/* * drivers/sbus/char/bpp.c * * Copyright (c) 1995 Picture Elements * Stephen Williams (steve@icarus.com) * Gus Baldauf (gbaldauf@ix.netcom.com) * * Linux/SPARC port by Peter Zaitcev. * Integration into SPARC tree by Tom Dyas. */ #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) # include # include # include #endif #if defined(__sparc__) # include # include /* udelay() */ # include /* OpenProm Library */ # include /* struct linux_sbus *SBus_chain */ # include /* sparc_alloc_io() */ #endif #include #define BPP_PROBE_CODE 0x55 #define BPP_DELAY 100 static const unsigned BPP_MAJOR = LP_MAJOR; static const char* dev_name = "bpp"; /* When switching from compatability to a mode where I can read, try the following mode first. */ /* const unsigned char DEFAULT_ECP = 0x10; */ static const unsigned char DEFAULT_ECP = 0x30; static const unsigned char DEFAULT_NIBBLE = 0x00; /* * These are 1284 time constraints, in units of jiffies. */ static const unsigned long TIME_PSetup = 1; static const unsigned long TIME_PResponse = 6; static const unsigned long TIME_IDLE_LIMIT = 2000; /* * One instance per supported subdevice... */ # define BPP_NO 3 enum IEEE_Mode { COMPATIBILITY, NIBBLE, ECP, ECP_RLE, EPP }; struct inst { unsigned present : 1; /* True if the hardware exists */ unsigned enhanced : 1; /* True if the hardware in "enhanced" */ unsigned opened : 1; /* True if the device is opened already */ unsigned run_flag : 1; /* True if waiting for a repeate byte */ unsigned char direction; /* 0 --> out, 0x20 --> IN */ unsigned char pp_state; /* State of host controlled pins. */ enum IEEE_Mode mode; unsigned char run_length; unsigned char repeat_byte; /* These members manage timeouts for programmed delays */ struct wait_queue *wait_queue; struct timer_list timer_list; }; static struct inst instances[BPP_NO]; #if defined(__i386__) const unsigned short base_addrs[BPP_NO] = { 0x278, 0x378, 0x3bc }; /* * These are for data access. * Control lines accesses are hidden in set_bits() and get_bits(). * The exeption is the probe procedure, which is system-dependent. */ #define bpp_outb_p(data, base) outb_p((data), (base)) #define bpp_inb(base) inb(base) #define bpp_inb_p(base) inb_p(base) /* * This method takes the pin values mask and sets the hardware pins to * the requested value: 1 == high voltage, 0 == low voltage. This * burries the annoying PC bit inversion and preserves the direction * flag. */ static void set_pins(unsigned short pins, unsigned minor) { unsigned char bits = instances[minor].direction; /* == 0x20 */ if (! (pins & BPP_PP_nStrobe)) bits |= 1; if (! (pins & BPP_PP_nAutoFd)) bits |= 2; if ( pins & BPP_PP_nInit) bits |= 4; if (! (pins & BPP_PP_nSelectIn)) bits |= 8; instances[minor].pp_state = bits; outb_p(bits, base_addrs[minor]+2); } static unsigned short get_pins(unsigned minor) { unsigned short bits = 0; unsigned value = instances[minor].pp_state; if (! (value & 0x01)) bits |= BPP_PP_nStrobe; if (! (value & 0x02)) bits |= BPP_PP_nAutoFd; if (value & 0x04) bits |= BPP_PP_nInit; if (! (value & 0x08)) bits |= BPP_PP_nSelectIn; value = inb_p(base_addrs[minor]+1); if (value & 0x08) bits |= BPP_GP_nFault; if (value & 0x10) bits |= BPP_GP_Select; if (value & 0x20) bits |= BPP_GP_PError; if (value & 0x40) bits |= BPP_GP_nAck; if (! (value & 0x80)) bits |= BPP_GP_Busy; return bits; } #endif /* __i386__ */ #if defined(__sparc__) /* * Register block */ struct bpp_regs { /* DMA registers */ __u32 p_csr; /* DMA Control/Status Register */ __u32 p_addr; /* Address Register */ __u32 p_bcnt; /* Byte Count Register */ __u32 p_tst_csr; /* Test Control/Status (DMA2 only) */ /* Parallel Port registers */ __u16 p_hcr; /* Hardware Configuration Register */ __u16 p_ocr; /* Operation Configuration Register */ __u8 p_dr; /* Parallel Data Register */ __u8 p_tcr; /* Transfer Control Register */ __u8 p_or; /* Output Register */ __u8 p_ir; /* Input Register */ __u16 p_icr; /* Interrupt Control Register */ }; /* P_CSR. Bits of type RW1 are cleared with writting '1'. */ #define P_DEV_ID_MASK 0xf0000000 /* R */ #define P_DEV_ID_ZEBRA 0x40000000 #define P_DEV_ID_L64854 0xa0000000 /* == NCR 89C100+89C105. Pity. */ #define P_NA_LOADED 0x08000000 /* R NA wirtten but was not used */ #define P_A_LOADED 0x04000000 /* R */ #define P_DMA_ON 0x02000000 /* R DMA is not disabled */ #define P_EN_NEXT 0x01000000 /* RW */ #define P_TCI_DIS 0x00800000 /* RW TCI forbidden from interrupts */ #define P_DIAG 0x00100000 /* RW Disables draining and resetting of P-FIFO on loading of P_ADDR*/ #define P_BURST_SIZE 0x000c0000 /* RW SBus burst size */ #define P_BURST_8 0x00000000 #define P_BURST_4 0x00040000 #define P_BURST_1 0x00080000 /* "No burst" write */ #define P_TC 0x00004000 /* RW1 Term Count, can be cleared when P_EN_NEXT=1 */ #define P_EN_CNT 0x00002000 /* RW */ #define P_EN_DMA 0x00000200 /* RW */ #define P_WRITE 0x00000100 /* R DMA dir, 1=to ram, 0=to port */ #define P_RESET 0x00000080 /* RW */ #define P_SLAVE_ERR 0x00000040 /* RW1 Access size error */ #define P_INVALIDATE 0x00000020 /* W Drop P-FIFO */ #define P_INT_EN 0x00000010 /* RW OK to P_INT_PEND||P_ERR_PEND */ #define P_DRAINING 0x0000000c /* R P-FIFO is draining to memory */ #define P_ERR_PEND 0x00000002 /* R */ #define P_INT_PEND 0x00000001 /* R */ /* P_HCR. Time is in increments of SBus clock. */ #define P_HCR_TEST 0x8000 /* Allows buried counters to be read */ #define P_HCR_DSW 0x7f00 /* Data strobe width (in ticks) */ #define P_HCR_DDS 0x007f /* Data setup before strobe (in ticks) */ /* P_OCR. */ #define P_OCR_MEM_CLR 0x8000 #define P_OCR_DATA_SRC 0x4000 /* ) */ #define P_OCR_DS_DSEL 0x2000 /* ) Bidirectional */ #define P_OCR_BUSY_DSEL 0x1000 /* ) selects */ #define P_OCR_ACK_DSEL 0x0800 /* ) */ #define P_OCR_EN_DIAG 0x0400 #define P_OCR_BUSY_OP 0x0200 /* Busy operation */ #define P_OCR_ACK_OP 0x0100 /* Ack operation */ #define P_OCR_SRST 0x0080 /* Reset state machines. Not selfcleaning. */ #define P_OCR_IDLE 0x0008 /* PP data transfer state machine is idle */ #define P_OCR_V_ILCK 0x0002 /* Versatec faded. Zebra only. */ #define P_OCR_EN_VER 0x0001 /* Enable Versatec (0 - enable). Zebra only. */ /* P_TCR */ #define P_TCR_DIR 0x08 #define P_TCR_BUSY 0x04 #define P_TCR_ACK 0x02 #define P_TCR_DS 0x01 /* Strobe */ /* P_OR */ #define P_OR_V3 0x20 /* ) */ #define P_OR_V2 0x10 /* ) on Zebra only */ #define P_OR_V1 0x08 /* ) */ #define P_OR_INIT 0x04 #define P_OR_AFXN 0x02 /* Auto Feed */ #define P_OR_SLCT_IN 0x01 /* P_IR */ #define P_IR_PE 0x04 #define P_IR_SLCT 0x02 #define P_IR_ERR 0x01 /* P_ICR */ #define P_DS_IRQ 0x8000 /* RW1 */ #define P_ACK_IRQ 0x4000 /* RW1 */ #define P_BUSY_IRQ 0x2000 /* RW1 */ #define P_PE_IRQ 0x1000 /* RW1 */ #define P_SLCT_IRQ 0x0800 /* RW1 */ #define P_ERR_IRQ 0x0400 /* RW1 */ #define P_DS_IRQ_EN 0x0200 /* RW Always on rising edge */ #define P_ACK_IRQ_EN 0x0100 /* RW Always on rising edge */ #define P_BUSY_IRP 0x0080 /* RW 1= rising edge */ #define P_BUSY_IRQ_EN 0x0040 /* RW */ #define P_PE_IRP 0x0020 /* RW 1= rising edge */ #define P_PE_IRQ_EN 0x0010 /* RW */ #define P_SLCT_IRP 0x0008 /* RW 1= rising edge */ #define P_SLCT_IRQ_EN 0x0004 /* RW */ #define P_ERR_IRP 