/* $Id: zs.c,v 1.3 1997/09/04 14:57:34 jj Exp $ * zs.c: Zilog serial port driver for the Sparc. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Fixes by Pete A. Zaitcev . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __sparc_v9__ #include #endif #include "sunserial.h" #include "zs.h" #include "sunkbd.h" #include "sunmouse.h" static int num_serial = 2; /* sun4/sun4c/sun4m - Two chips on board. */ #define NUM_SERIAL num_serial #define NUM_CHANNELS (NUM_SERIAL * 2) #define KEYBOARD_LINE 0x2 #define MOUSE_LINE 0x3 struct sun_zslayout **zs_chips; struct sun_zschannel **zs_channels; struct sun_zschannel *zs_conschan; struct sun_zschannel *zs_mousechan; struct sun_zschannel *zs_kbdchan; struct sun_zschannel *zs_kgdbchan; int *zs_nodes; struct sun_serial *zs_soft; struct sun_serial *zs_chain; /* IRQ servicing chain */ int zilog_irq; struct tty_struct *zs_ttys; /** struct tty_struct *zs_constty; **/ /* Console hooks... */ static int zs_cons_chanout = 0; static int zs_cons_chanin = 0; struct sun_serial *zs_consinfo = 0; static unsigned char kgdb_regs[16] = { 0, 0, 0, /* write 0, 1, 2 */ (Rx8 | RxENAB), /* write 3 */ (X16CLK | SB1 | PAR_EVEN), /* write 4 */ (DTR | Tx8 | TxENAB), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (NV), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 0, 0, /* BRG time constant, write 12 + 13 */ (BRSRC | BRENAB), /* write 14 */ (DCDIE) /* write 15 */ }; static unsigned char zscons_regs[16] = { 0, /* write 0 */ (EXT_INT_ENAB | INT_ALL_Rx), /* write 1 */ 0, /* write 2 */ (Rx8 | RxENAB), /* write 3 */ (X16CLK), /* write 4 */ (DTR | Tx8 | TxENAB), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (NV | MIE), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 0, 0, /* BRG time constant, write 12 + 13 */ (BRSRC | BRENAB), /* write 14 */ (DCDIE | CTSIE | TxUIE | BRKIE) /* write 15 */ }; #define ZS_CLOCK 4915200 /* Zilog input clock rate */ DECLARE_TASK_QUEUE(tq_serial); struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* Debugging... DEBUG_INTR is bad to use when one of the zs * lines is your console ;( */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #define RS_STROBE_TIME 10 #define RS_ISR_PASS_LIMIT 256 #define _INLINE_ inline int zs_init(void); void zs_cons_hook(int, int, int); void zs_kgdb_hook(int); static void change_speed(struct sun_serial *info); static struct tty_struct **serial_table; static struct termios **serial_termios; static struct termios **serial_termios_locked; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the memcpy_fromfs blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char tmp_buf[4096]; /* This is cheating */ static struct semaphore tmp_buf_sem = MUTEX; static inline int serial_paranoia_check(struct sun_serial *info, dev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null sun_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 76800, 0 }; /* * Reading and writing Zilog8530 registers. The delays are to make this * driver work on the Sun4 which needs a settling delay after each chip * register access, other machines handle this in hardware via auxiliary * flip-flops which implement the settle time we do in software. */ static inline unsigned char read_zsreg(struct sun_zschannel *channel, unsigned char reg) { unsigned char retval; channel->control = reg; udelay(5); retval = channel->control; udelay(5); return retval; } static inline void write_zsreg(struct sun_zschannel *channel, unsigned char reg, unsigned char value) { channel->control = reg; udelay(5); channel->control = value; udelay(5); } static inline void load_zsregs(struct sun_serial *info, unsigned char *regs) { unsigned long flags; struct sun_zschannel *channel = info->zs_channel; unsigned char stat; int i; for (i = 0; i < 1000; i++) { stat = read_zsreg(channel, R1); if (stat & ALL_SNT) break; udelay(100); } write_zsreg(channel, R3, 0); ZS_CLEARSTAT(channel); ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); /* Load 'em up */ save_flags(flags); cli(); if (info->channelA) write_zsreg(channel, R9, CHRA); else write_zsreg(channel, R9, CHRB); udelay(20); /* wait for some old sun4's */ write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R3, regs[R3] & ~RxENAB); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R9, regs[R9] & ~MIE); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14] & ~BRENAB); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R14, (regs[R14] & ~SNRZI) | BRENAB); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R0, RES_EXT_INT); write_zsreg(channel, R0, ERR_RES); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R9, regs[R9]); restore_flags(flags); } static inline void zs_put_char(struct sun_zschannel *channel, char ch) { int loops = 0; while((channel->control & Tx_BUF_EMP) == 0 && loops < 10000) { loops++; udelay(5); } channel->data = ch; udelay(5); } /* Sets or clears DTR/RTS on the requested line */ static inline void zs_rtsdtr(struct sun_serial *ss, int set) { unsigned long flags; save_flags(flags); cli(); if(set) { ss->curregs[5] |= (RTS | DTR); write_zsreg(ss->zs_channel, 5, ss->curregs[5]); } else { ss->curregs[5] &= ~(RTS | DTR); write_zsreg(ss->zs_channel, 5, ss->curregs[5]); } restore_flags(flags); return; } static inline void kgdb_chaninit(struct sun_serial *ss, int intson, int bps) { int brg; if(intson) { kgdb_regs[R1] = INT_ALL_Rx; kgdb_regs[R9] |= MIE; } else { kgdb_regs[R1] = 0; kgdb_regs[R9] &= ~MIE; } brg = BPS_TO_BRG(bps, ZS_CLOCK/16); kgdb_regs[R12] = (brg & 255); kgdb_regs[R13] = ((brg >> 8) & 255); load_zsregs(ss, kgdb_regs); } /* * ------------------------------------------------------------ * zs_stop() and zs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void zs_stop(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "zs_stop")) return; save_flags(flags); cli(); if (info->curregs[5] & TxENAB) { info->curregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); } static void zs_start(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "zs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) { info->curregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); } /* Drop into either the boot monitor or kadb upon receiving a break * from keyboard/console input. */ void batten_down_hatches(void) { /* If we are doing kadb, we call the debugger * else we just drop into the boot monitor. * Note that we must flush the user windows * first before giving up control. */ printk("\n"); flush_user_windows(); #ifndef __sparc_v9__ if((((unsigned long)linux_dbvec)>=DEBUG_FIRSTVADDR) && (((unsigned long)linux_dbvec)<=DEBUG_LASTVADDR)) sp_enter_debugger(); else #endif prom_cmdline(); /* XXX We want to notify the keyboard driver that all * XXX keys are in the up state or else weird things * XXX happen... */ return; } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * zs_interrupt(). They were separated out for readability's sake. * * Note: zs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * zs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void zs_sched_event(struct sun_serial *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } #ifndef __sparc_v9__ extern void breakpoint(void); /* For the KGDB frame character */ #endif static _INLINE_ void receive_chars(struct sun_serial *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, stat; do { ch = (info->zs_channel->data) & info->parity_mask; udelay(5); /* If this is the console keyboard, we need to handle * L1-A's here. */ if(info->cons_keyb) { if(ch == SUNKBD_RESET) { l1a_state.kbd_id = 1; l1a_state.l1_down = 0; } else if(l1a_state.kbd_id) { l1a_state.kbd_id = 0; } else if(ch == SUNKBD_L1) { l1a_state.l1_down = 1; } else if(ch == (SUNKBD_L1|SUNKBD_UP)) { l1a_state.l1_down = 0; } else if(ch == SUNKBD_A && l1a_state.l1_down) { /* whee... */ batten_down_hatches(); /* Continue execution... */ l1a_state.l1_down = 0; l1a_state.kbd_id = 0; return; } sunkbd_inchar(ch, regs); return; } if(info->cons_mouse) { sun_mouse_inbyte(ch); return; } if(info->is_cons) { if(ch==0) { /* whee, break received */ batten_down_hatches(); /* Continue execution... */ return; #if 0 } else if (ch == 1) { show_state(); return; } else if (ch == 2) { show_buffers(); return; #endif } /* It is a 'keyboard interrupt' ;-) */ wake_up(&keypress_wait); } #ifndef __sparc_v9__ /* Look for kgdb 'stop' character, consult the gdb * documentation for remote target debugging and * arch/sparc/kernel/sparc-stub.c to see how all this works. */ if((info->kgdb_channel) && (ch =='\003')) { breakpoint(); return; } #endif if(!tty) return; if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; tty->flip.count++; *tty->flip.flag_buf_ptr++ = 0; *tty->flip.char_buf_ptr++ = ch; /* Check if we have another character... */ stat = info->zs_channel->control; udelay(5); if (!(stat & Rx_CH_AV)) break; /* ... and see if it is clean. */ stat = read_zsreg(info->zs_channel, R1); } while (!(stat & (PAR_ERR | Rx_OVR | CRC_ERR))); queue_task(&tty->flip.tqueue, &tq_timer); } static _INLINE_ void transmit_chars(struct sun_serial *info) { struct tty_struct *tty = info->tty; if (info->x_char) { /* Send next char */ zs_put_char(info->zs_channel, info->x_char); info->x_char = 0; return; } if((info->xmit_cnt <= 0) || (tty != 0 && tty->stopped)) { /* That's peculiar... */ info->zs_channel->control = RES_Tx_P; udelay(5); return; } /* Send char */ zs_put_char(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; if (info->xmit_cnt < WAKEUP_CHARS) zs_sched_event(info, RS_EVENT_WRITE_WAKEUP); if(info->xmit_cnt <= 0) { info->zs_channel->control = RES_Tx_P; udelay(5); } } static _INLINE_ void status_handle(struct sun_serial *info) { unsigned char status; /* Get status from Read Register 0 */ status = info->zs_channel->control; udelay(5); /* Clear status condition... */ info->zs_channel->control = RES_EXT_INT; udelay(5); #if 0 if(status & DCD) { if((info->tty->termios->c_cflag & CRTSCTS) && ((info->curregs[3] & AUTO_ENAB)==0)) { info->curregs[3] |= AUTO_ENAB; write_zsreg(info->zs_channel, 3, info->curregs[3]); } } else { if((info->curregs[3] & AUTO_ENAB)) { info->curregs[3] &= ~AUTO_ENAB; write_zsreg(info->zs_channel, 3, info->curregs[3]); } } #endif /* Whee, if this is console input and this is a * 'break asserted' status change interrupt, call * the boot prom. */ if((status & BRK_ABRT) && info->break_abort) batten_down_hatches(); /* XXX Whee, put in a buffer somewhere, the status information * XXX whee whee whee... Where does the information go... */ return; } static _INLINE_ void special_receive(struct sun_serial *info) { struct tty_struct *tty = info->tty; unsigned char ch, stat; stat = read_zsreg(info->zs_channel, R1); if (stat & (PAR_ERR | Rx_OVR | CRC_ERR)) { ch = info->zs_channel->data; udelay(5); } if (!tty) goto clear; if (tty->flip.count >= TTY_FLIPBUF_SIZE) goto done; tty->flip.count++; if(stat & PAR_ERR) *tty->flip.flag_buf_ptr++ = TTY_PARITY; else if(stat & Rx_OVR) *tty->flip.flag_buf_ptr++ = TTY_OVERRUN; else if(stat & CRC_ERR) *tty->flip.flag_buf_ptr++ = TTY_FRAME; done: queue_task(&tty->flip.tqueue, &tq_timer); clear: info->zs_channel->control = ERR_RES; udelay(5); } /* * This is the serial driver's generic interrupt routine */ void zs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct sun_serial *info; unsigned char zs_intreg; int i; info = (struct sun_serial *)dev_id; for (i = 0; i < NUM_SERIAL; i++) { zs_intreg = read_zsreg(info->zs_next->zs_channel, 2); zs_intreg &= STATUS_MASK; /* NOTE: The read register 2, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the B * channel and is only valid when read from channel B. * When read from channel A, read register 2 contains * the value written to write register 2. */ /* Channel A -- /dev/ttya or /dev/kbd, could be the console */ if (zs_intreg == CHA_Rx_AVAIL) { receive_chars(info, regs); return; } if(zs_intreg == CHA_Tx_EMPTY) { transmit_chars(info); return; } if (zs_intreg == CHA_EXT_STAT) { status_handle(info); return; } if (zs_intreg == CHA_SPECIAL) { special_receive(info); return; } /* Channel B -- /dev/ttyb or /dev/mouse, could be the console */ if(zs_intreg == CHB_Rx_AVAIL) { receive_chars(info->zs_next, regs); return; } if(zs_intreg == CHB_Tx_EMPTY) { transmit_chars(info->zs_next); return; } if (zs_intreg == CHB_EXT_STAT) { status_handle(info->zs_next); return; } /* NOTE: The default value for the IRQ status in read register * 2 in channel B is CHB_SPECIAL, so we need to look at * read register 3 in channel A to check if this is a * real interrupt, or just the default value. * Yes... broken hardware... */ zs_intreg = read_zsreg(info->zs_channel, 3); if (zs_intreg & CHBRxIP) { special_receive(info->zs_next); return; } info = info->zs_next->zs_next; } } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * zs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using zs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct sun_serial *info = (struct sun_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> zs_hangup() * */ static void do_serial_hangup(void *private_) { struct sun_serial *info = (struct sun_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; #ifdef SERIAL_DEBUG_OPEN printk("do_serial_hangup<%p: tty-%d\n", __builtin_return_address(0), info->line); #endif tty_hangup(tty); } /* * This subroutine is called when the RS_TIMER goes off. It is used * by the serial driver to handle ports that do not have an interrupt * (irq=0). This doesn't work at all for 16450's, as a sun has a Z8530. */ static void zs_timer(void) { printk("zs_timer called\n"); prom_halt(); return; } static int startup(struct sun_serial * info) { unsigned long flags; if (info->flags & ZILOG_INITIALIZED) return 0; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_free_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } save_flags(flags); cli(); #ifdef SERIAL_DEBUG_OPEN printk("Starting up tty-%d (irq %d)...\n", info->line, info->irq); #endif /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ ZS_CLEARFIFO(info->zs_channel); info->xmit_fifo_size = 1; /* * Clear the interrupt registers. */ info->zs_channel->control = ERR_RES; udelay(5); info->zs_channel->control = RES_H_IUS; udelay(5); /* * Now, initialize the Zilog */ zs_rtsdtr(info, 1); /* * Finally, enable sequencing and interrupts */ info->curregs[1] |= (info->curregs[1] & ~(RxINT_MASK)) | (EXT_INT_ENAB | INT_ALL_Rx); info->curregs[3] |= (RxENAB | Rx8); /* We enable Tx interrupts as needed. */ info->curregs[5] |= (TxENAB | Tx8); info->curregs[9] |= (NV | MIE); write_zsreg(info->zs_channel, 3, info->curregs[3]); write_zsreg(info->zs_channel, 5, info->curregs[5]); write_zsreg(info->zs_channel, 9, info->curregs[9]); /* * And clear the interrupt registers again for luck. */ info->zs_channel->control = ERR_RES; udelay(5); info->zs_channel->control = RES_H_IUS; udelay(5); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set up serial timers... */ #if 0 /* Works well and stops the machine. */ timer_table[RS_TIMER].expires = jiffies + 2; timer_active |= 1 << RS_TIMER; #endif /* * and set the speed of the serial port */ change_speed(info); info->flags |= ZILOG_INITIALIZED; restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct sun_serial * info) { unsigned long flags; if (!(info->flags & ZILOG_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ZILOG_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct sun_serial *info) { unsigned short port; unsigned cflag; int quot = 0; int i; int brg; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!(port = info->port)) return; i = cflag & CBAUD; if (cflag & CBAUDEX) { i &= ~CBAUDEX; if (i != 5) info->tty->termios->c_cflag &= ~CBAUDEX; else i = 16; } if (i == 15) { if ((info->flags & ZILOG_SPD_MASK) == ZILOG_SPD_HI) i += 1; if ((info->flags & ZILOG_SPD_MASK) == ZILOG_SPD_CUST) quot = info->custom_divisor; } if (quot) { info->zs_baud = info->baud_base / quot; info->clk_divisor = 16; info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRSRC | BRENAB; zs_rtsdtr(info, 1); } else if (baud_table[i]) { info->zs_baud = baud_table[i]; info->clk_divisor = 16; info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRSRC | BRENAB; zs_rtsdtr(info, 1); } else { zs_rtsdtr(info, 0); return; } /* byte size and parity */ switch (cflag & CSIZE) { case CS5: info->curregs[3] &= ~(RxN_MASK); info->curregs[3] |= Rx5; info->curregs[5] &= ~(TxN_MASK); info->curregs[5] |= Tx5; info->parity_mask = 0x1f; break; case CS6: info->curregs[3] &= ~(RxN_MASK); info->curregs[3] |= Rx6; info->curregs[5] &= ~(TxN_MASK); info->curregs[5] |= Tx6; info->parity_mask = 0x3f; break; case CS7: info->curregs[3] &= ~(RxN_MASK); info->curregs[3] |= Rx7; info->curregs[5] &= ~(TxN_MASK); info->curregs[5] |= Tx7; info->parity_mask = 0x7f; break; case CS8: default: /* defaults to 8 bits */ info->curregs[3] &= ~(RxN_MASK); info->curregs[3] |= Rx8; info->curregs[5] &= ~(TxN_MASK); info->curregs[5] |= Tx8; info->parity_mask = 0xff; break; } info->curregs[4] &= ~(0x0c); if (cflag & CSTOPB) { info->curregs[4] |= SB2; } else { info->curregs[4] |= SB1; } if (cflag & PARENB) { info->curregs[4] |= PAR_ENAB; } else { info->curregs[4] &= ~PAR_ENAB; } if (!(cflag & PARODD)) { info->curregs[4] |= PAR_EVEN; } else { info->curregs[4] &= ~PAR_EVEN; } /* Load up the new values */ load_zsregs(info, info->curregs); return; } /* This is for mouse/keyboard output. * XXX mouse output??? can we send it commands??? XXX */ static void kbd_put_char(unsigned char ch) { struct sun_zschannel *chan = zs_kbdchan; unsigned long flags; if(!chan) return; save_flags(flags); cli(); zs_put_char(chan, ch); restore_flags(flags); } void mouse_put_char(char ch) { struct sun_zschannel *chan = zs_mousechan; unsigned long flags; if(!chan) return; save_flags(flags); cli(); zs_put_char(chan, ch); restore_flags(flags); } /* This is for console output over ttya/ttyb */ static void zs_cons_put_char(char ch) { struct sun_zschannel *chan = zs_conschan; unsigned long flags; if(!chan) return; save_flags(flags); cli(); zs_put_char(chan, ch); restore_flags(flags); } /* These are for receiving and sending characters under the kgdb * source level kernel debugger. */ void putDebugChar(char kgdb_char) { struct sun_zschannel *chan = zs_kgdbchan; while((chan->control & Tx_BUF_EMP)==0) udelay(5); chan->data = kgdb_char; } char getDebugChar(void) { struct sun_zschannel *chan = zs_kgdbchan; while((chan->control & Rx_CH_AV)==0) barrier(); return chan->data; } /* * Fair output driver allows a process to speak. */ static void zs_fair_output(void) { int left; /* Output no more than that */ unsigned long flags; struct sun_serial *info = zs_consinfo; char c; if (info == 0) return; if (info->xmit_buf == 0) return; save_flags(flags); cli(); left = info->xmit_cnt; while (left != 0) { c = info->xmit_buf[info->xmit_tail]; info->xmit_tail = (info->xmit_tail+1) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; restore_flags(flags); zs_cons_put_char(c); cli(); left = MIN(info->xmit_cnt, left-1); } /* Last character is being transmitted now (hopefully). */ zs_conschan->control = RES_Tx_P; udelay(5); restore_flags(flags); return; } /* * zs_console_print is registered for printk. */ static void zs_console_print(const char *s, unsigned count) { int i; for (i = 0; i < count; i++, s++) { if(*s == '\n') zs_cons_put_char('\r'); zs_cons_put_char(*s); } /* Comment