/* * WaveLAN ISA driver * * Jean II - HPLB '96 * * Reorganisation and extension of the driver. * Original copyright follows (also see the end of this file). * See wavelan.p.h for details. */ /* * AT&T GIS (nee NCR) WaveLAN card: * An Ethernet-like radio transceiver * controlled by an Intel 82586 coprocessor. */ #include "wavelan.p.h" /* Private header */ /************************* MISC SUBROUTINES **************************/ /* * Subroutines which won't fit in one of the following category * (WaveLAN modem or i82586) */ /*------------------------------------------------------------------*/ /* * Wrapper for disabling interrupts. */ static inline unsigned long wv_splhi(void) { unsigned long flags; save_flags(flags); cli(); return(flags); } /*------------------------------------------------------------------*/ /* * Wrapper for re-enabling interrupts. */ static inline void wv_splx(unsigned long flags) { restore_flags(flags); } /*------------------------------------------------------------------*/ /* * Translate irq number to PSA irq parameter */ static u_char wv_irq_to_psa(int irq) { if(irq < 0 || irq >= NELS(irqvals)) return 0; return irqvals[irq]; } /*------------------------------------------------------------------*/ /* * Translate PSA irq parameter to irq number */ __initfunc(static int wv_psa_to_irq(u_char irqval)) { int irq; for(irq = 0; irq < NELS(irqvals); irq++) if(irqvals[irq] == irqval) return irq; return -1; } #ifdef STRUCT_CHECK /*------------------------------------------------------------------*/ /* * Sanity routine to verify the sizes of the various WaveLAN interface * structures. */ static char * wv_struct_check(void) { #define SC(t,s,n) if (sizeof(t) != s) return(n); SC(psa_t, PSA_SIZE, "psa_t"); SC(mmw_t, MMW_SIZE, "mmw_t"); SC(mmr_t, MMR_SIZE, "mmr_t"); SC(ha_t, HA_SIZE, "ha_t"); #undef SC return((char *) NULL); } /* wv_struct_check */ #endif /* STRUCT_CHECK */ /********************* HOST ADAPTER SUBROUTINES *********************/ /* * Useful subroutines to manage the WaveLAN ISA interface * * One major difference with the PCMCIA hardware (except the port mapping) * is that we have to keep the state of the Host Control Register * because of the interrupt enable & bus size flags. */ /*------------------------------------------------------------------*/ /* * Read from card's Host Adaptor Status Register. */ static inline u_short hasr_read(u_long ioaddr) { return(inw(HASR(ioaddr))); } /* hasr_read */ /*------------------------------------------------------------------*/ /* * Write to card's Host Adapter Command Register. */ static inline void hacr_write(u_long ioaddr, u_short hacr) { outw(hacr, HACR(ioaddr)); } /* hacr_write */ /*------------------------------------------------------------------*/ /* * Write to card's Host Adapter Command Register. Include a delay for * those times when it is needed. */ static inline void hacr_write_slow(u_long ioaddr, u_short hacr) { hacr_write(ioaddr, hacr); /* delay might only be needed sometimes */ mdelay(1); } /* hacr_write_slow */ /*------------------------------------------------------------------*/ /* * Set the channel attention bit. */ static inline void set_chan_attn(u_long ioaddr, u_short hacr) { hacr_write(ioaddr, hacr | HACR_CA); } /* set_chan_attn */ /*------------------------------------------------------------------*/ /* * Reset, and then set host adaptor into default mode. */ static inline void wv_hacr_reset(u_long ioaddr) { hacr_write_slow(ioaddr, HACR_RESET); hacr_write(ioaddr, HACR_DEFAULT); } /* wv_hacr_reset */ /*------------------------------------------------------------------*/ /* * Set the I/O transfer over the ISA bus to 8-bit mode */ static inline void wv_16_off(u_long ioaddr, u_short hacr) { hacr &= ~HACR_16BITS; hacr_write(ioaddr, hacr); } /* wv_16_off */ /*------------------------------------------------------------------*/ /* * Set the I/O transfer over the ISA bus to 8-bit mode */ static inline void wv_16_on(u_long ioaddr, u_short hacr) { hacr |= HACR_16BITS; hacr_write(ioaddr, hacr); } /* wv_16_on */ /*------------------------------------------------------------------*/ /* * Disable interrupts on the WaveLAN hardware. */ static inline void wv_ints_off(device * dev) { net_local * lp = (net_local *)dev->priv; u_long ioaddr = dev->base_addr; u_long x; x = wv_splhi(); lp->hacr &= ~HACR_INTRON; hacr_write(ioaddr, lp->hacr); wv_splx(x); } /* wv_ints_off */ /*------------------------------------------------------------------*/ /* * Enable interrupts on the WaveLAN hardware. */ static inline void wv_ints_on(device * dev) { net_local * lp = (net_local *)dev->priv; u_long ioaddr = dev->base_addr; u_long x; x = wv_splhi(); lp->hacr |= HACR_INTRON; hacr_write(ioaddr, lp->hacr); wv_splx(x); } /* wv_ints_on */ /******************* MODEM MANAGEMENT SUBROUTINES *******************/ /* * Useful subroutines to manage the modem of the WaveLAN */ /*------------------------------------------------------------------*/ /* * Read the Parameter Storage Area from the WaveLAN card's memory */ /* * Read bytes from the PSA. */ static void psa_read(u_long ioaddr, u_short hacr, int o, /* offset in PSA */ u_char * b, /* buffer to fill */ int n) /* size to read */ { wv_16_off(ioaddr, hacr); while(n-- > 0) { outw(o, PIOR2(ioaddr)); o++; *b++ = inb(PIOP2(ioaddr)); } wv_16_on(ioaddr, hacr); } /* psa_read */ /*------------------------------------------------------------------*/ /* * Write the Parameter Storage Area to the WaveLAN card's memory. */ static void psa_write(u_long ioaddr, u_short hacr, int o, /* Offset in PSA */ u_char * b, /* Buffer in memory */ int n) /* Length of buffer */ { int count = 0; wv_16_off(ioaddr, hacr); while(n-- > 0) { outw(o, PIOR2(ioaddr)); o++; outb(*b, PIOP2(ioaddr)); b++; /* Wait for the memory to finish its write cycle */ count = 0; while((count++ < 100) && (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1); } wv_16_on(ioaddr, hacr); } /* psa_write */ #ifdef SET_PSA_CRC /*------------------------------------------------------------------*/ /* * Calculate the PSA CRC * Thanks to Valster, Nico for the code * NOTE: By specifying a length including the CRC position the * returned value should be zero. (i.e. a correct checksum in the PSA) * * The Windows drivers don't use the CRC, but the AP and the PtP tool * depend on it. */ static inline u_short psa_crc(u_char * psa, /* The PSA */ int size) /* Number of short for CRC */ { int byte_cnt; /* Loop on the PSA */ u_short crc_bytes = 0; /* Data in the PSA */ int bit_cnt; /* Loop on the bits of the short */ for(byte_cnt = 0; byte_cnt < size; byte_cnt++ ) { crc_bytes ^= psa[byte_cnt]; /* Its an xor */ for(bit_cnt = 1; bit_cnt < 9; bit_cnt++ ) { if(crc_bytes & 0x0001) crc_bytes = (crc_bytes >> 1) ^ 0xA001; else crc_bytes >>= 1 ; } } return crc_bytes; } /* psa_crc */ #endif /* SET_PSA_CRC */ /*------------------------------------------------------------------*/ /* * update the checksum field in the Wavelan's PSA */ static void update_psa_checksum(device * dev, u_long ioaddr, u_short hacr) { #ifdef SET_PSA_CRC psa_t psa; u_short crc; /* read the parameter storage area */ psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa)); /* update the checksum */ crc = psa_crc((unsigned char *) &psa, sizeof(psa) - sizeof(psa.psa_crc[0]) - sizeof(psa.psa_crc[1]) - sizeof(psa.psa_crc_status)); psa.psa_crc[0] = crc & 0xFF; psa.psa_crc[1] = (crc & 0xFF00) >> 8; /* Write it ! */ psa_write(ioaddr, hacr, (char *)&psa.psa_crc - (char *)&psa, (unsigned char *)&psa.psa_crc, 2); #ifdef DEBUG_IOCTL_INFO printk (KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n", dev->name, psa.psa_crc[0], psa.psa_crc[1]); /* Check again (luxury !) */ crc = psa_crc ((unsigned char *) &psa, sizeof(psa) - sizeof(psa.psa_crc_status)); if(crc != 0) printk(KERN_WARNING "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", dev->name); #endif /* DEBUG_IOCTL_INFO */ #endif /* SET_PSA_CRC */ } /* update_psa_checksum */ /*------------------------------------------------------------------*/ /* * Write 1 byte to the MMC. */ static inline void mmc_out(u_long ioaddr, u_short o, u_char d) { /* Wait for MMC to go idle */ while(inw(HASR(ioaddr)) & HASR_MMC_BUSY) ; outw((u_short) (((u_short) d << 8) | (o << 1) | 1), MMCR(ioaddr)); } /*------------------------------------------------------------------*/ /* * Routine to write bytes to the Modem Management Controller. * We start at the end because it is the way it should be! */ static inline void mmc_write(u_long ioaddr, u_char o, u_char * b, int n) { o += n; b += n; while(n-- > 0 ) mmc_out(ioaddr, --o, *(--b)); } /* mmc_write */ /*------------------------------------------------------------------*/ /* * Read a byte from the MMC. * Optimised version for 1 byte, avoid using memory. */ static inline u_char mmc_in(u_long ioaddr, u_short o) { while(inw(HASR(ioaddr)) & HASR_MMC_BUSY) ; outw(o << 1, MMCR(ioaddr)); while(inw(HASR(ioaddr)) & HASR_MMC_BUSY) ; return (u_char) (inw(MMCR(ioaddr)) >> 8); } /*------------------------------------------------------------------*/ /* * Routine to read bytes from the Modem Management Controller. * The implementation is complicated by a lack of address lines, * which prevents decoding of the low-order bit. * (code has just been moved in the above function) * We start at the end because it is the way it should be! */ static inline void mmc_read(u_long ioaddr, u_char o, u_char * b, int n) { o += n; b += n; while(n-- > 0) *(--b) = mmc_in(ioaddr, --o); } /* mmc_read */ /*------------------------------------------------------------------*/ /* * Get the type of encryption available. */ static inline int mmc_encr(u_long ioaddr) /* I/O port of the card */ { int temp; temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail)); if((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES)) return 0; else return temp; } /*------------------------------------------------------------------*/ /* * Wait for the frequency EEPROM to complete a command. * I hope this one will be optimally inlined. */ static inline void fee_wait(u_long ioaddr, /* I/O port of the card */ int delay, /* Base delay to wait for */ int number) /* Number of time to wait */ { int count = 0; /* Wait only a limited time */ while((count++ < number) && (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & MMR_FEE_STATUS_BUSY)) udelay(delay); } /*------------------------------------------------------------------*/ /* * Read bytes from the Frequency EEPROM (frequency select cards). */ static void fee_read(u_long ioaddr, /* I/O port of the card */ u_short o, /* destination offset */ u_short * b, /* data buffer */ int n) /* number of registers */ { b += n; /* Position at the end of the area */ /* Write the address */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); /* Loop on all buffer */ while(n-- > 0) { /* Write the read command */ mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ); /* Wait until EEPROM is ready (should be quick). */ fee_wait(ioaddr, 10, 100); /* Read the value. */ *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) | mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); } } #ifdef WIRELESS_EXT /* if the wireless extension exists in the kernel */ /*------------------------------------------------------------------*/ /* * Write bytes from the Frequency EEPROM (frequency select cards). * This is a bit complicated, because the frequency EEPROM has to * be unprotected and the write enabled. * Jean II */ static void fee_write(u_long ioaddr, /* I/O port of the card */ u_short o, /* destination offset */ u_short * b, /* data buffer */ int n) /* number of registers */ { b += n; /* Position at the end of the area. */ #ifdef EEPROM_IS_PROTECTED /* disabled */ #ifdef DOESNT_SEEM_TO_WORK /* disabled */ /* Ask to read the protected register */ mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD); fee_wait(ioaddr, 10, 100); /* Read the protected register. */ printk("Protected 2: %02X-%02X\n", mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)), mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); #endif /* DOESNT_SEEM_TO_WORK */ /* Enable protected register. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN); fee_wait(ioaddr, 10, 100); /* Unprotect area. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); #ifdef DOESNT_SEEM_TO_WORK /* disabled */ /* or use: */ mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR); #endif /* DOESNT_SEEM_TO_WORK */ fee_wait(ioaddr, 10, 100); #endif /* EEPROM_IS_PROTECTED */ /* Write enable. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN); fee_wait(ioaddr, 10, 100); /* Write the EEPROM address. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); /* Loop on all buffer */ while(n-- > 0) { /* Write the value. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8); mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF); /* Write the write command. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WRITE); /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */ mdelay(10); fee_wait(ioaddr, 10, 100); } /* Write disable. