriptor 1 */ #define LE_R1_OWN 0x80 /* Who owns the entry */ #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */ #define LE_R1_FRA 0x20 /* FRA: Frame error */ #define LE_R1_OFL 0x10 /* OFL: Frame overflow */ #define LE_R1_CRC 0x08 /* CRC error */ #define LE_R1_BUF 0x04 /* BUF: Buffer error */ #define LE_R1_SOP 0x02 /* Start of packet */ #define LE_R1_EOP 0x01 /* End of packet */ #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T1_OWN 0x80 /* Lance owns the packet */ #define LE_T1_ERR 0x40 /* Error summary */ #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */ #define LE_T1_EONE 0x08 /* Error: one retry needed */ #define LE_T1_EDEF 0x04 /* Error: deferred */ #define LE_T1_SOP 0x02 /* Start of packet */ #define LE_T1_EOP 0x01 /* End of packet */ #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T3_BUF 0x8000 /* Buffer error */ #define LE_T3_UFL 0x4000 /* Error underflow */ #define LE_T3_LCOL 0x1000 /* Error late collision */ #define LE_T3_CLOS 0x0800 /* Error carrier loss */ #define LE_T3_RTY 0x0400 /* Error retry */ #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */ #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) #define PKT_BUF_SZ 1544 #define RX_BUFF_SIZE PKT_BUF_SZ #define TX_BUFF_SIZE PKT_BUF_SZ struct lance_rx_desc { unsigned short rmd0; /* low address of packet */ unsigned char rmd1_bits; /* descriptor bits */ unsigned char rmd1_hadr; /* high address of packet */ short length; /* This length is 2s complement (negative)! * Buffer length */ unsigned short mblength; /* This is the actual number of bytes received */ }; struct lance_tx_desc { unsigned short tmd0; /* low address of packet */ unsigned char tmd1_bits; /* descriptor bits */ unsigned char tmd1_hadr; /* high address of packet */ short length; /* Length is 2s complement (negative)! */ unsigned short misc; }; /* The LANCE initialization block, described in databook. */ /* On the Sparc, this block should be on a DMA region */ struct lance_init_block { unsigned short mode; /* Pre-set mode (reg. 15) */ unsigned char phys_addr[6]; /* Physical ethernet address */ unsigned filter[2]; /* Multicast filter. */ /* Receive and transmit ring base, along with extra bits. */ unsigned short rx_ptr; /* receive descriptor addr */ unsigned short rx_len; /* receive len and high addr */ unsigned short tx_ptr; /* transmit descriptor addr */ unsigned short tx_len; /* transmit len and high addr */ /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */ struct lance_rx_desc brx_ring[RX_RING_SIZE]; struct lance_tx_desc btx_ring[TX_RING_SIZE]; char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE]; char pad[2]; /* align rx_buf for copy_and_sum(). */ char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE]; }; #define libdesc_offset(rt, elem) \ ((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem]))))) #define libbuff_offset(rt, elem) \ ((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem][0]))))) struct lance_private { char *name; volatile struct lance_regs *ll; volatile struct lance_init_block *init_block; __u32 init_block_dvma; int rx_new, tx_new; int rx_old, tx_old; struct net_device_stats stats; struct Linux_SBus_DMA *ledma; /* If set this points to ledma */ /* and arch = sun4m */ int tpe; /* cable-selection is TPE */ int auto_select; /* cable-selection by carrier */ int burst_sizes; /* ledma SBus burst sizes */ unsigned short busmaster_regval; unsigned short pio_buffer; struct net_device *dev; /* Backpointer */ struct lance_private *next_module; struct linux_sbus *sbus; struct timer_list multicast_timer; }; #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\ lp->tx_old - lp->tx_new-1) /* On the sparc, the lance control ports are memory mapped */ struct lance_regs { unsigned short rdp; /* register data port */ unsigned short rap; /* register address port */ }; int sparc_lance_debug = 2; /* The Lance uses 24 bit addresses */ /* On the Sun4c the DVMA will provide the remaining bytes for us */ /* On the Sun4m we have to instruct the ledma to provide them */ /* Even worse, on scsi/ether