/* * sktr.c: A network driver for the SysKonnect Token Ring ISA/PCI Adapters. * * Written 1997 by Christoph Goos * * A fine result of the Linux Systems Network Architecture Project. * http://samba.anu.edu.au/linux-sna/ * * This software may be used and distributed according to the terms * of the GNU Public License, incorporated herein by reference. * * This device driver works with the following SysKonnect adapters: * - SysKonnect TR4/16(+) ISA (SK-4190) * - SysKonnect TR4/16(+) PCI (SK-4590) * - SysKonnect TR4/16 PCI (SK-4591) * * Sources: * - The hardware related parts of this driver are take from * the SysKonnect Token Ring driver for Windows NT. * - I used the IBM Token Ring driver 'ibmtr.c' as a base for this * driver, as well as the 'skeleton.c' driver by Donald Becker. * - Also various other drivers in the linux source tree were taken * as samples for some tasks. * * Maintainer(s): * JS Jay Schulist jschlst@samba.anu.edu.au * CG Christoph Goos cgoos@syskonnect.de * AF Adam Fritzler mid@auk.cx * * Modification History: * 29-Aug-97 CG Created * 04-Apr-98 CG Fixed problems caused by tok_timer_check * 10-Apr-98 CG Fixed lockups at cable disconnection * 27-May-98 JS Formated to Linux Kernel Format * 31-May-98 JS Hacked in PCI support * 16-Jun-98 JS Modulized for multiple cards with one driver * 21-Sep-99 CG Fixed source routing issues for 2.2 kernels * 21-Sep-99 AF Added multicast changes recommended by * Jochen Friedrich (untested) * Added detection of compatible Compaq PCI card * * To do: * 1. Selectable 16 Mbps or 4Mbps * 2. Multi/Broadcast packet handling (might be done) * */ static const char *version = "sktr.c: v1.01 08/29/97 by Christoph Goos\n"; #ifdef MODULE #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sktr.h" /* Our Stuff */ #include "sktr_firmware.h" /* SysKonnect adapter firmware */ /* A zero-terminated list of I/O addresses to be probed. */ static unsigned int sktr_portlist[] __initdata = { 0x0A20, 0x1A20, 0x0B20, 0x1B20, 0x0980, 0x1980, 0x0900, 0x1900, 0 }; /* A zero-terminated list of IRQs to be probed. * Used again after initial probe for sktr_chipset_init, called from sktr_open. */ static unsigned short sktr_irqlist[] = { 3, 5, 9, 10, 11, 12, 15, 0 }; /* A zero-terminated list of DMAs to be probed. */ static int sktr_dmalist[] __initdata = { 5, 6, 7, 0 }; /* Card names */ static char *pci_cardname = "SK NET TR 4/16 PCI\0"; static char *isa_cardname = "SK NET TR 4/16 ISA\0"; static char *AdapterName; /* Use 0 for production, 1 for verification, 2 for debug, and * 3 for very verbose debug. */ #ifndef SKTR_DEBUG #define SKTR_DEBUG 1 #endif static unsigned int sktr_debug = SKTR_DEBUG; /* The number of low I/O ports used by the tokencard. */ #define SKTR_IO_EXTENT 32 /* Index to functions, as function prototypes. * Alphabetical by function name. */ /* "B" */ static int sktr_bringup_diags(struct net_device *dev); /* "C" */ static void sktr_cancel_tx_queue(struct net_local* tp); static int sktr_chipset_init(struct net_device *dev); static void sktr_chk_irq(struct net_device *dev); static unsigned char sktr_chk_frame(struct net_device *dev, unsigned char *Addr); static void sktr_chk_outstanding_cmds(struct net_device *dev); static void sktr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr); static unsigned char sktr_chk_ssb(struct net_local *tp, unsigned short IrqType); static int sktr_close(struct net_device *dev); static void sktr_cmd_status_irq(struct net_device *dev); /* "D" */ static void sktr_disable_interrupts(struct net_device *dev); static void sktr_dump(unsigned char *Data, int length); /* "E" */ static void sktr_enable_interrupts(struct net_device *dev); static void sktr_exec_cmd(struct net_device *dev, unsigned short Command); static void sktr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue); /* "F" */ /* "G" */ static struct enet_statistics *sktr_get_stats(struct net_device *dev); /* "H" */ static void sktr_hardware_send_packet(struct net_device *dev, struct net_local* tp); /* "I" */ static int sktr_init_adapter(struct net_device *dev); static int sktr_init_card(struct net_device *dev); static void sktr_init_ipb(struct net_local *tp); static void sktr_init_net_local(struct net_device *dev); static void sktr_init_opb(struct net_local *tp); static void sktr_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int sktr_isa_chk_card(struct net_device *dev, int ioaddr); static int sktr_isa_chk_ioaddr(int ioaddr); /* "O" */ static int sktr_open(struct net_device *dev); static void sktr_open_adapter(struct net_device *dev); /* "P" */ static int sktr_pci_chk_card(struct net_device *dev); int sktr_probe(struct net_device *dev); static int sktr_probe1(struct net_device *dev, int ioaddr); /* "R" */ static void sktr_rcv_status_irq(struct net_device *dev); static void sktr_read_addr(struct net_device *dev, unsigned char *Address); static void sktr_read_ptr(struct net_device *dev); static void sktr_read_ram(struct net_device *dev, unsigned char *Data, unsigned short Address, int Length); static int sktr_reset_adapter(struct net_device *dev); static void sktr_reset_interrupt(struct net_device *dev); static void sktr_ring_status_irq(struct net_device *dev); /* "S" */ static int sktr_send_packet(struct sk_buff *skb, struct net_device *dev); static void sktr_set_multicast_list(struct net_device *dev); /* "T" */ static void sktr_timer_chk(unsigned long data); static void sktr_timer_end_wait(unsigned long data); static void sktr_tx_status_irq(struct net_device *dev); /* "U" */ static void sktr_update_rcv_stats(struct net_local *tp, unsigned char DataPtr[], unsigned int Length); /* "W" */ static void sktr_wait(unsigned long time); static void sktr_write_rpl_status(RPL *rpl, unsigned int Status); static void sktr_write_tpl_status(TPL *tpl, unsigned int Status); /* * Check for a network adapter of this type, and return '0' if one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. */ int __init sktr_probe(struct net_device *dev) { int i; int base_addr = dev ? dev->base_addr : 0; if(base_addr > 0x1ff) /* Check a single specified location. */ return (sktr_probe1(dev, base_addr)); else if(base_addr != 0) /* Don't probe at all. */ return (-ENXIO); for(i = 0; sktr_portlist[i]; i++) { int ioaddr = sktr_portlist[i]; if(check_region(ioaddr, SKTR_IO_EXTENT)) continue; if(sktr_probe1(dev, ioaddr)) { #ifndef MODULE tr_freedev(dev); #endif } else return (0); } return (-ENODEV); } /* * Detect and setup the PCI SysKonnect TR cards in slot order. */ static int __init sktr_pci_chk_card(struct net_device *dev) { static int pci_index = 0; unsigned char pci_bus, pci_device_fn; if(!pci_present()) return (-1); /* No PCI present. */ for(; pci_index < 0xff; pci_index++) { unsigned int pci_irq_line; struct pci_dev *pdev; unsigned short pci_command, new_command, vendor, device; unsigned int pci_ioaddr; if(pcibios_find_class(PCI_CLASS_NETWORK_TOKEN_RING << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) { break; } pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); pdev = pci_find_slot(pci_bus, pci_device_fn); pci_irq_line = pdev->irq; pci_ioaddr = pdev->resource[0].start; pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); /* Remove I/O space marker in bit 0. */ pci_ioaddr &= ~3; if((vendor != PCI_VENDOR_ID_SK) && (vendor != PCI_VENDOR_ID_COMPAQ)) continue; if((vendor == PCI_VENDOR_ID_SK) && (device != PCI_DEVICE_ID_SK_TR)) continue; else if((vendor == PCI_VENDOR_ID_COMPAQ) && (device != PCI_DEVICE_ID_COMPAQ_TOKENRING)) continue; if(check_region(pci_ioaddr, SKTR_IO_EXTENT)) continue; request_region(pci_ioaddr, SKTR_IO_EXTENT, pci_cardname); if(request_irq(pdev->irq, sktr_interrupt, SA_SHIRQ, pci_cardname, dev)) return (-ENODEV); /* continue; ?? */ AdapterName = pci_cardname; new_command = (pci_command|PCI_COMMAND_MASTER|PCI_COMMAND_IO); if(pci_command != new_command) { printk("The PCI BIOS has not enabled this" "device! Updating PCI command %4.4x->%4.4x.