/* $Id: advansys.c,v 1.49 1998/01/22 20:19:25 bobf Exp bobf $ */ #define ASC_VERSION "3.1D" /* AdvanSys Driver Version */ /* * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-1998 Advanced System Products, Inc. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. * * There is an AdvanSys Linux WWW page at: * http://www.advansys.com/linux.html * * The latest version of the AdvanSys driver is available at: * ftp://ftp.advansys.com/pub/linux/linux.tgz * * Please send questions, comments, bug reports to: * bobf@advansys.com (Bob Frey) */ /* Documentation for the AdvanSys Driver A. Linux Kernel Testing B. Adapters Supported by this Driver C. Linux v1.2.X - Directions for Adding the AdvanSys Driver D. Linux v1.3.1 - v1.3.57 - Directions for Adding the AdvanSys Driver E. Linux v1.3.58 and Newer - Upgrading the AdvanSys Driver F. Source Comments G. Driver Compile Time Options and Debugging H. Driver LILO Option I. Release History J. Known Problems or Issues K. Credits L. AdvanSys Contact Information A. Linux Kernel Testing This driver has been tested in the following Linux kernels: v1.2.13, v1.3.57, v2.0.33, v2.1.77. These kernel versions are major releases of Linux or the latest Linux kernel versions available when this version of the driver was released. The driver should also work in earlier versions of the Linux kernel. Beginning with v1.3.58 the AdvanSys driver is included with all Linux kernels. Please refer to sections C, D, and E for instructions on adding or upgrading the AdvanSys driver. B. Adapters Supported by this Driver AdvanSys (Advanced System Products, Inc.) manufactures the following RISC-based, Bus-Mastering, Fast (10 Mhz) and Ultra (20 Mhz) Narrow (8-bit transfer) SCSI Host Adapters for the ISA, EISA, VL, and PCI buses and RISC-based, Bus-Mastering, Ultra (20 Mhz) Wide (16-bit transfer) SCSI Host Adapters for the PCI bus. The CDB counts below indicate the number of SCSI CDB (Command Descriptor Block) requests that can be stored in the RISC chip cache and board LRAM. A CDB is a single SCSI command. The driver detect routine will display the number of CDBs available for each adapter detected. The number of CDBs used by the driver can be lowered in the BIOS by changing the 'Host Queue Size' adapter setting. Connectivity Products: ABP510/5150 - Bus-Master ISA (240 CDB) (Footnote 1) ABP5140 - Bus-Master ISA PnP (16 CDB) (Footnote 1, 3) ABP5142 - Bus-Master ISA PnP with floppy (16 CDB) (Footnote 4) ABP920 - Bus-Master PCI (16 CDB) ABP930 - Bus-Master PCI (16 CDB) (Footnote 5) ABP930U - Bus-Master PCI Ultra (16 CDB) ABP930UA - Bus-Master PCI Ultra (16 CDB) ABP960 - Bus-Master PCI MAC/PC (16 CDB) (Footnote 2) ABP960U - Bus-Master PCI MAC/PC Ultra (16 CDB) (Footnote 2) Single Channel Products: ABP542 - Bus-Master ISA with floppy (240 CDB) ABP742 - Bus-Master EISA (240 CDB) ABP842 - Bus-Master VL (240 CDB) ABP940 - Bus-Master PCI (240 CDB) ABP940U - Bus-Master PCI Ultra (240 CDB) ABP970 - Bus-Master PCI MAC/PC (240 CDB) ABP970U - Bus-Master PCI MAC/PC Ultra (240 CDB) ABP940UW - Bus-Master PCI Ultra-Wide (240 CDB) Multi Channel Products: ABP752 - Dual Channel Bus-Master EISA (240 CDB Per Channel) ABP852 - Dual Channel Bus-Master VL (240 CDB Per Channel) ABP950 - Dual Channel Bus-Master PCI (240 CDB Per Channel) ABP980 - Four Channel Bus-Master PCI (240 CDB Per Channel) ABP980U - Four Channel Bus-Master PCI Ultra (240 CDB Per Channel) Footnotes: 1. This board has been shipped by HP with the 4020i CD-R drive. The board has no BIOS so it cannot control a boot device, but it can control any secondary SCSI device. 2. This board has been sold by Iomega as a Jaz Jet PCI adapter. 3. This board has been sold by SIIG as the i540 SpeedMaster. 4. This board has been sold by SIIG as the i542 SpeedMaster. 5. This board has been sold by SIIG as the Fast SCSI Pro PCI. C. Linux v1.2.X - Directions for Adding the AdvanSys Driver These directions apply to v1.2.13. For versions that follow v1.2.13. but precede v1.3.57 some of the changes for Linux v1.3.X listed below may need to be modified or included. A patch is available for v1.2.13 from the AdvanSys WWW and FTP sites. There are two source files: advansys.h and advansys.c. Copy both of these files to the directory /usr/src/linux/drivers/scsi. 1. Add the following line to /usr/src/linux/arch/i386/config.in after "comment 'SCSI low-level drivers'": bool 'AdvanSys SCSI support' CONFIG_SCSI_ADVANSYS y 2. Add the following lines to /usr/src/linux/drivers/scsi/hosts.c after "#include "hosts.h"": #ifdef CONFIG_SCSI_ADVANSYS #include "advansys.h" #endif and after "static Scsi_Host_Template builtin_scsi_hosts[] =": #ifdef CONFIG_SCSI_ADVANSYS ADVANSYS, #endif 3. Add the following lines to /usr/src/linux/drivers/scsi/Makefile: ifdef CONFIG_SCSI_ADVANSYS SCSI_SRCS := $(SCSI_SRCS) advansys.c SCSI_OBJS := $(SCSI_OBJS) advansys.o else SCSI_MODULE_OBJS := $(SCSI_MODULE_OBJS) advansys.o endif 4. (Optional) If you would like to enable the LILO command line and /etc/lilo.conf 'advansys' option, make the following changes. This option can be used to disable I/O port scanning or to limit I/O port scanning to specific addresses. Refer to the 'Driver LILO Option' section below. Add the following lines to /usr/src/linux/init/main.c in the prototype section: extern void advansys_setup(char *str, int *ints); and add the following lines to the bootsetups[] array. #ifdef CONFIG_SCSI_ADVANSYS { "advansys=", advansys_setup }, #endif 5. If you have the HP 4020i CD-R driver and Linux v1.2.X you should add a fix to the CD-ROM target driver. This fix will allow you to mount CDs with the iso9660 file system. Linux v1.3.X already has this fix. In the file /usr/src/linux/drivers/scsi/sr.c and function get_sectorsize() after the line: if(scsi_CDs[i].sector_size == 0) scsi_CDs[i].sector_size = 2048; add the following line: if(scsi_CDs[i].sector_size == 2340) scsi_CDs[i].sector_size = 2048; 6. In the directory /usr/src/linux run 'make config' to configure the AdvanSys driver, then run 'make vmlinux' or 'make zlilo' to make the kernel. If the AdvanSys driver is not configured, then a loadable module can be built by running 'make modules' and 'make modules_install'. Use 'insmod' and 'rmmod' to install and remove advansys.o. D. Linux v1.3.1 - v1.3.57 - Directions for Adding the AdvanSys Driver These directions apply to v1.3.57. For versions that precede v1.3.57 some of these changes may need to be modified or eliminated. A patch is available for v1.3.57 from the AdvanSys WWW and FTP sites. Beginning with v1.3.58 this driver is included with the Linux distribution eliminating the need for making any changes. There are two source files: advansys.h and advansys.c. Copy both of these files to the directory /usr/src/linux/drivers/scsi. 1. Add the following line to /usr/src/linux/drivers/scsi/Config.in after "comment 'SCSI low-level drivers'": dep_tristate 'AdvanSys SCSI support' CONFIG_SCSI_ADVANSYS $CONFIG_SCSI 2. Add the following lines to /usr/src/linux/drivers/scsi/hosts.c after "#include "hosts.h"": #ifdef CONFIG_SCSI_ADVANSYS #include "advansys.h" #endif and after "static Scsi_Host_Template builtin_scsi_hosts[] =": #ifdef CONFIG_SCSI_ADVANSYS ADVANSYS, #endif 3. Add the following lines to /usr/src/linux/drivers/scsi/Makefile: ifeq ($(CONFIG_SCSI_ADVANSYS),y) L_OBJS += advansys.o else ifeq ($(CONFIG_SCSI_ADVANSYS),m) M_OBJS += advansys.o endif endif 4. Add the following line to /usr/src/linux/include/linux/proc_fs.h in the enum scsi_directory_inos array: PROC_SCSI_ADVANSYS, 5. (Optional) If you would like to enable the LILO command line and /etc/lilo.conf 'advansys' option, make the following changes. This option can be used to disable I/O port scanning or to limit I/O port scanning to specific addresses. Refer to the 'Driver LILO Option' section below. Add the following lines to /usr/src/linux/init/main.c in the prototype section: extern void advansys_setup(char *str, int *ints); and add the following lines to the bootsetups[] array. #ifdef CONFIG_SCSI_ADVANSYS { "advansys=", advansys_setup }, #endif 6. In the directory /usr/src/linux run 'make config' to configure the AdvanSys driver, then run 'make vmlinux' or 'make zlilo' to make the kernel. If the AdvanSys driver is not configured, then a loadable module can be built by running 'make modules' and 'make modules_install'. Use 'insmod' and 'rmmod' to install and remove advansys.o. E. Linux v1.3.58 and Newer - Upgrading the AdvanSys Driver To upgrade the AdvanSys driver in a Linux v1.3.58 and newer kernel, first check the version of the current driver. The version is defined by the manifest constant ASC_VERSION at the beginning of advansys.c. The new driver should have a ASC_VERSION value greater than the current version. To install the new driver rename advansys.c and advansys.h in the Linux kernel source tree drivers/scsi directory to different names or save them to a different directory in case you want to revert to the old version of the driver. After the old driver is saved copy the new advansys.c and advansys.h to drivers/scsi, rebuild the kernel, and install the new kernel. No other changes are needed. F. Source Comments 1. Use tab stops set to 4 for the source files. For vi use 'se tabstops=4'. 2. This driver should be maintained in multiple files. But to make it easier to include with Linux and to follow Linux conventions, the whole driver is maintained in the source files advansys.h and advansys.c. In this file logical sections of the driver begin with a comment that contains '---'. The following are the logical sections of the driver below. --- Linux Version --- Linux Include Files --- Driver Options --- Debugging Header --- Asc Library Constants and Macros --- Adv Library Constants and Macros --- Driver Constants and Macros --- Driver Structures --- Driver Data --- Driver Function Prototypes --- Linux 'Scsi_Host_Template' and advansys_setup() Functions --- Loadable Driver Support --- Miscellaneous Driver Functions --- Functions Required by the Asc Library --- Functions Required by the Adv Library --- Tracing and Debugging Functions --- Asc Library Functions --- Adv Library Functions 3. The string 'XXX' is used to flag code that needs to be re-written or that contains a problem that needs to be addressed. 4. I have stripped comments from and reformatted the source for the Asc Library and Adv Library to reduce the size of this file. This source can be found under the following headings. The Asc Library is used to support Narrow Boards. The Adv Library is used to support Wide Boards. --- Asc Library Constants and Macros --- Adv Library Constants and Macros --- Asc Library Functions --- Adv Library Functions G. Driver Compile Time Options and Debugging In this source file the following constants can be defined. They are defined in the source below. Both of these options are enabled by default. 