this if you want to have a strict interrupt-driven output */ zs_fair_output(); } static void zs_console_wait_key(void) { sleep_on(&keypress_wait); } static int zs_console_device(void) { extern int serial_console; return MKDEV(TTYAUX_MAJOR, 64 + serial_console - 1); } static void zs_flush_chars(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "zs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; /* Enable transmitter */ save_flags(flags); cli(); info->curregs[1] |= TxINT_ENAB|EXT_INT_ENAB; write_zsreg(info->zs_channel, 1, info->curregs[1]); info->curregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); /* * Send a first (bootstrapping) character. A best solution is * to call transmit_chars() here which handles output in a * generic way. Current transmit_chars() not only transmits, * but resets interrupts also what we do not desire here. * XXX Discuss with David. */ zs_put_char(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; restore_flags(flags); } static int zs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, total = 0; struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "zs_write")) return 0; if (!info || !info->xmit_buf) return 0; save_flags(flags); while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; if (from_user) { down(&tmp_buf_sem); copy_from_user(tmp_buf, buf, c); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); up(&tmp_buf_sem); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; total += c; } if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped) { /* Enable transmitter */ info->curregs[1] |= TxINT_ENAB|EXT_INT_ENAB; write_zsreg(info->zs_channel, 1, info->curregs[1]); info->curregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } #if 1 if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped) { zs_put_char(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; } #endif restore_flags(flags); return total; } static int zs_write_room(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "zs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int zs_chars_in_buffer(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "zs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void zs_flush_buffer(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "zs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * zs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void zs_throttle(struct tty_struct * tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "zs_throttle")) return; if (I_IXOFF(tty)) info->x_char = STOP_CHAR(tty); /* Turn off RTS line */ cli(); info->curregs[5] &= ~RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } static void zs_unthrottle(struct tty_struct * tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "zs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else info->x_char = START_CHAR(tty); } /* Assert RTS line */ cli(); info->curregs[5] |= RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } /* * ------------------------------------------------------------ * zs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct sun_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; copy_to_user_ret(retinfo,&tmp,sizeof(*retinfo), -EFAULT); return 0; } static int set_serial_info(struct sun_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct sun_serial old_info; int retval = 0; if (!new_info || copy_from_user(&new_serial,new_info,sizeof(new_serial))) return -EFAULT; old_info = *info; if (!suser()) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ZILOG_USR_MASK) != (info->flags & ~ZILOG_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ZILOG_USR_MASK) | (new_serial.flags & ZILOG_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ZILOG_FLAGS) | (new_serial.flags & ZILOG_FLAGS)); info->custom_divisor = new_serial.custom_divisor; info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct sun_serial * info, unsigned int *value) { unsigned char status; cli(); status = info->zs_channel->control; sti(); put_user_ret(status,value, -EFAULT); return 0; } static int get_modem_info(struct sun_serial * info, unsigned int *value) { unsigned char status; unsigned int result; cli(); status = info->zs_channel->control; sti(); result = ((info->curregs[5] & RTS) ? TIOCM_RTS : 0) | ((info->curregs[5] & DTR) ? TIOCM_DTR : 0) | ((status & DCD) ? TIOCM_CAR : 0) | ((status & SYNC) ? TIOCM_DSR : 0) | ((status & CTS) ? TIOCM_CTS : 0); put_user_ret(result, value, -EFAULT); return 0; } static int set_modem_info(struct sun_serial * info, unsigned int cmd, unsigned int *value) { unsigned int arg; get_user_ret(arg, value, -EFAULT); switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) info->curregs[5] |= RTS; if (arg & TIOCM_DTR) info->curregs[5] |= DTR; break; case TIOCMBIC: if (arg & TIOCM_RTS) info->curregs[5] &= ~RTS; if (arg & TIOCM_DTR) info->curregs[5] &= ~DTR; break; case TIOCMSET: info->curregs[5] = ((info->curregs[5] & ~(RTS | DTR)) | ((arg & TIOCM_RTS) ? RTS : 0) | ((arg & TIOCM_DTR) ? DTR : 0)); break; default: return -EINVAL; } cli(); write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); return 0; } /* * This routine sends a break character out the serial port. */ static void send_break( struct sun_serial * info, int duration) { if (!info->port) return; current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + duration; cli(); write_zsreg(info->zs_channel, 5, (info->curregs[5] | SND_BRK)); schedule(); write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } static int zs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct sun_serial * info = (struct sun_serial *)tty->driver_data; int retval; if (serial_paranoia_check(info, tty->device, "zs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (!arg) send_break(info, HZ/4); /* 1/4 second */ return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); send_break(info, arg ? arg*(HZ/10) : HZ/4); return 0; case TIOCGSOFTCAR: put_user_ret(C_CLOCAL(tty) ? 