\n", pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } /* At this point we have found a valid PCI TR card. */ dev->base_addr = pci_ioaddr; dev->irq = pci_irq_line; dev->dma = 0; printk("%s: %s found at %#4x, using IRQ %d.\n", dev->name, AdapterName, pci_ioaddr, dev->irq); return (0); } return (-1); } /* * Detect and setup the ISA SysKonnect TR cards. */ static int __init sktr_isa_chk_card(struct net_device *dev, int ioaddr) { int i, err; unsigned long flags; err = sktr_isa_chk_ioaddr(ioaddr); if(err < 0) return (-ENODEV); if(virt_to_bus((void*)((unsigned long)dev->priv+sizeof(struct net_local))) > ISA_MAX_ADDRESS) { printk("%s: Memory not accessible for DMA\n", dev->name); kfree(dev->priv); return (-EAGAIN); } AdapterName = isa_cardname; /* Grab the region so that no one else tries to probe our ioports. */ request_region(ioaddr, SKTR_IO_EXTENT, AdapterName); dev->base_addr = ioaddr; /* Autoselect IRQ and DMA if dev->irq == 0 */ if(dev->irq == 0) { for(i = 0; sktr_irqlist[i] != 0; i++) { dev->irq = sktr_irqlist[i]; err = request_irq(dev->irq, &sktr_interrupt, 0, AdapterName, dev); if(!err) break; } if(sktr_irqlist[i] == 0) { printk("%s: AutoSelect no IRQ available\n", dev->name); return (-EAGAIN); } } else { err = request_irq(dev->irq, &sktr_interrupt, 0, AdapterName, dev); if(err) { printk("%s: Selected IRQ not available\n", dev->name); return (-EAGAIN); } } /* Always allocate the DMA channel after IRQ and clean up on failure */ if(dev->dma == 0) { for(i = 0; sktr_dmalist[i] != 0; i++) { dev->dma = sktr_dmalist[i]; err = request_dma(dev->dma, AdapterName); if(!err) break; } if(dev->dma == 0) { printk("%s: AutoSelect no DMA available\n", dev->name); free_irq(dev->irq, NULL); return (-EAGAIN); } } else { err = request_dma(dev->dma, AdapterName); if(err) { printk("%s: Selected DMA not available\n", dev->name); free_irq(dev->irq, NULL); return (-EAGAIN); } } flags=claim_dma_lock(); disable_dma(dev->dma); set_dma_mode(dev->dma, DMA_MODE_CASCADE); enable_dma(dev->dma); release_dma_lock(flags); printk("%s: %s found at %#4x, using IRQ %d and DMA %d.\n", dev->name, AdapterName, ioaddr, dev->irq, dev->dma); return (0); } static int __init sktr_probe1(struct net_device *dev, int ioaddr) { static unsigned version_printed = 0; struct net_local *tp; int DeviceType = SK_PCI; int err; if(sktr_debug && version_printed++ == 0) printk("%s", version); #ifndef MODULE dev = init_trdev(dev, 0); if(dev == NULL) return (-ENOMEM); #endif err = sktr_pci_chk_card(dev); if(err < 0) { err = sktr_isa_chk_card(dev, ioaddr); if(err < 0) return (-ENODEV); DeviceType = SK_ISA; } /* Setup this devices private information structure */ tp = (struct net_local *)kmalloc(sizeof(struct net_local), GFP_KERNEL | GFP_DMA); if(tp == NULL) return (-ENOMEM); memset(tp, 0, sizeof(struct net_local)); tp->DeviceType = DeviceType; init_waitqueue_head(&tp->wait_for_tok_int); dev->priv = tp; dev->init = sktr_init_card; dev->open = sktr_open; dev->stop = sktr_close; dev->hard_start_xmit = sktr_send_packet; dev->get_stats = sktr_get_stats; dev->set_multicast_list = &sktr_set_multicast_list; return (0); } /* Dummy function */ static int __init sktr_init_card(struct net_device *dev) { if(sktr_debug > 3) printk("%s: sktr_init_card\n", dev->name); return (0); } /* * This function tests if an adapter is really installed at the * given I/O address. Return negative if no adapter at IO addr. */ static int __init sktr_isa_chk_ioaddr(int ioaddr) { unsigned char old, chk1, chk2; old = inb(ioaddr + SIFADR); /* Get the old SIFADR value */ chk1 = 0; /* Begin with check value 0 */ do { /* Write new SIFADR value */ outb(chk1, ioaddr + SIFADR); /* Read, invert and write */ chk2 = inb(ioaddr + SIFADD); chk2 ^= 0x0FE; outb(chk2, ioaddr + SIFADR); /* Read, invert and compare */ chk2 = inb(ioaddr + SIFADD); chk2 ^= 0x0FE; if(chk1 != chk2) return (-1); /* No adapter */ chk1 -= 2; } while(chk1 != 0); /* Repeat 128 times (all byte values) */ /* Restore the SIFADR value */ outb(old, ioaddr + SIFADR); return (0); } /* * Open/initialize the board. This is called sometime after * booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int sktr_open(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; int err; /* Reset the hardware here. Don't forget to set the station address. */ err = sktr_chipset_init(dev); if(err) { printk(KERN_INFO "%s: Chipset initialization error\n", dev->name); return (-1); } dev->addr_len = 6; sktr_read_addr(dev, (unsigned char*)dev->dev_addr); init_timer(&tp->timer); tp->timer.expires = jiffies + 30*HZ; tp->timer.function = sktr_timer_end_wait; tp->timer.data = (unsigned long)dev; tp->timer.next = NULL; tp->timer.prev = NULL; add_timer(&tp->timer); sktr_read_ptr(dev); sktr_enable_interrupts(dev); sktr_open_adapter(dev); dev->tbusy = 0; dev->interrupt = 0; dev->start = 0; /* Wait for interrupt from hardware. If interrupt does not come, * there will be a timeout from the timer. */ tp->Sleeping = 1; interruptible_sleep_on(&tp->wait_for_tok_int); del_timer(&tp->timer); /* If AdapterVirtOpenFlag is 1, the adapter is now open for use */ if(tp->AdapterVirtOpenFlag == 0) { sktr_disable_interrupts(dev); return (-1); } dev->start = 1; tp->StartTime = jiffies; /* Start function control timer */ tp->timer.expires = jiffies + 2*HZ; tp->timer.function = sktr_timer_chk; tp->timer.data = (unsigned long)dev; add_timer(&tp->timer); #ifdef MODULE MOD_INC_USE_COUNT; #endif return (0); } /* * Timeout function while waiting for event */ static void sktr_timer_end_wait(unsigned long data) { struct net_device *dev = (struct net_device*)data; struct net_local *tp = (struct net_local *)dev->priv; if(tp->Sleeping) { tp->Sleeping = 0; wake_up_interruptible(&tp->wait_for_tok_int); } return; } /* * Initialize the chipset */ static int sktr_chipset_init(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned char PosReg, Tmp; int i, err; sktr_init_ipb(tp); sktr_init_opb(tp); sktr_init_net_local(dev); /* Set pos register: selects irq and dma channel. * Only for ISA bus adapters. */ if(dev->dma > 0) { PosReg = 0; for(i = 0; sktr_irqlist[i] != 0; i++) { if(sktr_irqlist[i] == dev->irq) break; } /* Choose default cycle time, 500 nsec */ PosReg |= CYCLE_TIME << 2; PosReg |= i << 4; i = dev->dma - 5; PosReg |= i; if(tp->DataRate == SPEED_4) PosReg |= LINE_SPEED_BIT; else PosReg &= ~LINE_SPEED_BIT; outb(PosReg, dev->base_addr + POSREG); Tmp = inb(dev->base_addr + POSREG); if((Tmp & ~CYCLE_TIME) != (PosReg & ~CYCLE_TIME)) printk(KERN_INFO "%s: POSREG error\n", dev->name); } err = sktr_reset_adapter(dev); if(err < 0) return (-1); err = sktr_bringup_diags(dev); if(err < 0) return (-1); err = sktr_init_adapter(dev); if(err < 0) return (-1); return (0); } /* * Initializes the net_local structure. */ static void sktr_init_net_local(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; int i; tp->scb.CMD = 0; tp->scb.Parm[0] = 0; tp->scb.Parm[1] = 0; tp->ssb.STS = 0; tp->ssb.Parm[0] = 0; tp->ssb.Parm[1] = 0; tp->ssb.Parm[2] = 0; tp->CMDqueue = 0; tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 0; tp->ScbInUse = 0; tp->OpenCommandIssued = 0; tp->ReOpenInProgress = 0; tp->HaltInProgress = 0; tp->TransmitHaltScheduled = 0; tp->LobeWireFaultLogged = 0; tp->LastOpenStatus = 0; tp->MaxPacketSize = DEFAULT_PACKET_SIZE; skb_queue_head_init(&tp->SendSkbQueue); tp->QueueSkb = MAX_TX_QUEUE; /* Create circular chain of transmit lists */ for (i = 0; i < TPL_NUM; i++) { tp->Tpl[i].NextTPLAddr = htonl((unsigned long) virt_to_bus(&tp->Tpl[(i+1) % TPL_NUM])); tp->Tpl[i].Status = 0; tp->Tpl[i].FrameSize = 0; tp->Tpl[i].FragList[0].DataCount = 0; tp->Tpl[i].FragList[0].DataAddr = 0; tp->Tpl[i].NextTPLPtr = &tp->Tpl[(i+1) % TPL_NUM]; tp->Tpl[i].MData = NULL; tp->Tpl[i].TPLIndex = i; tp->Tpl[i].BusyFlag = 0; } tp->TplFree = tp->TplBusy = &tp->Tpl[0]; /* Create circular chain of receive lists */ for (i = 0; i < RPL_NUM; i++) { tp->Rpl[i].NextRPLAddr = htonl((unsigned long) virt_to_bus(&tp->Rpl[(i+1) % RPL_NUM])); tp->Rpl[i].Status = (RX_VALID | RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ); tp->Rpl[i].FrameSize = 0; tp->Rpl[i].FragList[0].DataCount = SWAPB(tp->MaxPacketSize); /* Alloc skb and point adapter to data area */ tp->Rpl[i].Skb = dev_alloc_skb(tp->MaxPacketSize); /* skb == NULL ? then use local buffer */ if(tp->Rpl[i].Skb == NULL) { tp->Rpl[i].SkbStat = SKB_UNAVAILABLE; tp->Rpl[i].FragList[0].DataAddr = htonl(virt_to_bus(tp->LocalRxBuffers[i])); tp->Rpl[i].MData = tp->LocalRxBuffers[i]; } else /* SKB != NULL */ { tp->Rpl[i].Skb->dev = dev; skb_put(tp->Rpl[i].Skb, tp->MaxPacketSize); /* data unreachable for DMA ? then use local buffer */ if(tp->DeviceType == SK_ISA && virt_to_bus(tp->Rpl[i].Skb->data) + tp->MaxPacketSize > ISA_MAX_ADDRESS) { tp->Rpl[i].SkbStat = SKB_DATA_COPY; tp->Rpl[i].FragList[0].DataAddr = htonl(virt_to_bus(tp->LocalRxBuffers[i])); tp->Rpl[i].MData = tp->LocalRxBuffers[i]; } else /* DMA directly in skb->data */ { tp->Rpl[i].SkbStat = SKB_DMA_DIRECT; tp->Rpl[i].FragList[0].DataAddr = htonl(virt_to_bus(tp->Rpl[i].Skb->data)); tp->Rpl[i].MData = tp->Rpl[i].Skb->data; } } tp->Rpl[i].NextRPLPtr = &tp->Rpl[(i+1) % RPL_NUM]; tp->Rpl[i].RPLIndex = i; } tp->RplHead = &tp->Rpl[0]; tp->RplTail = &tp->Rpl[RPL_NUM-1]; tp->RplTail->Status = (RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ); return; } /* * Initializes the initialisation parameter block. */ static void sktr_init_ipb(struct net_local *tp) { tp->ipb.Init_Options = BURST_MODE; tp->ipb.CMD_Status_IV = 0; tp->ipb.TX_IV = 0; tp->ipb.RX_IV = 0; tp->ipb.Ring_Status_IV = 0; tp->ipb.SCB_Clear_IV = 0; tp->ipb.Adapter_CHK_IV = 0; tp->ipb.RX_Burst_Size = BURST_SIZE; tp->ipb.TX_Burst_Size = BURST_SIZE; tp->ipb.DMA_Abort_Thrhld = DMA_RETRIES; tp->ipb.SCB_Addr = 0; tp->ipb.SSB_Addr = 0; return; } /* * Initializes the open parameter block. */ static void sktr_init_opb(struct net_local *tp) { unsigned long Addr; unsigned short RplSize = RPL_SIZE; unsigned short TplSize = TPL_SIZE; unsigned short BufferSize = BUFFER_SIZE; tp->ocpl.OPENOptions = 0; tp->ocpl.OPENOptions |= ENABLE_FULL_DUPLEX_SELECTION; /* tp->ocpl.OPENOptions |= PAD_ROUTING_FIELD; no more needed */ tp->ocpl.FullDuplex = 0; tp->ocpl.FullDuplex |= OPEN_FULL_DUPLEX_OFF; /* Fixme: If mac address setable: * for (i=0; iVam->ocpl.NodeAddr[i] = mac->CurrentAddress[i]; */ tp->ocpl.GroupAddr = 0; tp->ocpl.FunctAddr = 0; tp->ocpl.RxListSize = SWAPB(RplSize); tp->ocpl.TxListSize = SWAPB(TplSize); tp->ocpl.BufSize = SWAPB(BufferSize); tp->ocpl.Reserved = 0; tp->ocpl.TXBufMin = TX_BUF_MIN; tp->ocpl.TXBufMax = TX_BUF_MAX; Addr = htonl(virt_to_bus(tp->ProductID)); tp->ocpl.ProdIDAddr[0] = LOWORD(Addr); tp->ocpl.ProdIDAddr[1] = HIWORD(Addr); return; } /* * Send OPEN command to adapter */ static void sktr_open_adapter(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; if(tp->OpenCommandIssued) return; tp->OpenCommandIssued = 1; sktr_exec_cmd(dev, OC_OPEN); return; } /* * Clear the adapter's interrupt flag. Clear system interrupt enable * (SINTEN): disable adapter to system interrupts. */ static void sktr_disable_interrupts(struct net_device *dev) { outb(0, dev->base_addr + SIFACL); return; } /* * Set the adapter's interrupt flag. Set system interrupt enable * (SINTEN): enable adapter to system interrupts. */ static void sktr_enable_interrupts(struct net_device *dev) { outb(ACL_SINTEN, dev->base_addr + SIFACL); return; } /* * Put command in command queue, try to execute it. */ static void sktr_exec_cmd(struct net_device *dev, unsigned short Command) { struct net_local *tp = (struct net_local *)dev->priv; tp->CMDqueue |= Command; sktr_chk_outstanding_cmds(dev); return; } /* * Gets skb from system, queues it and checks if it can be sent */ static int sktr_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; if(dev->tbusy) { /* * If we get here, some higher level has decided we are broken. * There should really be a "kick me" function call instead. * * Resetting the token ring adapter takes a long time so just * fake transmission time and go on trying. Our own timeout * routine is in sktr_timer_chk() */ dev->tbusy = 0; dev->trans_start = jiffies; return (1); } /* * If some higher layer thinks we've missed an tx-done interrupt we * are passed NULL. */ if(skb == NULL) return (0); /* * Block a timer-based transmit from overlapping. This could better be * done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if(test_and_set_bit(0, (void*)&dev->tbusy) != 0) { printk("%s: Transmitter access conflict.\n", dev->name); return (1); } if(tp->QueueSkb == 0) return (1); /* Return with tbusy set: queue full */ tp->QueueSkb--; skb_queue_tail(&tp->SendSkbQueue, skb); sktr_hardware_send_packet(dev, tp); if(tp->QueueSkb > 0) dev->tbusy = 0; return (0); } /* * Move frames from internal skb queue into adapter tx queue */ static void sktr_hardware_send_packet(struct net_device *dev, struct net_local* tp) { TPL *tpl; short length; unsigned char *buf, *newbuf; struct sk_buff *skb; int i; for(;;) { /* Try to get a free TPL from the chain. * * NOTE: We *must* always leave one unused TPL in the chain, * because otherwise the adapter might send frames twice. */ if(tp->TplFree->NextTPLPtr->BusyFlag) /* No free TPL */ { printk(KERN_INFO "%s: No free TPL\n", dev->name); return; } /* Send first buffer from queue */ skb = skb_dequeue(&tp->SendSkbQueue); if(skb == NULL) return; tp->QueueSkb++; /* Is buffer reachable for Busmaster-DMA? */ if(tp->DeviceType == SK_ISA && virt_to_bus((void*)(((long) skb->data) + skb->len)) > ISA_MAX_ADDRESS) { /* Copy frame to local buffer */ i = tp->TplFree->TPLIndex; length = skb->len; buf = tp->LocalTxBuffers[i]; memcpy(buf, skb->data, length); newbuf = buf; } else { /* Send direct from skb->data */ length = skb->len; newbuf = skb->data; } /* Source address in packet? */ sktr_chk_src_addr(newbuf, dev->dev_addr); tp->LastSendTime = jiffies; tpl = tp->TplFree; /* Get the "free" TPL */ tpl->BusyFlag = 1; /* Mark TPL as busy */ tp->TplFree = tpl->NextTPLPtr; /* Save the skb for delayed return of skb to system */ tpl->Skb = skb; tpl->FragList[0].DataCount = (unsigned short) SWAPB(length); tpl->FragList[0].DataAddr = htonl(virt_to_bus(newbuf)); /* Write the data length in the transmit list. */ tpl->FrameSize = (unsigned short) SWAPB(length); tpl->MData = newbuf; /* Transmit the frame and set the status values. */ sktr_write_tpl_status(tpl, TX_VALID | TX_START_FRAME | TX_END_FRAME | TX_PASS_SRC_ADDR | TX_FRAME_IRQ); /* Let adapter send the frame. */ sktr_exec_sifcmd(dev, CMD_TX_VALID); } return; } /* * Write the given value to the 'Status' field of the specified TPL. * NOTE: This function should be used whenever the status of any TPL must be * modified by the driver, because the compiler may otherwise change the * order of instructions