SBUS cards, the init block and the * transmit/receive buffers are addresses as offsets from absolute * zero on the lebuffer PIO area. -davem */ #define LANCE_ADDR(x) ((long)(x) & ~0xff000000) #ifdef MODULE static struct lance_private *root_lance_dev = NULL; #endif /* Load the CSR registers */ static void load_csrs (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; __u32 ib_dvma = lp->init_block_dvma; int leptr; /* This is right now because when we are using a PIO buffered * init block, init_block_dvma is set to zero. -DaveM */ leptr = LANCE_ADDR (ib_dvma); ll->rap = LE_CSR1; ll->rdp = (leptr & 0xFFFF); ll->rap = LE_CSR2; ll->rdp = leptr >> 16; ll->rap = LE_CSR3; ll->rdp = lp->busmaster_regval; /* Point back to csr0 */ ll->rap = LE_CSR0; } #define ZERO 0 /* Setup the Lance Rx and Tx rings */ /* Sets dev->tbusy */ static void lance_init_ring (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; __u32 ib_dvma = lp->init_block_dvma; __u32 aib; /* for LANCE_ADDR computations */ int leptr; int i; /* This is right now because when we are using a PIO buffered * init block, init_block_dvma is set to zero. -DaveM */ aib = ib_dvma; /* Lock out other processes while setting up hardware */ dev->tbusy = 1; lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; /* Copy the ethernet address to the lance init block * Note that on the sparc you need to swap the ethernet address. * Note also we want the CPU ptr of the init_block here. */ ib->phys_addr [0] = dev->dev_addr [1]; ib->phys_addr [1] = dev->dev_addr [0]; ib->phys_addr [2] = dev->dev_addr [3]; ib->phys_addr [3] = dev->dev_addr [2]; ib->phys_addr [4] = dev->dev_addr [5]; ib->phys_addr [5] = dev->dev_addr [4]; if (ZERO) printk ("TX rings:\n"); /* Setup the Tx ring entries */ for (i = 0; i <= TX_RING_SIZE; i++) { leptr = LANCE_ADDR(aib + libbuff_offset(tx_buf, i)); ib->btx_ring [i].tmd0 = leptr; ib->btx_ring [i].tmd1_hadr = leptr >> 16; ib->btx_ring [i].tmd1_bits = 0; ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring [i].misc = 0; if (i < 3) if (ZERO) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the Rx ring entries */ if (ZERO) printk ("RX rings:\n"); for (i = 0; i < RX_RING_SIZE; i++) { leptr = LANCE_ADDR(aib + libbuff_offset(rx_buf, i)); ib->brx_ring [i].rmd0 = leptr; ib->brx_ring [i].rmd1_hadr = leptr >> 16; ib->brx_ring [i].rmd1_bits = LE_R1_OWN; ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring [i].mblength = 0; if (i < 3 && ZERO) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(aib + libdesc_offset(brx_ring, 0)); ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16); ib->rx_ptr = leptr; if (ZERO) printk ("RX ptr: %8.8x\n", leptr); /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(aib + libdesc_offset(btx_ring, 0)); ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16); ib->tx_ptr = leptr; if (ZERO) printk ("TX ptr: %8.8x\n", leptr); } static int init_restart_lance (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; int i; if (lp->ledma) { struct sparc_dma_registers *dregs = lp->ledma->regs; unsigned long creg; if (!(dregs->cond_reg & DMA_HNDL_ERROR)) { /* E-Cache draining */ while (dregs->cond_reg & DMA_FIFO_ISDRAIN) barrier(); } creg = dregs->cond_reg; if (lp->burst_sizes & DMA_BURST32) creg |= DMA_E_BURST8; else creg &= ~DMA_E_BURST8; creg |= (DMA_DSBL_RD_DRN | DMA_DSBL_WR_INV | DMA_FIFO_INV); if (lp->tpe) creg |= DMA_EN_ENETAUI; else creg &= ~DMA_EN_ENETAUI; udelay(20); dregs->cond_reg = creg; udelay(200); } ll->rap = LE_CSR0; ll->rdp = LE_C0_INIT; /* Wait for the lance to complete initialization */ for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++) barrier(); if ((i == 100) || (ll->rdp & LE_C0_ERR)) { printk ("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp); if (lp->ledma) printk ("dcsr=%8.8x\n", (unsigned int) lp->ledma->regs->cond_reg); return -1; } /* Clear IDON by writing a "1", enable interrupts and start lance */ ll->rdp = LE_C0_IDON; ll->rdp = LE_C0_INEA | LE_C0_STRT; if (lp->ledma) lp->ledma->regs->cond_reg |= DMA_INT_ENAB; return 0; } static int lance_rx (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_rx_desc *rd; unsigned char bits; int len; struct sk_buff *skb; #ifdef TEST_HITS printk ("["); for (i = 0; i < RX_RING_SIZE; i++) { if (i == lp->rx_new) printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X"); else printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1"); } printk ("]"); #endif for (rd = &ib->brx_ring [lp->rx_new]; !