1 : 0, (unsigned long *) arg, -EFAULT); return 0; case TIOCSSOFTCAR: get_user_ret(arg, (unsigned long *) arg, -EFAULT); tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (arg ? CLOCAL : 0)); return 0; case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: copy_to_user_ret((struct sun_serial *) arg, info, sizeof(struct sun_serial), -EFAULT); return 0; default: return -ENOIOCTLCMD; } return 0; } static void zs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (tty->termios->c_cflag == old_termios->c_cflag) return; change_speed(info); if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; zs_start(tty); } } /* * ------------------------------------------------------------ * zs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * ZILOG structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void zs_close(struct tty_struct *tty, struct file * filp) { struct sun_serial * info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "zs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("zs_close tty-%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("zs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("zs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { restore_flags(flags); return; } info->flags |= ZILOG_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ZILOG_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ZILOG_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ /** if (!info->iscons) ... **/ info->curregs[3] &= ~RxENAB; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[1] &= ~(RxINT_MASK); write_zsreg(info->zs_channel, 1, info->curregs[1]); ZS_CLEARFIFO(info->zs_channel); shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (tty->ldisc.num != ldiscs[N_TTY].num) { if (tty->ldisc.close) (tty->ldisc.close)(tty); tty->ldisc = ldiscs[N_TTY]; tty->termios->c_line = N_TTY; if (tty->ldisc.open) (tty->ldisc.open)(tty); } if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE| ZILOG_CLOSING); wake_up_interruptible(&info->close_wait); #ifdef SERIAL_DEBUG_OPEN printk("zs_close tty-%d exiting, count = %d\n", info->line, info->count); #endif restore_flags(flags); } /* * zs_hangup() --- called by tty_hangup() when a hangup is signaled. */ void zs_hangup(struct tty_struct *tty) { struct sun_serial * info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "zs_hangup")) return; #ifdef SERIAL_DEBUG_OPEN printk("zs_hangup<%p: tty-%d, count = %d bye\n", __builtin_return_address(0), info->line, info->count); #endif zs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * zs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct sun_serial *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; unsigned char r0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ZILOG_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ZILOG_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ZILOG_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ZILOG_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } if (info->flags & ZILOG_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * zs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif cli(); if(!tty_hung_up_p(filp)) info->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ZILOG_CALLOUT_ACTIVE)) zs_rtsdtr(info, 1); sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready hup-ed: ttys%d, count = %d\n", info->line, info->count); #endif #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } cli(); r0 = read_zsreg(info->zs_channel, R0); sti(); if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && !(info->flags & ZILOG_CLOSING) && (do_clocal || (DCD & r0))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its ZILOG structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ int zs_open(struct tty_struct *tty, struct file * filp) { struct sun_serial *info; int retval, line; line = MINOR(tty->device) - tty->driver.minor_start; /* The zilog lines for the mouse/keyboard must be * opened using their respective drivers. */ if ((line < 0) || (line >= NUM_CHANNELS)) return -ENODEV; if((line == KEYBOARD_LINE) || (line == MOUSE_LINE)) return -ENODEV; info = zs_soft + line; /* Is the kgdb running over this line? */ if (info->kgdb_channel) return -ENODEV; if (serial_paranoia_check(info, tty->device, "zs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("zs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif if (info->tty != 0 && info->tty != tty) { /* Never happen? */ printk("zs_open %s%d, tty overwrite.\n", tty->driver.name, info->line); return -EBUSY; } info->count++; tty->driver_data = info; info->tty = tty; /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("zs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ZILOG_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("zs_open ttys%d successful...", info->line); #endif return 0; } /* Finally, routines used to initialize the serial driver. */ static void show_serial_version(void) { char *revision = "$Revision: 1.3 $"; char *version, *p; version = strchr(revision, ' '); p = strchr(++version, ' '); *p = '\0'; printk("Sparc Zilog8530 serial driver version %s\n", version); *p = ' '; } /* Probe the PROM for the request zs chip number. * * Note: The Sun Voyager shows two addresses and two intr for it's * Zilogs, what the second does, I don't know. It does work * with using only the first number of each property. Also * we have a special version for sun4u. */ #ifdef __sparc_v9__ static struct devid_cookie zs_dcookie; static unsigned long zs_irq_flags; static struct sun_zslayout *get_zs(int chip) { unsigned int vaddr[2] = { 0, 0 }; int busnode, seen, zsnode, sun4u_ino; static int irq = 0; if(chip < 0 || chip >= NUM_SERIAL) panic("get_zs bogon zs chip number"); if(central_bus) busnode = central_bus->child->prom_node; else busnode = prom_searchsiblings(prom_getchild(prom_root_node), "sbus"); if(busnode == 0 || busnode == -1) panic("get_zs: no zs bus to search"); zsnode = prom_getchild(busnode); seen = 0; while(zsnode) { int slave; zsnode = prom_searchsiblings(zsnode, "zs"); slave = prom_getintdefault(zsnode, "slave", -1); if((slave == chip) || (seen == chip)) { int len = prom_getproperty(zsnode, "address", (void *) vaddr, sizeof(vaddr)); if(len % sizeof(unsigned int)) { prom_printf("WHOOPS: proplen for %s " "was %d, need multiple of " "%d\n", "address", len, sizeof(unsigned int)); panic("zilog: address property"); } zs_nodes[chip] = zsnode; len = prom_getproperty(zsnode, "interrupts", (char *) &sun4u_ino, (sizeof(sun4u_ino))); if(!irq) { irq = zilog_irq = sun4u_ino; /* Construct dcookie. */ if(central_bus) { zs_dcookie.imap = ¢ral_bus->child->fhc_regs.uregs->fhc_uart_imap; zs_dcookie.iclr = ¢ral_bus->child->fhc_regs.uregs->fhc_uart_iclr; zs_dcookie.pil = 12; zs_dcookie.bus_cookie = NULL; zs_irq_flags = (SA_DCOOKIE|SA_INTERRUPT|SA_STATIC_ALLOC|SA_FHC); } else { zs_dcookie.imap = zs_dcookie.iclr = NULL; zs_dcookie.pil = -1; zs_dcookie.bus_cookie = SBus_chain; zs_irq_flags = (SA_DCOOKIE|SA_INTERRUPT|SA_STATIC_ALLOC|SA_SBUS); } } else if(irq != sun4u_ino) { panic("zilog: bogon irqs"); } break; } zsnode = prom_getsibling(zsnode); seen++; } if(!zsnode) panic("get_zs: whee chip not found"); if(!vaddr[0]) panic("get_zs: whee no serial chip mappable"); return (struct sun_zslayout *)(unsigned long) vaddr[0]; } #else /* !