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS); fee_wait(ioaddr, 10, 100); #ifdef EEPROM_IS_PROTECTED /* disabled */ /* Reprotect EEPROM. */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); fee_wait(ioaddr, 10, 100); #endif /* EEPROM_IS_PROTECTED */ } #endif /* WIRELESS_EXT */ /************************ I82586 SUBROUTINES *************************/ /* * Useful subroutines to manage the Ethernet controller */ /*------------------------------------------------------------------*/ /* * Read bytes from the on-board RAM. * Why does inlining this function make it fail? */ static /*inline*/ void obram_read(u_long ioaddr, u_short o, u_char * b, int n) { outw(o, PIOR1(ioaddr)); insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); } /*------------------------------------------------------------------*/ /* * Write bytes to the on-board RAM. */ static inline void obram_write(u_long ioaddr, u_short o, u_char * b, int n) { outw(o, PIOR1(ioaddr)); outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); } /*------------------------------------------------------------------*/ /* * Acknowledge the reading of the status issued by the i82586. */ static void wv_ack(device * dev) { net_local * lp = (net_local *)dev->priv; u_long ioaddr = dev->base_addr; u_short scb_cs; int i; obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), (unsigned char *) &scb_cs, sizeof(scb_cs)); scb_cs &= SCB_ST_INT; if(scb_cs == 0) return; obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cs, sizeof(scb_cs)); set_chan_attn(ioaddr, lp->hacr); for(i = 1000; i > 0; i--) { obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *)&scb_cs, sizeof(scb_cs)); if(scb_cs == 0) break; udelay(10); } udelay(100); #ifdef DEBUG_CONFIG_ERROR if(i <= 0) printk(KERN_INFO "%s: wv_ack(): board not accepting command.\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * Set channel attention bit and busy wait until command has * completed, then acknowledge completion of the command. */ static inline int wv_synchronous_cmd(device * dev, const char * str) { net_local * lp = (net_local *)dev->priv; u_long ioaddr = dev->base_addr; u_short scb_cmd; ach_t cb; int i; scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO; obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cmd, sizeof(scb_cmd)); set_chan_attn(ioaddr, lp->hacr); for (i = 1000; i > 0; i--) { obram_read(ioaddr, OFFSET_CU, (unsigned char *)&cb, sizeof(cb)); if (cb.ac_status & AC_SFLD_C) break; udelay(10); } udelay(100); if(i <= 0 || !(cb.ac_status & AC_SFLD_OK)) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: %s failed; status = 0x%x\n", dev->name, str, cb.ac_status); #endif #ifdef DEBUG_I82586_SHOW wv_scb_show(ioaddr); #endif return -1; } /* Ack the status */ wv_ack(dev); return 0; } /*------------------------------------------------------------------*/ /* * Configuration commands completion interrupt. * Check if done, and if OK. */ static inline int wv_config_complete(device * dev, u_long ioaddr, net_local * lp) { unsigned short mcs_addr; unsigned short status; int ret; #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name); #endif mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t) + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t); /* Read the status of the last command (set mc list). */ obram_read(ioaddr, acoff(mcs_addr, ac_status), (unsigned char *)&status, sizeof(status)); /* If not completed -> exit */ if((status & AC_SFLD_C) == 0) ret = 0; /* Not ready to be scrapped */ else { #ifdef DEBUG_CONFIG_ERROR unsigned short cfg_addr; unsigned short ias_addr; /* Check mc_config command */ if((status & AC_SFLD_OK) != AC_SFLD_OK) printk(KERN_INFO "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n", dev->name, status); /* check ia-config command */ ias_addr = mcs_addr - sizeof(ac_ias_t); obram_read(ioaddr, acoff(ias_addr, ac_status), (unsigned char *)&status, sizeof(status)); if((status & AC_SFLD_OK) != AC_SFLD_OK) printk(KERN_INFO "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n", dev->name, status); /* Check config command. */ cfg_addr = ias_addr - sizeof(ac_cfg_t); obram_read(ioaddr, acoff(cfg_addr, ac_status), (unsigned char *)&status, sizeof(status)); if((status & AC_SFLD_OK) != AC_SFLD_OK) printk(KERN_INFO "%s: wv_config_complete(): configure failed; status = 0x%x\n", dev->name, status); #endif /* DEBUG_CONFIG_ERROR */ ret = 1; /* Ready to be scrapped */ } #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name, ret); #endif return ret; } /*------------------------------------------------------------------*/ /* * Command completion interrupt. * Reclaim as many freed tx buffers as we can. */ static int wv_complete(device * dev, u_long ioaddr, net_local * lp) { int nreaped = 0; #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name); #endif /* Loop on all the transmit buffers */ while(lp->tx_first_in_use != I82586NULL) { unsigned short tx_status; /* Read the first transmit buffer */ obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status), (unsigned char *)&tx_status, sizeof(tx_status)); /* If not completed -> exit */ if((tx_status & AC_SFLD_C) == 0) break; /* Hack for reconfiguration */ if(tx_status == 0xFFFF) if(!wv_config_complete(dev, ioaddr, lp)) break; /* Not completed */ /* We now remove this buffer */ nreaped++; --lp->tx_n_in_use; /* if (lp->tx_n_in_use > 0) printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]); */ /* Was it the last one? */ if(lp->tx_n_in_use <= 0) lp->tx_first_in_use = I82586NULL; else { /* Next one in the chain */ lp->tx_first_in_use += TXBLOCKZ; if(lp->tx_first_in_use >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -= NTXBLOCKS * TXBLOCKZ; } /* Hack for reconfiguration */ if(tx_status == 0xFFFF) continue; /* Now, check status of the finished command */ if(tx_status & AC_SFLD_OK) { int ncollisions; lp->stats.tx_packets++; ncollisions = tx_status & AC_SFLD_MAXCOL; lp->stats.collisions += ncollisions; #ifdef DEBUG_TX_INFO if(ncollisions > 0) printk(KERN_DEBUG "%s: wv_complete(): tx completed after %d collisions.\n", dev->name, ncollisions); #endif } else { lp->stats.tx_errors++; if(tx_status & AC_SFLD_S10) { lp->stats.tx_carrier_errors++; #ifdef DEBUG_TX_FAIL printk(KERN_DEBUG "%s: wv_complete(): tx error: no CS.\n", dev->name); #endif } if(tx_status & AC_SFLD_S9) { lp->stats.tx_carrier_errors++; #ifdef DEBUG_TX_FAIL printk(KERN_DEBUG "%s: wv_complete(): tx error: lost CTS.\n", dev->name); #endif } if(tx_status & AC_SFLD_S8) { lp->stats.tx_fifo_errors++; #ifdef DEBUG_TX_FAIL printk(KERN_DEBUG "%s: wv_complete(): tx error: slow DMA.\n", dev->name); #endif } if(tx_status & AC_SFLD_S6) { lp->stats.tx_heartbeat_errors++; #ifdef DEBUG_TX_FAIL printk(KERN_DEBUG "%s: wv_complete(): tx error: heart beat.\n", dev->name); #endif } if(tx_status & AC_SFLD_S5) { lp->stats.tx_aborted_errors++; #ifdef DEBUG_TX_FAIL printk(KERN_DEBUG "%s: wv_complete(): tx error: too many collisions.\n", dev->name); #endif } } #ifdef DEBUG_TX_INFO printk(KERN_DEBUG "%s: wv_complete(): tx completed, tx_status 0x%04x\n", dev->name, tx_status); #endif } #ifdef DEBUG_INTERRUPT_INFO if(nreaped > 1) printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n", dev->name, nreaped); #endif /* * Inform upper layers. */ if(lp->tx_n_in_use < NTXBLOCKS - 1) { dev->tbusy = 0; mark_bh(NET_BH); } #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name); #endif return nreaped; } /*------------------------------------------------------------------*/ /* * Reconfigure the i82586, or at least ask for it. * Because wv_82586_config uses a transmission buffer, we must do it * when we are sure that there is one left, so we do it now * or in wavelan_packet_xmit() (I can't find any better place, * wavelan_interrupt is not an option), so you may experience * delays sometimes. */ static inline void wv_82586_reconfig(device * dev) { net_local * lp = (net_local *)dev->priv; /* Check if we can do it now ! */ if(!(dev->start) || (test_and_set_bit(0, (void *)&dev->tbusy) != 0)) { lp->reconfig_82586 = 1; #ifdef DEBUG_CONFIG_INFO printk(KERN_DEBUG "%s: wv_82586_reconfig(): delayed (busy = %ld, start = %d)\n", dev->name, dev->tbusy, dev->start); #endif } else wv_82586_config(dev); } /********************* DEBUG & INFO SUBROUTINES *********************/ /* * This routine is used in the code to show information for debugging. * Most of the time, it dumps the contents of hardware structures. */ #ifdef DEBUG_PSA_SHOW /*------------------------------------------------------------------*/ /* * Print the formatted contents of the Parameter Storage Area. */ static void wv_psa_show(psa_t * p) { printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n"); printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n", p->psa_io_base_addr_1, p->psa_io_base_addr_2, p->psa_io_base_addr_3, p->psa_io_base_addr_4); printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n", p->psa_rem_boot_addr_1, p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3); printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params); printk("psa_int_req_no: %d\n", p->psa_int_req_no); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n", p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2], p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5], p->psa_unused0[6]); #endif /* DEBUG_SHOW_UNUSED */ printk(KERN_DEBUG "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1], p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3], p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]); printk(KERN_DEBUG "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", p->psa_local_mac_addr[0], p->psa_local_mac_addr[1], p->psa_local_mac_addr[2], p->psa_local_mac_addr[3], p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]); printk(KERN_DEBUG "psa_univ_local_sel: %d, ", p->psa_univ_local_sel); printk("psa_comp_number: %d, ", p->psa_comp_number); printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set); printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ", p->psa_feature_select); printk("psa_subband/decay_update_prm: %d\n", p->psa_subband); printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr); printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay); printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], p->psa_nwid[1]); printk("psa_nwid_select: %d\n", p->psa_nwid_select); printk(KERN_DEBUG "psa_encryption_select: %d, ", p->psa_encryption_select); printk("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", p->psa_encryption_key[0], p->psa_encryption_key[1], p->psa_encryption_key[2], p->psa_encryption_key[3], p->psa_encryption_key[4], p->psa_encryption_key[5], p->psa_encryption_key[6], p->psa_encryption_key[7]); printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width); printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ", p->psa_call_code[0]); printk("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2], p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5], p->psa_call_code[6], p->psa_call_code[7]); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n", p->psa_reserved[0], p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]); #endif /* DEBUG_SHOW_UNUSED */ printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status); printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]); printk("psa_crc_status: 0x%02x\n", p->psa_crc_status); } /* wv_psa_show */ #endif /* DEBUG_PSA_SHOW */ #ifdef DEBUG_MMC_SHOW /*------------------------------------------------------------------*/ /* * Print the formatted status of the Modem Management Controller. * This function needs to be completed. */ static void wv_mmc_show(device * dev) { u_long ioaddr = dev->base_addr; net_local * lp = (net_local *)dev->priv; mmr_t m; /* Basic check */ if(hasr_read(ioaddr) & HASR_NO_CLK) { printk(KERN_WARNING "%s: wv_mmc_show: modem not connected\n", dev->name); return; } /* Read the mmc */ mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); mmc_read(ioaddr, 0, (u_char *)&m, sizeof(m)); mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); #ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */ /* Don't forget to update statistics */ lp->wstats.discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; #endif /* WIRELESS_EXT */ printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n"); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2], m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5], m.mmr_unused0[6], m.mmr_unused0[7]); #endif /* DEBUG_SHOW_UNUSED */ printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n", m.mmr_des_avail, m.mmr_des_status); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n", m.mmr_unused1[0], m.mmr_unused1[1], m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]); #endif /* DEBUG_SHOW_UNUSED */ printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n", m.mmr_dce_status, (m.mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? "energy detected,":"", (m.mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ? "loop test indicated," : "", (m.mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? "transmitter on," : "", (m.mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ? "jabber timer expired," : ""); printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n", m.mmr_unused2[0], m.mmr_unused2[1]); #endif /* DEBUG_SHOW_UNUSED */ printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n", (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l, (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l); printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n", m.mmr_thr_pre_set & MMR_THR_PRE_SET, (m.mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : "below"); printk(KERN_DEBUG "signal_lvl: %d [%s], ", m.mmr_signal_lvl & MMR_SIGNAL_LVL, (m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : "no new msg"); printk("silence_lvl: %d [%s], ", m.mmr_silence_lvl & MMR_SILENCE_LVL, (m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : "no new update"); printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL, (m.mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : "Antenna 0"); #ifdef DEBUG_SHOW_UNUSED printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l); #endif /* DEBUG_SHOW_UNUSED */ } /* wv_mmc_show */ #endif /* DEBUG_MMC_SHOW */ #ifdef DEBUG_I82586_SHOW /*------------------------------------------------------------------*/ /* * Print the last block of the i82586 memory. */ static void wv_scb_show(u_long ioaddr) { scb_t scb; obram_read(ioaddr, OFFSET_SCB, (unsigned char *)&scb, sizeof(scb)); printk(KERN_DEBUG "##### WaveLAN system control block: #####\n"); printk(KERN_DEBUG "status: "); printk("stat 0x%x[%s%s%s%s] ", (scb.scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA | SCB_ST_RNR)) >> 12, (scb.scb_status & SCB_ST_CX) ? "command completion interrupt," : "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "", (scb.scb_status & SCB_ST_CNA) ? "command unit not active," : "", (scb.scb_status & SCB_ST_RNR) ? "receiving unit not ready," : ""); printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8, ((scb.scb_status & SCB_ST_CUS) == SCB_ST_CUS_IDLE) ? "idle" : "", ((scb.scb_status & SCB_ST_CUS) == SCB_ST_CUS_SUSP) ? "suspended" : "", ((scb.scb_status & SCB_ST_CUS) == SCB_ST_CUS_ACTV) ? "active" : ""); printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4, ((scb.scb_status & SCB_ST_RUS) == SCB_ST_RUS_IDLE) ? "idle" : "", ((scb.scb_status & SCB_ST_RUS) == SCB_ST_RUS_SUSP) ? "suspended" : "", ((scb.scb_status & SCB_ST_RUS) == SCB_ST_RUS_NRES) ? "no resources" : "", ((scb.scb_status & SCB_ST_RUS) == SCB_ST_RUS_RDY) ? "ready" : ""); printk(KERN_DEBUG "command: "); printk("ack 0x%x[%s%s%s%s] ", (scb.scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR | SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12, (scb.scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "", (scb.scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "", (scb.scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "", (scb.scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : ""); printk("cuc 0x%x[%s%s%s%s%s] ", (scb.scb_command & SCB_CMD_CUC) >> 8, ((scb.scb_command & SCB_CMD_CUC) == SCB_CMD_CUC_NOP) ? "nop" : "", ((scb.scb_command & SCB_CMD_CUC) == SCB_CMD_CUC_GO) ? "start cbl_offset" : "", ((scb.scb_command & SCB_CMD_CUC) == SCB_CMD_CUC_RES) ? "resume execution" : "", ((scb.scb_command & SCB_CMD_CUC) == SCB_CMD_CUC_SUS) ? "suspend execution" : "", ((scb.scb_command & SCB_CMD_CUC) == SCB_CMD_CUC_ABT) ? "abort execution" : ""); printk("ruc 0x%x[%s%s%s%s%s]\n", (scb.scb_command & SCB_CMD_RUC) >> 4, ((scb.scb_command & SCB_CMD_RUC) == SCB_CMD_RUC_NOP) ? "nop" : "", ((scb.scb_command & SCB_CMD_RUC) == SCB_CMD_RUC_GO) ? "start rfa_offset" : "", ((scb.scb_command & SCB_CMD_RUC) == SCB_CMD_RUC_RES) ? "resume reception" : "", ((scb.scb_command & SCB_CMD_RUC) == SCB_CMD_RUC_SUS) ? "suspend reception" : "", ((scb.scb_command & SCB_CMD_RUC) == SCB_CMD_RUC_ABT) ? "abort reception" : ""); printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset); printk("rfa_offset 0x%x\n", scb.scb_rfa_offset); printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs); printk("alnerrs %d ", scb.scb_alnerrs); printk("rscerrs %d ", scb.scb_rscerrs); printk("ovrnerrs %d\n", scb.scb_ovrnerrs); } /*------------------------------------------------------------------*/ /* * Print the formatted status of the i82586's receive unit. */ static void wv_ru_show(device * dev) { /* net_local *lp = (net_local *) dev->priv; */ printk(KERN_DEBUG "##### WaveLAN i82586 receiver unit status: #####\n"); printk(KERN_DEBUG "ru:"); /* * Not implemented yet */ printk("\n"); } /* wv_ru_show */ /*------------------------------------------------------------------*/ /* * Display info about one control block of the i82586 memory. */ static void wv_cu_show_one(device * dev, net_local * lp, int i, u_short p) { u_long ioaddr; ac_tx_t actx; ioaddr = dev->base_addr; printk("%d: 0x%x:", i, p); obram_read(ioaddr, p, (unsigned char *)&actx, sizeof(actx)); printk(" status=0x%x,", actx.tx_h.ac_status); printk(" command=0x%x,", actx.tx_h.ac_command); /* { tbd_t tbd; obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd)); printk(" tbd_status=0x%x,", tbd.tbd_status); } */ printk("|"); } /*------------------------------------------------------------------*/ /* * Print status of the command unit of the i82586. */ static void wv_cu_show(device * dev) { net_local * lp = (net_local *)dev->priv; unsigned int i; u_short p; printk(KERN_DEBUG "##### WaveLAN i82586 command unit status: #####\n"); printk(KERN_DEBUG); for(i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) { wv_cu_show_one(dev, lp, i, p); p += TXBLOCKZ; if(p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) p -= NTXBLOCKS * TXBLOCKZ; } printk("\n"); } #endif /* DEBUG_I82586_SHOW */ #ifdef DEBUG_DEVICE_SHOW /*------------------------------------------------------------------*/ /* * Print the formatted status of the WaveLAN PCMCIA device driver. */ static void wv_dev_show(device * dev) { printk(KERN_DEBUG "dev:"); printk(" start=%d,", dev->start); printk(" tbusy=%ld,", dev->tbusy); printk(" interrupt=%d,", dev->interrupt); printk(" trans_start=%ld,", dev->trans_start); printk(" flags=0x%x,", dev->flags); printk("\n"); } /* wv_dev_show */ /*------------------------------------------------------------------*/ /* * Print the formatted status of the WaveLAN PCMCIA device driver's * private information. */ static void wv_local_show(device * dev) { net_local *lp; lp = (net_local *)dev->priv; printk(KERN_DEBUG "local:"); printk(" tx_n_in_use=%d,", lp->tx_n_in_use); printk(" hacr=0x%x,", lp->hacr); printk(" rx_head=0x%x,", lp->rx_head); printk(" rx_last=0x%x,", lp->rx_last); printk(" tx_first_free=0x%x,", lp->tx_first_free); printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use); printk("\n"); } /* wv_local_show */ #endif /* DEBUG_DEVICE_SHOW */ #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) /*------------------------------------------------------------------*/ /* * Dump packet header (and content if necessary) on the screen */ static inline void wv_packet_info(u_char * p, /* Packet to dump */ int length, /* Length of the packet */ char * msg1, /* Name of the device */ char * msg2) /* Name of the function */ { int i; int maxi; printk(KERN_DEBUG "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n", msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length); printk(KERN_DEBUG "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n", msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13]); #ifdef DEBUG_PACKET_DUMP printk(KERN_DEBUG "data=\""); if((maxi = length) > DEBUG_PACKET_DUMP) maxi = DEBUG_PACKET_DUMP; for(i = 14; i < maxi; i++) if(p[i] >= ' ' && p[i] <= '~') printk(" %c", p[i]); else printk("%02X", p[i]); if(maxi < length) printk(".."); printk("\"\n"); printk(KERN_DEBUG "\n"); #endif /* DEBUG_PACKET_DUMP */ } #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */ /*------------------------------------------------------------------*/ /* * This is the information which is displayed by the driver at startup. * There are lots of flags for configuring it to your liking. */ static inline void wv_init_info(device * dev) { short ioaddr = dev->base_addr; net_local * lp = (net_local *)dev->priv; psa_t psa; int i; /* Read the parameter storage area */ psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); #ifdef DEBUG_PSA_SHOW wv_psa_show(&psa); #endif #ifdef DEBUG_MMC_SHOW wv_mmc_show(dev); #endif #ifdef DEBUG_I82586_SHOW wv_cu_show(dev); #endif #ifdef DEBUG_BASIC_SHOW /* Now, let's go for the basic stuff. */ printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr); for(i = 0; i < WAVELAN_ADDR_SIZE; i++) printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]); printk(", IRQ %d", dev->irq); /* Print current network ID. */ if(psa.psa_nwid_select) printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], psa.psa_nwid[1]); else printk(", nwid off"); /* If 2.00 card */ if(!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { unsigned short freq; /* Ask the EEPROM to read the frequency from the first area. */ fee_read(ioaddr, 0x00, &freq, 1); /* Print frequency */ printk(", 2.00, %ld", (freq >> 6) + 2400L); /* Hack! */ if(freq & 0x20) printk(".5"); } else { printk(", PC"); switch(psa.psa_comp_number) { case PSA_COMP_PC_AT_915: case PSA_COMP_PC_AT_2400: printk("-AT"); break; case PSA_COMP_PC_MC_915: case PSA_COMP_PC_MC_2400: printk("-MC"); break; case PSA_COMP_PCMCIA_915: printk("MCIA"); break; default: printk("?"); } printk(", "); switch (psa.psa_subband) { case PSA_SUBBAND_915: printk("915"); break; case PSA_SUBBAND_2425: printk("2425"); break; case PSA_SUBBAND_2460: printk("2460"); break; case PSA_SUBBAND_2484: printk("2484"); break; case PSA_SUBBAND_2430_5: printk("2430.5"); break; default: printk("?"); } } printk(" MHz\n"); #endif /* DEBUG_BASIC_SHOW */ #ifdef DEBUG_VERSION_SHOW /* Print version information */ printk(KERN_NOTICE "%s", version); #endif } /* wv_init_info */ /********************* IOCTL, STATS & RECONFIG *********************/ /* * We found here routines that are called by Linux on different * occasions after the configuration and not for transmitting data * These may be called when the user use ifconfig, /proc/net/dev * or wireless extensions */ /*------------------------------------------------------------------*/ /* * Get the current Ethernet statistics. This may be called with the * card open or closed. * Used when the user read /proc/net/dev */ static en_stats * wavelan_get_stats(device * dev) { #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name); #endif return(&((net_local *) dev->priv)->stats); } /*------------------------------------------------------------------*/ /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void wavelan_set_multicast_list(device * dev) { net_local * lp = (net_local *) dev->priv; #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", dev->name); #endif #ifdef DEBUG_IOCTL_INFO printk(KERN_DEBUG "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n", dev->name, dev->flags, dev->mc_count); #endif /* Are we asking for promiscuous mode, * or all multicast addresses (we don't have that!) * or too many multicast addresses for the hardware filter? */ if((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) { /* * Enable promiscuous mode: receive all packets. */ if(!lp->promiscuous) { lp->promiscuous = 1; lp->mc_count = 0; wv_82586_reconfig(dev); /* Tell the kernel that we are doing a really bad job. */ dev->flags |= IFF_PROMISC; } } else /* Are there multicast addresses to send? */ if(dev->mc_list != (struct dev_mc_list *) NULL) { /* * Disable promiscuous mode, but receive all packets * in multicast list */ #ifdef MULTICAST_AVOID if(lp->promiscuous || (dev->mc_count != lp->mc_count)) #endif { lp->promiscuous = 0; lp->mc_count = dev->mc_count; wv_82586_reconfig(dev); } } else { /* * Switch to normal mode: disable promiscuous mode and * clear the multicast list. */ if(lp->promiscuous || lp->mc_count == 0) { lp->promiscuous = 0; lp->mc_count = 0; wv_82586_reconfig(dev); } } #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * This function doesn't exist. * (Note : it was a nice way to test the reconfigure stuff...) */ #ifdef SET_MAC_ADDRESS static int wavelan_set_mac_address(device * dev, void * addr) { struct sockaddr * mac = addr; /* Copy the address. */ memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE); /* Reconfigure the beast. */ wv_82586_reconfig(dev); return 0; } #endif /* SET_MAC_ADDRESS */ #ifdef WIRELESS_EXT /* if wireless extensions exist in the kernel */ /*------------------------------------------------------------------*/ /* * Frequency setting (for hardware capable of it) * It's a bit complicated and you don't really want to look into it. * (called in wavelan_ioctl) */ static inline int wv_set_frequency(u_long ioaddr, /* I/O port of the card */ iw_freq * frequency) { const int BAND_NUM = 10; /* Number of bands */ long freq = 0L; /* offset to 2.4 GHz in .5 MHz */ #ifdef DEBUG_IOCTL_INFO int i; #endif /* Setting by frequency */ /* Theoretically, you may set any frequency between * the two limits with a 0.5 MHz precision. In practice, * I don't want you to have trouble with local regulations. */ if((frequency->e == 1) && (frequency->m >= (int) 2.412e8) && (frequency->m <= (int) 2.487e8)) { freq = ((frequency->m / 10000) - 24000L) / 5; } /* Setting by channel (same as wfreqsel) */ /* Warning: each channel is 22 MHz wide, so some of the channels * will interfere. */ if((frequency->e == 0) && (frequency->m >= 0) && (frequency->m < BAND_NUM)) { /* frequency in units of 250 kHz (as read in the offset register) */ short bands[] = { 0x30, 0x58, 0x64, 0x7A, 0x80, 0xA8, 0xD0, 0xF0, 0xF8, 0x150 }; /* Get frequency offset. */ freq = bands[frequency->m] >> 1; } /* Verify that the frequency is allowed. */ if(freq != 0L) { u_short table[10]; /* Authorized frequency table */ /* Read the frequency table. */ fee_read(ioaddr, 0x71, table, 10); #ifdef DEBUG_IOCTL_INFO printk(KERN_DEBUG "Frequency table: "); for(i = 0; i < 10; i++) { printk(" %04X", table[i]); } printk("\n"); #endif /* Look in the table to see whether the frequency is allowed. */ if(!