0x0002 /* RW1 1= rising edge */ #define P_ERR_IRQ_EN 0x0001 /* RW */ volatile struct bpp_regs *base_addrs[BPP_NO]; static inline void bpp_outb_p(__u8 data, volatile struct bpp_regs *base){ base->p_dr = data; } #define bpp_inb_p(base) bpp_inb(base) static inline __u8 bpp_inb(volatile struct bpp_regs *base){ return base->p_dr; } static void set_pins(unsigned short pins, unsigned minor) { volatile struct bpp_regs *base = base_addrs[minor]; unsigned char bits_tcr = 0, bits_or = 0; if (instances[minor].direction & 0x20) bits_tcr |= P_TCR_DIR; if ( pins & BPP_PP_nStrobe) bits_tcr |= P_TCR_DS; if ( pins & BPP_PP_nAutoFd) bits_or |= P_OR_AFXN; if (! (pins & BPP_PP_nInit)) bits_or |= P_OR_INIT; if (! (pins & BPP_PP_nSelectIn)) bits_or |= P_OR_SLCT_IN; base->p_or = bits_or; base->p_tcr = bits_tcr; } /* * i386 people read output pins from a software image. * We may get them back from hardware. * Again, inversion of pins must he buried here. */ static unsigned short get_pins(unsigned minor) { volatile struct bpp_regs *base = base_addrs[minor]; unsigned short bits = 0; unsigned value_tcr = base->p_tcr; unsigned value_ir = base->p_ir; unsigned value_or = base->p_or; if (value_tcr & P_TCR_DS) bits |= BPP_PP_nStrobe; if (value_or & P_OR_AFXN) bits |= BPP_PP_nAutoFd; if (! (value_or & P_OR_INIT)) bits |= BPP_PP_nInit; if (! (value_or & P_OR_SLCT_IN)) bits |= BPP_PP_nSelectIn; if (value_ir & P_IR_ERR) bits |= BPP_GP_nFault; if (! (value_ir & P_IR_SLCT)) bits |= BPP_GP_Select; if (! (value_ir & P_IR_PE)) bits |= BPP_GP_PError; if (! (value_tcr & P_TCR_ACK)) bits |= BPP_GP_nAck; if (value_tcr & P_TCR_BUSY) bits |= BPP_GP_Busy; return bits; } #if 0 /* P3 */ static inline void bpp_snap(const char *msg, unsigned minor) { volatile struct bpp_regs *r = base_addrs[minor]; printk("bpp.%s: c=%02x o=%02x i=%02x\n", msg, r->p_tcr, r->p_or, r->p_ir); } #endif #endif /* __sparc__ */ /* * This is TRUE if the module_init successfully loaded the module. */ #if 0 static int loaded_flag = 0; #endif static void bpp_wake_up(unsigned long val) { wake_up(&instances[val].wait_queue); } static void snooze(unsigned long snooze_time, unsigned minor) { instances[minor].timer_list.expires = jiffies + snooze_time + 1; instances[minor].timer_list.data = minor; add_timer(&instances[minor].timer_list); sleep_on (&instances[minor].wait_queue); } static int wait_for(unsigned short set, unsigned short clr, unsigned long delay, unsigned minor) { unsigned short pins = get_pins(minor); unsigned long extime = 0; /* * Try a real fast scan for the first jiffy, in case the device * responds real good. The first while loop guesses an expire * time accounting for possible wraparound of jiffies. */ while (extime <= jiffies) extime = jiffies + 1; while ( (jiffies < extime) && (((pins & set) != set) || ((pins & clr) != 0)) ) { pins = get_pins(minor); } delay -= 1; /* * If my delay expired or the pins are still not where I want * them, then resort to using the timer and greatly reduce my * sample rate. If the peripheral is going to be slow, this will * give the CPU up to some more worthy process. */ while ( delay && (((pins & set) != set) || ((pins & clr) != 0)) ) { snooze(1, minor); pins = get_pins(minor); delay -= 1; } if (delay == 0) return -1; else return pins; } /* * Return ZERO(0) If the negotiation succeeds, an errno otherwise. An * errno means something broke, and I do not yet know how to fix it. */ static int negotiate(unsigned char mode, unsigned minor) { int rc; unsigned short pins = get_pins(minor); if (pins & BPP_PP_nSelectIn) return -EIO; /* Event 