(__sparc_v9__) */ static struct sun_zslayout *get_zs(int chip) { struct linux_prom_irqs tmp_irq[2]; unsigned int paddr = 0; unsigned int vaddr[2] = { 0, 0 }; int zsnode, tmpnode, iospace, slave, len, seen, sun4u_irq; static int irq = 0; #if CONFIG_AP1000 printk("No zs chip\n"); return NULL; #endif iospace = 0; if(chip < 0 || chip >= NUM_SERIAL) panic("get_zs bogon zs chip number"); if(sparc_cpu_model == sun4) { /* Grrr, these have to be hardcoded aieee */ switch(chip) { case 0: paddr = 0xf1000000; break; case 1: paddr = 0xf0000000; break; }; iospace = 0; zs_nodes[chip] = 0; if(!irq) zilog_irq = irq = 12; vaddr[0] = (unsigned long) sparc_alloc_io(paddr, 0, 8, "Zilog Serial", iospace, 0); } else { /* Can use the prom for other machine types */ zsnode = prom_getchild(prom_root_node); if (sparc_cpu_model == sun4d) { int board, node; tmpnode = zsnode; while (tmpnode && (tmpnode = prom_searchsiblings(tmpnode, "cpu-unit"))) { board = prom_getintdefault (tmpnode, "board#", -1); if (board == (chip >> 1)) { node = prom_getchild(tmpnode); if (node && (node = prom_searchsiblings(node, "bootbus"))) { zsnode = node; break; } } tmpnode = prom_getsibling(tmpnode); } if (!tmpnode) panic ("get_zs: couldn't find board%d's bootbus\n", chip >> 1); } else if (sparc_cpu_model == sun4u) { tmpnode = prom_searchsiblings(zsnode, "sbus"); if(tmpnode) zsnode = prom_getchild(tmpnode); } else { tmpnode = prom_searchsiblings(zsnode, "obio"); if(tmpnode) zsnode = prom_getchild(tmpnode); } if(!zsnode) panic("get_zs no zs serial prom node"); seen = 0; while(zsnode) { zsnode = prom_searchsiblings(zsnode, "zs"); slave = prom_getintdefault(zsnode, "slave", -1); if((slave == chip) || (sparc_cpu_model == sun4u && seen == chip)) { /* The one we want */ len = prom_getproperty(zsnode, "address", (void *) vaddr, sizeof(vaddr)); if (len % sizeof(unsigned int)) { prom_printf("WHOOPS: proplen for %s " "was %d, need multiple of " "%d\n", "address", len, sizeof(unsigned int)); panic("zilog: address property"); } zs_nodes[chip] = zsnode; if(sparc_cpu_model == sun4u) { len = prom_getproperty(zsnode, "interrupts", (char *) &sun4u_irq, sizeof(tmp_irq)); tmp_irq[0].pri = sun4u_irq; } else { len = prom_getproperty(zsnode, "intr", (char *) tmp_irq, sizeof(tmp_irq)); if (len % sizeof(struct linux_prom_irqs)) { prom_printf( "WHOOPS: proplen for %s " "was %d, need multiple of " "%d\n", "address", len, sizeof(struct linux_prom_irqs)); panic("zilog: address property"); } } if(!irq) { irq = zilog_irq = tmp_irq[0].pri; } else { if(tmp_irq[0].pri != irq) panic("zilog: bogon irqs"); } break; } zsnode = prom_getsibling(zsnode); seen++; } if(!zsnode) panic("get_zs whee chip not found"); } if(!vaddr[0]) panic("get_zs whee no serial chip mappable"); return (struct sun_zslayout *)(unsigned long) vaddr[0]; } #endif static inline void init_zscons_termios(struct termios *termios) { char mode[16], buf[16]; char *mode_prop = "ttyX-mode"; char *cd_prop = "ttyX-ignore-cd"; char *dtr_prop = "ttyX-rts-dtr-off"; char *s; int baud, bits, cflag; char parity; int topnd, nd; int channel, stop; int carrier = 0; int rtsdtr = 1; extern int serial_console; if (!serial_console) return; if (serial_console == 1) { mode_prop[3] = 'a'; cd_prop[3] = 'a'; dtr_prop[3] = 'a'; } else { mode_prop[3] = 'b'; cd_prop[3] = 'b'; dtr_prop[3] = 'b'; } topnd = prom_getchild(prom_root_node); nd = prom_searchsiblings(topnd, "options"); if (!nd) { strcpy(mode, "9600,8,n,1,-"); goto no_options; } if (!prom_node_has_property(nd, mode_prop)) { strcpy(mode, "9600,8,n,1,-"); goto no_options; } memset(mode, 0, sizeof(mode)); prom_getstring(nd, mode_prop, mode, sizeof(mode)); if (prom_node_has_property(nd, cd_prop)) { memset(buf, 0, sizeof(buf)); prom_getstring(nd, cd_prop, buf, sizeof(buf)); if (!strcmp(buf, "false")) carrier = 1; /* XXX this is unused below. */ } if (prom_node_has_property(nd, cd_prop)) { memset(buf, 0, sizeof(buf)); prom_getstring(nd, cd_prop, buf, sizeof(buf)); if (!strcmp(buf, "false")) rtsdtr = 0; /* XXX this is unused below. */ } no_options: cflag = CREAD | HUPCL | CLOCAL; s = mode; baud = simple_strtoul(s, 0, 0); s = strchr(s, ','); bits = simple_strtoul(++s, 0, 0); s = strchr(s, ','); parity = *(++s); s = strchr(s, ','); stop = simple_strtoul(++s, 0, 0); s = strchr(s, ','); /* XXX handshake is not handled here. */ for (channel = 0; channel < NUM_CHANNELS; channel++) if (zs_soft[channel].is_cons) break; switch (baud) { case 150: cflag |= B150; break; case 300: cflag |= B300; break; case 600: cflag |= B600; break; case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; default: baud = 9600; case 9600: cflag |= B9600; break; case 19200: cflag |= B19200; break; case 38400: cflag |= B38400; break; } zs_soft[channel].zs_baud = baud; switch (bits) { case 5: zscons_regs[3] = Rx5 | RxENAB; zscons_regs[5] = Tx5 | TxENAB; zs_soft[channel].parity_mask = 0x1f; cflag |= CS5; break; case 6: zscons_regs[3] = Rx6 | RxENAB; zscons_regs[5] = Tx6 | TxENAB; zs_soft[channel].parity_mask = 0x3f; cflag |= CS6; break; case 7: zscons_regs[3] = Rx7 | RxENAB; zscons_regs[5] = Tx7 | TxENAB; zs_soft[channel].parity_mask = 0x7f; cflag |= CS7; break; default: case 8: zscons_regs[3] = Rx8 | RxENAB; zscons_regs[5] = Tx8 | TxENAB; zs_soft[channel].parity_mask = 0xff; cflag |= CS8; break; } zscons_regs[5] |= DTR; switch (parity) { case 'o': zscons_regs[4] |= PAR_ENAB; cflag |= (PARENB | PARODD); break; case 'e': zscons_regs[4] |= (PAR_ENAB | PAR_EVEN); cflag |= PARENB; break; default: case 'n': break; } switch (stop) { default: case 1: zscons_regs[4] |= SB1; break; case 2: cflag |= CSTOPB; zscons_regs[4] |= SB2; break; } termios->c_cflag = cflag; } __initfunc(static void serial_finish_init(void (*printfunc)(const char *, unsigned))) { extern unsigned char *linux_serial_image; char buffer[2048]; sprintf (buffer, linux_serial_image, UTS_RELEASE); (*printfunc)(buffer, strlen(buffer)); } static inline void zs_cons_check(struct sun_serial *ss, int channel) { int i, o, io; static int consout_registered = 0; static int msg_printed = 0; static