1. ADVANSYS_ASSERT - Enable driver assertions (Def: Enabled) Enabling this option adds assertion logic statements to the driver. If an assertion fails a message will be displayed to the console, but the system will continue to operate. Any assertions encountered should be reported to the person responsible for the driver. Assertion statements may proactively detect problems with the driver and facilitate fixing these problems. Enabling assertions will add a small overhead to the execution of the driver. 2. ADVANSYS_DEBUG - Enable driver debugging (Def: Disabled) Enabling this option adds tracing functions to the driver and the ability to set a driver tracing level at boot time. This option will also export symbols not required outside the driver to the kernel name space. This option is very useful for debugging the driver, but it will add to the size of the driver execution image and add overhead to the execution of the driver. The amount of debugging output can be controlled with the global variable 'asc_dbglvl'. The higher the number the more output. By default the debug level is 0. If the driver is loaded at boot time and the LILO Driver Option is included in the system, the debug level can be changed by specifying a 5th (ASC_NUM_IOPORT_PROBE + 1) I/O Port. The first three hex digits of the pseudo I/O Port must be set to 'deb' and the fourth hex digit specifies the debug level: 0 - F. The following command line will look for an adapter at 0x330 and set the debug level to 2. linux advansys=0x330,0,0,0,0xdeb2 If the driver is built as a loadable module this variable can be defined when the driver is loaded. The following insmod command will set the debug level to one. insmod advansys.o asc_dbglvl=1 Debugging Message Levels: 0: Errors Only 1: High-Level Tracing 2-N: Verbose Tracing I don't know the approved way for turning on printk()s to the console. Here's a program I use to do this. Debug output is logged in /var/adm/messages. main() { syscall(103, 7, 0, 0); } I found that increasing LOG_BUF_LEN to 40960 in kernel/printk.c prevents most level 1 debug messages from being lost. 3. ADVANSYS_STATS - Enable statistics (Def: Enabled >= v1.3.0) Enabling this option adds statistics collection and display through /proc to the driver. The information is useful for monitoring driver and device performance. It will add to the size of the driver execution image and add minor overhead to the execution of the driver. Statistics are maintained on a per adapter basis. Driver entry point call counts and transfer size counts are maintained. Statistics are only available for kernels greater than or equal to v1.3.0 with the CONFIG_PROC_FS (/proc) file system configured. AdvanSys SCSI adapter files have the following path name format: /proc/scsi/advansys/[0-(ASC_NUM_BOARD_SUPPORTED-1)] This information can be displayed with cat. For example: cat /proc/scsi/advansys/0 When ADVANSYS_STATS is not defined the AdvanSys /proc files only contain adapter and device configuration information. H. Driver LILO Option If init/main.c is modified as described in the 'Directions for Adding the AdvanSys Driver to Linux' section (B.4.) above, the driver will recognize the 'advansys' LILO command line and /etc/lilo.conf option. This option can be used to either disable I/O port scanning or to limit scanning to 1 - 4 I/O ports. Regardless of the option setting EISA and PCI boards will still be searched for and detected. This option only affects searching for ISA and VL boards. Examples: 1. Eliminate I/O port scanning: boot: linux advansys= or boot: linux advansys=0x0 2. Limit I/O port scanning to one I/O port: boot: linux advansys=0x110 3. Limit I/O port scanning to four I/O ports: boot: linux advansys=0x110,0x210,0x230,0x330 For a loadable module the same effect can be achieved by setting the 'asc_iopflag' variable and 'asc_ioport' array when loading the driver, e.g. insmod advansys.o asc_iopflag=1 asc_ioport=0x110,0x330 If ADVANSYS_DEBUG is defined a 5th (ASC_NUM_IOPORT_PROBE + 1) I/O Port may be added to specify the driver debug level. Refer to the 'Driver Compile Time Options and Debugging' section above for more information. I. Release History BETA-1.0 (12/23/95): First Release BETA-1.1 (12/28/95): 1. Prevent advansys_detect() from being called twice. 2. Add LILO 0xdeb[0-f] option to set 'asc_dbglvl'. 1.2 (1/12/96): 1. Prevent re-entrancy in the interrupt handler which resulted in the driver hanging Linux. 2. Fix problem that prevented ABP-940 cards from being recognized on some PCI motherboards. 3. Add support for the ABP-5140 PnP ISA card. 4. Fix check condition return status. 5. Add conditionally compiled code for Linux v1.3.X. 1.3 (2/23/96): 1. Fix problem in advansys_biosparam() that resulted in the wrong drive geometry being returned for drives > 1GB with extended translation enabled. 2. Add additional tracing during device initialization. 3. Change code that only applies to ISA PnP adapter. 4. Eliminate 'make dep' warning. 5. Try to fix problem with handling resets by increasing their timeout value. 1.4 (5/8/96): 1. Change definitions to eliminate conflicts with other subsystems. 2. Add versioning code for the shared interrupt changes. 3. Eliminate problem in asc_rmqueue() with iterating after removing a request. 4. Remove reset request loop problem from the "Known Problems or Issues" section. This problem was isolated and fixed in the mid-level SCSI driver. 1.5 (8/8/96): 1. Add support for ABP-940U (PCI Ultra) adapter. 2. Add support for IRQ sharing by setting the SA_SHIRQ flag for request_irq and supplying a dev_id pointer to both request_irq() and free_irq(). 3. In AscSearchIOPortAddr11() restore a call to check_region() which should be used before I/O port probing. 4. Fix bug in asc_prt_hex() which resulted in the displaying the wrong data. 5. Incorporate miscellaneous Asc Library bug fixes and new microcode. 6. Change driver versioning to be specific to each Linux sub-level. 7. Change statistics gathering to be per adapter instead of global to the driver. 8. Add more information and statistics to the adapter /proc file: /proc/scsi/advansys[0...]. 9. Remove 'cmd_per_lun' from the "Known Problems or Issues" list. This problem has been addressed with the SCSI mid-level changes made in v1.3.89. The advansys_select_queue_depths() function was added for the v1.3.89 changes. 1.6 (9/10/96): 1. Incorporate miscellaneous Asc Library bug fixes and new microcode. 1.7 (9/25/96): 1. Enable clustering and optimize the setting of the maximum number of scatter gather elements for any particular board. Clustering increases CPU utilization, but results in a relatively larger increase in I/O throughput. 2. Improve the performance of the request queuing functions by adding a last pointer to the queue structure. 3. Correct problems with reset and abort request handling that could have hung or crashed Linux. 4. Add more information to the adapter /proc file: /proc/scsi/advansys[0...]. 5. Remove the request timeout issue form the driver issues list. 6. Miscellaneous documentation additions and changes. 1.8 (10/4/96): 1. Make changes to handle the new v2.1.0 kernel memory mapping in which a kernel virtual address may not be equivalent to its bus or DMA memory address. 2. Change abort and reset request handling to make it yet even more robust. 3. Try to mitigate request starvation by sending ordered requests to heavily loaded, tag queuing enabled devices. 4. Maintain statistics on request response time. 5. Add request response time statistics and other information to the adapter /proc file: /proc/scsi/advansys[0...]. 1.9 (10/21/96): 1. Add conditionally compiled code (ASC_QUEUE_FLOW_CONTROL) to make use of mid-level SCSI driver device queue depth flow control mechanism. This will eliminate aborts caused by a device being unable to keep up with requests and eliminate repeat busy or QUEUE FULL status returned by a device. 2. Incorporate miscellaneous Asc Library bug fixes. 3. To allow the driver to work in kernels with broken module support set 'cmd_per_lun' if the driver is compiled as a module. This change affects kernels v1.3.89 to present. 4. Remove PCI BIOS address from the driver banner. The PCI BIOS is relocated by the motherboard BIOS and its new address can not be determined by the driver. 5. Add mid-level SCSI queue depth information to the adapter /proc file: /proc/scsi/advansys[0...]. 2.0 (11/14/96): 1. Change allocation of global structures used for device initialization to guarantee they are in DMA-able memory. Previously when the driver was loaded as a module these structures might not have been in DMA-able memory, causing device initialization to fail. 2.1 (12/30/96): 1. In advansys_reset(), if the request is a synchronous reset request, even if the request serial number has changed, then complete the request. 2. Add Asc Library bug fixes including new microcode. 3. Clear inquiry buffer before using it. 4. Correct ifdef typo. 2.2 (1/15/97): 1. Add Asc Library bug fixes including new microcode. 2. Add synchronous data transfer rate information to the adapter /proc file: /proc/scsi/advansys[0...]. 3. Change ADVANSYS_DEBUG to be disabled by default. This will reduce the size of the driver image, eliminate execution overhead, and remove unneeded symbols from the kernel symbol space that were previously added by the driver. 4. Add new compile-time option ADVANSYS_ASSERT for assertion code that used to be defined within ADVANSYS_DEBUG. This option is enabled by default. 2.8 (5/26/97): 1. Change version number to 2.8 to synchronize the Linux driver version numbering with other AdvanSys drivers. 2. Reformat source files without tabs to present the same view of the file to everyone regardless of the editor tab setting being used. 3. Add Asc Library bug fixes. 3.1A (1/8/98): 1. Change version number to 3.1 to indicate that support for Ultra-Wide adapters (ABP-940UW) is included in this release. 2. Add Asc Library (Narrow Board) bug fixes. 3. Report an underrun condition with the host status byte set to DID_UNDERRUN. Currently DID_UNDERRUN is defined to 0 which causes the underrun condition to be ignored. When Linux defines its own DID_UNDERRUN the constant defined in this file can be removed. 4. Add patch to AscWaitTixISRDone(). 