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring [lp->rx_new]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { lp->stats.rx_over_errors++; lp->stats.rx_errors++; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++; if (bits & LE_R1_OFL) lp->stats.rx_over_errors++; if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++; if (bits & LE_R1_EOP) lp->stats.rx_errors++; } else { len = (rd->mblength & 0xfff) - 4; skb = dev_alloc_skb (len+2); if (skb == 0) { printk ("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; return 0; } lp->stats.rx_bytes += len; skb->dev = dev; skb_reserve (skb, 2); /* 16 byte align */ skb_put (skb, len); /* make room */ eth_copy_and_sum(skb, (unsigned char *)&(ib->rx_buf [lp->rx_new][0]), len, 0); skb->protocol = eth_type_trans (skb, dev); netif_rx (skb); lp->stats.rx_packets++; } /* Return the packet to the pool */ rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; } return 0; } static int lance_tx (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; volatile struct lance_tx_desc *td; int i, j; int status; j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { td = &ib->btx_ring [i]; /* If we hit a packet not owned by us, stop */ if (td->tmd1_bits & LE_T1_OWN) break; if (td->tmd1_bits & LE_T1_ERR) { status = td->misc; lp->stats.tx_errors++; if (status & LE_T3_RTY) lp->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) lp->stats.tx_window_errors++; if (status & LE_T3_CLOS) { lp->stats.tx_carrier_errors++; if (lp->auto_select) { lp->tpe = 1 - lp->tpe; printk("%s: Carrier Lost, trying %s\n", dev->name, lp->tpe?"TPE":"AUI"); /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } /* Buffer errors and underflows turn off the * transmitter, restart the adapter. */ if (status & (LE_T3_BUF|LE_T3_UFL)) { lp->stats.tx_fifo_errors++; printk ("%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits &= ~(LE_T1_POK); /* One collision before packet was sent. */ if (td->tmd1_bits & LE_T1_EONE) lp->stats.collisions++; /* More than one collision, be optimistic. */ if (td->tmd1_bits & LE_T1_EMORE) lp->stats.collisions += 2; lp->stats.tx_packets++; } j = (j + 1) & TX_RING_MOD_MASK; } lp->tx_old = j; return 0; } static void lance_interrupt (int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_id; struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; int csr0; if (dev->interrupt) printk ("%s: again", dev->name); dev->interrupt = 1; ll->rap = LE_CSR0; csr0 = ll->rdp; /* Acknowledge all the interrupt sources ASAP */ ll->rdp = csr0 & (LE_C0_INTR | LE_C0_TINT | LE_C0_RINT); if ((csr0 & LE_C0_ERR)) { /* Clear the error condition */ ll->rdp = LE_C0_BABL | LE_C0_ERR | LE_C0_MISS | LE_C0_CERR | LE_C0_MERR; } if (csr0 & LE_C0_RINT) lance_rx (dev); if (csr0 & LE_C0_TINT) lance_tx (dev); if ((TX_BUFFS_AVAIL >= 0) && dev->tbusy) { dev->tbusy = 0; mark_bh (NET_BH); } if (csr0 & LE_C0_BABL) lp->stats.tx_errors++; if (csr0 & LE_C0_MISS) lp->stats.rx_errors++; if (csr0 & LE_C0_MERR) { struct sparc_dma_registers *dregs = lp->ledma->regs; unsigned long tst = (unsigned long)dregs->st_addr; printk ("%s: Memory error, status %04x, addr %06lx\n", dev->name, csr0, tst & 0xffffff); ll->rdp = LE_C0_STOP; if (lp->ledma) lp->ledma->regs->cond_reg |= DMA_FIFO_INV; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); dev->tbusy = 0; } ll->rdp = LE_C0_INEA; dev->interrupt = 0; } struct net_device *last_dev = 0; static int lance_open (struct net_device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib = lp->init_block; int status = 0; last_dev = dev; if (request_irq (dev->irq, &lance_interrupt, SA_SHIRQ, lancestr, (void *) dev)) { printk ("Lance: Can't get irq %s\n", __irq_itoa(dev->irq)); return -EAGAIN; } /* Stop the Lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; /* On the 4m, setup the ledma to provide the upper bits for buffers */ if (lp->ledma) lp->ledma->regs->dma_test = ((__u32) lp->init_block_dvma) & 0xff000000; /* Set mode and clear multicast filter only at device open, so that lance_init_ring() called at any error will not forget multicast filters. BTW it is common bug in all lance drivers! --ANK */ ib->mode = 0; ib->filter [0] = 0; ib->filter [1] = 0; lance_init_ring (dev); load_csrs (lp); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; status = init_restart_lance (lp); #if 0 /* To emulate SunOS, we add a route to the local network */ rt_add (RTF_UP, dev->pa_addr & ip_get_mask (dev->pa_addr), ip_get_mask (dev->pa_addr), 0, dev, dev->mtu, 0, 0); #endif if (!status && lp->auto_select) { /* * Build a fake network packet and send it to ourselfs. */ volatile struct lance_init_block *ib = lp->init_block; volatile unsigned long flush; unsigned char packet[ETH_ZLEN]; struct ethhdr *eth = (struct ethhdr *)packet; int i, entry; memset(packet, 0, ETH_ZLEN); for (i = 0; i < 6; i++) { eth->h_dest[i] = dev->dev_addr[i]; eth->h_source[i] = dev->dev_addr[i]; } entry = lp->tx_new & TX_RING_MOD_MASK; ib->btx_ring[entry].length = (-ETH_ZLEN) | 0xf000; ib->btx_ring[entry].misc = 0; memcpy((char *)&ib->tx_buf[entry][0], packet, ETH_ZLEN); ib->btx_ring[entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); lp->tx_new = (lp->tx_new + 1) & TX_RING_MOD_MASK; ll->rdp = LE_C0_INEA | LE_C0_TDMD; flush = ll->rdp; } if (!status) MOD_INC_USE_COUNT; return status; } static int lance_close (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; dev->start = 0; dev->tbusy = 1; del_timer(&lp->multicast_timer); /* Stop the card */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; free_irq (dev->irq, (void *) dev); MOD_DEC_USE_COUNT; return 0; } static inline int lance_reset (struct net_device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; int status; /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; /* On the 4m, reset the dma too */ if (lp->ledma) { printk ("resetting ledma\n"); lp->ledma->regs->cond_reg |= DMA_RST_ENET; udelay (200); lp->ledma->regs->cond_reg &= ~DMA_RST_ENET; lp->ledma->regs->dma_test = ((__u32) lp->init_block_dvma) & 0xff000000; } lance_init_ring (dev); load_csrs (lp); dev->trans_start = jiffies; dev->interrupt = 0; dev->start = 1; dev->tbusy = 0; status = init_restart_lance (lp); #ifdef DEBUG_DRIVER printk ("Lance restart=%d\n", status); #endif return status; } static int lance_start_xmit (struct sk_buff *skb, struct net_device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib = lp->init_block; volatile unsigned long flush; unsigned long flags; int entry, skblen, len; if (test_and_set_bit (0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 100) return 1; printk ("%s: transmit timed out, status %04x, reset\n", dev->name, ll->rdp); lp->stats.tx_errors++; lance_reset (dev); return 1; } skblen = skb->len; save_and_cli(flags); if (!TX_BUFFS_AVAIL) { restore_flags(flags); return 1; } len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; lp->stats.tx_bytes += len; entry = lp->tx_new & TX_RING_MOD_MASK; ib->btx_ring [entry].length = (-len) | 0xf000; ib->btx_ring [entry].misc = 0; memcpy ((char *)&ib->tx_buf [entry][0], skb->data, skblen); /* Clear the slack of the packet, do I need this? */ /* For a firewall its a good idea - AC */ if (len != skblen) memset ((char *) &ib->tx_buf [entry][skblen], 0, len - skblen); /* Now, give the packet to the lance */ ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); lp->tx_new = (lp->tx_new+1) & TX_RING_MOD_MASK; /* Kick the lance: transmit now */ ll->rdp = LE_C0_INEA | LE_C0_TDMD; dev->trans_start = jiffies; dev_kfree_skb (skb); if (TX_BUFFS_AVAIL) dev->tbusy = 0; /* Read back CSR to invalidate the E-Cache. * This is needed, because DMA_DSBL_WR_INV is set. */ if (lp->ledma) flush = ll->rdp; restore_flags(flags); return 0; } static