such that writing the TPL status may be executed at * an undesireable time. When this function is used, the status is always * written when the function is called. */ static void sktr_write_tpl_status(TPL *tpl, unsigned int Status) { tpl->Status = Status; } static void sktr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr) { unsigned char SRBit; if((((unsigned long)frame[8]) & ~0x80) != 0) /* Compare 4 bytes */ return; if((unsigned short)frame[12] != 0) /* Compare 2 bytes */ return; SRBit = frame[8] & 0x80; memcpy(&frame[8], hw_addr, 6); frame[8] |= SRBit; return; } /* * The timer routine: Check if adapter still open and working, reopen if not. */ static void sktr_timer_chk(unsigned long data) { struct net_device *dev = (struct net_device*)data; struct net_local *tp = (struct net_local*)dev->priv; if(tp->HaltInProgress) return; sktr_chk_outstanding_cmds(dev); if(time_before(tp->LastSendTime + SEND_TIMEOUT, jiffies) && (tp->QueueSkb < MAX_TX_QUEUE || tp->TplFree != tp->TplBusy)) { /* Anything to send, but stalled to long */ tp->LastSendTime = jiffies; sktr_exec_cmd(dev, OC_CLOSE); /* Does reopen automatically */ } tp->timer.expires = jiffies + 2*HZ; add_timer(&tp->timer); if(tp->AdapterOpenFlag || tp->ReOpenInProgress) return; tp->ReOpenInProgress = 1; sktr_open_adapter(dev); return; } /* * The typical workload of the driver: Handle the network interface interrupts. */ static void sktr_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = dev_id; struct net_local *tp; int ioaddr; unsigned short irq_type; if(dev == NULL) { printk("%s: irq %d for unknown device.\n", dev->name, irq); return; } dev->interrupt = 1; ioaddr = dev->base_addr; tp = (struct net_local *)dev->priv; irq_type = inw(ioaddr + SIFSTS); while(irq_type & STS_SYSTEM_IRQ) { irq_type &= STS_IRQ_MASK; if(!sktr_chk_ssb(tp, irq_type)) { printk(KERN_INFO "%s: DATA LATE occurred\n", dev->name); break; } switch(irq_type) { case STS_IRQ_RECEIVE_STATUS: sktr_reset_interrupt(dev); sktr_rcv_status_irq(dev); break; case STS_IRQ_TRANSMIT_STATUS: /* Check if TRANSMIT.HALT command is complete */ if(tp->ssb.Parm[0] & COMMAND_COMPLETE) { tp->TransmitCommandActive = 0; tp->TransmitHaltScheduled = 0; /* Issue a new transmit command. */ sktr_exec_cmd(dev, OC_TRANSMIT); } sktr_reset_interrupt(dev); sktr_tx_status_irq(dev); break; case STS_IRQ_COMMAND_STATUS: /* The SSB contains status of last command * other than receive/transmit. */ sktr_cmd_status_irq(dev); break; case STS_IRQ_SCB_CLEAR: /* The SCB is free for another command. */ tp->ScbInUse = 0; sktr_chk_outstanding_cmds(dev); break; case STS_IRQ_RING_STATUS: sktr_ring_status_irq(dev); break; case STS_IRQ_ADAPTER_CHECK: sktr_chk_irq(dev); break; default: printk(KERN_INFO "Unknown Token Ring IRQ\n"); break; } /* Reset system interrupt if not already done. */ if(irq_type != STS_IRQ_TRANSMIT_STATUS && irq_type != STS_IRQ_RECEIVE_STATUS) { sktr_reset_interrupt(dev); } irq_type = inw(ioaddr + SIFSTS); } dev->interrupt = 0; return; } /* * Reset the INTERRUPT SYSTEM bit and issue SSB CLEAR command. */ static void sktr_reset_interrupt(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; SSB *ssb = &tp->ssb; /* * [Workaround for "Data Late"] * Set all fields of the SSB to well-defined values so we can * check if the adapter has written the SSB. */ ssb->STS = (unsigned short) -1; ssb->Parm[0] = (unsigned short) -1; ssb->Parm[1] = (unsigned short) -1; ssb->Parm[2] = (unsigned short) -1; /* Free SSB by issuing SSB_CLEAR command after reading IRQ code * and clear STS_SYSTEM_IRQ bit: enable adapter for further interrupts. */ sktr_exec_sifcmd(dev, CMD_SSB_CLEAR | CMD_CLEAR_SYSTEM_IRQ); return; } /* * Check if the SSB has actually been written by the adapter. */ static unsigned char sktr_chk_ssb(struct net_local *tp, unsigned short IrqType) { SSB *ssb = &tp->ssb; /* The address of the SSB. */ /* C 0 1 2 INTERRUPT CODE * - - - - -------------- * 1 1 1 1 TRANSMIT STATUS * 1 1 1 1 RECEIVE STATUS * 1 ? ? 0 COMMAND STATUS * 0 0 0 0 SCB CLEAR * 1 1 0 0 RING STATUS * 0 0 0 0 ADAPTER CHECK * * 0 = SSB field not affected by interrupt * 1 = SSB field is affected by interrupt * * C = SSB ADDRESS +0: COMMAND * 0 = SSB ADDRESS +2: STATUS 0 * 1 = SSB ADDRESS +4: STATUS 1 * 2 = SSB ADDRESS +6: STATUS 2 */ /* Check if this interrupt does use the SSB. */ if(IrqType != STS_IRQ_TRANSMIT_STATUS && IrqType != STS_IRQ_RECEIVE_STATUS && IrqType != STS_IRQ_COMMAND_STATUS && IrqType != STS_IRQ_RING_STATUS) { return (1); /* SSB not involved. */ } /* Note: All fields of the SSB have been set to all ones (-1) after it * has last been used by the software (see DriverIsr()). * * Check if the affected SSB fields are still unchanged. */ if(ssb->STS == (unsigned short) -1) return (0); /* Command field not yet available. */ if(IrqType == STS_IRQ_COMMAND_STATUS) return (1); /* Status fields not always affected. */ if(ssb->Parm[0] == (unsigned short) -1) return (0); /* Status 1 field not yet available. */ if(IrqType == STS_IRQ_RING_STATUS) return (1); /* Status 2 & 3 fields not affected. */ /* Note: At this point, the interrupt is either TRANSMIT or RECEIVE. */ if(ssb->Parm[1] == (unsigned short) -1) return (0); /* Status 2 field not yet available. */ if(ssb->Parm[2] == (unsigned short) -1) return (0); /* Status 3 field not yet available. */ return (1); /* All SSB fields have been written by the adapter. */ } /* * Evaluates the command results status in the SSB status field. */ static void sktr_cmd_status_irq(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned short ssb_cmd, ssb_parm_0; unsigned short ssb_parm_1; char *open_err = "Open error -"; char *code_err = "Open code -"; /* Copy the ssb values to local variables */ ssb_cmd = tp->ssb.STS; ssb_parm_0 = tp->ssb.Parm[0]; ssb_parm_1 = tp->ssb.Parm[1]; if(ssb_cmd == OPEN) { tp->Sleeping = 0; if(!tp->ReOpenInProgress) wake_up_interruptible(&tp->wait_for_tok_int); tp->OpenCommandIssued = 0; tp->ScbInUse = 0; if((ssb_parm_0 & 0x00FF) == GOOD_COMPLETION) { /* Success, the adapter is open. */ tp->LobeWireFaultLogged = 0; tp->AdapterOpenFlag = 1; tp->AdapterVirtOpenFlag = 1; tp->TransmitCommandActive = 0; sktr_exec_cmd(dev, OC_TRANSMIT); sktr_exec_cmd(dev, OC_RECEIVE); if(tp->ReOpenInProgress) tp->ReOpenInProgress = 0; return; } else /* The adapter did not open. */ { if(ssb_parm_0 & NODE_ADDR_ERROR) printk(KERN_INFO "%s: Node address error\n", dev->name); if(ssb_parm_0 & LIST_SIZE_ERROR) printk(KERN_INFO "%s: List size error\n", dev->name); if(ssb_parm_0 & BUF_SIZE_ERROR) printk(KERN_INFO "%s: Buffer size error\n", dev->name); if(ssb_parm_0 & TX_BUF_COUNT_ERROR) printk(KERN_INFO "%s: Tx buffer count error\n", dev->name); if(ssb_parm_0 & INVALID_OPEN_OPTION) printk(KERN_INFO "%s: Invalid open option\n", dev->name); if(ssb_parm_0 & OPEN_ERROR) { /* Show the open phase. */ switch(ssb_parm_0 & OPEN_PHASES_MASK) { case LOBE_MEDIA_TEST: if(!tp->LobeWireFaultLogged) { tp->LobeWireFaultLogged = 1; printk(KERN_INFO "%s: %s Lobe wire fault (check cable !).\n", dev->name, open_err); } tp->ReOpenInProgress = 1; tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 1; sktr_open_adapter(dev); return; case PHYSICAL_INSERTION: printk(KERN_INFO "%s: %s Physical insertion.\n", dev->name, open_err); break; case ADDRESS_VERIFICATION: printk(KERN_INFO "%s: %s Address verification.\n", dev->name, open_err); break; case PARTICIPATION_IN_RING_POLL: printk(KERN_INFO "%s: %s Participation in ring poll.\n", dev->name, open_err); break; case REQUEST_INITIALISATION: printk(KERN_INFO "%s: %s Request initialisation.