5. Add support for up to 16 different AdvanSys host adapter SCSI channels in one system. This allows four cards with four channels to be used in one system. 3.1B (1/9/98): 1. Handle that PCI register base addresses are not always page aligned even though ioremap() requires that the address argument be page aligned. 3.1C (1/10/98): 1. Update latest BIOS version to 3.1E. 2. Don't set microcode SDTR variable at initialization. Instead wait until device capabilities have been detected from an Inquiry command. 3.1D (1/21/98): 1. Improve performance when the driver is compiled as module by allowing up to 64 scatter-gather elements instead of 8. J. Known Problems or Issues 1. Remove conditional constants (ASC_QUEUE_FLOW_CONTROL) around the queue depth flow control code when mid-level SCSI changes are included in Linux. K. Credits Nathan Hartwell provided the directions and basis for the Linux v1.3.X changes which were included in the 1.2 release. Thomas E Zerucha pointed out a bug in advansys_biosparam() which was fixed in the 1.3 release. Erik Ratcliffe has done testing of the AdvanSys driver in the Caldera releases. Rik van Riel provided a patch to AscWaitTixISRDone() which he found necessary to make the driver work with a SCSI-1 disk. Mark Moran has helped test Ultra-Wide support in the 3.1A driver. L. AdvanSys Contact Information Mail: Advanced System Products, Inc. 1150 Ringwood Court San Jose, CA 95131 Operator: 1-408-383-9400 FAX: 1-408-383-9612 Tech Support: 1-800-525-7440/1-408-467-2930 BBS: 1-408-383-9540 (14400,N,8,1) Interactive FAX: 1-408-383-9753 Customer Direct Sales: 1-800-525-7443/1-408-383-5777 Tech Support E-Mail: support@advansys.com FTP Site: ftp.advansys.com (login: anonymous) Web Site: http://www.advansys.com */ /* * --- Linux Version */ /* Convert Linux Version, Patch-level, Sub-level to LINUX_VERSION_CODE. */ #define ASC_LINUX_VERSION(V, P, S) (((V) * 65536) + ((P) * 256) + (S)) #ifndef LINUX_VERSION_CODE #include #endif /* LINUX_VERSION_CODE */ /* * --- Linux Include Files */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) #ifdef MODULE #include #endif /* MODULE */ #endif /* version >= v1.3.0 */ #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) #include #endif /* version >= v1.3.0 */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(2,1,23) #include #endif /* version >= v2.1.23 */ #include #include #include #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) #include "../block/blk.h" #else /* version >= v1.3.0 */ #include #include #endif /* version >= v1.3.0 */ #include "scsi.h" #include "hosts.h" #include "sd.h" #include "advansys.h" #include /* * If Linux eventually defines a DID_UNDERRUN, the constant here can be * removed. The current value of zero for DID_UNDERRUN results in underrun * conditions being ignored. */ #define DID_UNDERRUN 0 /* * --- Driver Options */ /* Enable driver assertions. */ #define ADVANSYS_ASSERT /* Enable driver tracing. */ /*#define ADVANSYS_DEBUG*/ /* * Because of no /proc to display them, statistics are disabled * for versions prior to v1.3.0. */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) #undef ADVANSYS_STATS /* Disable statistics */ #else /* version >= v1.3.0 */ #define ADVANSYS_STATS /* Enable statistics. */ #endif /* version >= v1.3.0 */ /* * --- Debugging Header */ #ifdef ADVANSYS_DEBUG #define STATIC #else /* ADVANSYS_DEBUG */ #define STATIC static #endif /* ADVANSYS_DEBUG */ /* * --- Asc Library Constants and Macros */ #define ASC_LIB_VERSION_MAJOR 1 #define ASC_LIB_VERSION_MINOR 22 #define ASC_LIB_SERIAL_NUMBER 111 typedef unsigned char uchar; #ifndef NULL #define NULL (0) #endif #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif #define REG register #define rchar REG __s8 #define rshort REG __s16 #define rint REG __s32 #define rlong REG __s32 #define ruchar REG __u8 #define rushort REG __u16 #define ruint REG __u32 #define rulong REG __u32 #define NULLPTR (void *)0 #define FNULLPTR (void *)0UL #define EOF (-1) #define EOS '\0' #define ERR (-1) #define UB_ERR (uchar)(0xFF) #define UW_ERR (uint)(0xFFFF) #define UL_ERR (ulong)(0xFFFFFFFFUL) #define iseven_word(val) ((((uint)val) & (uint)0x0001) == 0) #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) #define toeven_word(val) (((uint)val) & (uint)0xFFFE) #define biton(val, bits) (((uint)(val >> bits) & (uint)0x0001) != 0) #define bitoff(val, bits) (((uint)(val >> bits) & (uint)0x0001) == 0) #define lbiton(val, bits) (((ulong)(val >> bits) & (ulong)0x00000001UL) != 0) #define lbitoff(val, bits) (((ulong)(val >> bits) & (ulong)0x00000001UL) == 0) #define absh(val) ((val) < 0 ? -(val) : (val)) #define swapbyte(ch) ((((ch) << 4) | ((ch) >> 4))) #ifndef GBYTE #define GBYTE (0x40000000UL) #endif #ifndef MBYTE #define MBYTE (0x100000UL) #endif #ifndef KBYTE #define KBYTE (0x400) #endif #define HI_BYTE(x) (*((__u8 *)(&x)+1)) #define LO_BYTE(x) (*((__u8 *)&x)) #define HI_WORD(x) (*((__u16 *)(&x)+1)) #define LO_WORD(x) (*((__u16 *)&x)) #ifndef MAKEWORD #define MAKEWORD(lo, hi) ((__u16) (((__u16) lo) | ((__u16) hi << 8))) #endif #ifndef MAKELONG #define MAKELONG(lo, hi) ((__u32) (((__u32) lo) | ((__u32) hi << 16))) #endif #define SwapWords(dWord) ((__u32) ((dWord >> 16) | (dWord << 16))) #define SwapBytes(word) ((__u16) ((word >> 8) | (word << 8))) #define BigToLittle(dWord) ((__u32) (SwapWords(MAKELONG(SwapBytes(LO_WORD(dWord)), SwapBytes(HI_WORD(dWord)))))) #define LittleToBig(dWord) BigToLittle(dWord) #define AscPCIConfigVendorIDRegister 0x0000 #define AscPCIConfigDeviceIDRegister 0x0002 #define AscPCIConfigCommandRegister 0x0004 #define AscPCIConfigStatusRegister 0x0006 #define AscPCIConfigRevisionIDRegister 0x0008 #define AscPCIConfigCacheSize 0x000C #define AscPCIConfigLatencyTimer 0x000D #define AscPCIIOBaseRegister 0x0010 #define AscPCICmdRegBits_IOMemBusMaster 0x0007 #define ASC_PCI_ID2BUS(id) ((id) & 0xFF) #define ASC_PCI_ID2DEV(id) (((id) >> 11) & 0x1F) #define ASC_PCI_ID2FUNC(id) (((id) >> 8) & 0x7) #define ASC_PCI_MKID(bus, dev, func) ((((dev) & 0x1F) << 11) | (((func) & 0x7) << 8) | ((bus) & 0xFF)) #define ASC_PCI_VENDORID 0x10CD #define ASC_PCI_DEVICEID_1200A 0x1100 #define ASC_PCI_DEVICEID_1200B 0x1200 #define ASC_PCI_DEVICEID_ULTRA 0x1300 #define ASC_PCI_REVISION_3150 0x02 #define ASC_PCI_REVISION_3050 0x03 #define ASC_DVCLIB_CALL_DONE (1) #define ASC_DVCLIB_CALL_FAILED (0) #define ASC_DVCLIB_CALL_ERROR (-1) #define PortAddr unsigned short /* port address size */ #define Ptr2Func ulong #define inp(port) inb(port) #define inpw(port) inw(port) #define inpl(port) inl(port) #define outp(port, byte) outb((byte), (port)) #define outpw(port, word) outw((word), (port)) #define outpl(port, long) outl((long), (port)) #define ASC_MAX_SG_QUEUE 7 #define ASC_MAX_SG_LIST SG_ALL #define ASC_CS_TYPE unsigned short #ifndef asc_ptr_type #define asc_ptr_type #endif #ifndef ASC_GET_PTR2FUNC #define ASC_GET_PTR2FUNC(fun) (Ptr2Func)(fun) #endif #define FLIP_BYTE_NIBBLE(x) (((x<<4)& 0xFF) | (x>>4)) #define ASC_IS_ISA (0x0001) #define ASC_IS_ISAPNP (0x0081) #define ASC_IS_EISA (0x0002) #define ASC_IS_PCI (0x0004) #define ASC_IS_PCI_ULTRA (0x0104) #define ASC_IS_PCMCIA (0x0008) #define ASC_IS_MCA (0x0020) #define ASC_IS_VL (0x0040) #define ASC_ISA_PNP_PORT_ADDR (0x279) #define ASC_ISA_PNP_PORT_WRITE (ASC_ISA_PNP_PORT_ADDR+0x800) #define ASC_IS_WIDESCSI_16 (0x0100) #define ASC_IS_WIDESCSI_32 (0x0200) #define ASC_IS_BIG_ENDIAN (0x8000) #define ASC_CHIP_MIN_VER_VL (0x01) #define ASC_CHIP_MAX_VER_VL (0x07) #define ASC_CHIP_MIN_VER_PCI (0x09) #define ASC_CHIP_MAX_VER_PCI (0x0F) #define ASC_CHIP_VER_PCI_BIT (0x08) #define ASC_CHIP_MIN_VER_ISA (0x11) #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) #define ASC_CHIP_MAX_VER_ISA (0x27) #define ASC_CHIP_VER_ISA_BIT (0x30) #define ASC_CHIP_VER_ISAPNP_BIT (0x20) #define ASC_CHIP_VER_ASYN_BUG (0x21) #define ASC_CHIP_VER_PCI 0x08 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) #define ASC_CHIP_MIN_VER_EISA (0x41) #define ASC_CHIP_MAX_VER_EISA (0x47) #define ASC_CHIP_VER_EISA_BIT (0x40) #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) #define ASC_MAX_LIB_SUPPORTED_ISA_CHIP_VER 0x21 #define ASC_MAX_LIB_SUPPORTED_PCI_CHIP_VER 0x0A #define ASC_MAX_VL_DMA_ADDR (0x07FFFFFFL) #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) #define ASC_MAX_PCI_DMA_ADDR (0xFFFFFFFFL) #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) #define ASC_MAX_ISA_DMA_ADDR (0x00FFFFFFL) #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) #define ASC_MAX_EISA_DMA_ADDR (0x07FFFFFFL) #define ASC_MAX_EISA_DMA_COUNT (0x07FFFFFFL) #ifndef inpw_noswap #define inpw_noswap(port) inpw(port) #endif #ifndef outpw_noswap #define outpw_noswap(port, data) outpw(port, data) #endif #define ASC_SCSI_ID_BITS 3 #define ASC_SCSI_TIX_TYPE uchar #define ASC_ALL_DEVICE_BIT_SET 0xFF #ifdef ASC_WIDESCSI_16 #undef ASC_SCSI_ID_BITS #define ASC_SCSI_ID_BITS 4 #define ASC_ALL_DEVICE_BIT_SET 0xFFFF #endif #ifdef ASC_WIDESCSI_32 #undef ASC_SCSI_ID_BITS #define ASC_SCSI_ID_BITS 5 #define ASC_ALL_DEVICE_BIT_SET 0xFFFFFFFFL #endif #if ASC_SCSI_ID_BITS == 3 #define ASC_SCSI_BIT_ID_TYPE uchar #define ASC_MAX_TID 7 #define ASC_MAX_LUN 7 #define ASC_SCSI_WIDTH_BIT_SET 0xFF #elif ASC_SCSI_ID_BITS == 4 #define ASC_SCSI_BIT_ID_TYPE ushort #define ASC_MAX_TID 15 #define ASC_MAX_LUN 7 #define ASC_SCSI_WIDTH_BIT_SET 0xFFFF #elif ASC_SCSI_ID_BITS == 5 #define ASC_SCSI_BIT_ID_TYPE ulong #define ASC_MAX_TID 31 #define ASC_MAX_LUN 7 #define ASC_SCSI_WIDTH_BIT_SET 0xFFFFFFFF #else #error ASC_SCSI_ID_BITS definition is wrong #endif #define ASC_MAX_SENSE_LEN 32 #define ASC_MIN_SENSE_LEN 14 #define ASC_MAX_CDB_LEN 12 #define ASC_SCSI_RESET_HOLD_TIME_US 60 #define SCSICMD_TestUnitReady 0x00 #define SCSICMD_Rewind 0x01 #define SCSICMD_Rezero 0x01 #define SCSICMD_RequestSense 0x03 #define SCSICMD_Format 0x04 #define SCSICMD_FormatUnit 0x04 #define SCSICMD_Read6 0x08 #define SCSICMD_Write6 0x0A #define SCSICMD_Seek6 0x0B #define SCSICMD_Inquiry 0x12 #define SCSICMD_Verify6 0x13 #define SCSICMD_ModeSelect6 0x15 #define SCSICMD_ModeSense6 0x1A #define SCSICMD_StartStopUnit 0x1B #define SCSICMD_LoadUnloadTape 0x1B #define SCSICMD_ReadCapacity 0x25 #define SCSICMD_Read10 0x28 #define SCSICMD_Write10 0x2A #define SCSICMD_Seek10 0x2B #define SCSICMD_Erase10 0x2C #define SCSICMD_WriteAndVerify10 0x2E #define SCSICMD_Verify10 0x2F #define SCSICMD_WriteBuffer 0x3B #define SCSICMD_ReadBuffer 0x3C #define SCSICMD_ReadLong 0x3E #define SCSICMD_WriteLong 0x3F #define SCSICMD_ReadTOC 0x43 #define SCSICMD_ReadHeader 0x44 #define SCSICMD_ModeSelect10 0x55 #define SCSICMD_ModeSense10 0x5A #define SCSI_TYPE_DASD 0x00 #define SCSI_TYPE_SASD 0x01 #define