struct net_device_stats *lance_get_stats (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; return &lp->stats; } /* taken from the depca driver */ static void lance_load_multicast (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile u16 *mcast_table = (u16 *)&ib->filter; struct dev_mc_list *dmi=dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI) { ib->filter [0] = 0xffffffff; ib->filter [1] = 0xffffffff; return; } /* clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; /* Add addresses */ for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = 0xffffffff; for (byte = 0; byte < 6; byte++) { for (bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if (test) crc = crc ^ poly; } } crc = crc >> 26; mcast_table [crc >> 4] |= 1 << (crc & 0xf); } } static void lance_set_multicast (struct net_device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; if (!dev->start) return; if (dev->tbusy) { mod_timer(&lp->multicast_timer, jiffies + 2); return; } /* This CANNOT be correct. Chip is running and dev->tbusy may change any moment. It is useless to set it. Generally, usage of dev->tbusy in this driver is completely wrong. I protected calls to this function with start_bh_atomic, so that set_multicast_list and hard_start_xmit are serialized now by top level. --ANK The same is true about a2065. */ set_bit (0, (void *) &dev->tbusy); if (lp->tx_old != lp->tx_new) { mod_timer(&lp->multicast_timer, jiffies + 4); dev->tbusy = 0; return; } ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); if (dev->flags & IFF_PROMISC) { ib->mode |= LE_MO_PROM; } else { ib->mode &= ~LE_MO_PROM; lance_load_multicast (dev); } load_csrs (lp); init_restart_lance (lp); dev->tbusy = 0; mark_bh(NET_BH); } static int __init sparc_lance_init (struct net_device *dev, struct linux_sbus_device *sdev, struct Linux_SBus_DMA *ledma, struct linux_sbus_device *lebuffer) { static unsigned version_printed = 0; int i; struct lance_private *lp; volatile struct lance_regs *ll; if (dev == NULL) { dev = init_etherdev (0, sizeof (struct lance_private) + 8); } else { dev->priv = kmalloc (sizeof (struct lance_private) + 8, GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof (struct lance_private) + 8); } if (sparc_lance_debug && version_printed++ == 0) printk (version); printk ("%s: LANCE ", dev->name); /* Fill the dev fields */ dev->base_addr = (long) sdev; /* Copy the IDPROM ethernet address to the device structure, later we * will copy the address in the device structure to the lance * initialization block. */ for (i = 0; i < 6; i++) printk ("%2.2x%c", dev->dev_addr[i] = idprom->id_ethaddr[i], i == 5 ? ' ': ':'); printk("\n"); /* Get the IO region */ prom_apply_sbus_ranges (sdev->my_bus, &sdev->reg_addrs [0], sdev->num_registers, sdev); ll = sparc_alloc_io (sdev->reg_addrs [0].phys_addr, 0, sizeof (struct lance_regs), lancestr, sdev->reg_addrs[0].which_io, 0x0); /* Make certain the data structures used by the LANCE are aligned. */ dev->priv = (void *)(((unsigned long)dev->priv + 7) & ~7); lp = (struct lance_private *) dev->priv; lp->sbus = sdev->my_bus; if (lebuffer){ prom_apply_sbus_ranges (lebuffer->my_bus, &lebuffer->reg_addrs [0], lebuffer->num_registers, lebuffer); lp->init_block = (void *) sparc_alloc_io (lebuffer->reg_addrs [0].phys_addr, 0, sizeof (struct lance_init_block), "lebuffer", lebuffer->reg_addrs [0].which_io, 0); lp->init_block_dvma = 0; lp->pio_buffer = 1; } else { lp->init_block = (void *) sparc_dvma_malloc (sizeof (struct lance_init_block), lancedma, &lp->init_block_dvma); lp->pio_buffer = 0; } lp->busmaster_regval = prom_getintdefault(sdev->prom_node, "busmaster-regval", (LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON)); lp->ll = ll; lp->name = lancestr; lp->ledma = ledma; lp->burst_sizes = 0; if (lp->ledma) { char prop[6]; unsigned int sbmask; /* Find burst-size property for ledma */ lp->burst_sizes = prom_getintdefault(ledma->SBus_dev->prom_node, "burst-sizes", 0); /* ledma may be capable of fast bursts, but sbus may not. */ sbmask = prom_getintdefault(ledma->SBus_dev->my_bus->prom_node, "burst-sizes", DMA_BURSTBITS); lp->burst_sizes &= sbmask; /* Get the cable-selection property */ memset(prop, 0, sizeof(prop)); prom_getstring(ledma->SBus_dev->prom_node, "cable-selection", prop, sizeof(prop)); if (prop[0] == 0) { int topnd, nd; printk("%s: using auto-carrier-detection.