\n", dev->name, open_err); break; case FULLDUPLEX_CHECK: printk(KERN_INFO "%s: %s Full duplex check.\n", dev->name, open_err); break; default: printk(KERN_INFO "%s: %s Unknown open phase\n", dev->name, open_err); break; } /* Show the open errors. */ switch(ssb_parm_0 & OPEN_ERROR_CODES_MASK) { case OPEN_FUNCTION_FAILURE: printk(KERN_INFO "%s: %s OPEN_FUNCTION_FAILURE", dev->name, code_err); tp->LastOpenStatus = OPEN_FUNCTION_FAILURE; break; case OPEN_SIGNAL_LOSS: printk(KERN_INFO "%s: %s OPEN_SIGNAL_LOSS\n", dev->name, code_err); tp->LastOpenStatus = OPEN_SIGNAL_LOSS; break; case OPEN_TIMEOUT: printk(KERN_INFO "%s: %s OPEN_TIMEOUT\n", dev->name, code_err); tp->LastOpenStatus = OPEN_TIMEOUT; break; case OPEN_RING_FAILURE: printk(KERN_INFO "%s: %s OPEN_RING_FAILURE\n", dev->name, code_err); tp->LastOpenStatus = OPEN_RING_FAILURE; break; case OPEN_RING_BEACONING: printk(KERN_INFO "%s: %s OPEN_RING_BEACONING\n", dev->name, code_err); tp->LastOpenStatus = OPEN_RING_BEACONING; break; case OPEN_DUPLICATE_NODEADDR: printk(KERN_INFO "%s: %s OPEN_DUPLICATE_NODEADDR\n", dev->name, code_err); tp->LastOpenStatus = OPEN_DUPLICATE_NODEADDR; break; case OPEN_REQUEST_INIT: printk(KERN_INFO "%s: %s OPEN_REQUEST_INIT\n", dev->name, code_err); tp->LastOpenStatus = OPEN_REQUEST_INIT; break; case OPEN_REMOVE_RECEIVED: printk(KERN_INFO "%s: %s OPEN_REMOVE_RECEIVED", dev->name, code_err); tp->LastOpenStatus = OPEN_REMOVE_RECEIVED; break; case OPEN_FULLDUPLEX_SET: printk(KERN_INFO "%s: %s OPEN_FULLDUPLEX_SET\n", dev->name, code_err); tp->LastOpenStatus = OPEN_FULLDUPLEX_SET; break; default: printk(KERN_INFO "%s: %s Unknown open err code", dev->name, code_err); tp->LastOpenStatus = OPEN_FUNCTION_FAILURE; break; } } tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 0; return; } } else { if(ssb_cmd != READ_ERROR_LOG) return; /* Add values from the error log table to the MAC * statistics counters and update the errorlogtable * memory. */ tp->MacStat.line_errors += tp->errorlogtable.Line_Error; tp->MacStat.burst_errors += tp->errorlogtable.Burst_Error; tp->MacStat.A_C_errors += tp->errorlogtable.ARI_FCI_Error; tp->MacStat.lost_frames += tp->errorlogtable.Lost_Frame_Error; tp->MacStat.recv_congest_count += tp->errorlogtable.Rx_Congest_Error; tp->MacStat.rx_errors += tp->errorlogtable.Rx_Congest_Error; tp->MacStat.frame_copied_errors += tp->errorlogtable.Frame_Copied_Error; tp->MacStat.token_errors += tp->errorlogtable.Token_Error; tp->MacStat.dummy1 += tp->errorlogtable.DMA_Bus_Error; tp->MacStat.dummy1 += tp->errorlogtable.DMA_Parity_Error; tp->MacStat.abort_delimiters += tp->errorlogtable.AbortDelimeters; tp->MacStat.frequency_errors += tp->errorlogtable.Frequency_Error; tp->MacStat.internal_errors += tp->errorlogtable.Internal_Error; } return; } /* * The inverse routine to sktr_open(). */ static int sktr_close(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; dev->tbusy = 1; dev->start = 0; del_timer(&tp->timer); /* Flush the Tx and disable Rx here. */ tp->HaltInProgress = 1; sktr_exec_cmd(dev, OC_CLOSE); tp->timer.expires = jiffies + 1*HZ; tp->timer.function = sktr_timer_end_wait; tp->timer.data = (unsigned long)dev; add_timer(&tp->timer); sktr_enable_interrupts(dev); tp->Sleeping = 1; interruptible_sleep_on(&tp->wait_for_tok_int); tp->TransmitCommandActive = 0; del_timer(&tp->timer); sktr_disable_interrupts(dev); if(dev->dma > 0) { unsigned long flags=claim_dma_lock(); disable_dma(dev->dma); release_dma_lock(flags); } outw(0xFF00, dev->base_addr + SIFCMD); if(dev->dma > 0) outb(0xff, dev->base_addr + POSREG); #ifdef MODULE MOD_DEC_USE_COUNT; #endif sktr_cancel_tx_queue(tp); return (0); } /* * Get the current statistics. This may be called with the card open * or closed. */ static struct enet_statistics *sktr_get_stats(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; return ((struct enet_statistics *)&tp->MacStat); } /* * Set or clear the multicast filter for this adapter. */ static void sktr_set_multicast_list(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned int OpenOptions; OpenOptions = tp->ocpl.OPENOptions & ~(PASS_ADAPTER_MAC_FRAMES | PASS_ATTENTION_FRAMES | PASS_BEACON_MAC_FRAMES | COPY_ALL_MAC_FRAMES | COPY_ALL_NON_MAC_FRAMES); tp->ocpl.FunctAddr = 0; if(dev->flags & IFF_PROMISC) /* Enable promiscuous mode */ OpenOptions |= COPY_ALL_NON_MAC_FRAMES | COPY_ALL_MAC_FRAMES; else { if(dev->flags & IFF_ALLMULTI) { /* Disable promiscuous mode, use normal mode. */ tp->ocpl.FunctAddr = 0xFFFFFFFF; } else { int i; struct dev_mc_list *mclist = dev->mc_list; for (i=0; i< dev->mc_count; i++) { ((char *)(&tp->ocpl.FunctAddr))[0] |= mclist->dmi_addr[2]; ((char *)(&tp->ocpl.FunctAddr))[1] |= mclist->dmi_addr[3]; ((char *)(&tp->ocpl.FunctAddr))[2] |= mclist->dmi_addr[4]; ((char *)(&tp->ocpl.FunctAddr))[3] |= mclist->dmi_addr[5]; mclist = mclist->next; } } sktr_exec_cmd(dev, OC_SET_FUNCT_ADDR); } tp->ocpl.OPENOptions = OpenOptions; sktr_exec_cmd(dev, OC_MODIFY_OPEN_PARMS); return; } /* * Wait for some time (microseconds) * * udelay() is a bit harsh, but using a looser timer causes * the bring-up-diags to stall indefinitly. * */ static void sktr_wait(unsigned long time) { udelay(time); return; } /* * Write a command value to the SIFCMD register */ static void sktr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue) { int ioaddr = dev->base_addr; unsigned short cmd; unsigned short SifStsValue; unsigned long loop_counter; WriteValue = ((WriteValue ^ CMD_SYSTEM_IRQ) | CMD_INTERRUPT_ADAPTER); cmd = (unsigned short)WriteValue; loop_counter = 0,5 * 800000; do { SifStsValue = inw(ioaddr + SIFSTS); } while((SifStsValue & CMD_INTERRUPT_ADAPTER) && loop_counter--); outw(cmd, ioaddr + SIFCMD); return; } /* * Processes adapter hardware reset, halts adapter and downloads firmware, * clears the halt bit. */ static int sktr_reset_adapter(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned short *fw_ptr = (unsigned short *)&sktr_code; unsigned short count, c; int ioaddr = dev->base_addr; /* Hardware adapter reset */ outw(ACL_ARESET, ioaddr + SIFACL); sktr_wait(40); c = inw(ioaddr + SIFACL); sktr_wait(20); if(dev->dma == 0) /* For PCI adapters */ { c &= ~(ACL_SPEED4 | ACL_SPEED16); /* Clear bits */ if(tp->DataRate == SPEED_4) c |= ACL_SPEED4; /* Set 4Mbps */ else c |= ACL_SPEED16; /* Set 16Mbps */ } /* In case a command is pending - forget it */ tp->ScbInUse = 0; c &= ~ACL_ARESET; /* Clear adapter reset bit */ c |= ACL_CPHALT; /* Halt adapter CPU, allow download */ c &= ~ACL_PSDMAEN; /* Clear pseudo dma bit */ outw(c, ioaddr + SIFACL); sktr_wait(40); /* Download firmware via DIO interface: */ do { /* Download first address part */ outw(*fw_ptr, ioaddr + SIFADX); fw_ptr++; /* Download second address part */ outw(*fw_ptr, ioaddr + SIFADD); fw_ptr++; if((count = *fw_ptr) != 0) /* Load loop counter */ { fw_ptr++; /* Download block data */ for(; count > 0; count--) { outw(*fw_ptr, ioaddr + SIFINC); fw_ptr++; } } else /* Stop, if last block downloaded */ { c = inw(ioaddr + SIFACL); c &= (~ACL_CPHALT | ACL_SINTEN); /* Clear CPHALT and start BUD */ outw(c, ioaddr + SIFACL); return (1); } } while(count == 0); return (-1); } /* * Starts bring up diagnostics of token ring adapter and evaluates * diagnostic results. */ static int sktr_bringup_diags(struct net_device *dev) { int loop_cnt, retry_cnt; unsigned short Status; int ioaddr = dev->base_addr; sktr_wait(HALF_SECOND); sktr_exec_sifcmd(dev, EXEC_SOFT_RESET); sktr_wait(HALF_SECOND); retry_cnt = BUD_MAX_RETRIES; /* maximal number of retrys */ do { retry_cnt--; if(sktr_debug > 3) printk(KERN_INFO "BUD-Status: \n"); loop_cnt = BUD_MAX_LOOPCNT; /* maximum: three seconds*/ do { /* Inspect BUD results */ loop_cnt--; sktr_wait(HALF_SECOND); Status = inw(ioaddr + SIFSTS); Status &= STS_MASK; if(sktr_debug > 3) printk(KERN_INFO " %04X \n", Status); /* BUD successfully completed */ if(Status == STS_INITIALIZE) return (1); /* Unrecoverable hardware error, BUD not completed? */ } while((loop_cnt > 0) && ((Status & (STS_ERROR | STS_TEST)) != (STS_ERROR | STS_TEST))); /* Error preventing completion of BUD */ if(retry_cnt > 0) { printk(KERN_INFO "%s: Adapter Software Reset.