0: Write the mode to the data lines */ bpp_outb_p(mode, base_addrs[minor]); snooze(TIME_PSetup, minor); /* Event 1: Strobe the mode code into the peripheral */ set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nInit, minor); /* Wait for Event 2: Peripheral responds as a 1284 device. */ rc = wait_for(BPP_GP_PError|BPP_GP_Select|BPP_GP_nFault, BPP_GP_nAck, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; /* Event 3: latch extensibility request */ set_pins(BPP_PP_nSelectIn|BPP_PP_nInit, minor); /* ... quick nap while peripheral ponders the byte i'm sending...*/ snooze(1, minor); /* Event 4: restore strobe, to ACK peripheral's response. */ set_pins(BPP_PP_nSelectIn|BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor); /* Wait for Event 6: Peripheral latches response bits */ rc = wait_for(BPP_GP_nAck, 0, TIME_PSetup+TIME_PResponse, minor); if (rc == -1) return -EIO; /* A 1284 device cannot refuse nibble mode */ if (mode == DEFAULT_NIBBLE) return 0; if (pins & BPP_GP_Select) return 0; return -EPROTONOSUPPORT; } static int terminate(unsigned minor) { int rc; /* Event 22: Request termination of 1284 mode */ set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor); /* Wait for Events 23 and 24: ACK termination request. */ rc = wait_for(BPP_GP_Busy|BPP_GP_nFault, BPP_GP_nAck, TIME_PSetup+TIME_PResponse, minor); instances[minor].direction = 0; instances[minor].mode = COMPATIBILITY; if (rc == -1) { return -EIO; } /* Event 25: Handshake by lowering nAutoFd */ set_pins(BPP_PP_nStrobe|BPP_PP_nInit, minor); /* Event 26: Peripheral wiggles lines... */ /* Event 27: Peripheral sets nAck HIGH to ack handshake */ rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor); if (rc == -1) { set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor); return -EIO; } /* Event 28: Finish phase by raising nAutoFd */ set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, minor); return 0; } /* * Allow only one process to open the device at a time. */ static int bpp_open(struct inode *inode, struct file *f) { unsigned minor = MINOR(inode->i_rdev); if (minor >= BPP_NO) return -ENODEV; if (! instances[minor].present) return -ENODEV; if (instances[minor].opened) return -EBUSY; instances[minor].opened = 1; return 0; } /* * When the process closes the device, this method is called to clean * up and reset the hardware. Always leave the device in compatibility * mode as this is a reasonable place to clean up from messes made by * ioctls, or other mayhem. */ static void bpp_release(struct inode *inode, struct file *f) { unsigned minor = MINOR(inode->i_rdev); instances[minor].opened = 0; if (instances[minor].mode != COMPATIBILITY) terminate(minor); } static long read_nibble(unsigned minor, char *c, unsigned long cnt) { unsigned long remaining = cnt; long rc; while (remaining > 0) { unsigned char byte = 0; int pins; /* Event 7: request nibble */ set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe, minor); /* Wait for event 9: Peripher strobes first nibble */ pins = wait_for(0, BPP_GP_nAck, TIME_IDLE_LIMIT, minor); if (pins == -1) return -ETIMEDOUT; /* Event 10: I handshake nibble */ set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nAutoFd, minor); if (pins & BPP_GP_nFault) byte |= 0x01; if (pins & BPP_GP_Select) byte |= 0x02; if (pins & BPP_GP_PError) byte |= 0x04; if (pins & BPP_GP_Busy) byte |= 0x08; /* Wait for event 11: Peripheral handshakes nibble */ rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor); /* Event 7: request nibble */ set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe, minor); /* Wait