SCSI_TYPE_PRN 0x02 #define SCSI_TYPE_PROC 0x03 #define SCSI_TYPE_WORM 0x04 #define SCSI_TYPE_CDROM 0x05 #define SCSI_TYPE_SCANNER 0x06 #define SCSI_TYPE_OPTMEM 0x07 #define SCSI_TYPE_MED_CHG 0x08 #define SCSI_TYPE_COMM 0x09 #define SCSI_TYPE_UNKNOWN 0x1F #define SCSI_TYPE_NO_DVC 0xFF #define ASC_SCSIDIR_NOCHK 0x00 #define ASC_SCSIDIR_T2H 0x08 #define ASC_SCSIDIR_H2T 0x10 #define ASC_SCSIDIR_NODATA 0x18 #define SCSI_SENKEY_NO_SENSE 0x00 #define SCSI_SENKEY_UNDEFINED 0x01 #define SCSI_SENKEY_NOT_READY 0x02 #define SCSI_SENKEY_MEDIUM_ERR 0x03 #define SCSI_SENKEY_HW_ERR 0x04 #define SCSI_SENKEY_ILLEGAL 0x05 #define SCSI_SENKEY_ATTENTION 0x06 #define SCSI_SENKEY_PROTECTED 0x07 #define SCSI_SENKEY_BLANK 0x08 #define SCSI_SENKEY_V_UNIQUE 0x09 #define SCSI_SENKEY_CPY_ABORT 0x0A #define SCSI_SENKEY_ABORT 0x0B #define SCSI_SENKEY_EQUAL 0x0C #define SCSI_SENKEY_VOL_OVERFLOW 0x0D #define SCSI_SENKEY_MISCOMP 0x0E #define SCSI_SENKEY_RESERVED 0x0F #define SCSI_ASC_NOMEDIA 0x3A #define ASC_SRB_HOST(x) ((uchar)((uchar)(x) >> 4)) #define ASC_SRB_TID(x) ((uchar)((uchar)(x) & (uchar)0x0F)) #define ASC_SRB_LUN(x) ((uchar)((uint)(x) >> 13)) #define PUT_CDB1(x) ((uchar)((uint)(x) >> 8)) #define SS_GOOD 0x00 #define SS_CHK_CONDITION 0x02 #define SS_CONDITION_MET 0x04 #define SS_TARGET_BUSY 0x08 #define SS_INTERMID 0x10 #define SS_INTERMID_COND_MET 0x14 #define SS_RSERV_CONFLICT 0x18 #define SS_CMD_TERMINATED 0x22 #define SS_QUEUE_FULL 0x28 #define MS_CMD_DONE 0x00 #define MS_EXTEND 0x01 #define MS_SDTR_LEN 0x03 #define MS_SDTR_CODE 0x01 #define MS_WDTR_LEN 0x02 #define MS_WDTR_CODE 0x03 #define MS_MDP_LEN 0x05 #define MS_MDP_CODE 0x00 #define M1_SAVE_DATA_PTR 0x02 #define M1_RESTORE_PTRS 0x03 #define M1_DISCONNECT 0x04 #define M1_INIT_DETECTED_ERR 0x05 #define M1_ABORT 0x06 #define M1_MSG_REJECT 0x07 #define M1_NO_OP 0x08 #define M1_MSG_PARITY_ERR 0x09 #define M1_LINK_CMD_DONE 0x0A #define M1_LINK_CMD_DONE_WFLAG 0x0B #define M1_BUS_DVC_RESET 0x0C #define M1_ABORT_TAG 0x0D #define M1_CLR_QUEUE 0x0E #define M1_INIT_RECOVERY 0x0F #define M1_RELEASE_RECOVERY 0x10 #define M1_KILL_IO_PROC 0x11 #define M2_QTAG_MSG_SIMPLE 0x20 #define M2_QTAG_MSG_HEAD 0x21 #define M2_QTAG_MSG_ORDERED 0x22 #define M2_IGNORE_WIDE_RESIDUE 0x23 typedef struct { uchar peri_dvc_type:5; uchar peri_qualifier:3; } ASC_SCSI_INQ0; typedef struct { uchar dvc_type_modifier:7; uchar rmb:1; } ASC_SCSI_INQ1; typedef struct { uchar ansi_apr_ver:3; uchar ecma_ver:3; uchar iso_ver:2; } ASC_SCSI_INQ2; typedef struct { uchar rsp_data_fmt:4; uchar res:2; uchar TemIOP:1; uchar aenc:1; } ASC_SCSI_INQ3; typedef struct { uchar StfRe:1; uchar CmdQue:1; uchar Reserved:1; uchar Linked:1; uchar Sync:1; uchar WBus16:1; uchar WBus32:1; uchar RelAdr:1; } ASC_SCSI_INQ7; typedef struct { ASC_SCSI_INQ0 byte0; ASC_SCSI_INQ1 byte1; ASC_SCSI_INQ2 byte2; ASC_SCSI_INQ3 byte3; uchar add_len; uchar res1; uchar res2; ASC_SCSI_INQ7 byte7; uchar vendor_id[8]; uchar product_id[16]; uchar product_rev_level[4]; } ASC_SCSI_INQUIRY; typedef struct asc_req_sense { uchar err_code:7; uchar info_valid:1; uchar segment_no; uchar sense_key:4; uchar reserved_bit:1; uchar sense_ILI:1; uchar sense_EOM:1; uchar file_mark:1; uchar info1[4]; uchar add_sense_len; uchar cmd_sp_info[4]; uchar asc; uchar ascq; uchar fruc; uchar sks_byte0:7; uchar sks_valid:1; uchar sks_bytes[2]; uchar notused[2]; uchar ex_sense_code; uchar info2[4]; } ASC_REQ_SENSE; #define ASC_SG_LIST_PER_Q 7 #define QS_FREE 0x00 #define QS_READY 0x01 #define QS_DISC1 0x02 #define QS_DISC2 0x04 #define QS_BUSY 0x08 #define QS_ABORTED 0x40 #define QS_DONE 0x80 #define QC_NO_CALLBACK 0x01 #define QC_SG_SWAP_QUEUE 0x02 #define QC_SG_HEAD 0x04 #define QC_DATA_IN 0x08 #define QC_DATA_OUT 0x10 #define QC_URGENT 0x20 #define QC_MSG_OUT 0x40 #define QC_REQ_SENSE 0x80 #define QCSG_SG_XFER_LIST 0x02 #define QCSG_SG_XFER_MORE 0x04 #define QCSG_SG_XFER_END 0x08 #define QD_IN_PROGRESS 0x00 #define QD_NO_ERROR 0x01 #define QD_ABORTED_BY_HOST 0x02 #define QD_WITH_ERROR 0x04 #define QD_INVALID_REQUEST 0x80 #define QD_INVALID_HOST_NUM 0x81 #define QD_INVALID_DEVICE 0x82 #define QD_ERR_INTERNAL 0xFF #define QHSTA_NO_ERROR 0x00 #define QHSTA_M_SEL_TIMEOUT 0x11 #define QHSTA_M_DATA_OVER_RUN 0x12 #define QHSTA_M_DATA_UNDER_RUN 0x12 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 #define QHSTA_D_HOST_ABORT_FAILED 0x23 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 #define QHSTA_M_WTM_TIMEOUT 0x41 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 #define QHSTA_M_BAD_TAG_CODE 0x46 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 #define QHSTA_D_LRAM_CMP_ERROR 0x81 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 #define ASC_FLAG_SCSIQ_REQ 0x01 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 #define ASC_FLAG_WIN16 0x10 #define ASC_FLAG_WIN32 0x20 #define ASC_FLAG_ISA_OVER_16MB 0x40 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 #define ASC_SCSIQ_CPY_BEG 4 #define ASC_SCSIQ_SGHD_CPY_BEG 2 #define ASC_SCSIQ_B_FWD 0 #define ASC_SCSIQ_B_BWD 1 #define ASC_SCSIQ_B_STATUS 2 #define ASC_SCSIQ_B_QNO 3 #define ASC_SCSIQ_B_CNTL 4 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 #define ASC_SCSIQ_D_DATA_ADDR 8 #define ASC_SCSIQ_D_DATA_CNT 12 #define ASC_SCSIQ_B_SENSE_LEN 20 #define ASC_SCSIQ_DONE_INFO_BEG 22 #define ASC_SCSIQ_D_SRBPTR 22 #define ASC_SCSIQ_B_TARGET_IX 26 #define ASC_SCSIQ_B_CDB_LEN 28 #define ASC_SCSIQ_B_TAG_CODE 29 #define ASC_SCSIQ_W_VM_ID 30 #define ASC_SCSIQ_DONE_STATUS 32 #define ASC_SCSIQ_HOST_STATUS 33 #define ASC_SCSIQ_SCSI_STATUS 34 #define ASC_SCSIQ_CDB_BEG 36 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 #define ASC_SCSIQ_B_SG_WK_QP 49 #define ASC_SCSIQ_B_SG_WK_IX 50 #define ASC_SCSIQ_W_REQ_COUNT 52 #define ASC_SCSIQ_B_LIST_CNT 6 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 #define ASC_SGQ_B_SG_CNTL 4 #define ASC_SGQ_B_SG_HEAD_QP 5 #define ASC_SGQ_B_SG_LIST_CNT 6 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 #define ASC_SGQ_LIST_BEG 8 #define ASC_DEF_SCSI1_QNG 4 #define ASC_MAX_SCSI1_QNG 4 #define ASC_DEF_SCSI2_QNG 16 #define ASC_MAX_SCSI2_QNG 32 #define ASC_TAG_CODE_MASK 0x23 #define ASC_STOP_REQ_RISC_STOP 0x01 #define ASC_STOP_ACK_RISC_STOP 0x03 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) typedef struct asc_scisq_1 { uchar status; uchar q_no; uchar cntl; uchar sg_queue_cnt; uchar target_id; uchar target_lun; ulong data_addr; ulong data_cnt; ulong sense_addr; uchar sense_len; uchar extra_bytes; } ASC_SCSIQ_1; typedef struct asc_scisq_2 { ulong srb_ptr; uchar target_ix; uchar flag; uchar cdb_len; uchar tag_code; ushort vm_id; } ASC_SCSIQ_2; typedef struct asc_scsiq_3 { uchar done_stat; uchar host_stat; uchar scsi_stat; uchar scsi_msg; } ASC_SCSIQ_3; typedef struct asc_scsiq_4 { uchar cdb[ASC_MAX_CDB_LEN]; uchar y_first_sg_list_qp; uchar y_working_sg_qp; uchar y_working_sg_ix; uchar y_res; ushort x_req_count; ushort x_reconnect_rtn; ulong x_saved_data_addr; ulong x_saved_data_cnt; } ASC_SCSIQ_4; typedef struct asc_q_done_info { ASC_SCSIQ_2 d2; ASC_SCSIQ_3 d3; uchar q_status; uchar q_no; uchar cntl; uchar sense_len; uchar extra_bytes; uchar res; ulong remain_bytes; } ASC_QDONE_INFO; typedef struct asc_sg_list { ulong addr; ulong bytes; } ASC_SG_LIST; typedef struct asc_sg_head { ushort entry_cnt; ushort queue_cnt; ushort entry_to_copy; ushort res; ASC_SG_LIST sg_list[ASC_MAX_SG_LIST]; } ASC_SG_HEAD; #define ASC_MIN_SG_LIST 2 typedef struct asc_min_sg_head { ushort entry_cnt; ushort queue_cnt; ushort entry_to_copy; ushort res; ASC_SG_LIST sg_list[ASC_MIN_SG_LIST]; } ASC_MIN_SG_HEAD; #define QCX_SORT (0x0001) #define QCX_COALEASE (0x0002) typedef struct asc_scsi_q { ASC_SCSIQ_1 q1; ASC_SCSIQ_2 q2; uchar *cdbptr; ASC_SG_HEAD *sg_head; } ASC_SCSI_Q; typedef struct asc_scsi_req_q { ASC_SCSIQ_1 r1; ASC_SCSIQ_2 r2; uchar *cdbptr; ASC_SG_HEAD *sg_head; uchar *sense_ptr; ASC_SCSIQ_3 r3; uchar cdb[ASC_MAX_CDB_LEN]; uchar sense[ASC_MIN_SENSE_LEN]; } ASC_SCSI_REQ_Q; typedef struct asc_scsi_bios_req_q { ASC_SCSIQ_1 r1; ASC_SCSIQ_2 r2; uchar *cdbptr; ASC_SG_HEAD *sg_head; uchar *sense_ptr; ASC_SCSIQ_3 r3; uchar cdb[ASC_MAX_CDB_LEN]; uchar sense[ASC_MIN_SENSE_LEN]; } ASC_SCSI_BIOS_REQ_Q; typedef struct asc_risc_q { uchar fwd; uchar bwd; ASC_SCSIQ_1 i1; ASC_SCSIQ_2 i2; ASC_SCSIQ_3 i3; ASC_SCSIQ_4 i4; } ASC_RISC_Q; typedef struct asc_sg_list_q { uchar seq_no; uchar q_no; uchar cntl; uchar sg_head_qp; uchar sg_list_cnt; uchar sg_cur_list_cnt; } ASC_SG_LIST_Q; typedef struct asc_risc_sg_list_q { uchar fwd; uchar bwd; ASC_SG_LIST_Q sg; ASC_SG_LIST sg_list[7]; } ASC_RISC_SG_LIST_Q; #define ASC_EXE_SCSI_IO_MAX_IDLE_LOOP 0x1000000UL #define ASC_EXE_SCSI_IO_MAX_WAIT_LOOP 1024 #define ASCQ_ERR_NO_ERROR 0 #define ASCQ_ERR_IO_NOT_FOUND 1 #define ASCQ_ERR_LOCAL_MEM 2 #define ASCQ_ERR_CHKSUM 3 #define ASCQ_ERR_START_CHIP 4 #define ASCQ_ERR_INT_TARGET_ID 5 #define ASCQ_ERR_INT_LOCAL_MEM 6 #define ASCQ_ERR_HALT_RISC 7 #define ASCQ_ERR_GET_ASPI_ENTRY 8 #define ASCQ_ERR_CLOSE_ASPI 9 #define ASCQ_ERR_HOST_INQUIRY 0x0A #define ASCQ_ERR_SAVED_SRB_BAD 0x0B #define ASCQ_ERR_QCNTL_SG_LIST 0x0C #define ASCQ_ERR_Q_STATUS 0x0D #define ASCQ_ERR_WR_SCSIQ 0x0E #define ASCQ_ERR_PC_ADDR 0x0F #define ASCQ_ERR_SYN_OFFSET 0x10 #define ASCQ_ERR_SYN_XFER_TIME 0x11 #define ASCQ_ERR_LOCK_DMA 0x12 #define ASCQ_ERR_UNLOCK_DMA 0x13 #define ASCQ_ERR_VDS_CHK_INSTALL 0x14 #define ASCQ_ERR_MICRO_CODE_HALT 0x15 #define ASCQ_ERR_SET_LRAM_ADDR 0x16 #define ASCQ_ERR_CUR_QNG 0x17 #define ASCQ_ERR_SG_Q_LINKS 0x18 #define ASCQ_ERR_SCSIQ_PTR 0x19 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C #define ASCQ_ERR_SG_LIST_ODD_ADDRESS 0x1D #define ASCQ_ERR_XFER_ADDRESS_TOO_BIG 0x1E #define ASCQ_ERR_SCSIQ_NULL_PTR 0x1F #define ASCQ_ERR_SCSIQ_BAD_NEXT_PTR 0x20 #define ASCQ_ERR_GET_NUM_OF_FREE_Q 0x21 #define ASCQ_ERR_SEND_SCSI_Q 0x22 #define ASCQ_ERR_HOST_REQ_RISC_HALT 0x23 #define ASCQ_ERR_RESET_SDTR 0x24 #define ASC_WARN_NO_ERROR 0x0000 #define ASC_WARN_IO_PORT_ROTATE 0x0001 #define ASC_WARN_EEPROM_CHKSUM 0x0002 #define ASC_WARN_IRQ_MODIFIED 0x0004 #define ASC_WARN_AUTO_CONFIG 0x0008 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 #define ASC_WARN_EEPROM_RECOVER 0x0020 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 #define ASC_WARN_SET_PCI_CONFIG_SPACE 0x0080 #define ASC_IERR_WRITE_EEPROM 0x0001 #define ASC_IERR_MCODE_CHKSUM 0x0002 #define ASC_IERR_SET_PC_ADDR 0x0004 #define ASC_IERR_START_STOP_CHIP 0x0008 #define ASC_IERR_IRQ_NO 0x0010 #define ASC_IERR_SET_IRQ_NO 0x0020 #define ASC_IERR_CHIP_VERSION 0x0040 #define ASC_IERR_SET_SCSI_ID 0x0080 #define ASC_IERR_GET_PHY_ADDR 0x0100 #define ASC_IERR_BAD_SIGNATURE 0x0200 #define