\n", dev->name); sktr_exec_sifcmd(dev, EXEC_SOFT_RESET); sktr_wait(HALF_SECOND); } } while(retry_cnt > 0); Status = inw(ioaddr + SIFSTS); Status &= STS_ERROR_MASK; /* Hardware error occurred! */ printk(KERN_INFO "%s: Bring Up Diagnostics Error (%04X) occurred\n", dev->name, Status); return (-1); } /* * Copy initialisation data to adapter memory, beginning at address * 1:0A00; Starting DMA test and evaluating result bits. */ static int sktr_init_adapter(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; const unsigned char SCB_Test[6] = {0x00, 0x00, 0xC1, 0xE2, 0xD4, 0x8B}; const unsigned char SSB_Test[8] = {0xFF, 0xFF, 0xD1, 0xD7, 0xC5, 0xD9, 0xC3, 0xD4}; void *ptr = (void *)&tp->ipb; unsigned short *ipb_ptr = (unsigned short *)ptr; unsigned char *cb_ptr = (unsigned char *) &tp->scb; unsigned char *sb_ptr = (unsigned char *) &tp->ssb; unsigned short Status; int i, loop_cnt, retry_cnt; int ioaddr = dev->base_addr; /* Normalize: byte order low/high, word order high/low! (only IPB!) */ tp->ipb.SCB_Addr = SWAPW(virt_to_bus(&tp->scb)); tp->ipb.SSB_Addr = SWAPW(virt_to_bus(&tp->ssb)); /* Maximum: three initialization retries */ retry_cnt = INIT_MAX_RETRIES; do { retry_cnt--; /* Transfer initialization block */ outw(0x0001, ioaddr + SIFADX); /* To address 0001:0A00 of adapter RAM */ outw(0x0A00, ioaddr + SIFADD); /* Write 11 words to adapter RAM */ for(i = 0; i < 11; i++) outw(ipb_ptr[i], ioaddr + SIFINC); /* Execute SCB adapter command */ sktr_exec_sifcmd(dev, CMD_EXECUTE); loop_cnt = INIT_MAX_LOOPCNT; /* Maximum: 11 seconds */ /* While remaining retries, no error and not completed */ do { Status = 0; loop_cnt--; sktr_wait(HALF_SECOND); /* Mask interesting status bits */ Status = inw(ioaddr + SIFSTS); Status &= STS_MASK; } while(((Status &(STS_INITIALIZE | STS_ERROR | STS_TEST)) != 0) && ((Status & STS_ERROR) == 0) && (loop_cnt != 0)); if((Status & (STS_INITIALIZE | STS_ERROR | STS_TEST)) == 0) { /* Initialization completed without error */ i = 0; do { /* Test if contents of SCB is valid */ if(SCB_Test[i] != *(cb_ptr + i)) /* DMA data error: wrong data in SCB */ return (-1); i++; } while(i < 6); i = 0; do { /* Test if contents of SSB is valid */ if(SSB_Test[i] != *(sb_ptr + i)) /* DMA data error: wrong data in SSB */ return (-1); i++; } while (i < 8); return (1); /* Adapter successfully initialized */ } else { if((Status & STS_ERROR) != 0) { /* Initialization error occurred */ Status = inw(ioaddr + SIFSTS); Status &= STS_ERROR_MASK; /* ShowInitialisationErrorCode(Status); */ return (-1); /* Unrecoverable error */ } else { if(retry_cnt > 0) { /* Reset adapter and try init again */ sktr_exec_sifcmd(dev, EXEC_SOFT_RESET); sktr_wait(HALF_SECOND); } } } } while(retry_cnt > 0); return (-1); } /* * Check for outstanding commands in command queue and tries to execute * command immediately. Corresponding command flag in command queue is cleared. */ static void sktr_chk_outstanding_cmds(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned long Addr = 0; unsigned char i = 0; if(tp->CMDqueue == 0) return; /* No command execution */ /* If SCB in use: no command */ if(tp->ScbInUse == 1) return; /* Check if adapter is opened, avoiding COMMAND_REJECT * interrupt by the adapter! */ if(tp->AdapterOpenFlag == 0) { if(tp->CMDqueue & OC_OPEN) { /* Execute OPEN command */ tp->CMDqueue ^= OC_OPEN; /* Copy the 18 bytes of the product ID */ while((AdapterName[i] != '\0') && (i < PROD_ID_SIZE)) { tp->ProductID[i] = AdapterName[i]; i++; } Addr = htonl(virt_to_bus(&tp->ocpl)); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = OPEN; } else /* No OPEN command queued, but adapter closed. Note: * We'll try to re-open the adapter in DriverPoll() */ return; /* No adapter command issued */ } else { /* Adapter is open; evaluate command queue: try to execute * outstanding commands (depending on priority!) CLOSE * command queued */ if(tp->CMDqueue & OC_CLOSE) { tp->CMDqueue ^= OC_CLOSE; tp->AdapterOpenFlag = 0; tp->scb.Parm[0] = 0; /* Parm[0], Parm[1] are ignored */ tp->scb.Parm[1] = 0; /* but should be set to zero! */ tp->scb.CMD = CLOSE; if(!tp->HaltInProgress) tp->CMDqueue |= OC_OPEN; /* re-open adapter */ else tp->CMDqueue = 0; /* no more commands */ } else { if(tp->CMDqueue & OC_RECEIVE) { tp->CMDqueue ^= OC_RECEIVE; Addr = htonl(virt_to_bus(tp->RplHead)); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = RECEIVE; } else { if(tp->CMDqueue & OC_TRANSMIT_HALT) { /* NOTE: TRANSMIT.HALT must be checked * before TRANSMIT. */ tp->CMDqueue ^= OC_TRANSMIT_HALT; tp->scb.CMD = TRANSMIT_HALT; /* Parm[0] and Parm[1] are ignored * but should be set to zero! */ tp->scb.Parm[0] = 0; tp->scb.Parm[1] = 0; } else { if(tp->CMDqueue & OC_TRANSMIT) { /* NOTE: TRANSMIT must be * checked after TRANSMIT.HALT */ if(tp->TransmitCommandActive) { if(!tp->TransmitHaltScheduled) { tp->TransmitHaltScheduled = 1; sktr_exec_cmd(dev, OC_TRANSMIT_HALT) ; } tp->TransmitCommandActive = 0; return; } tp->CMDqueue ^= OC_TRANSMIT; sktr_cancel_tx_queue(tp); Addr = htonl(virt_to_bus(tp->TplBusy)); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = TRANSMIT; tp->TransmitCommandActive = 1; } else { if(tp->CMDqueue & OC_MODIFY_OPEN_PARMS) { tp->CMDqueue ^= OC_MODIFY_OPEN_PARMS; tp->scb.Parm[0] = tp->ocpl.OPENOptions; /* new OPEN options*/ tp->scb.Parm[0] |= ENABLE_FULL_DUPLEX_SELECTION; tp->scb.Parm[1] = 0; /* is ignored but should be zero */ tp->scb.CMD = MODIFY_OPEN_PARMS; } else { if(tp->CMDqueue & OC_SET_FUNCT_ADDR) { tp->CMDqueue ^= OC_SET_FUNCT_ADDR; tp->scb.Parm[0] = LOWORD(tp->ocpl.FunctAddr); tp->scb.Parm[1] = HIWORD(tp->ocpl.FunctAddr); tp->scb.CMD = SET_FUNCT_ADDR; } else { if(tp->CMDqueue & OC_SET_GROUP_ADDR) { tp->CMDqueue ^= OC_SET_GROUP_ADDR; tp->scb.Parm[0] = LOWORD(tp->ocpl.GroupAddr); tp->scb.Parm[1] = HIWORD(tp->ocpl.GroupAddr); tp->scb.CMD = SET_GROUP_ADDR; } else { if(tp->CMDqueue & OC_READ_ERROR_LOG) { tp->CMDqueue ^= OC_READ_ERROR_LOG; Addr = htonl(virt_to_bus(&tp->errorlogtable)); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = READ_ERROR_LOG; } else { printk(KERN_WARNING "CheckForOutstandingCommand: unknown Command\n"); tp->CMDqueue = 0; return; } } } } } } } } } tp->ScbInUse = 1; /* Set semaphore: SCB in use. */ /* Execute SCB and generate IRQ when done. */ sktr_exec_sifcmd(dev, CMD_EXECUTE | CMD_SCB_REQUEST); return; } /* * IRQ conditions: signal loss on the ring, transmit or receive of beacon * frames (disabled if bit 1 of OPEN option is set); report error MAC * frame transmit (disabled if bit 2 of OPEN option is set); open or short * cirquit fault on the lobe is detected; remove MAC frame received; * error counter overflow (255); opened adapter is the only station in ring. * After some of the IRQs the adapter is closed! */ static void sktr_ring_status_irq(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; tp->CurrentRingStatus = SWAPB(tp->ssb.Parm[0]); /* First: fill up statistics */ if(tp->ssb.Parm[0] & SIGNAL_LOSS) { printk(KERN_INFO "%s: Signal