(table[9 - ((freq - 24) / 16)] & (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */ } else return -EINVAL; /* if we get a usable frequency */ if(freq != 0L) { unsigned short area[16]; unsigned short dac[2]; unsigned short area_verify[16]; unsigned short dac_verify[2]; /* Corresponding gain (in the power adjust value table) * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8 * and WCIN062D.DOC, page 6.2.9. */ unsigned short power_limit[] = { 40, 80, 120, 160, 0 }; int power_band = 0; /* Selected band */ unsigned short power_adjust; /* Correct value */ /* Search for the gain. */ power_band = 0; while((freq > power_limit[power_band]) && (power_limit[++power_band] != 0)) ; /* Read the first area. */ fee_read(ioaddr, 0x00, area, 16); /* Read the DAC. */ fee_read(ioaddr, 0x60, dac, 2); /* Read the new power adjust value. */ fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust, 1); if(power_band & 0x1) power_adjust >>= 8; else power_adjust &= 0xFF; #ifdef DEBUG_IOCTL_INFO printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); for(i = 0; i < 16; i++) { printk(" %04X", area[i]); } printk("\n"); printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", dac[0], dac[1]); #endif /* Frequency offset (for info only) */ area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F); /* Receiver Principle main divider coefficient */ area[3] = (freq >> 1) + 2400L - 352L; area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); /* Transmitter Main divider coefficient */ area[13] = (freq >> 1) + 2400L; area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); /* Other parts of the area are flags, bit streams or unused. */ /* Set the value in the DAC. */ dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80); dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF); /* Write the first area. */ fee_write(ioaddr, 0x00, area, 16); /* Write the DAC. */ fee_write(ioaddr, 0x60, dac, 2); /* We now should verify here that the writing of the EEPROM went OK. */ /* Reread the first area. */ fee_read(ioaddr, 0x00, area_verify, 16); /* Reread the DAC. */ fee_read(ioaddr, 0x60, dac_verify, 2); /* Compare. */ if(memcmp(area, area_verify, 16 * 2) || memcmp(dac, dac_verify, 2 * 2)) { #ifdef DEBUG_IOCTL_ERROR printk(KERN_INFO "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n"); #endif return -EOPNOTSUPP; } /* We must download the frequency parameters to the * synthesizers (from the EEPROM - area 1) * Note: as the EEPROM is automatically decremented, we set the end * if the area... */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); /* Wait until the download is finished. */ fee_wait(ioaddr, 100, 100); /* We must now download the power adjust value (gain) to * the synthesizers (from the EEPROM - area 7 - DAC). */ mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61); mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); /* Wait for the download to finish. */ fee_wait(ioaddr, 100, 100); #ifdef DEBUG_IOCTL_INFO /* Verification of what we have done */ printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); for(i = 0; i < 16; i++) { printk(" %04X", area_verify[i]); } printk("\n"); printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", dac_verify[0], dac_verify[1]); #endif return 0; } else return -EINVAL; /* Bah, never get there... */ } /*------------------------------------------------------------------*/ /* * Give the list of available frequencies. */ static inline int wv_frequency_list(u_long ioaddr, /* I/O port of the card */ iw_freq * list, /* List of frequencies to fill */ int max) /* Maximum number of frequencies */ { u_short table[10]; /* Authorized frequency table */ long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */ int i; /* index in the table */ /* Read the frequency table. */ fee_read(ioaddr, 0x71 /* frequency table */, table, 10); /* Check all frequencies. */ i = 0; for(freq = 0; freq < 150; freq++) /* Look in the table if the frequency is allowed */ if(table[9 - (freq / 16)] & (1 << (freq % 16))) { /* put in the list */ list[i].m = (((freq + 24) * 5) + 24000L) * 10000; list[i++].e = 1; /* Check number. */ if(i >= max) return(i); } return(i); } #ifdef WIRELESS_SPY /*------------------------------------------------------------------*/ /* * Gather wireless spy statistics: for each packet, compare the source * address with our list, and if they match, get the statistics. * Sorry, but this function really needs the wireless extensions. */ static inline void wl_spy_gather(device * dev, u_char * mac, /* MAC address */ u_char * stats) /* Statistics to gather */ { net_local * lp = (net_local *) dev->priv; int i; /* Check all addresses. */ for(i = 0; i < lp->spy_number; i++) /* If match */ if(!memcmp(mac, lp->spy_address[i], WAVELAN_ADDR_SIZE)) { /* Update statistics */ lp->spy_stat[i].qual = stats[2] & MMR_SGNL_QUAL; lp->spy_stat[i].level = stats[0] & MMR_SIGNAL_LVL; lp->spy_stat[i].noise = stats[1] & MMR_SILENCE_LVL; lp->spy_stat[i].updated = 0x7; } } #endif /* WIRELESS_SPY */ #ifdef HISTOGRAM /*------------------------------------------------------------------*/ /* * This function calculates a histogram of the signal level. * As the noise is quite constant, it's like doing it on the SNR. * We have defined a set of interval (lp->his_range), and each time * the level goes in that interval, we increment the count (lp->his_sum). * With this histogram you may detect if one WaveLAN is really weak, * or you may also calculate the mean and standard deviation of the level. */ static inline void wl_his_gather(device * dev, u_char * stats) /* Statistics to gather */ { net_local * lp = (net_local *) dev->priv; u_char level = stats[0] & MMR_SIGNAL_LVL; int i; /* Find the correct interval. */ i = 0; while((i < (lp->his_number - 1)) && (level >= lp->his_range[i++])) ; /* Increment interval counter. */ (lp->his_sum[i])++; } #endif /* HISTOGRAM */ /*------------------------------------------------------------------*/ /* * Perform ioctl for configuration and information. * It is here that the wireless extensions are treated (iwconfig). */ static int wavelan_ioctl(struct device * dev, /* device on which the ioctl is applied */ struct ifreq * rq, /* data passed */ int cmd) /* ioctl number */ { u_long ioaddr = dev->base_addr; net_local * lp = (net_local *)dev->priv; /* lp is not unused */ struct iwreq * wrq = (struct iwreq *) rq; psa_t psa; mm_t m; unsigned long x; int ret = 0; #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: ->wavelan_ioctl(cmd=0x%X)\n", dev->name, cmd); #endif /* Disable interrupts and save flags. */ x = wv_splhi(); /* Look what is the request */ switch(cmd) { /* --------------- WIRELESS EXTENSIONS --------------- */ case SIOCGIWNAME: strcpy(wrq->u.name, "WaveLAN"); break; case SIOCSIWNWID: /* Set NWID in WaveLAN. */ if(wrq->u.nwid.on) { /* Set NWID in psa. */ psa.psa_nwid[0] = (wrq->u.nwid.nwid & 0xFF00) >> 8; psa.psa_nwid[1] = wrq->u.nwid.nwid & 0xFF; psa.psa_nwid_select = 0x01; psa_write(ioaddr, lp->hacr, (char *)psa.psa_nwid - (char *)&psa, (unsigned char *)psa.psa_nwid, 3); /* Set NWID in mmc. */ m.w.mmw_netw_id_l = wrq->u.nwid.nwid & 0xFF; m.w.mmw_netw_id_h = (wrq->u.nwid.nwid & 0xFF00) >> 8; mmc_write(ioaddr, (char *)&m.w.mmw_netw_id_l - (char *)&m, (unsigned char *)&m.w.mmw_netw_id_l, 2); mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00); } else { /* Disable NWID in the psa. */ psa.psa_nwid_select = 0x00; psa_write(ioaddr, lp->hacr, (char *)&psa.psa_nwid_select - (char *)&psa, (unsigned char *)&psa.psa_nwid_select, 1); /* Disable NWID in the mmc (no filtering). */ mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), MMW_LOOPT_SEL_DIS_NWID); } /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, lp->hacr); break; case SIOCGIWNWID: /* Read the NWID. */ psa_read(ioaddr, lp->hacr, (char *)psa.psa_nwid - (char *)&psa, (unsigned char *)psa.psa_nwid, 3); wrq->u.nwid.nwid = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1]; wrq->u.nwid.on = psa.psa_nwid_select; break; case SIOCSIWFREQ: /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ if(!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) ret = wv_set_frequency(ioaddr, &(wrq->u.freq)); else ret = -EOPNOTSUPP; break; case SIOCGIWFREQ: /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). * Does it work for everybody, especially old cards? */ if(!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { unsigned short freq; /* Ask the EEPROM to read the frequency from the first area. */ fee_read(ioaddr, 0x00, &freq, 1); wrq->u.freq.m = ((freq >> 5) * 5 + 24000L) * 10000; wrq->u.freq.e = 1; } else { int bands[] = { 915e6, 2.425e8, 2.46e8, 2.484e8, 2.4305e8 }; psa_read(ioaddr, lp->hacr, (char *)&psa.psa_subband - (char *)&psa, (unsigned char *)&psa.psa_subband, 1); if(psa.psa_subband <= 4) { wrq->u.freq.m = bands[psa.psa_subband]; wrq->u.freq.e = (psa.psa_subband != 0); } else ret = -EOPNOTSUPP; } break; case SIOCSIWSENS: /* Set the level threshold. */ if(!suser()) return -EPERM; psa.psa_thr_pre_set = wrq->u.sensitivity & 0x3F; psa_write(ioaddr, lp->hacr, (char *)&psa.psa_thr_pre_set - (char *)&psa, (unsigned char *) &psa.psa_thr_pre_set, 1); /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, lp->hacr); mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set), psa.psa_thr_pre_set); break; case SIOCGIWSENS: /* Read the level threshold. */ psa_read(ioaddr, lp->hacr, (char *)&psa.psa_thr_pre_set - (char *)&psa, (unsigned char *) &psa.psa_thr_pre_set, 1); wrq->u.sensitivity = psa.psa_thr_pre_set & 0x3F; break; case SIOCSIWENCODE: /* Set encryption key. */ if(!mmc_encr(ioaddr)) { ret = -EOPNOTSUPP; break; } if(wrq->u.encoding.method) { /* Enable encryption. */ int i; long long key = wrq->u.encoding.code; for(i = 7; i >= 0; i--) { psa.psa_encryption_key[i] = key & 0xFF; key >>= 8; } psa.psa_encryption_select = 1; psa_write(ioaddr, lp->hacr, (char *) &psa.psa_encryption_select - (char *) &psa, (unsigned char *) &psa.psa_encryption_select, 8+1); mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE); mmc_write(ioaddr, mmwoff(0, mmw_encr_key), (unsigned char *) &psa.psa_encryption_key, 8); } else { /* Disable encryption. */ psa.psa_encryption_select = 0; psa_write(ioaddr, lp->hacr, (char *) &psa.psa_encryption_select - (char *) &psa, (unsigned char *) &psa.psa_encryption_select, 1); mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0); } /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, lp->hacr); break; case SIOCGIWENCODE: /* Read the encryption key. */ if(!mmc_encr(ioaddr)) { ret = -EOPNOTSUPP; break; } /* Only super-user can see encryption key. */ if(!suser()) { ret = -EPERM; break; } else { int i; long long key = 0; psa_read(ioaddr, lp->hacr, (char *) &psa.psa_encryption_select - (char *) &psa, (unsigned char *) &psa.psa_encryption_select, 1+8); for(i = 0; i < 8; i++) { key <<= 8; key += psa.psa_encryption_key[i]; } wrq->u.encoding.code = key; /* encryption is enabled */ if(psa.psa_encryption_select) wrq->u.encoding.method = mmc_encr(ioaddr); else wrq->u.encoding.method = 0; } break; case SIOCGIWRANGE: /* basic checking */ if(wrq->u.data.pointer != (caddr_t) 0) { struct iw_range range; /* Verify the user buffer. */ ret = verify_area(VERIFY_WRITE, wrq->u.data.pointer, sizeof(struct iw_range)); if(ret) break; /* Set the length (useless: it's constant). */ wrq->u.data.length = sizeof(struct iw_range); /* Set information in the range struct. */ range.throughput = 1.6 * 1024 * 1024; /* don't argue on this ! */ range.min_nwid = 0x0000; range.max_nwid = 0xFFFF; /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ if(!