ASC_IERR_NO_BUS_TYPE 0x0400 #define ASC_IERR_SCAM 0x0800 #define ASC_IERR_SET_SDTR 0x1000 #define ASC_IERR_RW_LRAM 0x8000 #define ASC_DEF_IRQ_NO 10 #define ASC_MAX_IRQ_NO 15 #define ASC_MIN_IRQ_NO 10 #define ASC_MIN_REMAIN_Q (0x02) #define ASC_DEF_MAX_TOTAL_QNG (0xF0) #define ASC_MIN_TAG_Q_PER_DVC (0x04) #define ASC_DEF_TAG_Q_PER_DVC (0x04) #define ASC_MIN_FREE_Q ASC_MIN_REMAIN_Q #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) #define ASC_MAX_TOTAL_QNG 240 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 #define ASC_MAX_INRAM_TAG_QNG 16 #define ASC_IOADR_TABLE_MAX_IX 11 #define ASC_IOADR_GAP 0x10 #define ASC_SEARCH_IOP_GAP 0x10 #define ASC_MIN_IOP_ADDR (PortAddr)0x0100 #define ASC_MAX_IOP_ADDR (PortAddr)0x3F0 #define ASC_IOADR_1 (PortAddr)0x0110 #define ASC_IOADR_2 (PortAddr)0x0130 #define ASC_IOADR_3 (PortAddr)0x0150 #define ASC_IOADR_4 (PortAddr)0x0190 #define ASC_IOADR_5 (PortAddr)0x0210 #define ASC_IOADR_6 (PortAddr)0x0230 #define ASC_IOADR_7 (PortAddr)0x0250 #define ASC_IOADR_8 (PortAddr)0x0330 #define ASC_IOADR_DEF ASC_IOADR_8 #define ASC_LIB_SCSIQ_WK_SP 256 #define ASC_MAX_SYN_XFER_NO 16 #define ASC_SYN_MAX_OFFSET 0x0F #define ASC_DEF_SDTR_OFFSET 0x0F #define ASC_DEF_SDTR_INDEX 0x00 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 #define SYN_XFER_NS_0 25 #define SYN_XFER_NS_1 30 #define SYN_XFER_NS_2 35 #define SYN_XFER_NS_3 40 #define SYN_XFER_NS_4 50 #define SYN_XFER_NS_5 60 #define SYN_XFER_NS_6 70 #define SYN_XFER_NS_7 85 #define SYN_ULTRA_XFER_NS_0 12 #define SYN_ULTRA_XFER_NS_1 19 #define SYN_ULTRA_XFER_NS_2 25 #define SYN_ULTRA_XFER_NS_3 32 #define SYN_ULTRA_XFER_NS_4 38 #define SYN_ULTRA_XFER_NS_5 44 #define SYN_ULTRA_XFER_NS_6 50 #define SYN_ULTRA_XFER_NS_7 57 #define SYN_ULTRA_XFER_NS_8 63 #define SYN_ULTRA_XFER_NS_9 69 #define SYN_ULTRA_XFER_NS_10 75 #define SYN_ULTRA_XFER_NS_11 82 #define SYN_ULTRA_XFER_NS_12 88 #define SYN_ULTRA_XFER_NS_13 94 #define SYN_ULTRA_XFER_NS_14 100 #define SYN_ULTRA_XFER_NS_15 107 typedef struct ext_msg { uchar msg_type; uchar msg_len; uchar msg_req; union { struct { uchar sdtr_xfer_period; uchar sdtr_req_ack_offset; } sdtr; struct { uchar wdtr_width; } wdtr; struct { uchar mdp_b3; uchar mdp_b2; uchar mdp_b1; uchar mdp_b0; } mdp; } u_ext_msg; uchar res; } EXT_MSG; #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset #define wdtr_width u_ext_msg.wdtr.wdtr_width #define mdp_b3 u_ext_msg.mdp_b3 #define mdp_b2 u_ext_msg.mdp_b2 #define mdp_b1 u_ext_msg.mdp_b1 #define mdp_b0 u_ext_msg.mdp_b0 typedef struct asc_dvc_cfg { ASC_SCSI_BIT_ID_TYPE can_tagged_qng; ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; ASC_SCSI_BIT_ID_TYPE disc_enable; uchar res; uchar chip_scsi_id:4; uchar isa_dma_speed:4; uchar isa_dma_channel; uchar chip_version; ushort pci_device_id; ushort lib_serial_no; ushort lib_version; ushort mcode_date; ushort mcode_version; uchar max_tag_qng[ASC_MAX_TID + 1]; uchar *overrun_buf; uchar sdtr_period_offset[ASC_MAX_TID + 1]; ushort pci_slot_info; uchar adapter_info[6]; } ASC_DVC_CFG; #define ASC_DEF_DVC_CNTL 0xFFFF #define ASC_DEF_CHIP_SCSI_ID 7 #define ASC_DEF_ISA_DMA_SPEED 4 #define ASC_INIT_STATE_NULL 0x0000 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 #define ASC_INIT_STATE_END_GET_CFG 0x0002 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 #define ASC_INIT_STATE_END_SET_CFG 0x0008 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 #define ASC_INIT_STATE_END_INQUIRY 0x0080 #define ASC_INIT_RESET_SCSI_DONE 0x0100 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 #define ASC_PCI_DEVICE_ID_REV_A 0x1100 #define ASC_PCI_DEVICE_ID_REV_B 0x1200 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 #define ASC_MIN_TAGGED_CMD 7 #define ASC_MAX_SCSI_RESET_WAIT 30 typedef struct asc_dvc_var { PortAddr iop_base; ushort err_code; ushort dvc_cntl; ushort bug_fix_cntl; ushort bus_type; Ptr2Func isr_callback; Ptr2Func exe_callback; ASC_SCSI_BIT_ID_TYPE init_sdtr; ASC_SCSI_BIT_ID_TYPE sdtr_done; ASC_SCSI_BIT_ID_TYPE use_tagged_qng; ASC_SCSI_BIT_ID_TYPE unit_not_ready; ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; ASC_SCSI_BIT_ID_TYPE start_motor; uchar scsi_reset_wait; uchar chip_no; char is_in_int; uchar max_total_qng; uchar cur_total_qng; uchar in_critical_cnt; uchar irq_no; uchar last_q_shortage; ushort init_state; uchar cur_dvc_qng[ASC_MAX_TID + 1]; uchar max_dvc_qng[ASC_MAX_TID + 1]; ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; uchar sdtr_period_tbl[ASC_MAX_SYN_XFER_NO]; ASC_DVC_CFG *cfg; Ptr2Func saved_ptr2func; ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; char redo_scam; ushort res2; uchar dos_int13_table[ASC_MAX_TID + 1]; ulong max_dma_count; ASC_SCSI_BIT_ID_TYPE no_scam; ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; uchar max_sdtr_index; uchar host_init_sdtr_index; ulong drv_ptr; ulong uc_break; ulong res7; ulong res8; } ASC_DVC_VAR; typedef int (* ASC_ISR_CALLBACK) (ASC_DVC_VAR asc_ptr_type *, ASC_QDONE_INFO *); typedef int (* ASC_EXE_CALLBACK) (ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_Q *); typedef struct asc_dvc_inq_info { uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; } ASC_DVC_INQ_INFO; typedef struct asc_cap_info { ulong lba; ulong blk_size; } ASC_CAP_INFO; typedef struct asc_cap_info_array { ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; } ASC_CAP_INFO_ARRAY; #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 #define ASC_CNTL_INITIATOR (ushort)0x0001 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 #define ASC_CNTL_NO_SCAM (ushort)0x0010 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 #define ASC_CNTL_BURST_MODE (ushort)0x2000 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 #define ASC_EEP_DVC_CFG_BEG_VL 2 #define ASC_EEP_MAX_DVC_ADDR_VL 15 #define ASC_EEP_DVC_CFG_BEG 32 #define ASC_EEP_MAX_DVC_ADDR 45 #define ASC_EEP_DEFINED_WORDS 10 #define ASC_EEP_MAX_ADDR 63 #define ASC_EEP_RES_WORDS 0 #define ASC_EEP_MAX_RETRY 20 #define ASC_MAX_INIT_BUSY_RETRY 8 #define ASC_EEP_ISA_PNP_WSIZE 16 typedef struct asceep_config { ushort cfg_lsw; ushort cfg_msw; uchar init_sdtr; uchar disc_enable; uchar use_cmd_qng; uchar start_motor; uchar max_total_qng; uchar max_tag_qng; uchar bios_scan; uchar power_up_wait; uchar no_scam; uchar chip_scsi_id:4; uchar isa_dma_speed:4; uchar dos_int13_table[ASC_MAX_TID + 1]; uchar adapter_info[6]; ushort cntl; ushort chksum; } ASCEEP_CONFIG; #define ASC_PCI_CFG_LSW_SCSI_PARITY 0x0800 #define ASC_PCI_CFG_LSW_BURST_MODE 0x0080 #define ASC_PCI_CFG_LSW_INTR_ABLE 0x0020 #define ASC_EEP_CMD_READ 0x80 #define ASC_EEP_CMD_WRITE 0x40 #define ASC_EEP_CMD_WRITE_ABLE 0x30 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 #define ASC_OVERRUN_BSIZE 0x00000048UL #define ASC_CTRL_BREAK_ONCE 0x0001 #define ASC_CTRL_BREAK_STAY_IDLE 0x0002 #define ASCV_MSGOUT_BEG 0x0000 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 #define ASCV_BREAK_ADDR (ushort)0x0028 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A #define ASCV_BREAK_CONTROL (ushort)0x002C #define ASCV_BREAK_HIT_COUNT (ushort)0x002E #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 #define ASCV_MCODE_SIZE_W (ushort)0x0034 #define ASCV_STOP_CODE_B (ushort)0x0036 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C #define ASCV_HALTCODE_W (ushort)0x0040 #define ASCV_CHKSUM_W (ushort)0x0042 #define ASCV_MC_DATE_W (ushort)0x0044 #define ASCV_MC_VER_W (ushort)0x0046 #define ASCV_NEXTRDY_B (ushort)0x0048 #define ASCV_DONENEXT_B (ushort)0x0049 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A #define ASCV_SCSIBUSY_B (ushort)0x004B #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C #define ASCV_CURCDB_B (ushort)0x004D #define ASCV_RCLUN_B (ushort)0x004E #define ASCV_BUSY_QHEAD_B (ushort)0x004F #define ASCV_DISC1_QHEAD_B (ushort)0x0050 #define ASCV_DISC_ENABLE_B (ushort)0x0052 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 #define ASCV_MCODE_CNTL_B (ushort)0x0056 #define ASCV_NULL_TARGET_B (ushort)0x0057 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) #define ASCV_HOST_FLAG_B (ushort)0x005D #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 #define ASCV_VER_SERIAL_B (ushort)0x0065 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 #define ASCV_WTM_FLAG_B (ushort)0x0068 #define ASCV_RISC_FLAG_B (ushort)0x006A #define ASCV_REQ_SG_LIST_QP (ushort)0x006B #define ASC_HOST_FLAG_IN_ISR 0x01 #define ASC_HOST_FLAG_ACK_INT 0x02 #define ASC_RISC_FLAG_GEN_INT 0x01 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 #define IOP_CTRL (0x0F) #define IOP_STATUS (0x0E) #define IOP_INT_ACK IOP_STATUS #define IOP_REG_IFC (0x0D) #define IOP_SYN_OFFSET (0x0B) #define IOP_EXTRA_CONTROL (0x0D) #define IOP_REG_PC (0x0C) #define IOP_RAM_ADDR (0x0A) #define IOP_RAM_DATA (0x08) #define IOP_EEP_DATA (0x06) #define IOP_EEP_CMD (0x07) #define IOP_VERSION (0x03) #define IOP_CONFIG_HIGH (0x04) #define IOP_CONFIG_LOW (0x02) #define IOP_SIG_BYTE (0x01) #define IOP_SIG_WORD (0x00) #define IOP_REG_DC1 (0x0E) #define IOP_REG_DC0 (0x0C) #define IOP_REG_SB (0x0B) #define IOP_REG_DA1 (0x0A) #define IOP_REG_DA0 (0x08) #define IOP_REG_SC (0x09) #define IOP_DMA_SPEED (0x07) #define IOP_REG_FLAG (0x07) #define IOP_FIFO_H (0x06) #define IOP_FIFO_L (0x04) #define IOP_REG_ID (0x05) #define IOP_REG_QP (0x03) #define IOP_REG_IH (0x02) #define IOP_REG_IX (0x01) #define IOP_REG_AX (0x00) #define IFC_REG_LOCK (0x00) #define IFC_REG_UNLOCK (0x09) #define IFC_WR_EN_FILTER (0x10) #define IFC_RD_NO_EEPROM (0x10) #define IFC_SLEW_RATE (0x20) #define IFC_ACT_NEG (0x40) #define IFC_INP_FILTER (0x80) #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) #define SC_SEL (uchar)(0x80) #define SC_BSY (uchar)(0x40) #define SC_ACK (uchar)(0x20) #define SC_REQ (uchar)(0x10) #define SC_ATN (uchar)(0x08) #define SC_IO (uchar)(0x04) #define SC_CD (uchar)(0x02) #define SC_MSG (uchar)(0x01) #define SEC_SCSI_CTL (uchar)(0x80) #define SEC_ACTIVE_NEGATE (uchar)(0x40) #define SEC_SLEW_RATE (uchar)(0x20) #define SEC_ENABLE_FILTER (uchar)(0x10) #define ASC_HALT_EXTMSG_IN (ushort)0x8000 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 #define ASC_MAX_QNO 0xF8 #define ASC_DATA_SEC_BEG (ushort)0x0080 #define ASC_DATA_SEC_END (ushort)0x0080 #define ASC_CODE_SEC_BEG (ushort)0x0080 #define ASC_CODE_SEC_END (ushort)0x0080 #define ASC_QADR_BEG (0x4000) #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) #define ASC_QADR_END (ushort)0x7FFF #define ASC_QLAST_ADR (ushort)0x7FC0 #define ASC_QBLK_SIZE 0x40 #define ASC_BIOS_DATA_QBEG 0xF8 #define ASC_MIN_ACTIVE_QNO 0x01 #define ASC_QLINK_END 0xFF #define ASC_EEPROM_WORDS 0x10 #define ASC_MAX_MGS_LEN 0x10 #define ASC_BIOS_ADDR_DEF 0xDC00 #define ASC_BIOS_SIZE 0x3800 #define ASC_BIOS_RAM_OFF 0x3800 #define ASC_BIOS_RAM_SIZE 0x800 #define ASC_BIOS_MIN_ADDR 0xC000 #define ASC_BIOS_MAX_ADDR 0xEC00 #define ASC_BIOS_BANK_SIZE 0x0400 #define ASC_MCODE_START_ADDR 0x0080 #define ASC_CFG0_HOST_INT_ON 0x0020 #define ASC_CFG0_BIOS_ON 0x0040 #define ASC_CFG0_VERA_BURST_ON 0x0080 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 #define ASC_CFG_MSW_CLR_MASK 0x3080 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 #define CSW_HALTED (ASC_CS_TYPE)0x0010 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 #define CC_CHIP_RESET (uchar)0x80 #define CC_SCSI_RESET (uchar)0x40 #define CC_HALT (uchar)0x20 #define CC_SINGLE_STEP (uchar)0x10 #define CC_DMA_ABLE (uchar)0x08 #define CC_TEST (uchar)0x04 #define CC_BANK_ONE (uchar)0x02 #define CC_DIAG (uchar)0x01 #define ASC_1000_ID0W 0x04C1 #define ASC_1000_ID0W_FIX 0x00C1 #define ASC_1000_ID1B 0x25 #define ASC_EISA_BIG_IOP_GAP (0x1C30-0x0C50) #define ASC_EISA_SMALL_IOP_GAP (0x0020) #define ASC_EISA_MIN_IOP_ADDR (0x0C30) #define ASC_EISA_MAX_IOP_ADDR (0xFC50) #define ASC_EISA_REV_IOP_MASK (0x0C83) #define ASC_EISA_PID_IOP_MASK (0x0C80) #define ASC_EISA_CFG_IOP_MASK (0x0C86) #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) #define ASC_EISA_ID_740 0x01745004UL #define ASC_EISA_ID_750 0x01755004UL #define INS_HALTINT (ushort)0x6281 #define INS_HALT (ushort)0x6280 #define INS_SINT (ushort)0x6200 #define INS_RFLAG_WTM (ushort)0x7380 #define ASC_MC_SAVE_CODE_WSIZE 0x500 #define ASC_MC_SAVE_DATA_WSIZE 0x40 typedef struct asc_mc_saved { ushort data[ASC_MC_SAVE_DATA_WSIZE]; ushort code[ASC_MC_SAVE_CODE_WSIZE]; } ASC_MC_SAVED; #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) ; #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) ; #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) ; #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) ; #define AscSynIndexToPeriod(index) (uchar)(asc_dvc->sdtr_period_tbl[ (index) ]) #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) #define AscGetChipLramDataNoSwap(port) (ushort)inpw_noswap((port)+IOP_RAM_DATA) #define AscSetChipLramDataNoSwap(port, data) outpw_noswap((port)+IOP_RAM_DATA, data) #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) STATIC int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg); STATIC int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg); STATIC void AscWaitEEPRead(void); STATIC void AscWaitEEPWrite(void); STATIC ushort AscReadEEPWord(PortAddr, uchar); STATIC ushort AscWriteEEPWord(PortAddr, uchar, ushort); STATIC ushort AscGetEEPConfig(PortAddr, ASCEEP_CONFIG *, ushort); STATIC int AscSetEEPConfigOnce(PortAddr, ASCEEP_CONFIG *, ushort); STATIC int AscSetEEPConfig(PortAddr, ASCEEP_CONFIG *, ushort); STATIC int AscStartChip(PortAddr); STATIC int AscStopChip(PortAddr); STATIC void AscSetChipIH(PortAddr, ushort); STATIC int AscIsChipHalted(PortAddr); STATIC void AscAckInterrupt(PortAddr); STATIC void AscDisableInterrupt(PortAddr); STATIC void AscEnableInterrupt(PortAddr); STATIC void AscSetBank(PortAddr, uchar); STATIC int AscResetChipAndScsiBus(ASC_DVC_VAR *); STATIC ushort AscGetIsaDmaChannel(PortAddr); STATIC ushort AscSetIsaDmaChannel(PortAddr, ushort); STATIC uchar AscSetIsaDmaSpeed(PortAddr, uchar); STATIC uchar AscGetIsaDmaSpeed(PortAddr); STATIC uchar AscReadLramByte(PortAddr, ushort); STATIC ushort AscReadLramWord(PortAddr, ushort); STATIC ulong AscReadLramDWord(PortAddr, ushort); STATIC void AscWriteLramWord(PortAddr, ushort, ushort); STATIC void AscWriteLramDWord(PortAddr, ushort, ulong); STATIC void AscWriteLramByte(PortAddr, ushort, uchar); STATIC ulong AscMemSumLramWord(PortAddr, ushort, rint); STATIC void AscMemWordSetLram(PortAddr, ushort, ushort, rint); STATIC void AscMemWordCopyToLram(PortAddr, ushort, ushort *, int); STATIC void AscMemDWordCopyToLram(PortAddr, ushort, ulong *, int); STATIC void AscMemWordCopyFromLram(PortAddr, ushort, ushort *, int); STATIC ushort AscInitAscDvcVar(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitFromEEP(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitFromAscDvcVar(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitMicroCodeVar(ASC_DVC_VAR asc_ptr_type * asc_dvc); STATIC void AscInitPollIsrCallBack(ASC_DVC_VAR asc_ptr_type *, ASC_QDONE_INFO *); STATIC int AscTestExternalLram(ASC_DVC_VAR asc_ptr_type *); STATIC uchar AscMsgOutSDTR(ASC_DVC_VAR asc_ptr_type *, uchar, uchar); STATIC uchar AscCalSDTRData(ASC_DVC_VAR asc_ptr_type *, uchar, uchar); STATIC void AscSetChipSDTR(PortAddr, uchar, uchar); STATIC uchar AscGetSynPeriodIndex(ASC_DVC_VAR asc_ptr_type *, ruchar); STATIC uchar AscAllocFreeQueue(PortAddr, uchar); STATIC uchar AscAllocMultipleFreeQueue(PortAddr, uchar, uchar); STATIC int AscRiscHaltedAbortSRB(ASC_DVC_VAR asc_ptr_type *, ulong); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscRiscHaltedAbortTIX(ASC_DVC_VAR asc_ptr_type *, uchar); #endif /* version >= v1.3.89 */ STATIC int AscHostReqRiscHalt(PortAddr); STATIC int AscStopQueueExe(PortAddr); STATIC int AscStartQueueExe(PortAddr); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscCleanUpDiscQueue(PortAddr); #endif /* version >= v1.3.89 */ STATIC int AscCleanUpBusyQueue(PortAddr); STATIC int AscWaitTixISRDone(ASC_DVC_VAR asc_ptr_type *, uchar); STATIC int AscWaitISRDone(ASC_DVC_VAR asc_ptr_type *); STATIC ulong AscGetOnePhyAddr(ASC_DVC_VAR asc_ptr_type *, uchar *, ulong); STATIC int AscSendScsiQueue(ASC_DVC_VAR asc_ptr_type * asc_dvc, ASC_SCSI_Q * scsiq, uchar n_q_required); STATIC int AscPutReadyQueue(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_Q *, uchar); STATIC int AscPutReadySgListQueue(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_Q *, uchar); STATIC int AscSetChipSynRegAtID(PortAddr, uchar, uchar); STATIC int AscSetRunChipSynRegAtID(PortAddr, uchar, uchar); STATIC ushort AscInitLram(ASC_DVC_VAR asc_ptr_type *); STATIC int AscReInitLram(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitQLinkVar(ASC_DVC_VAR asc_ptr_type *); STATIC int AscSetLibErrorCode(ASC_DVC_VAR asc_ptr_type *, ushort); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int _AscWaitQDone(PortAddr, ASC_SCSI_Q *); #endif /* version >= v1.3.89 */ STATIC int AscIsrChipHalted(ASC_DVC_VAR asc_ptr_type *); STATIC uchar _AscCopyLramScsiDoneQ(PortAddr, ushort, ASC_QDONE_INFO *, ulong); STATIC int AscIsrQDone(ASC_DVC_VAR asc_ptr_type *); STATIC int AscScsiSetupCmdQ(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, uchar *, ulong); STATIC int AscScsiInquiry(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, uchar *, int); STATIC int AscScsiTestUnitReady(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *); STATIC int AscScsiStartStopUnit(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, uchar); STATIC int AscScsiReadCapacity(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, uchar *); STATIC ulong *swapfarbuf4(uchar *); STATIC int PollQueueDone(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, int); STATIC int PollScsiReadCapacity(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, ASC_CAP_INFO *); STATIC int PollScsiInquiry(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, uchar *, int); STATIC int PollScsiTestUnitReady(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *); STATIC int PollScsiStartUnit(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *); STATIC int InitTestUnitReady(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *); STATIC int AscPollQDone(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, int); STATIC int AscCompareString(uchar *, uchar *, int); STATIC ushort AscGetEisaChipCfg(PortAddr); STATIC ulong AscGetEisaProductID(PortAddr); STATIC PortAddr AscSearchIOPortAddrEISA(PortAddr); STATIC uchar AscGetChipScsiCtrl(PortAddr); STATIC uchar AscSetChipScsiID(PortAddr, uchar); STATIC uchar AscGetChipVersion(PortAddr, ushort); STATIC ushort AscGetChipBusType(PortAddr); STATIC ulong AscLoadMicroCode(PortAddr, ushort, ushort *, ushort); STATIC int AscFindSignature(PortAddr); STATIC PortAddr AscSearchIOPortAddr11(PortAddr); STATIC void AscToggleIRQAct(PortAddr); STATIC void AscSetISAPNPWaitForKey(void); STATIC uchar AscGetChipIRQ(PortAddr, ushort); STATIC uchar AscSetChipIRQ(PortAddr, uchar, ushort); STATIC ushort AscGetChipBiosAddress(PortAddr, ushort); STATIC int DvcEnterCritical(void); STATIC void DvcLeaveCritical(int); STATIC void DvcInPortWords(PortAddr, ushort *, int); STATIC void DvcOutPortWords(PortAddr, ushort *, int); STATIC void DvcOutPortDWords(PortAddr, ulong *, int); STATIC uchar DvcReadPCIConfigByte(ASC_DVC_VAR asc_ptr_type *, ushort); STATIC void DvcWritePCIConfigByte(ASC_DVC_VAR asc_ptr_type *, ushort, uchar); STATIC ushort AscGetChipBiosAddress(PortAddr, ushort); STATIC void DvcSleepMilliSecond(ulong); STATIC void DvcDelayNanoSecond(ASC_DVC_VAR asc_ptr_type *, ulong); STATIC ulong DvcGetSGList(ASC_DVC_VAR asc_ptr_type *, uchar *, ulong, ASC_SG_HEAD *); STATIC void DvcPutScsiQ(PortAddr, ushort, ushort *, int); STATIC void DvcGetQinfo(PortAddr, ushort, ushort *, int); STATIC PortAddr AscSearchIOPortAddr(PortAddr, ushort); STATIC ushort AscInitGetConfig(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitSetConfig(ASC_DVC_VAR asc_ptr_type *); STATIC ushort AscInitAsc1000Driver(ASC_DVC_VAR asc_ptr_type *); STATIC int AscInitPollBegin(ASC_DVC_VAR asc_ptr_type *); STATIC int AscInitPollEnd(ASC_DVC_VAR asc_ptr_type *); STATIC int AscInitPollTarget(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_REQ_Q *, ASC_SCSI_INQUIRY *, ASC_CAP_INFO *); STATIC int AscExeScsiQueue(ASC_DVC_VAR asc_ptr_type *, ASC_SCSI_Q *); STATIC int AscISR(ASC_DVC_VAR asc_ptr_type *); STATIC uint AscGetNumOfFreeQueue(ASC_DVC_VAR asc_ptr_type *, uchar, uchar); STATIC int AscSgListToQueue(int); STATIC int AscAbortSRB(ASC_DVC_VAR asc_ptr_type *, ulong); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscResetDevice(ASC_DVC_VAR asc_ptr_type *, uchar); #endif /* version >= v1.3.89 */ STATIC int AscResetSB(ASC_DVC_VAR asc_ptr_type *); STATIC void AscEnableIsaDma(uchar); STATIC ulong AscGetMaxDmaCount(ushort); /* * --- Adv Library Constants and Macros */ #define ADV_LIB_VERSION_MAJOR 3 #define ADV_LIB_VERSION_MINOR 34 /* d_os_dep.h */ #define ADV_OS_LINUX /* * Define Adv Library required special types. */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) #define AdvPortAddr unsigned short /* I/O Port address size */ #else /* version >= v1,3,0 */ #define AdvPortAddr unsigned long /* Virtual memory address size */ #endif /* version >= v1,3,0 */ /* * Define Adv Library required memory access macros. */ #define ADV_MEM_READB(addr) readb(addr) #define