Loss\n", dev->name); tp->MacStat.line_errors++; } /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & LOBE_WIRE_FAULT) { printk(KERN_INFO "%s: Lobe Wire Fault, Reopen Adapter\n", dev->name); tp->MacStat.line_errors++; } if(tp->ssb.Parm[0] & RING_RECOVERY) printk(KERN_INFO "%s: Ring Recovery\n", dev->name); /* Counter overflow: read error log */ if(tp->ssb.Parm[0] & COUNTER_OVERFLOW) { printk(KERN_INFO "%s: Counter Overflow\n", dev->name); sktr_exec_cmd(dev, OC_READ_ERROR_LOG); } /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & REMOVE_RECEIVED) printk(KERN_INFO "%s: Remove Received, Reopen Adapter\n", dev->name); /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & AUTO_REMOVAL_ERROR) printk(KERN_INFO "%s: Auto Removal Error, Reopen Adapter\n", dev->name); if(tp->ssb.Parm[0] & HARD_ERROR) printk(KERN_INFO "%s: Hard Error\n", dev->name); if(tp->ssb.Parm[0] & SOFT_ERROR) printk(KERN_INFO "%s: Soft Error\n", dev->name); if(tp->ssb.Parm[0] & TRANSMIT_BEACON) printk(KERN_INFO "%s: Transmit Beacon\n", dev->name); if(tp->ssb.Parm[0] & SINGLE_STATION) printk(KERN_INFO "%s: Single Station\n", dev->name); /* Check if adapter has been closed */ if(tp->ssb.Parm[0] & ADAPTER_CLOSED) { printk(KERN_INFO "%s: Adapter closed (Reopening)," "QueueSkb %d, CurrentRingStat %x\n", dev->name, tp->QueueSkb, tp->CurrentRingStatus); tp->AdapterOpenFlag = 0; sktr_open_adapter(dev); } return; } /* * Issued if adapter has encountered an unrecoverable hardware * or software error. */ static void sktr_chk_irq(struct net_device *dev) { int i; unsigned short AdapterCheckBlock[4]; unsigned short ioaddr = dev->base_addr; struct net_local *tp = (struct net_local *)dev->priv; tp->AdapterOpenFlag = 0; /* Adapter closed now */ /* Page number of adapter memory */ outw(0x0001, ioaddr + SIFADX); /* Address offset */ outw(CHECKADDR, ioaddr + SIFADR); /* Reading 8 byte adapter check block. */ for(i = 0; i < 4; i++) AdapterCheckBlock[i] = inw(ioaddr + SIFINC); if(sktr_debug > 3) { printk("%s: AdapterCheckBlock: ", dev->name); for (i = 0; i < 4; i++) printk("%04X", AdapterCheckBlock[i]); printk("\n"); } switch(AdapterCheckBlock[0]) { case DIO_PARITY: printk(KERN_INFO "%s: DIO parity error\n", dev->name); break; case DMA_READ_ABORT: printk(KERN_INFO "%s DMA read operation aborted:\n", dev->name); switch (AdapterCheckBlock[1]) { case 0: printk(KERN_INFO "Timeout\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 1: printk(KERN_INFO "Parity error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 2: printk(KERN_INFO "Bus error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; default: printk(KERN_INFO "Unknown error.\n"); break; } break; case DMA_WRITE_ABORT: printk(KERN_INFO "%s: DMA write operation aborted: \n", dev->name); switch (AdapterCheckBlock[1]) { case 0: printk(KERN_INFO "Timeout\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 1: printk(KERN_INFO "Parity error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 2: printk(KERN_INFO "Bus error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; default: printk(KERN_INFO "Unknown error.\n"); break; } break; case ILLEGAL_OP_CODE: printk("%s: Illegal operation code in firmware\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case PARITY_ERRORS: printk("%s: Adapter internal bus parity error\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case RAM_DATA_ERROR: printk("%s: RAM data error\n", dev->name); /* Parm[0-1]: MSW/LSW address of RAM location. */ break; case RAM_PARITY_ERROR: printk("%s: RAM parity error\n", dev->name); /* Parm[0-1]: MSW/LSW address of RAM location. */ break; case RING_UNDERRUN: printk("%s: Internal DMA underrun detected\n", dev->name); break; case INVALID_IRQ: printk("%s: Unrecognized interrupt detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case INVALID_ERROR_IRQ: printk("%s: Unrecognized error interrupt detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case INVALID_XOP: printk("%s: Unrecognized XOP request detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; default: printk("%s: Unknown status", dev->name); break; } if(sktr_chipset_init(dev) == 1) { /* Restart of firmware successful */ tp->AdapterOpenFlag = 1; } return; } /* * Internal adapter pointer to RAM data are copied from adapter into * host system. */ static void sktr_read_ptr(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned short adapterram; sktr_read_ram(dev, (unsigned char *)&tp->intptrs.BurnedInAddrPtr, ADAPTER_INT_PTRS, 16); sktr_read_ram(dev, (unsigned char *)&adapterram, (unsigned short)SWAPB(tp->intptrs.AdapterRAMPtr), 2); printk(KERN_INFO "%s: Adapter RAM size: %d K\n", dev->name, SWAPB(adapterram)); return; } /* * Reads a number of bytes from adapter to system memory. */ static void sktr_read_ram(struct net_device *dev, unsigned char *Data, unsigned short Address, int Length) { int i; unsigned short old_sifadx, old_sifadr, InWord; unsigned short ioaddr = dev->base_addr; /* Save the current values */ old_sifadx = inw(ioaddr + SIFADX); old_sifadr = inw(ioaddr + SIFADR); /* Page number of adapter memory */ outw(0x0001, ioaddr + SIFADX); /* Address offset in adapter RAM */ outw(Address, ioaddr + SIFADR); /* Copy len byte from adapter memory to system data area. */ i = 0; for(;;) { InWord = inw(ioaddr + SIFINC); *(Data + i) = HIBYTE(InWord); /* Write first byte */ if(++i == Length) /* All is done break */ break; *(Data + i) = LOBYTE(InWord); /* Write second byte */ if (++i == Length) /* All is done break */ break; } /* Restore original values */ outw(old_sifadx, ioaddr + SIFADX); outw(old_sifadr, ioaddr + SIFADR); return; } /* * Reads MAC address from adapter ROM. */ static void sktr_read_addr(struct net_device *dev, unsigned char *Address) { int i, In; unsigned short ioaddr = dev->base_addr; /* Address: 0000:0000 */ outw(0, ioaddr + SIFADX); outw(0, ioaddr + SIFADR); /* Read six byte MAC address data */ for(i = 0; i < 6; i++) { In = inw(ioaddr + SIFINC); *(Address + i) = (unsigned char)(In >> 8); } return; } /* * Cancel all queued packets in the transmission queue. */ static void sktr_cancel_tx_queue(struct net_local* tp) { TPL *tpl; struct sk_buff *skb; /* * NOTE: There must not be an active TRANSMIT command pending, when * this function is called. */ if(tp->TransmitCommandActive) return; for(;;) { tpl = tp->TplBusy; if(!tpl->BusyFlag) break; /* "Remove" TPL from busy list. */ tp->TplBusy = tpl->NextTPLPtr; sktr_write_tpl_status(tpl, 0); /* Clear VALID bit */ tpl->BusyFlag = 0; /* "free" TPL */ printk(KERN_INFO "Cancel tx (%08lXh).