\n", dev->name); /* Is this found at /options .attributes in all * Prom versions? XXX */ topnd = prom_getchild(prom_root_node); nd = prom_searchsiblings(topnd, "options"); if (!nd) goto no_link_test; if (!prom_node_has_property(nd, "tpe-link-test?")) goto no_link_test; memset(prop, 0, sizeof(prop)); prom_getstring(nd, "tpe-link-test?", prop, sizeof(prop)); if (strcmp(prop, "true")) { printk("%s: warning: overriding option " "'tpe-link-test?'\n", dev->name); printk("%s: warning: mail any problems " "to ecd@skynet.be\n", dev->name); set_auxio(AUXIO_LINK_TEST, 0); } no_link_test: lp->auto_select = 1; lp->tpe = 0; } else if (!strcmp(prop, "aui")) { lp->auto_select = 0; lp->tpe = 0; } else { lp->auto_select = 0; lp->tpe = 1; } /* Reset ledma */ lp->ledma->regs->cond_reg |= DMA_RST_ENET; udelay (200); lp->ledma->regs->cond_reg &= ~DMA_RST_ENET; } /* This should never happen. */ if ((unsigned long)(lp->init_block->brx_ring) & 0x07) { printk("%s: ERROR: Rx and Tx rings not on even boundary.\n", dev->name); return ENODEV; } lp->dev = dev; dev->open = &lance_open; dev->stop = &lance_close; dev->hard_start_xmit = &lance_start_xmit; dev->get_stats = &lance_get_stats; dev->set_multicast_list = &lance_set_multicast; dev->irq = sdev->irqs[0]; dev->dma = 0; ether_setup (dev); /* We cannot sleep if the chip is busy during a * multicast list update event, because such events * can occur from interrupts (ex. IPv6). So we * use a timer to try again later when necessary. -DaveM */ init_timer(&lp->multicast_timer); lp->multicast_timer.data = (unsigned long) dev; lp->multicast_timer.function = (void (*)(unsigned long)) &lance_set_multicast; #ifdef MODULE dev->ifindex = dev_new_index(); lp->next_module = root_lance_dev; root_lance_dev = lp; #endif return 0; } /* On 4m, find the associated dma for the lance chip */ static inline struct Linux_SBus_DMA * find_ledma (struct linux_sbus_device *dev) { struct Linux_SBus_DMA *p; for_each_dvma(p) if (p->SBus_dev == dev) return p; return 0; } #ifdef CONFIG_SUN4 #include /* Find all the lance cards on the system and initialize them */ int __init sparc_lance_probe (struct net_device *dev) { static struct linux_sbus_device sdev; static int called = 0; if(called) return ENODEV; called++; if ((idprom->id_machtype == (SM_SUN4|SM_4_330)) || (idprom->id_machtype == (SM_SUN4|SM_4_470))) { memset (&sdev, 0, sizeof(sdev)); sdev.reg_addrs[0].phys_addr = sun4_eth_physaddr; sdev.irqs[0] = 6; return sparc_lance_init(dev, &sdev, 0, 0); } return ENODEV; } #else /* !CONFIG_SUN4 */ /* Find all the lance cards on the system and initialize them */ int __init sparc_lance_probe (struct net_device *dev) { struct linux_sbus *bus; struct linux_sbus_device *sdev = 0; struct Linux_SBus_DMA *ledma = 0; static int called = 0; int cards = 0, v; if(called) return ENODEV; called++; for_each_sbus (bus) { for_each_sbusdev (sdev, bus) { if (cards) dev = NULL; if (strcmp (sdev->prom_name, "le") == 0) { cards++; if ((v = sparc_lance_init(dev, sdev, 0, 0))) return v; continue; } if (strcmp (sdev->prom_name, "ledma") == 0) { cards++; ledma = find_ledma (sdev); if ((v = sparc_lance_init(dev, sdev->child, ledma, 0))) return v; continue; } if (strcmp (sdev->prom_name, "lebuffer") == 0){ cards++; if ((v = sparc_lance_init(dev, sdev->child, 0, sdev))) return v; continue; } } /* for each sbusdev */ } /* for each sbus */ if (!cards) return ENODEV; return 0; } #endif /* !CONFIG_SUN4 */ #ifdef MODULE int init_module(void) { root_lance_dev = NULL; return sparc_lance_probe(NULL); } void cleanup_module(void) { struct lance_private *lp; while (root_lance_dev) { lp = root_lance_dev->next_module; unregister_netdev(root_lance_dev->dev); kfree(root_lance_dev->dev); root_lance_dev = lp; } } #endif /* MODULE */