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { range.num_channels = 10; range.num_frequency = wv_frequency_list(ioaddr, range.freq, IW_MAX_FREQUENCIES); } else range.num_channels = range.num_frequency = 0; range.sensitivity = 0x3F; range.max_qual.qual = MMR_SGNL_QUAL; range.max_qual.level = MMR_SIGNAL_LVL; range.max_qual.noise = MMR_SILENCE_LVL; /* Copy structure to the user buffer. */ copy_to_user(wrq->u.data.pointer, &range, sizeof(struct iw_range)); } break; case SIOCGIWPRIV: /* Basic checking */ if(wrq->u.data.pointer != (caddr_t) 0) { struct iw_priv_args priv[] = { /* cmd, set_args, get_args, name */ { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" }, { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" }, { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" }, { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" }, }; /* Verify the user buffer. */ ret = verify_area(VERIFY_WRITE, wrq->u.data.pointer, sizeof(priv)); if(ret) break; /* Set the number of available ioctls. */ wrq->u.data.length = 4; /* Copy structure to the user buffer. */ copy_to_user(wrq->u.data.pointer, (u_char *) priv, sizeof(priv)); } break; #ifdef WIRELESS_SPY case SIOCSIWSPY: /* Set the spy list */ /* Check the number of addresses. */ if(wrq->u.data.length > IW_MAX_SPY) { ret = -E2BIG; break; } lp->spy_number = wrq->u.data.length; /* Are there are addresses to copy? */ if(lp->spy_number > 0) { struct sockaddr address[IW_MAX_SPY]; int i; /* Verify where the user has set his addresses. */ ret = verify_area(VERIFY_READ, wrq->u.data.pointer, sizeof(struct sockaddr) * lp->spy_number); if(ret) break; /* Copy addresses to the driver. */ copy_from_user(address, wrq->u.data.pointer, sizeof(struct sockaddr) * lp->spy_number); /* Copy addresses to the lp structure. */ for(i = 0; i < lp->spy_number; i++) { memcpy(lp->spy_address[i], address[i].sa_data, WAVELAN_ADDR_SIZE); } /* Reset structure. */ memset(lp->spy_stat, 0x00, sizeof(iw_qual) * IW_MAX_SPY); #ifdef DEBUG_IOCTL_INFO printk(KERN_DEBUG "SetSpy: set of new addresses is: \n"); for(i = 0; i < wrq->u.data.length; i++) printk(KERN_DEBUG "%02X:%02X:%02X:%02X:%02X:%02X \n", lp->spy_address[i][0], lp->spy_address[i][1], lp->spy_address[i][2], lp->spy_address[i][3], lp->spy_address[i][4], lp->spy_address[i][5]); #endif /* DEBUG_IOCTL_INFO */ } break; case SIOCGIWSPY: /* Get the spy list and spy stats. */ /* Set the number of addresses */ wrq->u.data.length = lp->spy_number; /* Does the user want to have the addresses back? */ if((lp->spy_number > 0) && (wrq->u.data.pointer != (caddr_t) 0)) { struct sockaddr address[IW_MAX_SPY]; int i; /* Verify the user buffer. */ ret = verify_area(VERIFY_WRITE, wrq->u.data.pointer, (sizeof(iw_qual) + sizeof(struct sockaddr)) * IW_MAX_SPY); if(ret) break; /* Copy addresses from the lp structure. */ for(i = 0; i < lp->spy_number; i++) { memcpy(address[i].sa_data, lp->spy_address[i], WAVELAN_ADDR_SIZE); address[i].sa_family = AF_UNIX; } /* Copy addresses to the user buffer. */ copy_to_user(wrq->u.data.pointer, address, sizeof(struct sockaddr) * lp->spy_number); /* Copy stats to the user buffer (just after). */ copy_to_user(wrq->u.data.pointer + (sizeof(struct sockaddr) * lp->spy_number), lp->spy_stat, sizeof(iw_qual) * lp->spy_number); /* Reset updated flags. */ for(i = 0; i < lp->spy_number; i++) lp->spy_stat[i].updated = 0x0; } /* if(pointer != NULL) */ break; #endif /* WIRELESS_SPY */ /* ------------------ PRIVATE IOCTL ------------------ */ case SIOCSIPQTHR: if(!suser()) return -EPERM; psa.psa_quality_thr = *(wrq->u.name) & 0x0F; psa_write(ioaddr, lp->hacr, (char *)&psa.psa_quality_thr - (char *)&psa, (unsigned char *)&psa.psa_quality_thr, 1); /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, lp->hacr); mmc_out(ioaddr, mmwoff(0, mmw_quality_thr), psa.psa_quality_thr); break; case SIOCGIPQTHR: psa_read(ioaddr, lp->hacr, (char *)&psa.psa_quality_thr - (char *)&psa, (unsigned char *)&psa.psa_quality_thr, 1); *(wrq->u.name) = psa.psa_quality_thr & 0x0F; break; #ifdef HISTOGRAM case SIOCSIPHISTO: /* Verify that the user is root. */ if(!suser()) return -EPERM; /* Check the number of intervals. */ if(wrq->u.data.length > 16) { ret = -E2BIG; break; } lp->his_number = wrq->u.data.length; /* Are there addresses to copy? */ if(lp->his_number > 0) { /* Verify where the user has set his addresses. */ ret = verify_area(VERIFY_READ, wrq->u.data.pointer, sizeof(char) * lp->his_number); if(ret) break; /* Copy interval ranges to the driver */ copy_from_user(lp->his_range, wrq->u.data.pointer, sizeof(char) * lp->his_number); /* Reset structure. */ memset(lp->his_sum, 0x00, sizeof(long) * 16); } break; case SIOCGIPHISTO: /* Set the number of intervals. */ wrq->u.data.length = lp->his_number; /* Give back the distribution statistics */ if((lp->his_number > 0) && (wrq->u.data.pointer != (caddr_t) 0)) { /* Verify the user buffer. */ ret = verify_area(VERIFY_WRITE, wrq->u.data.pointer, sizeof(long) * 16); if(ret) break; /* Copy data to the user buffer. */ copy_to_user(wrq->u.data.pointer, lp->his_sum, sizeof(long) * lp->his_number); } /* if(pointer != NULL) */ break; #endif /* HISTOGRAM */ /* ------------------- OTHER IOCTL ------------------- */ default: ret = -EOPNOTSUPP; } /* Enable interrupts and restore flags. */ wv_splx(x); #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: <-wavelan_ioctl()\n", dev->name); #endif return ret; } /*------------------------------------------------------------------*/ /* * Get wireless statistics. * Called by /proc/net/wireless */ static iw_stats * wavelan_get_wireless_stats(device * dev) { u_long ioaddr = dev->base_addr; net_local * lp = (net_local *) dev->priv; mmr_t m; iw_stats * wstats; unsigned long x; #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", dev->name); #endif /* Disable interrupts and save flags. */ x = wv_splhi(); if(lp == (net_local *) NULL) return (iw_stats *) NULL; wstats = &lp->wstats; /* Get data from the mmc. */ mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1); mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, 2); mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, 4); mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); /* Copy data to wireless stuff. */ wstats->status = m.mmr_dce_status & MMR_DCE_STATUS; wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL; wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL; wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL; wstats->qual.updated = (((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5)); wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; wstats->discard.code = 0L; wstats->discard.misc = 0L; /* Enable interrupts and restore flags. */ wv_splx(x); #ifdef DEBUG_IOCTL_TRACE printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", dev->name); #endif return &lp->wstats; } #endif /* WIRELESS_EXT */ /************************* PACKET RECEPTION *************************/ /* * This part deals with receiving the packets. * The interrupt handler gets an interrupt when a packet has been * successfully received and calls this part. */ /*------------------------------------------------------------------*/ /* * This routine does the actual copying of data (including the Ethernet * header structure) from the WaveLAN card to an sk_buff chain that * will be passed up to the network interface layer. NOTE: we * currently don't handle trailer protocols (neither does the rest of * the network interface), so if that is needed, it will (at least in * part) be added here. The contents of the receive ring buffer are * copied to a message chain that is then passed to the kernel. * * Note: if any errors occur, the packet is "dropped on the floor". * (called by wv_packet_rcv()) */ static inline void wv_packet_read(device * dev, u_short buf_off, int sksize) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; struct sk_buff * skb; #ifdef DEBUG_RX_TRACE printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n", dev->name, buf_off, sksize); #endif /* Allocate buffer for the data */ if((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) { #ifdef DEBUG_RX_ERROR printk(KERN_INFO "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n", dev->name, sksize); #endif lp->stats.rx_dropped++; return; } skb->dev = dev; /* Copy the packet to the buffer. */ obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize); skb->protocol=eth_type_trans(skb, dev); #ifdef DEBUG_RX_INFO wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read"); #endif /* DEBUG_RX_INFO */ /* Statistics-gathering and associated stuff. * It seem a bit messy with all the define, but it's really simple... */ #if defined(WIRELESS_SPY) || defined(HISTOGRAM) if( #ifdef WIRELESS_SPY (lp->spy_number > 0) || #endif /* WIRELESS_SPY */ #ifdef HISTOGRAM (lp->his_number > 0) || #endif /* HISTOGRAM */ 0) { u_char stats[3]; /* signal level, noise level, signal quality */ /* Read signal level, silence level and signal quality bytes. */ /* Note: in the PCMCIA hardware, these are part of the frame. It seems * that for the ISA hardware, it's nowhere to be found in the frame, * so I'm obliged to do this (it has a side effect on /proc/net/wireless). * Any ideas? */ mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3); mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); #ifdef DEBUG_RX_INFO printk(KERN_DEBUG "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n", dev->name, stats[0] & 0x3F, stats[1] & 0x3F, stats[2] & 0x0F); #endif /* Spying stuff */ #ifdef WIRELESS_SPY wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE, stats); #endif /* WIRELESS_SPY */ #ifdef HISTOGRAM wl_his_gather(dev, stats); #endif /* HISTOGRAM */ } #endif /* defined(WIRELESS_SPY) || defined(HISTOGRAM) */ /* * Hand the packet to the network module. */ netif_rx(skb); /* Keep statistics up to date */ lp->stats.rx_packets++; lp->stats.rx_bytes += skb->len; #ifdef DEBUG_RX_TRACE printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * Transfer as many packets as we can * from the device RAM. * Called by the interrupt handler. */ static inline void wv_receive(device * dev) { u_long ioaddr = dev->base_addr; net_local * lp = (net_local *)dev->priv; fd_t fd; rbd_t rbd; int nreaped = 0; #ifdef DEBUG_RX_TRACE printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name); #endif /* Loop on each received packet. */ for(;;) { obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd, sizeof(fd)); /* Note about the status : * It start up to be 0 (the value we set). Then, when the RU * grab the buffer to prepare for reception, it sets the * FD_STATUS_B flag. When the RU has finished receiving the * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate * completion and set the other flags to indicate the eventual * errors. FD_STATUS_OK indicates that the reception was OK. */ /* If the current frame is not complete, we have reached the end. */ if((fd.fd_status & FD_STATUS_C) != FD_STATUS_C) break; /* This is how we exit the loop. */ nreaped++; /* Check whether frame was correctly received. */ if((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) { /* Does the frame contain a pointer to the data? Let's check. */ if(fd.fd_rbd_offset != I82586NULL) { /* Read the receive buffer descriptor */ obram_read(ioaddr, fd.fd_rbd_offset, (unsigned char *) &rbd, sizeof(rbd)); #ifdef DEBUG_RX_ERROR if((rbd.rbd_status & RBD_STATUS_EOF) != RBD_STATUS_EOF) printk(KERN_INFO "%s: wv_receive(): missing EOF flag.\n", dev->name); if((rbd.rbd_status & RBD_STATUS_F) != RBD_STATUS_F) printk(KERN_INFO "%s: wv_receive(): missing F flag.\n", dev->name); #endif /* DEBUG_RX_ERROR */ /* Read the packet and transmit to Linux */ wv_packet_read(dev, rbd.rbd_bufl, rbd.rbd_status & RBD_STATUS_ACNT); } #ifdef DEBUG_RX_ERROR else /* if frame has no data */ printk(KERN_INFO "%s: wv_receive(): frame has no data.\n", dev->name); #endif } else /* If reception was no successful */ { lp->stats.rx_errors++; #ifdef DEBUG_RX_INFO printk(KERN_DEBUG "%s: wv_receive(): frame not received successfully (%X).\n", dev->name, fd.fd_status); #endif #ifdef DEBUG_RX_ERROR if((fd.fd_status & FD_STATUS_S6) != 0) printk(KERN_INFO "%s: wv_receive(): no EOF flag.\n", dev->name); #endif if((fd.fd_status & FD_STATUS_S7) != 0) { lp->stats.rx_length_errors++; #ifdef DEBUG_RX_FAIL printk(KERN_DEBUG "%s: wv_receive(): frame too short.\n", dev->name); #endif } if((fd.fd_status & FD_STATUS_S8) != 0) { lp->stats.rx_over_errors++; #ifdef DEBUG_RX_FAIL printk(KERN_DEBUG "%s: wv_receive(): rx DMA overrun.\n", dev->name); #endif } if((fd.fd_status & FD_STATUS_S9) != 0) { lp->stats.rx_fifo_errors++; #ifdef DEBUG_RX_FAIL printk(KERN_DEBUG "%s: wv_receive(): ran out of resources.\n", dev->name); #endif } if((fd.fd_status & FD_STATUS_S10) != 0) { lp->stats.rx_frame_errors++; #ifdef DEBUG_RX_FAIL printk(KERN_DEBUG "%s: wv_receive(): alignment error.\n", dev->name); #endif } if((fd.fd_status & FD_STATUS_S11) != 0) { lp->stats.rx_crc_errors++; #ifdef DEBUG_RX_FAIL printk(KERN_DEBUG "%s: wv_receive(): CRC error.