for event 9: Peripher strobes first nibble */ pins = wait_for(0, BPP_GP_nAck, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; /* Event 10: I handshake nibble */ set_pins(BPP_PP_nSelectIn|BPP_PP_nStrobe|BPP_PP_nAutoFd, minor); if (pins & BPP_GP_nFault) byte |= 0x10; if (pins & BPP_GP_Select) byte |= 0x20; if (pins & BPP_GP_PError) byte |= 0x40; if (pins & BPP_GP_Busy) byte |= 0x80; put_user_ret(byte, c, -EFAULT); c += 1; remaining -= 1; /* Wait for event 11: Peripheral handshakes nibble */ rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor); if (rc == -1) return -EIO; } return cnt - remaining; } static long read_ecp(unsigned minor, char *c, unsigned long cnt) { unsigned long remaining; long rc; /* Turn ECP mode from forward to reverse if needed. */ if (! instances[minor].direction) { unsigned short pins = get_pins(minor); /* Event 38: Turn the bus around */ instances[minor].direction = 0x20; pins &= ~BPP_PP_nAutoFd; set_pins(pins, minor); /* Event 39: Set pins for reverse mode. */ snooze(TIME_PSetup, minor); set_pins(BPP_PP_nStrobe|BPP_PP_nSelectIn, minor); /* Wait for event 40: Peripheral ready to be strobed */ rc = wait_for(0, BPP_GP_PError, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; } remaining = cnt; while (remaining > 0) { /* If there is a run length for a repeated byte, repeat */ /* that byte a few times. */ if (instances[minor].run_length && !instances[minor].run_flag) { char buffer[128]; unsigned idx; unsigned repeat = remaining < instances[minor].run_length ? remaining : instances[minor].run_length; for (idx = 0 ; idx < repeat ; idx += 1) buffer[idx] = instances[minor].repeat_byte; copy_to_user_ret(c, buffer, repeat, -EFAULT); remaining -= repeat; c += repeat; instances[minor].run_length -= repeat; } if (remaining == 0) break; /* Wait for Event 43: Data active on the bus. */ rc = wait_for(0, BPP_GP_nAck, TIME_IDLE_LIMIT, minor); if (rc == -1) break; if (rc & BPP_GP_Busy) { /* OK, this is data. read it in. */ unsigned char byte = bpp_inb(base_addrs[minor]); put_user_ret(byte, c, -EFAULT); c += 1; remaining -= 1; if (instances[minor].run_flag) { instances[minor].repeat_byte = byte; instances[minor].run_flag = 0; } } else { unsigned char byte = bpp_inb(base_addrs[minor]); if (byte & 0x80) { printk("bpp%d: " "Ignoring ECP channel %u from device.\n", minor, byte & 0x7f); } else { instances[minor].run_length = byte; instances[minor].run_flag = 1; } } /* Event 44: I got it. */ set_pins(BPP_PP_nStrobe|BPP_PP_nAutoFd|BPP_PP_nSelectIn, minor); /* Wait for event 45: peripheral handshake */ rc = wait_for(BPP_GP_nAck, 0, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; /* Event 46: Finish handshake */ set_pins(BPP_PP_nStrobe|BPP_PP_nSelectIn, minor); } return cnt - remaining; } static long bpp_read(struct inode *inode, struct file *f, char *c, unsigned long cnt) { long rc; const unsigned minor = MINOR(inode->i_rdev); if (minor >= BPP_NO) return -ENODEV; if (!instances[minor].present) return -ENODEV; switch (instances[minor].mode) { default: if (instances[minor].mode != COMPATIBILITY) terminate(minor); if (instances[minor].enhanced) { /* For now, do all reads with ECP-RLE mode */ unsigned short pins; rc = negotiate(DEFAULT_ECP, minor); if (rc < 0) break; instances[minor].mode = ECP_RLE; /* Event 30: set nAutoFd low to setup for ECP mode */ pins = get_pins(minor); pins &= ~BPP_PP_nAutoFd; set_pins(pins, minor); /* Wait for Event 31: peripheral ready */ rc = wait_for(BPP_GP_PError, 0, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; rc = read_ecp(minor, c, cnt); } else { rc = negotiate(DEFAULT_NIBBLE, minor); if (rc < 0) break; instances[minor].mode = NIBBLE; rc = read_nibble(minor, c, cnt); } break; case NIBBLE: rc = read_nibble(minor, c, cnt); break; case ECP: case ECP_RLE: rc = read_ecp(minor, c, cnt); break; } return rc; } /* * Compatibility mode handshaking is a matter of writing data, * strobing it, and waiting for the printer to stop being busy. */ static long write_compat(unsigned minor, const char *c, unsigned long cnt) { long rc; unsigned short pins = get_pins(minor); unsigned long remaining = cnt; while (remaining > 0) { unsigned char byte; c += 1; get_user_ret(byte, c, -EFAULT); rc = wait_for(BPP_GP_nAck, BPP_GP_Busy, TIME_IDLE_LIMIT, minor); if (rc == -1) return -ETIMEDOUT; bpp_outb_p(byte, base_addrs[minor]); remaining -= 1; /* snooze(1, minor); */ pins &= ~BPP_PP_nStrobe; set_pins(pins, minor); rc = wait_for(BPP_GP_Busy, 0, TIME_PResponse, minor); pins |= BPP_PP_nStrobe; set_pins(pins, minor); } return cnt - remaining; } /* * Write data using ECP mode. Watch out that the port may be set up * for reading. If so, turn the port around. */ static long write_ecp(unsigned minor, const char *c, unsigned long cnt) { unsigned short pins = get_pins(minor); unsigned long remaining = cnt; if (instances[minor].direction) { int rc; /* Event 47 Request bus be turned around */ pins |= BPP_PP_nInit; set_pins(pins, minor); /* Wait for Event 49: Peripheral relinquished bus */ rc = wait_for(BPP_GP_PError, 0, TIME_PResponse, minor); pins |= BPP_PP_nAutoFd; instances[minor].direction = 0; set_pins(pins, minor); } while (remaining > 0) { unsigned char byte; int rc; get_user_ret(byte, c, -EFAULT); rc = wait_for(0, BPP_GP_Busy, TIME_PResponse, minor); if (rc == -1) return -ETIMEDOUT; c += 1; bpp_outb_p(byte, base_addrs[minor]); pins &= ~BPP_PP_nStrobe; set_pins(pins, minor); pins |= BPP_PP_nStrobe; rc = wait_for(BPP_GP_Busy, 0, TIME_PResponse, minor); if (rc == -1) return -EIO; set_pins(pins, minor); } return cnt - remaining; } /* * Write to the peripheral. Be sensitive of the current mode. If I'm * in a mode that can be turned around (ECP) then just do * that. Otherwise, terminate and do my writing in compat mode. This * is the safest course as any device can handle it. */ static long bpp_write(struct inode *inode, struct file *f, const char *c, unsigned long cnt) { long errno = 0; unsigned minor = MINOR(inode->i_rdev); if (minor >= BPP_NO) return -ENODEV; if (!instances[minor].present) return -ENODEV; switch (instances[minor].mode) { case ECP: case ECP_RLE: errno = write_ecp(minor, c, cnt); break; case COMPATIBILITY: errno = write_compat(minor, c, cnt); break; default: terminate(minor); errno = write_compat(minor, c, cnt); } return errno; } static int bpp_ioctl(struct inode *inode, struct file *f, unsigned int cmd, unsigned long arg) { int errno = 0; unsigned minor = MINOR(inode->i_rdev); if (minor >= BPP_NO) return -ENODEV; if (!instances[minor].present) return -ENODEV; switch (cmd) { case BPP_PUT_PINS: set_pins(arg, minor); break; case BPP_GET_PINS: errno = get_pins(minor); break; case BPP_PUT_DATA: bpp_outb_p(arg, base_addrs[minor]); break; case BPP_GET_DATA: errno = bpp_inb_p(base_addrs[minor]); break; case BPP_SET_INPUT: if (arg) if (instances[minor].enhanced) { unsigned short bits = get_pins(minor); instances[minor].direction = 0x20; set_pins(bits, minor); } else { errno = -ENOTTY; } else { unsigned short bits = get_pins(minor); instances[minor].direction = 0x00; set_pins(bits, minor); } break; default: errno = -EINVAL; } return errno; } static struct file_operations