ADV_MEM_READW(addr) readw(addr) #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) #define ADV_MEM_WRITEW(addr, word) writew(word, addr) /* * The I/O memory mapping function names changed in 2.1.X. */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,1,0) #define ioremap vremap #define iounmap vfree #endif /* version < v2.1.0 */ /* * Define total number of simultaneous maximum element scatter-gather * requests, i.e. ADV_TOT_SG_LIST * ADV_MAX_SG_LIST is the total number * of simultaneous scatter-gather elements supported per wide adapter. */ #define ADV_TOT_SG_LIST 64 /* * Define Adv Library required per request scatter-gather element limit. */ #define ADV_MAX_SG_LIST 64 /* * Scatter-Gather Definitions per request. * * Because SG block memory is allocated in virtual memory but is * referenced by the microcode as physical memory, we need to do * calculations to insure there will be enough physically contiguous * memory to support ADV_MAX_SG_LIST SG entries. */ /* Number of SG blocks needed. */ #define ADV_NUM_SG_BLOCK \ ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK) /* Total contiguous memory needed for SG blocks. */ #define ADV_SG_TOTAL_MEM_SIZE \ (sizeof(ADV_SG_BLOCK) * ADV_NUM_SG_BLOCK) #define ASC_PAGE_SIZE PAGE_SIZE /* * Number of page crossings possible for the total contiguous virtual memory * needed for SG blocks. * * We need to allocate this many additional SG blocks in virtual memory to * insure there will be space for ADV_NUM_SG_BLOCK physically contiguous * scatter-gather blocks. */ #define ADV_NUM_PAGE_CROSSING \ ((ADV_SG_TOTAL_MEM_SIZE + (ASC_PAGE_SIZE - 1))/ASC_PAGE_SIZE) /* * Define Adv Library Assertion Macro. */ #define ADV_ASSERT(a) ASC_ASSERT(a) /* a_condor.h */ #define ADV_PCI_VENDOR_ID 0x10CD #define ADV_PCI_DEVICE_ID_REV_A 0x2300 #define ASC_EEP_DVC_CFG_BEGIN (0x00) #define ASC_EEP_DVC_CFG_END (0x15) #define ASC_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ #define ASC_EEP_MAX_WORD_ADDR (0x1E) #define ASC_EEP_DELAY_MS 100 /* * EEPROM bits reference by the RISC after initialization. */ #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ /* * EEPROM configuration format * * Field naming convention: * * *_enable indicates the field enables or disables the feature. The * value is never reset. * * *_able indicates both whether a feature should be enabled or disabled * and whether a device isi capable of the feature. At initialization * this field may be set, but later if a device is found to be incapable * of the feature, the field is cleared. * * Default values are maintained in a_init.c in the structure * Default_EEPROM_Config. */ typedef struct adveep_config { /* Word Offset, Description */ ushort cfg_lsw; /* 00 power up initialization */ /* bit 13 set - Term Polarity Control */ /* bit 14 set - BIOS Enable */ /* bit 15 set - Big Endian Mode */ ushort cfg_msw; /* 01 unused */ ushort disc_enable; /* 02 disconnect enable */ ushort wdtr_able; /* 03 Wide DTR able */ ushort sdtr_able; /* 04 Synchronous DTR able */ ushort start_motor; /* 05 send start up motor */ ushort tagqng_able; /* 06 tag queuing able */ ushort bios_scan; /* 07 BIOS device control */ ushort scam_tolerant; /* 08 no scam */ uchar adapter_scsi_id; /* 09 Host Adapter ID */ uchar bios_boot_delay; /* power up wait */ uchar scsi_reset_delay; /* 10 reset delay */ uchar bios_id_lun; /* first boot device scsi id & lun */ /* high nibble is lun */ /* low nibble is scsi id */ uchar termination; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ uchar reserved1; /* reserved byte (not used) */ ushort bios_ctrl; /* 12 BIOS control bits */ /* bit 0 set: BIOS don't act as initiator. */ /* bit 1 set: BIOS > 1 GB support */ /* bit 2 set: BIOS > 2 Disk Support */ /* bit 3 set: BIOS don't support removables */ /* bit 4 set: BIOS support bootable CD */ /* bit 5 set: */ /* bit 6 set: BIOS support multiple LUNs */ /* bit 7 set: BIOS display of message */ /* bit 8 set: */ /* bit 9 set: Reset SCSI bus during init. */ /* bit 10 set: */ /* bit 11 set: No verbose initialization. */ /* bit 12 set: SCSI parity enabled */ /* bit 13 set: */ /* bit 14 set: */ /* bit 15 set: */ ushort ultra_able; /* 13 ULTRA speed able */ ushort reserved2; /* 14 reserved */ uchar max_host_qng; /* 15 maximum host queuing */ uchar max_dvc_qng; /* maximum per device queuing */ ushort dvc_cntl; /* 16 control bit for driver */ ushort bug_fix; /* 17 control bit for bug fix */ ushort serial_number_word1; /* 18 Board serial number word 1 */ ushort serial_number_word2; /* 19 Board serial number word 2 */ ushort serial_number_word3; /* 20 Board serial number word 3 */ ushort check_sum; /* 21 EEP check sum */ uchar oem_name[16]; /* 22 OEM name */ ushort dvc_err_code; /* 30 last device driver error code */ ushort adv_err_code; /* 31 last uc and Adv Lib error code */ ushort adv_err_addr; /* 32 last uc error address */ ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ ushort saved_adv_err_addr; /* 35 saved last uc error address */ ushort num_of_err; /* 36 number of error */ } ADVEEP_CONFIG; /* * EEPROM Commands */ #define ASC_EEP_CMD_DONE 0x0200 #define ASC_EEP_CMD_DONE_ERR 0x0001 /* cfg_word */ #define EEP_CFG_WORD_BIG_ENDIAN 0x8000 /* bios_ctrl */ #define BIOS_CTRL_BIOS 0x0001 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 #define BIOS_CTRL_GT_2_DISK 0x0004 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 #define BIOS_CTRL_BOOTABLE_CD 0x0010 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 #define BIOS_CTRL_DISPLAY_MSG 0x0080 #define BIOS_CTRL_NO_SCAM 0x0100 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 #define BIOS_CTRL_INIT_VERBOSE 0x0800 #define BIOS_CTRL_SCSI_PARITY 0x1000 /* * ASC 3550 Internal Memory Size - 8KB */ #define ADV_CONDOR_MEMSIZE 0x2000 /* 8 KB Internal Memory */ /* * ASC 3550 I/O Length - 64 bytes */ #define ADV_CONDOR_IOLEN 0x40 /* I/O Port Range in bytes */ /* * Byte I/O register address from base of 'iop_base'. */ #define IOPB_INTR_STATUS_REG 0x00 #define IOPB_CHIP_ID_1 0x01 #define IOPB_INTR_ENABLES 0x02 #define IOPB_CHIP_TYPE_REV 0x03 #define IOPB_RES_ADDR_4 0x04 #define IOPB_RES_ADDR_5 0x05 #define IOPB_RAM_DATA 0x06 #define IOPB_RES_ADDR_7 0x07 #define IOPB_FLAG_REG 0x08 #define IOPB_RES_ADDR_9 0x09 #define IOPB_RISC_CSR 0x0A #define IOPB_RES_ADDR_B 0x0B #define IOPB_RES_ADDR_C 0x0C #define IOPB_RES_ADDR_D 0x0D #define IOPB_RES_ADDR_E 0x0E #define IOPB_RES_ADDR_F 0x0F #define IOPB_MEM_CFG 0x10 #define IOPB_RES_ADDR_11 0x11 #define IOPB_RES_ADDR_12 0x12 #define IOPB_RES_ADDR_13 0x13 #define IOPB_FLASH_PAGE 0x14 #define IOPB_RES_ADDR_15 0x15 #define IOPB_RES_ADDR_16 0x16 #define IOPB_RES_ADDR_17 0x17 #define IOPB_FLASH_DATA 0x18 #define IOPB_RES_ADDR_19 0x19 #define IOPB_RES_ADDR_1A 0x1A #define IOPB_RES_ADDR_1B 0x1B #define IOPB_RES_ADDR_1C 0x1C #define IOPB_RES_ADDR_1D 0x1D #define IOPB_RES_ADDR_1E 0x1E #define IOPB_RES_ADDR_1F 0x1F #define IOPB_DMA_CFG0 0x20 #define IOPB_DMA_CFG1 0x21 #define IOPB_TICKLE 0x22 #define IOPB_DMA_REG_WR 0x23 #define IOPB_SDMA_STATUS 0x24 #define IOPB_SCSI_BYTE_CNT 0x25 #define IOPB_HOST_BYTE_CNT 0x26 #define IOPB_BYTE_LEFT_TO_XFER 0x27 #define IOPB_BYTE_TO_XFER_0 0x28 #define IOPB_BYTE_TO_XFER_1 0x29 #define IOPB_BYTE_TO_XFER_2 0x2A #define IOPB_BYTE_TO_XFER_3 0x2B #define IOPB_ACC_GRP 0x2C #define IOPB_RES_ADDR_2D 0x2D #define IOPB_DEV_ID 0x2E #define IOPB_RES_ADDR_2F 0x2F #define IOPB_SCSI_DATA 0x30 #define IOPB_RES_ADDR_31 0x31 #define IOPB_RES_ADDR_32 0x32 #define IOPB_SCSI_DATA_HSHK 0x33 #define IOPB_SCSI_CTRL 0x34 #define IOPB_RES_ADDR_35 0x35 #define IOPB_RES_ADDR_36 0x36 #define IOPB_RES_ADDR_37 0x37 #define IOPB_RES_ADDR_38 0x38 #define IOPB_RES_ADDR_39 0x39 #define IOPB_RES_ADDR_3A 0x3A #define IOPB_RES_ADDR_3B 0x3B #define IOPB_RFIFO_CNT 0x3C #define IOPB_RES_ADDR_3D 0x3D #define IOPB_RES_ADDR_3E 0x3E #define IOPB_RES_ADDR_3F 0x3F /* * Word I/O register address from base of 'iop_base'. */ #define IOPW_CHIP_ID_0 0x00 /* CID0 */ #define IOPW_CTRL_REG 0x02 /* CC */ #define IOPW_RAM_ADDR 0x04 /* LA */ #define IOPW_RAM_DATA 0x06 /* LD */ #define IOPW_RES_ADDR_08 0x08 #define IOPW_RISC_CSR 0x0A /* CSR */ #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ #define IOPW_RES_ADDR_10 0x10 #define IOPW_SEL_MASK 0x12 /* SM */ #define IOPW_RES_ADDR_14 0x14 #define IOPW_FLASH_ADDR 0x16 /* FA */ #define IOPW_RES_ADDR_18 0x18 #define IOPW_EE_CMD 0x1A /* EC */ #define IOPW_EE_DATA 0x1C /* ED */ #define IOPW_SFIFO_CNT 0x1E /* SFC */ #define IOPW_RES_ADDR_20 0x20 #define IOPW_Q_BASE 0x22 /* QB */ #define IOPW_QP 0x24 /* QP */ #define IOPW_IX 0x26 /* IX */ #define IOPW_SP 0x28 /* SP */ #define IOPW_PC 0x2A /* PC */ #define IOPW_RES_ADDR_2C 0x2C #define IOPW_RES_ADDR_2E 0x2E #define IOPW_SCSI_DATA 0x30 /* SD */ #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ #define IOPW_SCSI_CTRL 0x34 /* SC */ #define IOPW_HSHK_CFG 0x36 /* HCFG */ #define IOPW_SXFR_STATUS 0x36 /* SXS */ #define IOPW_SXFR_CNTL 0x38 /* SXL */ #define IOPW_SXFR_CNTH 0x3A /* SXH */ #define IOPW_RES_ADDR_3C 0x3C #define IOPW_RFIFO_DATA 0x3E /* RFD */ /* * Doubleword I/O register address from base of 'iop_base'. */ #define IOPDW_RES_ADDR_0 0x00 #define IOPDW_RAM_DATA 0x04 #define IOPDW_RES_ADDR_8 0x08 #define IOPDW_RES_ADDR_C 0x0C #define IOPDW_RES_ADDR_10 0x10 #define IOPDW_RES_ADDR_14 0x14 #define IOPDW_RES_ADDR_18 0x18 #define IOPDW_RES_ADDR_1C 0x1C #define IOPDW_SDMA_ADDR0 0x20 #define IOPDW_SDMA_ADDR1 0x24 #define IOPDW_SDMA_COUNT 0x28 #define IOPDW_SDMA_ERROR 0x2C #define IOPDW_RDMA_ADDR0 0x30 #define IOPDW_RDMA_ADDR1 0x34 #define IOPDW_RDMA_COUNT 0x38 #define IOPDW_RDMA_ERROR 0x3C #define ADV_CHIP_ID_BYTE 0x25 #define ADV_CHIP_ID_WORD 0x04C1 #define ADV_SC_SCSI_BUS_RESET 0x2000 #define ADV_INTR_ENABLE_HOST_INTR 0x01 #define ADV_INTR_ENABLE_SEL_INTR 0x02 #define ADV_INTR_ENABLE_DPR_INTR 0x04 #define ADV_INTR_ENABLE_RTA_INTR 0x08 #define ADV_INTR_ENABLE_RMA_INTR 0x10 #define ADV_INTR_ENABLE_RST_INTR 0x20 #define ADV_INTR_ENABLE_DPE_INTR 0x40 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 #define ADV_INTR_STATUS_INTRA 0x01 #define ADV_INTR_STATUS_INTRB 0x02 #define ADV_INTR_STATUS_INTRC 0x04 #define ADV_RISC_CSR_STOP (0x0000) #define ADV_RISC_TEST_COND (0x2000) #define ADV_RISC_CSR_RUN (0x4000) #define ADV_RISC_CSR_SINGLE_STEP (0x8000) #define ADV_CTRL_REG_HOST_INTR 0x0100 #define ADV_CTRL_REG_SEL_INTR 0x0200 #define ADV_CTRL_REG_DPR_INTR 0x0400 #define ADV_CTRL_REG_RTA_INTR 0x0800 #define ADV_CTRL_REG_RMA_INTR 0x1000 #define ADV_CTRL_REG_RES_BIT14 0x2000 #define ADV_CTRL_REG_DPE_INTR 0x4000 #define ADV_CTRL_REG_POWER_DONE 0x8000 #define ADV_CTRL_REG_ANY_INTR 0xFF00 #define