struct console console = { zs_console_print, 0, zs_console_wait_key, zs_console_device }; i = o = io = 0; /* Is this one of the serial console lines? */ if((zs_cons_chanout != channel) && (zs_cons_chanin != channel)) return; zs_conschan = ss->zs_channel; zs_consinfo = ss; /* Register the console output putchar, if necessary */ if((zs_cons_chanout == channel)) { o = 1; /* double whee.. */ if(!consout_registered) { serial_finish_init (zs_console_print); register_console(&console); consout_registered = 1; } } /* If this is console input, we handle the break received * status interrupt on this line to mean prom_halt(). */ if(zs_cons_chanin == channel) { ss->break_abort = 1; i = 1; } if(o && i) io = 1; /* Set flag variable for this port so that it cannot be * opened for other uses by accident. */ ss->is_cons = 1; if(io) { if(!msg_printed) { printk("zs%d: console I/O\n", ((channel>>1)&1)); msg_printed = 1; } } else { printk("zs%d: console %s\n", ((channel>>1)&1), (i==1 ? "input" : (o==1 ? "output" : "WEIRD"))); } } /* This is for the auto baud rate detection in the mouse driver. */ void zs_change_mouse_baud(int newbaud) { int channel = MOUSE_LINE; int brg; zs_soft[channel].zs_baud = newbaud; brg = BPS_TO_BRG(zs_soft[channel].zs_baud, (ZS_CLOCK / zs_soft[channel].clk_divisor)); write_zsreg(zs_soft[channel].zs_channel, R12, (brg & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R13, ((brg >> 8) & 0xff)); } __initfunc(int zs_probe (unsigned long *memory_start)) { char *p; int node; int i; if(sparc_cpu_model == sun4) goto no_probe; node = prom_getchild(prom_root_node); if (sparc_cpu_model == sun4d) { node = prom_searchsiblings(node, "boards"); NUM_SERIAL = 0; if (!node) panic ("Cannot find out count of boards"); else node = prom_getchild(node); while (node && (node = prom_searchsiblings(node, "bif"))) { NUM_SERIAL += 2; node = prom_getsibling(node); } goto no_probe; } else if (sparc_cpu_model == sun4u) { node = prom_searchsiblings(node, "sbus"); if(node) node = prom_getchild(node); if(!node) return -ENODEV; } else { node = prom_searchsiblings(node, "obio"); if(node) node = prom_getchild(node); goto no_probe; } node = prom_searchsiblings(node, "zs"); if (!node) return -ENODEV; no_probe: p = (char *)((*memory_start + 7) & ~7); zs_chips = (struct sun_zslayout **)(p); i = NUM_SERIAL * sizeof (struct sun_zslayout *); zs_channels = (struct sun_zschannel **)(p + i); i += NUM_CHANNELS * sizeof (struct sun_zschannel *); zs_nodes = (int *)(p + i); i += NUM_SERIAL * sizeof (int); zs_soft = (struct sun_serial *)(p + i); i += NUM_CHANNELS * sizeof (struct sun_serial); zs_ttys = (struct tty_struct *)(p + i); i += NUM_CHANNELS * sizeof (struct tty_struct); serial_table = (struct tty_struct **)(p + i); i += NUM_CHANNELS * sizeof (struct tty_struct *); serial_termios = (struct termios **)(p + i); i += NUM_CHANNELS * sizeof (struct termios *); serial_termios_locked = (struct termios **)(p + i); i += NUM_CHANNELS * sizeof (struct termios *); memset (p, 0, i); *memory_start = (((unsigned long)p) + i + 7) & ~7; /* Fill in rs_ops struct... */ sunserial_setinitfunc(memory_start, zs_init); rs_ops.rs_cons_hook = zs_cons_hook; rs_ops.rs_kgdb_hook = zs_kgdb_hook; rs_ops.rs_change_mouse_baud = zs_change_mouse_baud; return 0; } __initfunc(int zs_init(void)) { int chip, channel, brg, i; unsigned long flags; struct sun_serial *info; char dummy; #if CONFIG_AP1000 printk("not doing zs_init()\n"); return 0; #endif #ifdef CONFIG_PCI if (prom_searchsiblings(prom_getchild(prom_root_node), "pci")) return 0; #endif /* Setup base handler, and timer table. */ init_bh(SERIAL_BH, do_serial_bh); timer_table[RS_TIMER].fn = zs_timer; timer_table[RS_TIMER].expires = 0; show_serial_version(); /* Initialize the tty_driver structure */ /* SPARC: Not all of this is exactly right for us. */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.driver_name = "serial"; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NUM_CHANNELS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = zs_open; serial_driver.close = zs_close; serial_driver.write = zs_write; serial_driver.flush_chars = zs_flush_chars; serial_driver.write_room = zs_write_room; serial_driver.chars_in_buffer = zs_chars_in_buffer; serial_driver.flush_buffer = zs_flush_buffer; serial_driver.ioctl = zs_ioctl; serial_driver.throttle = zs_throttle; serial_driver.unthrottle = zs_unthrottle; serial_driver.set_termios = zs_set_termios; serial_driver.stop = zs_stop; serial_driver.start = zs_start; serial_driver.hangup = zs_hangup; /* I'm too lazy, someone write versions of this for us. -DaveM */ serial_driver.read_proc = 0; serial_driver.proc_entry = 0; init_zscons_termios(&serial_driver.init_termios); /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); save_flags(flags); cli(); /* Set up our interrupt linked list */ zs_chain = &zs_soft[0]; for(channel = 0; channel < NUM_CHANNELS - 1; channel++) zs_soft[channel].zs_next = &zs_soft[channel + 1]; zs_soft[channel + 1].zs_next = 0; /* Initialize Softinfo */ for(chip = 0; chip < NUM_SERIAL; chip++) { /* If we are doing kgdb over one of the channels on * chip zero, kgdb_channel will be set to 1 by the * zs_kgdb_hook() routine below. */ if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; zs_soft[(chip*2)].kgdb_channel = 0; zs_soft[(chip*2)+1].kgdb_channel = 0; } /* First, set up channel A on this chip. */ channel = chip * 2; zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; zs_soft[channel].cons_keyb = 0; zs_soft[channel].cons_mouse = 0; zs_soft[channel].channelA = 1; /* Now, channel B */ channel++; zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; zs_soft[channel].cons_keyb = 0; zs_soft[channel].cons_mouse = 0; zs_soft[channel].channelA = 0; } /* Initialize Hardware */ for(channel = 0; channel < NUM_CHANNELS; channel++) { /* Hardware reset each chip */ if (!