\n", dev->name); #endif } } fd.fd_status = 0; obram_write(ioaddr, fdoff(lp->rx_head, fd_status), (unsigned char *) &fd.fd_status, sizeof(fd.fd_status)); fd.fd_command = FD_COMMAND_EL; obram_write(ioaddr, fdoff(lp->rx_head, fd_command), (unsigned char *) &fd.fd_command, sizeof(fd.fd_command)); fd.fd_command = 0; obram_write(ioaddr, fdoff(lp->rx_last, fd_command), (unsigned char *) &fd.fd_command, sizeof(fd.fd_command)); lp->rx_last = lp->rx_head; lp->rx_head = fd.fd_link_offset; } /* for(;;) -> loop on all frames */ #ifdef DEBUG_RX_INFO if(nreaped > 1) printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n", dev->name, nreaped); #endif #ifdef DEBUG_RX_TRACE printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name); #endif } /*********************** PACKET TRANSMISSION ***********************/ /* * This part deals with sending packets through the WaveLAN. * */ /*------------------------------------------------------------------*/ /* * This routine fills in the appropriate registers and memory * locations on the WaveLAN card and starts the card off on * the transmit. * * The principle: * Each block contains a transmit command, a NOP command, * a transmit block descriptor and a buffer. * The CU read the transmit block which point to the tbd, * read the tbd and the content of the buffer. * When it has finish with it, it goes to the next command * which in our case is the NOP. The NOP points on itself, * so the CU stop here. * When we add the next block, we modify the previous nop * to make it point on the new tx command. * Simple, isn't it ? * * (called in wavelan_packet_xmit()) */ static inline void wv_packet_write(device * dev, void * buf, short length) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; unsigned short txblock; unsigned short txpred; unsigned short tx_addr; unsigned short nop_addr; unsigned short tbd_addr; unsigned short buf_addr; ac_tx_t tx; ac_nop_t nop; tbd_t tbd; int clen = length; unsigned long x; #ifdef DEBUG_TX_TRACE printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, length); #endif /* Do we need some padding? */ if(clen < ETH_ZLEN) clen = ETH_ZLEN; x = wv_splhi(); /* Calculate addresses of next block and previous block. */ txblock = lp->tx_first_free; txpred = txblock - TXBLOCKZ; if(txpred < OFFSET_CU) txpred += NTXBLOCKS * TXBLOCKZ; lp->tx_first_free += TXBLOCKZ; if(lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; /* if (lp->tx_n_in_use > 0) printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]); */ lp->tx_n_in_use++; /* Calculate addresses of the different parts of the block. */ tx_addr = txblock; nop_addr = tx_addr + sizeof(tx); tbd_addr = nop_addr + sizeof(nop); buf_addr = tbd_addr + sizeof(tbd); /* * Transmit command */ tx.tx_h.ac_status = 0; obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), (unsigned char *) &tx.tx_h.ac_status, sizeof(tx.tx_h.ac_status)); /* * NOP command */ nop.nop_h.ac_status = 0; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), (unsigned char *) &nop.nop_h.ac_status, sizeof(nop.nop_h.ac_status)); nop.nop_h.ac_link = nop_addr; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), (unsigned char *) &nop.nop_h.ac_link, sizeof(nop.nop_h.ac_link)); /* * Transmit buffer descriptor */ tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen); tbd.tbd_next_bd_offset = I82586NULL; tbd.tbd_bufl = buf_addr; tbd.tbd_bufh = 0; obram_write(ioaddr, tbd_addr, (unsigned char *)&tbd, sizeof(tbd)); /* * Data */ obram_write(ioaddr, buf_addr, buf, length); /* * Overwrite the predecessor NOP link * so that it points to this txblock. */ nop_addr = txpred + sizeof(tx); nop.nop_h.ac_status = 0; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), (unsigned char *)&nop.nop_h.ac_status, sizeof(nop.nop_h.ac_status)); nop.nop_h.ac_link = txblock; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), (unsigned char *) &nop.nop_h.ac_link, sizeof(nop.nop_h.ac_link)); /* Keep stats up to date. */ lp->stats.tx_bytes += length; /* If watchdog not already active, activate it... */ if(lp->watchdog.prev == (timer_list *) NULL) { /* Set timer to expire in WATCHDOG_JIFFIES. */ lp->watchdog.expires = jiffies + WATCHDOG_JIFFIES; add_timer(&lp->watchdog); } if(lp->tx_first_in_use == I82586NULL) lp->tx_first_in_use = txblock; if(lp->tx_n_in_use < NTXBLOCKS - 1) dev->tbusy = 0; wv_splx(x); #ifdef DEBUG_TX_INFO wv_packet_info((u_char *) buf, length, dev->name, "wv_packet_write"); #endif /* DEBUG_TX_INFO */ #ifdef DEBUG_TX_TRACE printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * This routine is called when we want to send a packet (NET3 callback) * In this routine, we check if the harware is ready to accept * the packet. We also prevent reentrance. Then we call the function * to send the packet. */ static int wavelan_packet_xmit(struct sk_buff * skb, device * dev) { net_local * lp = (net_local *)dev->priv; #ifdef DEBUG_TX_TRACE printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name, (unsigned) skb); #endif /* This flag indicate that the hardware can't perform a transmission. * Theoretically, NET3 checks it before sending a packet to the driver, * but in fact it never does that and pools continuously. * As the watchdog will abort overly long transmissions, we are quite safe. */ if(dev->tbusy) return 1; /* * Block a timer-based transmit from overlapping. * In other words, prevent reentering this routine. */ if(test_and_set_bit(0, (void *)&dev->tbusy) != 0) #ifdef DEBUG_TX_ERROR printk(KERN_INFO "%s: Transmitter access conflict.\n", dev->name); #endif else { /* If somebody has asked to reconfigure the controller, * we can do it now. */ if(lp->reconfig_82586) { wv_82586_config(dev); if(dev->tbusy) return 1; } #ifdef DEBUG_TX_ERROR if(skb->next) printk(KERN_INFO "skb has next\n"); #endif wv_packet_write(dev, skb->data, skb->len); } dev_kfree_skb(skb); #ifdef DEBUG_TX_TRACE printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name); #endif return 0; } /*********************** HARDWARE CONFIGURATION ***********************/ /* * This part does the real job of starting and configuring the hardware. */ /*--------------------------------------------------------------------*/ /* * Routine to initialize the Modem Management Controller. * (called by wv_hw_reset()) */ static inline int wv_mmc_init(device * dev) { u_long ioaddr = dev->base_addr; net_local * lp = (net_local *)dev->priv; psa_t psa; mmw_t m; int configured; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name); #endif /* Read the parameter storage area. */ psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); #ifdef USE_PSA_CONFIG configured = psa.psa_conf_status & 1; #else configured = 0; #endif /* Is the PSA is not configured */ if(!configured) { /* User will be able to configure NWID later (with iwconfig). */ psa.psa_nwid[0] = 0; psa.psa_nwid[1] = 0; /* no NWID checking since NWID is not set */ psa.psa_nwid_select = 0; /* Disable encryption */ psa.psa_encryption_select = 0; /* Set to standard values: * 0x04 for AT, * 0x01 for MCA, * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document) */ if (psa.psa_comp_number & 1) psa.psa_thr_pre_set = 0x01; else psa.psa_thr_pre_set = 0x04; psa.psa_quality_thr = 0x03; /* It is configured */ psa.psa_conf_status |= 1; #ifdef USE_PSA_CONFIG /* Write the psa. */ psa_write(ioaddr, lp->hacr, (char *)psa.psa_nwid - (char *)&psa, (unsigned char *)psa.psa_nwid, 4); psa_write(ioaddr, lp->hacr, (char *)&psa.psa_thr_pre_set - (char *)&psa, (unsigned char *)&psa.psa_thr_pre_set, 1); psa_write(ioaddr, lp->hacr, (char *)&psa.psa_quality_thr - (char *)&psa, (unsigned char *)&psa.psa_quality_thr, 1); psa_write(ioaddr, lp->hacr, (char *)&psa.psa_conf_status - (char *)&psa, (unsigned char *)&psa.psa_conf_status, 1); /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, lp->hacr); #endif } /* Zero the mmc structure. */ memset(&m, 0x00, sizeof(m)); /* Copy PSA info to the mmc. */ m.mmw_netw_id_l = psa.psa_nwid[1]; m.mmw_netw_id_h = psa.psa_nwid[0]; if(psa.psa_nwid_select & 1) m.mmw_loopt_sel = 0x00; else m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID; memcpy(&m.mmw_encr_key, &psa.psa_encryption_key, sizeof(m.mmw_encr_key)); if(psa.psa_encryption_select) m.mmw_encr_enable = MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE; else m.mmw_encr_enable = 0; m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F; m.mmw_quality_thr = psa.psa_quality_thr & 0x0F; /* * Set default modem control parameters. * See NCR document 407-0024326 Rev. A. */ m.mmw_jabber_enable = 0x01; m.mmw_freeze = 0; m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN; m.mmw_ifs = 0x20; m.mmw_mod_delay = 0x04; m.mmw_jam_time = 0x38; m.mmw_des_io_invert = 0; m.mmw_decay_prm = 0; m.mmw_decay_updat_prm = 0; /* Write all info to MMC. */ mmc_write(ioaddr, 0, (u_char *)&m, sizeof(m)); /* The following code starts the modem of the 2.00 frequency * selectable cards at power on. It's not strictly needed for the * following boots. * The original patch was by Joe Finney for the PCMCIA driver, but * I've cleaned it up a bit and added documentation. * Thanks to Loeke Brederveld from Lucent for the info. */ /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable) * Does it work for everybody, especially old cards? */ /* Note: WFREQSEL verifies that it is able to read a sensible * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID * is 0xA (Xilinx version) or 0xB (Ariadne version). * My test is more crude but does work. */ if(!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { /* We must download the frequency parameters to the * synthesizers (from the EEPROM - area 1) * Note: as the EEPROM is automatically decremented, we set the end * if the area... */ m.mmw_fee_addr = 0x0F; m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; mmc_write(ioaddr, (char *)&m.mmw_fee_ctrl - (char *)&m, (unsigned char *)&m.mmw_fee_ctrl, 2); /* Wait until the download is finished. */ fee_wait(ioaddr, 100, 100); #ifdef DEBUG_CONFIG_INFO /* The frequency was in the last word downloaded. */ mmc_read(ioaddr, (char *)&m.mmw_fee_data_l - (char *)&m, (unsigned char *)&m.mmw_fee_data_l, 2); /* Print some info for the user. */ printk(KERN_DEBUG "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n", dev->name, ((m.mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) * 5 / 2 + 24000L); #endif /* We must now download the power adjust value (gain) to * the synthesizers (from the EEPROM - area 7 - DAC). */ m.mmw_fee_addr = 0x61; m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; mmc_write(ioaddr, (char *)&m.mmw_fee_ctrl - (char *)&m, (unsigned char *)&m.mmw_fee_ctrl, 2); /* Wait until the download is finished. */ } /* if 2.00 card */ #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Construct the fd and rbd structures. * Start the receive unit. * (called by wv_hw_reset()) */ static inline int wv_ru_start(device * dev) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; u_short scb_cs; fd_t fd; rbd_t rbd; u_short rx; u_short rx_next; int i; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name); #endif obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), (unsigned char *)&scb_cs, sizeof(scb_cs)); if((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY) return 0; lp->rx_head = OFFSET_RU; for(i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) { rx_next = (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ; fd.fd_status = 0; fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0; fd.fd_link_offset = rx_next; fd.fd_rbd_offset = rx + sizeof(fd); obram_write(ioaddr, rx, (unsigned char *)&fd, sizeof(fd)); rbd.rbd_status = 0; rbd.rbd_next_rbd_offset = I82586NULL; rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd); rbd.rbd_bufh = 0; rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ); obram_write(ioaddr, rx + sizeof(fd), (unsigned char *) &rbd, sizeof(rbd)); lp->rx_last = rx; } obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset), (unsigned char *) &lp->rx_head, sizeof(lp->rx_head)); scb_cs = SCB_CMD_RUC_GO; obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cs, sizeof(scb_cs)); set_chan_attn(ioaddr, lp->hacr); for(i = 1000; i > 0; i--) { obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cs, sizeof(scb_cs)); if (scb_cs == 0) break; udelay(10); } if(i <= 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wavelan_ru_start(): board not accepting command.\n", dev->name); #endif return -1; } #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Initialise the transmit blocks. * Start the command unit executing the NOP * self-loop of the first transmit block. * * Here we create the list of send buffers used to transmit packets * between the PC and the command unit. For each buffer, we create a * buffer descriptor (pointing on the buffer), a transmit command * (pointing to the buffer descriptor) and a NOP command. * The transmit command is linked to the NOP, and the NOP to itself. * When we will have finished executing the transmit command, we will * then loop on the NOP. By releasing the NOP link to a new command, * we may send another buffer. * * (called by wv_hw_reset()) */ static inline int wv_cu_start(device * dev) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; int i; u_short txblock; u_short first_nop; u_short scb_cs; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name); #endif lp->tx_first_free = OFFSET_CU; lp->tx_first_in_use = I82586NULL; for(i = 0, txblock = OFFSET_CU; i < NTXBLOCKS; i++, txblock += TXBLOCKZ) { ac_tx_t tx; ac_nop_t nop; tbd_t tbd; unsigned short tx_addr; unsigned short nop_addr; unsigned short tbd_addr; unsigned short buf_addr; tx_addr = txblock; nop_addr = tx_addr + sizeof(tx); tbd_addr = nop_addr + sizeof(nop); buf_addr = tbd_addr + sizeof(tbd); tx.tx_h.ac_status = 0; tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I; tx.tx_h.ac_link = nop_addr; tx.tx_tbd_offset = tbd_addr; obram_write(ioaddr, tx_addr, (unsigned char *) &tx, sizeof(tx)); nop.nop_h.ac_status = 0; nop.nop_h.ac_command = acmd_nop; nop.nop_h.ac_link = nop_addr; obram_write(ioaddr, nop_addr, (unsigned char *) &nop, sizeof(nop)); tbd.tbd_status = TBD_STATUS_EOF; tbd.tbd_next_bd_offset = I82586NULL; tbd.tbd_bufl = buf_addr; tbd.tbd_bufh = 0; obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd)); } first_nop = OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t); obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset), (unsigned char *) &first_nop, sizeof(first_nop)); scb_cs = SCB_CMD_CUC_GO; obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cs, sizeof(scb_cs)); set_chan_attn(ioaddr, lp->hacr); for(i = 1000; i > 0; i--) { obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &scb_cs, sizeof(scb_cs)); if (scb_cs == 0) break; udelay(10); } if(i <= 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wavelan_cu_start(): board not accepting command.