bpp_fops = { NULL, /* bpp_lseek */ bpp_read, bpp_write, NULL, /* bpp_readdir */ NULL, /* bpp_select */ bpp_ioctl, NULL, /* bpp_mmap */ bpp_open, bpp_release, }; #if defined(__i386__) #define collectLptPorts() {} static void probeLptPort(unsigned idx) { unsigned int testvalue; const unsigned short lpAddr = base_addrs[idx]; instances[idx].present = 0; instances[idx].enhanced = 0; instances[idx].direction = 0; instances[idx].mode = COMPATIBILITY; instances[idx].wait_queue = 0; instances[idx].run_length = 0; instances[idx].run_flag = 0; init_timer(&instances[idx].timer_list); instances[idx].timer_list.function = bpp_wake_up; if (check_region(lpAddr,3)) return; /* * First, make sure the instance exists. Do this by writing to * the data latch and reading the value back. If the port *is* * present, test to see if it supports extended-mode * operation. This will be required for IEEE1284 reverse * transfers. */ outb_p(BPP_PROBE_CODE, lpAddr); for (testvalue=0; testvaluereg_addrs[0]; printk("bpp%d.map_bpp: 0x%x.%p[0x%x] i=%d\n", idx, areg.which_io, areg.phys_addr, areg.reg_size, dev->irqs[0].pri); /* IPC Zebra 1.fa200000[1c] i=2 */ /** prom_apply_sbus_ranges (&areg, 1); **/ regs = sparc_alloc_io (areg.phys_addr, 0, sizeof(struct bpp_regs), "bpp", areg.which_io, 0x0); return regs; } static int collectLptPorts(void) { struct linux_sbus *bus; struct linux_sbus_device *dev; int count; count = 0; for_all_sbusdev(dev, bus) { if (strcmp(dev->prom_name, "SUNW,bpp") == 0) { if (count >= BPP_NO) { printk(KERN_NOTICE "bpp: More than %d bpp ports," " rest is ignored\n", BPP_NO); return count; } base_addrs[count] = map_bpp(dev, count); count++; } } return count; } static void probeLptPort(unsigned idx) { volatile struct bpp_regs *rp = base_addrs[idx]; __u32 csr; char *brand; instances[idx].present = 0; instances[idx].enhanced = 0; instances[idx].direction = 0; instances[idx].mode = COMPATIBILITY; instances[idx].wait_queue = 0; instances[idx].run_length = 0; instances[idx].run_flag = 0; init_timer(&instances[idx].timer_list); instances[idx].timer_list.function = bpp_wake_up; if (rp == 0) return; instances[idx].present = 1; instances[idx].enhanced = 1; /* Sure */ if (((csr = rp->p_csr) & P_DRAINING) != 0 && (csr & P_ERR_PEND) == 0) { udelay(20); csr = rp->p_csr; if ((csr & P_DRAINING) != 0 && (csr & P_ERR_PEND) == 0) { printk("bpp%d: DRAINING still active (0x%08x)\n", idx, csr); } } printk("bpp%d: reset with 0x%08x ..", idx, csr); rp->p_csr = (csr | P_RESET) & ~P_INT_EN; udelay(500); rp->p_csr &= ~P_RESET; printk(" done with csr=0x%08x ocr=0x%04x\n", rp->p_csr, rp->p_ocr); switch (rp->p_csr & P_DEV_ID_MASK) { case P_DEV_ID_ZEBRA: brand = "Zebra"; break; case P_DEV_ID_L64854: brand = "DMA2"; break; default: brand = "Unknown"; } printk("bpp%d: %s at 0x%p\n", idx, brand, rp); /* * Leave the port in compat idle mode. */ set_pins(BPP_PP_nAutoFd|BPP_PP_nStrobe|BPP_PP_nInit, idx); return; } static inline void freeLptPort(int idx) { sparc_free_io ((void *)base_addrs[idx], sizeof(struct bpp_regs)); } #endif #ifdef MODULE int init_module(void) #else __initfunc(int bpp_init(void)) #endif { int rc; unsigned idx; rc = collectLptPorts(); if (rc == 0) return -ENODEV; rc = register_chrdev(BPP_MAJOR, dev_name, &bpp_fops); if (rc < 0) return rc; for (idx = 0; idx < BPP_NO; idx += 1) { instances[idx].opened = 0; probeLptPort(idx); } return 0; } #ifdef MODULE void cleanup_module(void) { unsigned idx; unregister_chrdev(BPP_MAJOR, dev_name); for (idx = 0 ; idx < BPP_NO ; idx += 1) { if (instances[idx].present) freeLptPort(idx); } } #endif