(channel & 1)) { write_zsreg(zs_soft[channel].zs_channel, R9, FHWRES); udelay(20); /* wait for some old sun4's */ dummy = read_zsreg(zs_soft[channel].zs_channel, R0); } if(channel == KEYBOARD_LINE) { zs_soft[channel].cons_keyb = 1; zs_soft[channel].parity_mask = 0xff; zs_kbdchan = zs_soft[channel].zs_channel; write_zsreg(zs_soft[channel].zs_channel, R4, (PAR_EVEN | X16CLK | SB1)); write_zsreg(zs_soft[channel].zs_channel, R3, Rx8); write_zsreg(zs_soft[channel].zs_channel, R5, Tx8); write_zsreg(zs_soft[channel].zs_channel, R9, NV); write_zsreg(zs_soft[channel].zs_channel, R10, NRZ); write_zsreg(zs_soft[channel].zs_channel, R11, (TCBR | RCBR)); zs_soft[channel].zs_baud = 1200; brg = BPS_TO_BRG(zs_soft[channel].zs_baud, ZS_CLOCK/zs_soft[channel].clk_divisor); write_zsreg(zs_soft[channel].zs_channel, R12, (brg & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R13, ((brg >> 8) & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R14, BRSRC); /* Enable Rx/Tx, IRQs, and inform kbd driver */ write_zsreg(zs_soft[channel].zs_channel, R14, (BRSRC | BRENAB)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8 | RxENAB)); write_zsreg(zs_soft[channel].zs_channel, R5, (Tx8 | TxENAB | DTR | RTS)); write_zsreg(zs_soft[channel].zs_channel, R15, (DCDIE | CTSIE | TxUIE | BRKIE)); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); ZS_CLEARERR(zs_soft[channel].zs_channel); ZS_CLEARFIFO(zs_soft[channel].zs_channel); } else if(channel == MOUSE_LINE) { zs_soft[channel].cons_mouse = 1; zs_soft[channel].parity_mask = 0xff; zs_mousechan = zs_soft[channel].zs_channel; write_zsreg(zs_soft[channel].zs_channel, R4, (PAR_EVEN | X16CLK | SB1)); write_zsreg(zs_soft[channel].zs_channel, R3, Rx8); write_zsreg(zs_soft[channel].zs_channel, R5, Tx8); write_zsreg(zs_soft[channel].zs_channel, R9, NV); write_zsreg(zs_soft[channel].zs_channel, R10, NRZ); write_zsreg(zs_soft[channel].zs_channel, R11, (TCBR | RCBR)); zs_soft[channel].zs_baud = 4800; brg = BPS_TO_BRG(zs_soft[channel].zs_baud, ZS_CLOCK/zs_soft[channel].clk_divisor); write_zsreg(zs_soft[channel].zs_channel, R12, (brg & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R13, ((brg >> 8) & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R14, BRSRC); /* Enable Rx, IRQs, and inform mouse driver */ write_zsreg(zs_soft[channel].zs_channel, R14, (BRSRC | BRENAB)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8 | RxENAB)); write_zsreg(zs_soft[channel].zs_channel, R5, Tx8); write_zsreg(zs_soft[channel].zs_channel, R15, (DCDIE | CTSIE | TxUIE | BRKIE)); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); sun_mouse_zsinit(); } else if (zs_soft[channel].is_cons) { brg = BPS_TO_BRG(zs_soft[channel].zs_baud, ZS_CLOCK/zs_soft[channel].clk_divisor); zscons_regs[12] = brg & 0xff; zscons_regs[13] = (brg >> 8) & 0xff; memcpy(zs_soft[channel].curregs, zscons_regs, sizeof(zscons_regs)); load_zsregs(&zs_soft[channel], zscons_regs); ZS_CLEARERR(zs_soft[channel].zs_channel); ZS_CLEARFIFO(zs_soft[channel].zs_channel); } else if (zs_soft[channel].kgdb_channel) { /* If this is the kgdb line, enable interrupts because * we now want to receive the 'control-c' character * from the client attached to us asynchronously. */ zs_soft[channel].parity_mask = 0xff; kgdb_chaninit(&zs_soft[channel], 1, zs_soft[channel].zs_baud); } else { zs_soft[channel].parity_mask = 0xff; write_zsreg(zs_soft[channel].zs_channel, R4, (PAR_EVEN | X16CLK | SB1)); write_zsreg(zs_soft[channel].zs_channel, R3, Rx8); write_zsreg(zs_soft[channel].zs_channel, R5, Tx8); write_zsreg(zs_soft[channel].zs_channel, R9, NV); write_zsreg(zs_soft[channel].zs_channel, R10, NRZ); write_zsreg(zs_soft[channel].zs_channel, R11, (RCBR | TCBR)); zs_soft[channel].zs_baud = 9600; brg = BPS_TO_BRG(zs_soft[channel].zs_baud, ZS_CLOCK/zs_soft[channel].clk_divisor); write_zsreg(zs_soft[channel].zs_channel, R12, (brg & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R13, ((brg >> 8) & 0xff)); write_zsreg(zs_soft[channel].zs_channel, R14, BRSRC); write_zsreg(zs_soft[channel].zs_channel, R14, (BRSRC | BRENAB)); write_zsreg(zs_soft[channel].zs_channel, R3, Rx8); write_zsreg(zs_soft[channel].zs_channel, R5, Tx8); write_zsreg(zs_soft[channel].zs_channel, R15, DCDIE); write_zsreg(zs_soft[channel].zs_channel, R9, NV | MIE); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); write_zsreg(zs_soft[channel].zs_channel, R0, RES_EXT_INT); } } for (info = zs_chain, i=0; info; info = info->zs_next, i++) { info->magic = SERIAL_MAGIC; info->port = (long) info->zs_channel; info->line = i; info->tty = 0; info->irq = zilog_irq; info->custom_divisor = 16; info->close_delay = 50; info->closing_wait = 3000; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->callout_termios = callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; info->open_wait = 0; info->close_wait = 0; printk("tty%02d at 0x%04x (irq = %d)", info->line, info->port, info->irq); printk(" is a Zilog8530\n"); } #ifndef __sparc_v9__ if (request_irq(zilog_irq, zs_interrupt, (SA_INTERRUPT | SA_STATIC_ALLOC), "Zilog8530", zs_chain)) panic("Unable to attach zs intr\n"); #else zs_dcookie.real_dev_id = zs_chain; if (request_irq(zilog_irq, zs_interrupt, zs_irq_flags, "Zilog8530", &zs_dcookie)) panic("Unable to attach zs intr\n"); #endif restore_flags(flags); keyboard_zsinit(kbd_put_char); return 0; } /* Hooks for running a serial console. con_init() calls this if the * console is being run over one of the ttya/ttyb serial ports. * 'chip' should be zero, as chip 1 drives the mouse/keyboard. * 'channel' is decoded as 0=TTYA 1=TTYB, note that the channels * are addressed backwards, channel B is first, then channel A. */ void zs_cons_hook(int chip, int out, int line) { int channel; #ifdef CONFIG_PCI if (prom_searchsiblings(prom_getchild(prom_root_node), "pci")) return; #endif if(chip) panic("zs_cons_hook called with chip not zero"); if(line != 1 && line != 2) panic("zs_cons_hook called with line not ttya or ttyb"); channel = line - 1; if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; } zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; if(out) zs_cons_chanout = ((chip * 2) + channel); else zs_cons_chanin = ((chip * 2) + channel); zs_cons_check(&zs_soft[channel], channel); } /* This is called at boot time to prime the kgdb serial debugging * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 * for /dev/ttyb which is determined in setup_arch() from the * boot command line flags. */ void zs_kgdb_hook(int tty_num) { int chip = 0; if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; } zs_soft[tty_num].zs_channel = zs_channels[tty_num]; zs_kgdbchan = zs_soft[tty_num].zs_channel; zs_soft[tty_num].change_needed = 0; zs_soft[tty_num].clk_divisor = 16; zs_soft[tty_num].zs_baud = 9600; zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */ zs_soft[tty_num ^ 1].kgdb_channel = 0; /* This does not */ /* Turn on transmitter/receiver at 8-bits/char */ kgdb_chaninit(&zs_soft[tty_num], 0, 9600); ZS_CLEARERR(zs_kgdbchan); ZS_CLEARFIFO(zs_kgdbchan); }