\n", dev->name); #endif return -1; } lp->tx_n_in_use = 0; dev->tbusy = 0; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * This routine does a standard configuration of the WaveLAN * controller (i82586). * * It initialises the scp, iscp and scb structure * The first two are just pointers to the next. * The last one is used for basic configuration and for basic * communication (interrupt status). * * (called by wv_hw_reset()) */ static inline int wv_82586_start(device * dev) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; scp_t scp; /* system configuration pointer */ iscp_t iscp; /* intermediate scp */ scb_t scb; /* system control block */ ach_t cb; /* Action command header */ u_char zeroes[512]; int i; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name); #endif /* * Clear the onboard RAM. */ memset(&zeroes[0], 0x00, sizeof(zeroes)); for(i = 0; i < I82586_MEMZ; i += sizeof(zeroes)) obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes)); /* * Construct the command unit structures: * scp, iscp, scb, cb. */ memset(&scp, 0x00, sizeof(scp)); scp.scp_sysbus = SCP_SY_16BBUS; scp.scp_iscpl = OFFSET_ISCP; obram_write(ioaddr, OFFSET_SCP, (unsigned char *)&scp, sizeof(scp)); memset(&iscp, 0x00, sizeof(iscp)); iscp.iscp_busy = 1; iscp.iscp_offset = OFFSET_SCB; obram_write(ioaddr, OFFSET_ISCP, (unsigned char *)&iscp, sizeof(iscp)); /* Our first command is to reset the i82586. */ memset(&scb, 0x00, sizeof(scb)); scb.scb_command = SCB_CMD_RESET; scb.scb_cbl_offset = OFFSET_CU; scb.scb_rfa_offset = OFFSET_RU; obram_write(ioaddr, OFFSET_SCB, (unsigned char *)&scb, sizeof(scb)); set_chan_attn(ioaddr, lp->hacr); /* Wait for command to finish. */ for(i = 1000; i > 0; i--) { obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp, sizeof(iscp)); if(iscp.iscp_busy == (unsigned short) 0) break; udelay(10); } if(i <= 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wv_82586_start(): iscp_busy timeout.\n", dev->name); #endif return -1; } /* Check command completion. */ for(i = 15; i > 0; i--) { obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb, sizeof(scb)); if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA)) break; udelay(10); } if (i <= 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n", dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status); #endif return -1; } wv_ack(dev); /* Set the action command header. */ memset(&cb, 0x00, sizeof(cb)); cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose); cb.ac_link = OFFSET_CU; obram_write(ioaddr, OFFSET_CU, (unsigned char *)&cb, sizeof(cb)); if(wv_synchronous_cmd(dev, "diag()") == -1) return -1; obram_read(ioaddr, OFFSET_CU, (unsigned char *)&cb, sizeof(cb)); if(cb.ac_status & AC_SFLD_FAIL) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wv_82586_start(): i82586 Self Test failed.\n", dev->name); #endif return -1; } #ifdef DEBUG_I82586_SHOW wv_scb_show(ioaddr); #endif #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * This routine does a standard configuration of the WaveLAN * controller (i82586). * * This routine is a violent hack. We use the first free transmit block * to make our configuration. In the buffer area, we create the three * configuration commands (linked). We make the previous NOP point to * the beginning of the buffer instead of the tx command. After, we go * as usual to the NOP command. * Note that only the last command (mc_set) will generate an interrupt. * * (called by wv_hw_reset(), wv_82586_reconfig()) */ static void wv_82586_config(device * dev) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; unsigned short txblock; unsigned short txpred; unsigned short tx_addr; unsigned short nop_addr; unsigned short tbd_addr; unsigned short cfg_addr; unsigned short ias_addr; unsigned short mcs_addr; ac_tx_t tx; ac_nop_t nop; ac_cfg_t cfg; /* Configure action */ ac_ias_t ias; /* IA-setup action */ ac_mcs_t mcs; /* Multicast setup */ struct dev_mc_list * dmi; unsigned long x; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name); #endif x = wv_splhi(); /* Calculate addresses of next block and previous block. */ txblock = lp->tx_first_free; txpred = txblock - TXBLOCKZ; if(txpred < OFFSET_CU) txpred += NTXBLOCKS * TXBLOCKZ; lp->tx_first_free += TXBLOCKZ; if(lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; lp->tx_n_in_use++; /* Calculate addresses of the different parts of the block. */ tx_addr = txblock; nop_addr = tx_addr + sizeof(tx); tbd_addr = nop_addr + sizeof(nop); cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */ ias_addr = cfg_addr + sizeof(cfg); mcs_addr = ias_addr + sizeof(ias); /* * Transmit command */ tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */ obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), (unsigned char *) &tx.tx_h.ac_status, sizeof(tx.tx_h.ac_status)); /* * NOP command */ nop.nop_h.ac_status = 0; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), (unsigned char *) &nop.nop_h.ac_status, sizeof(nop.nop_h.ac_status)); nop.nop_h.ac_link = nop_addr; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), (unsigned char *) &nop.nop_h.ac_link, sizeof(nop.nop_h.ac_link)); /* Create a configure action. */ memset(&cfg, 0x00, sizeof(cfg)); /* * For Linux we invert AC_CFG_ALOC() so as to conform * to the way that net packets reach us from above. * (See also ac_tx_t.) * * Updated from Wavelan Manual WCIN085B */ cfg.cfg_byte_cnt = AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t)); cfg.cfg_fifolim = AC_CFG_FIFOLIM(4); cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0); cfg.cfg_byte9 = AC_CFG_ELPBCK(0) | AC_CFG_ILPBCK(0) | AC_CFG_PRELEN(AC_CFG_PLEN_2) | AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE); cfg.cfg_byte10 = AC_CFG_BOFMET(1) | AC_CFG_ACR(6) | AC_CFG_LINPRIO(0); cfg.cfg_ifs = 0x20; cfg.cfg_slotl = 0x0C; cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0); cfg.cfg_byte14 = AC_CFG_FLGPAD(0) | AC_CFG_BTSTF(0) | AC_CFG_CRC16(0) | AC_CFG_NCRC(0) | AC_CFG_TNCRS(1) | AC_CFG_MANCH(0) | AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous); cfg.cfg_byte15 = AC_CFG_ICDS(0) | AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0); /* cfg.cfg_min_frm_len = AC_CFG_MNFRM(64); */ cfg.cfg_min_frm_len = AC_CFG_MNFRM(8); cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure); cfg.cfg_h.ac_link = ias_addr; obram_write(ioaddr, cfg_addr, (unsigned char *)&cfg, sizeof(cfg)); /* Set up the MAC address */ memset(&ias, 0x00, sizeof(ias)); ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup); ias.ias_h.ac_link = mcs_addr; memcpy(&ias.ias_addr[0], (unsigned char *)&dev->dev_addr[0], sizeof(ias.ias_addr)); obram_write(ioaddr, ias_addr, (unsigned char *)&ias, sizeof(ias)); /* Initialize adapter's Ethernet multicast addresses */ memset(&mcs, 0x00, sizeof(mcs)); mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup); mcs.mcs_h.ac_link = nop_addr; mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count; obram_write(ioaddr, mcs_addr, (unsigned char *)&mcs, sizeof(mcs)); /* Any address to set? */ if(lp->mc_count) { for(dmi=dev->mc_list; dmi; dmi=dmi->next) outsw(PIOP1(ioaddr), (u_short *) dmi->dmi_addr, WAVELAN_ADDR_SIZE >> 1); #ifdef DEBUG_CONFIG_INFO printk(KERN_DEBUG "%s: wv_82586_config(): set %d multicast addresses:\n", dev->name, lp->mc_count); for(dmi=dev->mc_list; dmi; dmi=dmi->next) printk(KERN_DEBUG " %02x:%02x:%02x:%02x:%02x:%02x\n", dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2], dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5] ); #endif } /* * Overwrite the predecessor NOP link * so that it points to the configure action. */ nop_addr = txpred + sizeof(tx); nop.nop_h.ac_status = 0; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), (unsigned char *)&nop.nop_h.ac_status, sizeof(nop.nop_h.ac_status)); nop.nop_h.ac_link = cfg_addr; obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), (unsigned char *) &nop.nop_h.ac_link, sizeof(nop.nop_h.ac_link)); /* If watchdog not already active, activate it... */ if(lp->watchdog.prev == (timer_list *) NULL) { /* set timer to expire in WATCHDOG_JIFFIES */ lp->watchdog.expires = jiffies + WATCHDOG_JIFFIES; add_timer(&lp->watchdog); } lp->reconfig_82586 = 0; if(lp->tx_first_in_use == I82586NULL) lp->tx_first_in_use = txblock; if(lp->tx_n_in_use < NTXBLOCKS - 1) dev->tbusy = 0; wv_splx(x); #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * This routine, called by wavelan_close(), gracefully stops the * WaveLAN controller (i82586). */ static inline void wv_82586_stop(device * dev) { net_local * lp = (net_local *) dev->priv; u_long ioaddr = dev->base_addr; u_short scb_cmd; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name); #endif /* Suspend both command unit and receive unit. */ scb_cmd = (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC & SCB_CMD_RUC_SUS); obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *)&scb_cmd, sizeof(scb_cmd)); set_chan_attn(ioaddr, lp->hacr); /* No more interrupts */ wv_ints_off(dev); #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * Totally reset the WaveLAN and restart it. * Performs the following actions: * 1. A power reset (reset DMA) * 2. Initialize the radio modem (using wv_mmc_init) * 3. Reset & Configure LAN controller (using wv_82586_start) * 4. Start the LAN controller's command unit * 5. Start the LAN controller's receive unit */ static int wv_hw_reset(device * dev) { net_local * lp = (net_local *)dev->priv; u_long ioaddr = dev->base_addr; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name, (unsigned int)dev); #endif /* If watchdog was activated, kill it! */ if(lp->watchdog.prev != (timer_list *) NULL) del_timer(&lp->watchdog); /* Increase the number of resets done. */ lp->nresets++; wv_hacr_reset(ioaddr); lp->hacr = HACR_DEFAULT; if((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0)) return -1; /* Enable the card to send interrupts. */ wv_ints_on(dev); /* Start card functions */ if(wv_cu_start(dev) < 0) return -1; /* Setup the controller and parameters */ wv_82586_config(dev); /* Finish configuration with the receive unit */ if(wv_ru_start(dev) < 0) return -1; #ifdef DEBUG_CONFIG_TRACE printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Check if there is a WaveLAN at the specific base address. * As a side effect, this reads the MAC address. * (called in wavelan_probe() and init_module()) */ static int wv_check_ioaddr(u_long ioaddr, u_char * mac) { int i; /* Loop counter */ /* Check if the base address if available. */ if(check_region(ioaddr, sizeof(ha_t))) return EADDRINUSE; /* ioaddr already used */ /* Reset host interface */ wv_hacr_reset(ioaddr); /* Read the MAC address from the parameter storage area. */ psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr), mac, 6); /* * Check the first three octets of the address for the manufacturer's code. * Note: if this can't find your WaveLAN card, you've got a * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on * how to configure your card. */ for(i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++) if((mac[0] == MAC_ADDRESSES[i][0]) && (mac[1] == MAC_ADDRESSES[i][1]) && (mac[2] == MAC_ADDRESSES[i][2])) return 0; #ifdef DEBUG_CONFIG_INFO printk(KERN_WARNING "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n", ioaddr, mac[0], mac[1], mac[2]); #endif return ENODEV; } /************************ INTERRUPT HANDLING ************************/ /* * This function is the interrupt handler for the WaveLAN card. This * routine will be called whenever: */ static void wavelan_interrupt(int irq, void * dev_id, struct pt_regs * regs) { device * dev; u_long ioaddr; net_local * lp; u_short hasr; u_short status; u_short ack_cmd; dev = dev_id; #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name); #endif lp = (net_local *) dev->priv; ioaddr = dev->base_addr; /* Prevent reentrance. What should we do here? */ #ifdef DEBUG_INTERRUPT_ERROR if(dev->interrupt) printk(KERN_INFO "%s: wavelan_interrupt(): Re-entering the interrupt handler.\n", dev->name); #endif dev->interrupt = 1; if((hasr = hasr_read(ioaddr)) & HASR_MMC_INTR) { u_char dce_status; /* * Interrupt from the modem management controller. * This will clear it -- ignored for now. */ mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status, sizeof(dce_status)); #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n", dev->name, dce_status); #endif } if((hasr & HASR_82586_INTR) == 0) { dev->interrupt = 0; #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_interrupt(): interrupt not coming from i82586\n", dev->name); #endif return; } /* Read interrupt data. */ obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), (unsigned char *) &status, sizeof(status)); /* * Acknowledge the interrupt(s). */ ack_cmd = status & SCB_ST_INT; obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), (unsigned char *) &ack_cmd, sizeof(ack_cmd)); set_chan_attn(ioaddr, lp->hacr); #ifdef DEBUG_INTERRUPT_INFO printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n", dev->name, status); #endif /* Command completed. */ if((status & SCB_ST_CX) == SCB_ST_CX) { #ifdef DEBUG_INTERRUPT_INFO printk(KERN_DEBUG "%s: wavelan_interrupt(): command completed.\n", dev->name); #endif wv_complete(dev, ioaddr, lp); /* If watchdog was activated, kill it ! */ if(lp->watchdog.prev != (timer_list *) NULL) del_timer(&lp->watchdog); if(lp->tx_n_in_use > 0) { /* set timer to expire in WATCHDOG_JIFFIES */ lp->watchdog.expires = jiffies + WATCHDOG_JIFFIES; add_timer(&lp->watchdog); } } /* Frame received. */ if((status & SCB_ST_FR) == SCB_ST_FR) { #ifdef DEBUG_INTERRUPT_INFO printk(KERN_DEBUG "%s: wavelan_interrupt(): received packet.