\n", (unsigned long)tpl); dev_kfree_skb(tpl->Skb); } for(;;) { skb = skb_dequeue(&tp->SendSkbQueue); if(skb == NULL) break; tp->QueueSkb++; dev_kfree_skb(skb); } return; } /* * This function is called whenever a transmit interrupt is generated by the * adapter. For a command complete interrupt, it is checked if we have to * issue a new transmit command or not. */ static void sktr_tx_status_irq(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned char HighByte, HighAc, LowAc; TPL *tpl; /* NOTE: At this point the SSB from TRANSMIT STATUS is no longer * available, because the CLEAR SSB command has already been issued. * * Process all complete transmissions. */ for(;;) { tpl = tp->TplBusy; if(!tpl->BusyFlag || (tpl->Status & (TX_VALID | TX_FRAME_COMPLETE)) != TX_FRAME_COMPLETE) { break; } /* "Remove" TPL from busy list. */ tp->TplBusy = tpl->NextTPLPtr ; if(sktr_debug > 3) sktr_dump(tpl->MData, SWAPB(tpl->FrameSize)); /* Check the transmit status field only for directed frames*/ if(DIRECTED_FRAME(tpl) && (tpl->Status & TX_ERROR) == 0) { HighByte = GET_TRANSMIT_STATUS_HIGH_BYTE(tpl->Status); HighAc = GET_FRAME_STATUS_HIGH_AC(HighByte); LowAc = GET_FRAME_STATUS_LOW_AC(HighByte); if((HighAc != LowAc) || (HighAc == AC_NOT_RECOGNIZED)) { printk(KERN_INFO "%s: (DA=%08lX not recognized)", dev->name, *(unsigned long *)&tpl->MData[2+2]); } else { if(sktr_debug > 3) printk("%s: Directed frame tx'd\n", dev->name); } } else { if(!DIRECTED_FRAME(tpl)) { if(sktr_debug > 3) printk("%s: Broadcast frame tx'd\n", dev->name); } } tp->MacStat.tx_packets++; dev_kfree_skb(tpl->Skb); tpl->BusyFlag = 0; /* "free" TPL */ } dev->tbusy = 0; if(tp->QueueSkb < MAX_TX_QUEUE) sktr_hardware_send_packet(dev, tp); return; } /* * Called if a frame receive interrupt is generated by the adapter. * Check if the frame is valid and indicate it to system. */ static void sktr_rcv_status_irq(struct net_device *dev) { struct net_local *tp = (struct net_local *)dev->priv; unsigned char *ReceiveDataPtr; struct sk_buff *skb; unsigned int Length, Length2; RPL *rpl; RPL *SaveHead; /* NOTE: At this point the SSB from RECEIVE STATUS is no longer * available, because the CLEAR SSB command has already been issued. * * Process all complete receives. */ for(;;) { rpl = tp->RplHead; if(rpl->Status & RX_VALID) break; /* RPL still in use by adapter */ /* Forward RPLHead pointer to next list. */ SaveHead = tp->RplHead; tp->RplHead = rpl->NextRPLPtr; /* Get the frame size (Byte swap for Intel). * Do this early (see workaround comment below) */ Length = (unsigned short)SWAPB(rpl->FrameSize); /* Check if the Frame_Start, Frame_End and * Frame_Complete bits are set. */ if((rpl->Status & VALID_SINGLE_BUFFER_FRAME) == VALID_SINGLE_BUFFER_FRAME) { ReceiveDataPtr = rpl->MData; /* Workaround for delayed write of FrameSize on ISA * (FrameSize is false but valid-bit is reset) * Frame size is set to zero when the RPL is freed. * Length2 is there because there have also been * cases where the FrameSize was partially written */ Length2 = (unsigned short)SWAPB(rpl->FrameSize); if(Length == 0 || Length != Length2) { tp->RplHead = SaveHead; break; /* Return to sktr_interrupt */ } /* Drop frames sent by myself */ if(sktr_chk_frame(dev, rpl->MData)) { if(rpl->Skb != NULL) dev_kfree_skb(rpl->Skb); } else { sktr_update_rcv_stats(tp,ReceiveDataPtr,Length); if(sktr_debug > 3) printk("%s: Packet Length %04X (%d)\n", dev->name, Length, Length); /* Indicate the received frame to system. * The source routing padding is no more * necessary with 2.2.x kernel. * See: OpenOptions in sktr_init_opb() */ skb = rpl->Skb; if(rpl->SkbStat == SKB_UNAVAILABLE) { /* Try again to allocate skb */ skb = dev_alloc_skb(tp->MaxPacketSize); if(skb == NULL) { /* Update Stats ?? */ } else { skb->dev = dev; skb_put(skb, tp->MaxPacketSize); rpl->SkbStat = SKB_DATA_COPY; ReceiveDataPtr = rpl->MData; } } if(rpl->SkbStat == SKB_DATA_COPY || rpl->SkbStat == SKB_DMA_DIRECT) { if(rpl->SkbStat == SKB_DATA_COPY) { memmove(skb->data, ReceiveDataPtr, Length); } /* Deliver frame to system */ rpl->Skb = NULL; skb_trim(skb,Length); skb->dev = dev; skb->protocol = tr_type_trans(skb,dev); netif_rx(skb); } } } else /* Invalid frame */ { if(rpl->Skb != NULL) dev_kfree_skb(rpl->Skb); /* Skip list. */ if(rpl->Status & RX_START_FRAME) /* Frame start bit is set -> overflow. */ tp->MacStat.rx_errors++; } /* Allocate new skb for rpl */ rpl->Skb = dev_alloc_skb(tp->MaxPacketSize); /* skb == NULL ? then use local buffer */ if(rpl->Skb == NULL) { rpl->SkbStat = SKB_UNAVAILABLE; rpl->FragList[0].DataAddr = htonl(virt_to_bus(tp->LocalRxBuffers[rpl->RPLIndex])); rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex]; } else /* skb != NULL */ { rpl->Skb->dev = dev; skb_put(rpl->Skb, tp->MaxPacketSize); /* Data unreachable for DMA ? then use local buffer */ if(tp->DeviceType == SK_ISA && virt_to_bus(rpl->Skb->data) + tp->MaxPacketSize > ISA_MAX_ADDRESS) { rpl->SkbStat = SKB_DATA_COPY; rpl->FragList[0].DataAddr = htonl(virt_to_bus(tp->LocalRxBuffers[rpl->RPLIndex])); rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex]; } else { /* DMA directly in skb->data */ rpl->SkbStat = SKB_DMA_DIRECT; rpl->FragList[0].DataAddr = htonl(virt_to_bus(rpl->Skb->data)); rpl->MData = rpl->Skb->data; } } rpl->FragList[0].DataCount = SWAPB(tp->MaxPacketSize); rpl->FrameSize = 0; /* Pass the last RPL back to the adapter */ tp->RplTail->FrameSize = 0; /* Reset the CSTAT field in the list. */ sktr_write_rpl_status(tp->RplTail, RX_VALID | RX_FRAME_IRQ); /* Current RPL becomes last one in list. */ tp->RplTail = tp->RplTail->NextRPLPtr; /* Inform adapter about RPL valid. */ sktr_exec_sifcmd(dev, CMD_RX_VALID); } return; } /* * This function should be used whenever the status of any RPL must be * modified by the driver, because the compiler may otherwise change the * order of instructions such that writing the RPL status may be executed * at an undesireable time. When this function is used, the status is * always written when the function is called. */ static void sktr_write_rpl_status(RPL *rpl, unsigned int Status) { rpl->Status = Status; return; } /* * The function updates the statistic counters in mac->MacStat. * It differtiates between directed and broadcast/multicast ( ==functional) * frames. */ static void sktr_update_rcv_stats(struct net_local *tp, unsigned char DataPtr[], unsigned int Length) { tp->MacStat.rx_packets++; /* Test functional bit */ if(DataPtr[2] & GROUP_BIT) tp->MacStat.multicast++; return; } /* * Check if it is a frame of myself. Compare source address with my current * address in reverse direction, and mask out the TR_RII. */ static unsigned char sktr_chk_frame(struct net_device *dev, unsigned char *Addr) { int i; for(i = 5; i > 0; i--) { if(Addr[8 + i] != dev->dev_addr[i]) return (0); } /* Mask out RIF bit. */ if((Addr[8] & ~TR_RII) != (unsigned char)(dev->dev_addr[0])) return (0); return (1); /* It is my frame. */ } /* * Dump Packet (data) */ static void sktr_dump(unsigned char *Data, int length) { int i, j; for (i = 0, j = 0; i < length / 8; i++, j += 8) { printk(KERN_DEBUG "%02x %02x %02x %02x %02x %02x %02x %02x\n", Data[j+0],Data[j+1],Data[j+2],Data[j+3], Data[j+4],Data[j+5],Data[j+6],Data[j+7]); } return; } #ifdef MODULE static struct net_device* dev_sktr[SKTR_MAX_ADAPTERS]; static int io[SKTR_MAX_ADAPTERS] = { 0, 0 }; static int irq[SKTR_MAX_ADAPTERS] = { 0, 0 }; static int mem[SKTR_MAX_ADAPTERS] = { 0, 0 }; MODULE_PARM(io, "1-" __MODULE_STRING(SKTR_MAX_ADAPTERS) "i"); MODULE_PARM(irq, "1-" __MODULE_STRING(SKTR_MAX_ADAPTERS) "i"); MODULE_PARM(mem, "1-" __MODULE_STRING(SKTR_MAX_ADAPTERS) "i"); int init_module(void) { int i; for(i = 0; i < SKTR_MAX_ADAPTERS; i++) { irq[i] = 0; mem[i] = 0; dev_sktr[i] = NULL; dev_sktr[i] = init_trdev(dev_sktr[i], 0); if(dev_sktr[i] == NULL) return (-ENOMEM); dev_sktr[i]->base_addr = io[i]; dev_sktr[i]->irq = irq[i]; dev_sktr[i]->mem_start = mem[i]; dev_sktr[i]->init = &sktr_probe; if(register_trdev(dev_sktr[i]) != 0) { kfree_s(dev_sktr[i], sizeof(struct net_device)); dev_sktr[i] = NULL; if(i == 0) { printk("sktr: register_trdev() returned non-zero.\n"); return (-EIO); } else return (0); } } return (0); } void cleanup_module(void) { int i; for(i = 0; i < SKTR_MAX_ADAPTERS; i++) { if(dev_sktr[i]) { unregister_trdev(dev_sktr[i]); release_region(dev_sktr[i]->base_addr, SKTR_IO_EXTENT); if(dev_sktr[i]->irq) free_irq(dev_sktr[i]->irq, dev_sktr[i]); if(dev_sktr[i]->dma > 0) free_dma(dev_sktr[i]->dma); if(dev_sktr[i]->priv) kfree_s(dev_sktr[i]->priv, sizeof(struct net_local)); kfree_s(dev_sktr[i], sizeof(struct net_device)); dev_sktr[i] = NULL; } } } #endif /* MODULE */