\n", dev->name); #endif wv_receive(dev); } /* Check the state of the command unit. */ if(((status & SCB_ST_CNA) == SCB_ST_CNA) || (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) && dev->start)) { #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_interrupt(): CU inactive -- restarting\n", dev->name); #endif wv_hw_reset(dev); } /* Check the state of the command unit. */ if(((status & SCB_ST_RNR) == SCB_ST_RNR) || (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) && dev->start)) { #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_interrupt(): RU not ready -- restarting\n", dev->name); #endif wv_hw_reset(dev); } dev->interrupt = 0; #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name); #endif } /*------------------------------------------------------------------*/ /* * Watchdog: when we start a transmission, we set a timer in the * kernel. If the transmission completes, this timer is disabled. If * the timer expires, we try to unlock the hardware. * * Note: this watchdog doesn't work on the same principle as the * watchdog in the previous version of the ISA driver. I made it this * way because the overhead of add_timer() and del_timer() is nothing * and because it avoids calling the watchdog, saving some CPU. */ static void wavelan_watchdog(u_long a) { device * dev; net_local * lp; u_long ioaddr; unsigned long x; unsigned int nreaped; dev = (device *) a; ioaddr = dev->base_addr; lp = (net_local *) dev->priv; #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name); #endif #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n", dev->name); #endif x = wv_splhi(); dev = (device *) a; ioaddr = dev->base_addr; lp = (net_local *) dev->priv; if(lp->tx_n_in_use <= 0) { wv_splx(x); return; } nreaped = wv_complete(dev, ioaddr, lp); #ifdef DEBUG_INTERRUPT_INFO printk(KERN_DEBUG "%s: wavelan_watchdog(): %d reaped, %d remain.\n", dev->name, nreaped, lp->tx_n_in_use); #endif #ifdef DEBUG_PSA_SHOW { psa_t psa; psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa)); wv_psa_show(&psa); } #endif #ifdef DEBUG_MMC_SHOW wv_mmc_show(dev); #endif #ifdef DEBUG_I82586_SHOW wv_cu_show(dev); #endif /* If no buffer has been freed */ if(nreaped == 0) { #ifdef DEBUG_INTERRUPT_ERROR printk(KERN_INFO "%s: wavelan_watchdog(): cleanup failed, trying reset\n", dev->name); #endif wv_hw_reset(dev); } else /* Reset watchdog for next transmission. */ if(lp->tx_n_in_use > 0) { /* set timer to expire in WATCHDOG_JIFFIES */ lp->watchdog.expires = jiffies + WATCHDOG_JIFFIES; add_timer(&lp->watchdog); } wv_splx(x); #ifdef DEBUG_INTERRUPT_TRACE printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name); #endif } /********************* CONFIGURATION CALLBACKS *********************/ /* * Here are the functions called by the Linux networking code (NET3) * for initialization, configuration and deinstallations of the * WaveLAN ISA hardware. */ /*------------------------------------------------------------------*/ /* * Configure and start up the WaveLAN PCMCIA adaptor. * Called by NET3 when it "opens" the device. */ static int wavelan_open(device * dev) { u_long x; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name, (unsigned int) dev); #endif /* Check irq */ if(dev->irq == 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n", dev->name); #endif return -ENXIO; } if(request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n", dev->name); #endif return -EAGAIN; } x = wv_splhi(); if(wv_hw_reset(dev) != -1) { dev->interrupt = 0; dev->start = 1; } else { free_irq(dev->irq, dev); #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wavelan_open(): impossible to start the card\n", dev->name); #endif return -EAGAIN; } wv_splx(x); MOD_INC_USE_COUNT; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Shut down the WaveLAN ISA card. * Called by NET3 when it "closes" the device. */ static int wavelan_close(device * dev) { net_local * lp = (net_local *)dev->priv; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name, (unsigned int) dev); #endif /* Don't do the job twice. */ if(dev->start == 0) return 0; dev->tbusy = 1; dev->start = 0; /* If watchdog was activated, kill it! */ if(lp->watchdog.prev != (timer_list *) NULL) del_timer(&lp->watchdog); /* * Flush the Tx and disable Rx. */ wv_82586_stop(dev); free_irq(dev->irq, dev); MOD_DEC_USE_COUNT; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Probe an I/O address, and if the WaveLAN is there configure the * device structure * (called by wavelan_probe() and via init_module()). */ __initfunc(static int wavelan_config(device * dev)) { u_long ioaddr = dev->base_addr; u_char irq_mask; int irq; net_local * lp; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%x)\n", dev->name, (unsigned int)dev, ioaddr); #endif /* Check IRQ argument on command line. */ if(dev->irq != 0) { irq_mask = wv_irq_to_psa(dev->irq); if(irq_mask == 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_WARNING "%s: wavelan_config(): invalid IRQ %d ignored.\n", dev->name, dev->irq); #endif dev->irq = 0; } else { #ifdef DEBUG_CONFIG_INFO printk(KERN_DEBUG "%s: wavelan_config(): changing IRQ to %d\n", dev->name, dev->irq); #endif psa_write(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no), &irq_mask, 1); /* update the Wavelan checksum */ update_psa_checksum(dev, ioaddr, HACR_DEFAULT); wv_hacr_reset(ioaddr); } } psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no), &irq_mask, 1); if((irq = wv_psa_to_irq(irq_mask)) == -1) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_INFO "%s: wavelan_config(): could not wavelan_map_irq(%d).\n", dev->name, irq_mask); #endif return EAGAIN; } dev->irq = irq; request_region(ioaddr, sizeof(ha_t), "wavelan"); dev->mem_start = 0x0000; dev->mem_end = 0x0000; dev->if_port = 0; /* Initialize device structures */ dev->priv = kmalloc(sizeof(net_local), GFP_KERNEL); if(dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0x00, sizeof(net_local)); lp = (net_local *)dev->priv; /* Back link to the device structure. */ lp->dev = dev; /* Add the device at the beginning of the linked list. */ lp->next = wavelan_list; wavelan_list = lp; lp->hacr = HACR_DEFAULT; lp->watchdog.function = wavelan_watchdog; lp->watchdog.data = (unsigned long) dev; lp->promiscuous = 0; lp->mc_count = 0; /* * Fill in the fields of the device structure * with generic Ethernet values. */ ether_setup(dev); dev->open = wavelan_open; dev->stop = wavelan_close; dev->hard_start_xmit = wavelan_packet_xmit; dev->get_stats = wavelan_get_stats; dev->set_multicast_list = &wavelan_set_multicast_list; #ifdef SET_MAC_ADDRESS dev->set_mac_address = &wavelan_set_mac_address; #endif /* SET_MAC_ADDRESS */ #ifdef WIRELESS_EXT /* if wireless extension exists in the kernel */ dev->do_ioctl = wavelan_ioctl; dev->get_wireless_stats = wavelan_get_wireless_stats; #endif dev->mtu = WAVELAN_MTU; /* Display nice information. */ wv_init_info(dev); #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name); #endif return 0; } /*------------------------------------------------------------------*/ /* * Check for a network adaptor of this type. Return '0' iff one * exists. There seem to be different interpretations of * the initial value of dev->base_addr. * We follow the example in drivers/net/ne.c. * (called in "Space.c") */ __initfunc(int wavelan_probe(device * dev)) { short base_addr; mac_addr mac; /* MAC address (check existence of WaveLAN) */ int i; int r; #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: ->wavelan_probe(dev=0x%x (base_addr=0x%x))\n", dev->name, (unsigned int)dev, (unsigned int)dev->base_addr); #endif #ifdef STRUCT_CHECK if (wv_struct_check() != (char *) NULL) { printk(KERN_WARNING "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n", dev->name, wv_struct_check()); return ENODEV; } #endif /* STRUCT_CHECK */ /* Check the value of the command line parameter for base address. */ base_addr = dev->base_addr; /* Don't probe at all. */ if(base_addr < 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_WARNING "%s: wavelan_probe(): invalid base address\n", dev->name); #endif return ENXIO; } /* Check a single specified location. */ if(base_addr > 0x100) { /* Check if there is something at this base address */ if((r = wv_check_ioaddr(base_addr, mac)) == 0) { memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */ r = wavelan_config(dev); } #ifdef DEBUG_CONFIG_INFO if(r != 0) printk(KERN_DEBUG "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n", dev->name, base_addr); #endif #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name); #endif return r; } /* Scan all possible addresses of the WaveLAN hardware. */ for(i = 0; i < NELS(iobase); i++) { /* Check whether there is something at this base address. */ if(wv_check_ioaddr(iobase[i], mac) == 0) { dev->base_addr = iobase[i]; /* Copy base address. */ memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */ if(wavelan_config(dev) == 0) { #ifdef DEBUG_CALLBACK_TRACE printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name); #endif return 0; } } } /* We may have touched base_addr. Another driver may not like it. */ dev->base_addr = base_addr; #ifdef DEBUG_CONFIG_INFO printk(KERN_DEBUG "%s: wavelan_probe(): no device found\n", dev->name); #endif return ENODEV; } /****************************** MODULE ******************************/ /* * Module entry point: insertion and removal */ #ifdef MODULE /*------------------------------------------------------------------*/ /* * Insertion of the module * I'm now quite proud of the multi-device support. */ int init_module(void) { mac_addr mac; /* MAC address (check WaveLAN existence) */ int ret = -EIO; /* Return error if no cards found */ int i; #ifdef DEBUG_MODULE_TRACE printk(KERN_DEBUG "-> init_module()\n"); #endif /* If probing is asked */ if(io[0] == 0) { #ifdef DEBUG_CONFIG_ERROR printk(KERN_WARNING "WaveLAN init_module(): doing device probing (bad !)\n"); printk(KERN_WARNING "Specify base addresses while loading module to correct the problem\n"); #endif /* Copy the basic set of address to be probed. */ for(i = 0; i < NELS(iobase); i++) io[i] = iobase[i]; } /* Loop on all possible base addresses. */ i = -1; while((io[++i] != 0) && (i < NELS(io))) { /* Check if there is something at this base address. */ if(wv_check_ioaddr(io[i], mac) == 0) { device * dev; /* Create device and set basic arguments. */ dev = kmalloc(sizeof(struct device), GFP_KERNEL); memset(dev, 0x00, sizeof(struct device)); dev->name = name[i]; dev->base_addr = io[i]; dev->irq = irq[i]; dev->init = &wavelan_config; memcpy(dev->dev_addr, mac, 6); /* Copy MAC address. */ /* Try to create the device. */ if(register_netdev(dev) != 0) { /* Deallocate everything. */ /* Note: if dev->priv is mallocated, there is no way to fail. */ kfree_s(dev, sizeof(struct device)); } else { /* If at least one device OK, we do not fail */ ret = 0; } } /* if there is something at the address */ } /* Loop on all addresses. */ #ifdef DEBUG_CONFIG_ERROR if(wavelan_list == (net_local *) NULL) printk(KERN_WARNING "WaveLAN init_module(): no device found\n"); #endif #ifdef DEBUG_MODULE_TRACE printk(KERN_DEBUG "<- init_module()\n"); #endif return ret; } /*------------------------------------------------------------------*/ /* * Removal of the module */ void cleanup_module(void) { #ifdef DEBUG_MODULE_TRACE printk(KERN_DEBUG "-> cleanup_module()\n"); #endif /* Loop on all devices and release them. */ while(wavelan_list != (net_local *) NULL) { device * dev = wavelan_list->dev; #ifdef DEBUG_CONFIG_INFO printk(KERN_DEBUG "%s: cleanup_module(): removing device at 0x%x\n", dev->name, (unsigned int) dev); #endif /* Release the ioport region. */ release_region(dev->base_addr, sizeof(ha_t)); /* Definitely remove the device. */ unregister_netdev(dev); /* Unlink the device. */ wavelan_list = wavelan_list->next; /* Free pieces. */ kfree_s(dev->priv, sizeof(struct net_local)); kfree_s(dev, sizeof(struct device)); } #ifdef DEBUG_MODULE_TRACE printk(KERN_DEBUG "<- cleanup_module()\n"); #endif } #endif /* MODULE */ /* * This software may only be used and distributed * according to the terms of the GNU Public License. * * This software was developed as a component of the * Linux operating system. * It is based on other device drivers and information * either written or supplied by: * Ajay Bakre (bakre@paul.rutgers.edu), * Donald Becker (becker@cesdis.gsfc.nasa.gov), * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com), * Anders Klemets (klemets@it.kth.se), * Vladimir V. Kolpakov (w@stier.koenig.ru), * Marc Meertens (Marc.Meertens@Utrecht.NCR.com), * Pauline Middelink (middelin@polyware.iaf.nl), * Robert Morris (rtm@das.harvard.edu), * Jean Tourrilhes (jt@hplb.hpl.hp.com), * Girish Welling (welling@paul.rutgers.edu), * * Thanks go also to: * James Ashton (jaa101@syseng.anu.edu.au), * Alan Cox (iialan@iiit.swan.ac.uk), * Allan Creighton (allanc@cs.usyd.edu.au), * Matthew Geier (matthew@cs.usyd.edu.au), * Remo di Giovanni (remo@cs.usyd.edu.au), * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de), * Vipul Gupta (vgupta@cs.binghamton.edu), * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM), * Tim Nicholson (tim@cs.usyd.edu.au), * Ian Parkin (ian@cs.usyd.edu.au), * John Rosenberg (johnr@cs.usyd.edu.au), * George Rossi (george@phm.gov.au), * Arthur Scott (arthur@cs.usyd.edu.au), * Peter Storey, * for their assistance and advice. * * Please send bug reports, updates, comments to: * * Bruce Janson Email: bruce@cs.usyd.edu.au * Basser Department of Computer Science Phone: +61-2-9351-3423 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838 */