ADV_CTRL_REG_CMD_RESET 0x00C6 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 #define ADV_SCSI_CTRL_RSTOUT 0x2000 #define AdvIsIntPending(port) \ (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) /* * SCSI_CFG0 Register bit definitions */ #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ #define EVEN_PARITY 0x1000 /* Select Even Parity */ #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ #define SCAM_EN 0x0080 /* Enable SCAM selection */ #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ #define OUR_ID 0x000F /* SCSI ID */ /* * SCSI_CFG1 Register bit definitions */ #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ #define FILTER_SEL 0x0C00 /* Filter Period Selection */ #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ #define CABLE_ILLEGAL_A 0x7 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ #define CABLE_ILLEGAL_B 0xB /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ /* The following table details the SCSI_CFG1 Termination Polarity, Termination Control and Cable Detect bits. Cable Detect | Termination Bit 3 2 1 0 | 5 4 | Notes _____________|________|____________________ 1 1 1 0 | on on | Internal wide only 1 1 0 1 | on on | Internal narrow only 1 0 1 1 | on on | External narrow only 0 x 1 1 | on on | External wide only 1 1 0 0 | on off| Internal wide and internal narrow 1 0 1 0 | on off| Internal wide and external narrow 0 x 1 0 | off off| Internal wide and external wide 1 0 0 1 | on off| Internal narrow and external narrow 0 x 0 1 | on off| Internal narrow and external wide 1 1 1 1 | on on | No devices are attached x 0 0 0 | on on | Illegal (all 3 connectors are used) 0 x 0 0 | on on | Illegal (all 3 connectors are used) x means don't-care (either '0' or '1') If term_pol (bit 13) is '0' (active-low terminator enable), then: 'on' is '0' and 'off' is '1'. If term_pol bit is '1' (meaning active-hi terminator enable), then: 'on' is '1' and 'off' is '0'. */ /* * MEM_CFG Register bit definitions */ #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ #define RAM_SZ_2KB 0x00 /* 2 KB */ #define RAM_SZ_4KB 0x04 /* 4 KB */ #define RAM_SZ_8KB 0x08 /* 8 KB */ #define RAM_SZ_16KB 0x0C /* 16 KB */ #define RAM_SZ_32KB 0x10 /* 32 KB */ #define RAM_SZ_64KB 0x14 /* 64 KB */ /* * DMA_CFG0 Register bit definitions * * This register is only accessible to the host. */ #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ #define FIFO_THRESH_16B 0x00 /* 16 bytes */ #define FIFO_THRESH_32B 0x20 /* 32 bytes */ #define FIFO_THRESH_48B 0x30 /* 48 bytes */ #define FIFO_THRESH_64B 0x40 /* 64 bytes */ #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ #define FIFO_THRESH_96B 0x60 /* 96 bytes */ #define FIFO_THRESH_112B 0x70 /* 112 bytes */ #define START_CTL 0x0C /* DMA start conditions */ #define START_CTL_TH 0x00 /* Wait threshold level (default) */ #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ #define READ_CMD 0x03 /* Memory Read Method */ #define READ_CMD_MR 0x00 /* Memory Read */ #define READ_CMD_MRL 0x02 /* Memory Read Long */ #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ /* a_advlib.h */ /* * Adv Library Status Definitions */ #define ADV_TRUE 1 #define ADV_FALSE 0 #define ADV_NOERROR 1 #define ADV_SUCCESS 1 #define ADV_BUSY 0 #define ADV_ERROR (-1) /* * ASC_DVC_VAR 'warn_code' values */ #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ #define ASC_WARN_SET_PCI_CONFIG_SPACE 0x0080 /* PCI config space set error */ #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ #define ADV_MAX_TID 15 /* max. target identifier */ #define ADV_MAX_LUN 7 /* max. logical unit number */ /* * AscInitGetConfig() and AscInitAsc1000Driver() Definitions * * Error code values are set in ASC_DVC_VAR 'err_code'. */ #define ASC_IERR_WRITE_EEPROM 0x0001 /* write EEPROM error */ #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ #define ASC_IERR_CHIP_VERSION 0x0040 /* wrong chip version */ #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ #define ASC_IERR_ILLEGAL_CONNECTION 0x0400 /* Illegal cable connection */ #define ASC_IERR_SINGLE_END_DEVICE 0x0800 /* Single-end used w/differential */ #define ASC_IERR_REVERSED_CABLE 0x1000 /* Narrow flat cable reversed */ #define ASC_IERR_RW_LRAM 0x8000 /* read/write local RAM error */ /* * Fixed locations of microcode operating variables. */ #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ #define ASC_MC_STACK_BEGIN 0x002E /* microcode stack begin */ #define ASC_MC_STACK_END 0x0030 /* microcode stack end */ #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ #define ASCV_VER_SERIAL_W 0x003C /* used in dos_init */ #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ #define ASC_MC_HALTCODE 0x0094 /* microcode halt code */ #define ASC_MC_CALLERPC 0x0096 /* microcode halt caller PC */ #define ASC_MC_ADAPTER_SCSI_ID 0x0098 /* one ID byte + reserved */ #define ASC_MC_ULTRA_ABLE 0x009C #define ASC_MC_SDTR_ABLE 0x009E #define ASC_MC_TAGQNG_ABLE 0x00A0 #define ASC_MC_DISC_ENABLE 0x00A2 #define ASC_MC_IDLE_CMD 0x00A6 #define ASC_MC_IDLE_PARA_STAT 0x00A8 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 #define ASC_MC_RISC_NEXT_READY 0x00B4 #define ASC_MC_RISC_NEXT_DONE 0x00B5 #define ASC_MC_SDTR_DONE 0x00B6 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 #define ASC_MC_WDTR_ABLE 0x0120 /* Wide Transfer TID bitmask. */ #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ #define ASC_MC_WDTR_DONE 0x0124 #define ASC_MC_HOST_NEXT_READY 0x0128 /* Host Next Ready RQL Entry. */ #define ASC_MC_HOST_NEXT_DONE 0x0129 /* Host Next Done RQL Entry. */ /* * BIOS LRAM variable absolute offsets. */ #define BIOS_CODESEG 0x54 #define BIOS_CODELEN 0x56 #define BIOS_SIGNATURE 0x58 #define BIOS_VERSION 0x5A #define BIOS_SIGNATURE 0x58 /* * Microcode Control Flags * * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) * and handled by the microcode. */ #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ /* * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format */ #define HSHK_CFG_WIDE_XFR 0x8000 #define HSHK_CFG_RATE 0x0F00 #define HSHK_CFG_OFFSET 0x001F /* * LRAM RISC Queue Lists (LRAM addresses 0x1200 - 0x19FF) * * Each of the 255 Adv Library/Microcode RISC queue lists or mailboxes * starting at LRAM address 0x1200 is 8 bytes and has the following * structure. Only 253 of these are actually used for command queues. */ #define ASC_MC_RISC_Q_LIST_BASE 0x1200 #define ASC_MC_RISC_Q_LIST_SIZE 0x0008 #define ASC_MC_RISC_Q_TOTAL_CNT 0x00FF /* Num. queue slots in LRAM. */ #define ASC_MC_RISC_Q_FIRST 0x0001 #define ASC_MC_RISC_Q_LAST 0x00FF #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ /* RISC Queue List structure - 8 bytes */ #define RQL_FWD 0 /* forward pointer (1 byte) */ #define RQL_BWD 1 /* backward pointer (1 byte) */ #define RQL_STATE 2 /* state byte - free, ready, done, aborted (1 byte) */ #define RQL_TID 3 /* request target id (1 byte) */ #define RQL_PHYADDR 4 /* request physical pointer (4 bytes) */ /* RISC Queue List state values */ #define ASC_MC_QS_FREE 0x00 #define ASC_MC_QS_READY 0x01 #define ASC_MC_QS_DONE 0x40 #define ASC_MC_QS_ABORTED 0x80 /* RISC Queue List pointer values */ #define ASC_MC_NULL_Q 0x00 /* NULL_Q == 0 */ #define ASC_MC_BIOS_Q 0xFF /* BIOS_Q = 255 */ /* ASC_SCSI_REQ_Q 'cntl' field values */ #define ASC_MC_QC_START_MOTOR 0x02 /* Issue start motor. */ #define ASC_MC_QC_NO_OVERRUN 0x04 /* Don't report overrun. */ #define ASC_MC_QC_FIRST_DMA 0x08 /* Internal microcode flag. */ #define ASC_MC_QC_ABORTED 0x10 /* Request aborted by host. */ #define ASC_MC_QC_REQ_SENSE 0x20 /* Auto-Request Sense. */ #define ASC_MC_QC_DOS_REQ 0x80 /* Request issued by DOS. */ /* * ASC_SCSI_REQ_Q 'a_flag' definitions * * The Adv Library should limit use to the lower nibble (4 bits) of * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag. */ #define ADV_POLL_REQUEST 0x01 /* poll for request completion */ #define ADV_SCSIQ_DONE 0x02 /* request done */ /* * Adapter temporary configuration structure * * This structure can be discarded after initialization. Don't add * fields here needed after initialization. * * Field naming convention: * * *_enable indicates the field enables or disables a feature. The * value of the field is never reset. */ typedef struct adv_dvc_cfg { ushort disc_enable; /* enable disconnection */ uchar chip_version; /* chip version */ uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ ushort pci_device_id; /* PCI device code number */ ushort lib_version; /* Adv Library version number */ ushort control_flag; /* Microcode Control Flag */ ushort mcode_date; /* Microcode date */ ushort mcode_version; /* Microcode version */ ushort pci_slot_info; /* high byte device/function number */ /* bits 7-3 device num., bits 2-0 function num. */ /* low byte bus num. */ ushort bios_boot_wait; /* BIOS boot time delay */ ushort serial1; /* EEPROM serial number word 1 */ ushort serial2; /* EEPROM serial number word 2 */ ushort serial3; /* EEPROM serial number word 3 */ } ADV_DVC_CFG; /* * Adapter operation variable structure. * * One structure is required per host adapter. * * Field naming convention: * * *_able indicates both whether a feature should be enabled or disabled * and whether a device isi capable of the feature. At initialization * this field may be set, but later if a device is found to be incapable * of the feature, the field is cleared. */ typedef struct adv_dvc_var { AdvPortAddr iop_base; /* I/O port address */ ushort err_code; /* fatal error code */ ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ Ptr2Func isr_callback; /* pointer to function, called in AdvISR() */ Ptr2Func sbreset_callback; /* pointer to function, called in AdvISR() */ ushort wdtr_able; /* try WDTR for a device */ ushort sdtr_able; /* try SDTR for a device */ ushort ultra_able; /* try SDTR Ultra speed for a device */ ushort tagqng_able; /* try tagged queuing with a device */ uchar max_dvc_qng; /* maximum number of tagged commands per device */ ushort start_motor; /* start motor command allowed */ uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ uchar chip_no; /* should be assigned by caller */ uchar max_host_qng; /* maximum number of Q'ed command allowed */ uchar cur_host_qng; /* total number of queue command */ uchar irq_no; /* IRQ number */ ushort no_scam; /* scam_tolerant of EEPROM */ ushort idle_cmd_done; /* microcode idle command done set by AdvISR() */ ulong drv_ptr; /* driver pointer to private structure */ uchar chip_scsi_id; /* chip SCSI target ID */ /* * Note: The following fields will not be used after initialization. The * driver may discard the buffer after initialization is done. */ ADV_DVC_CFG *cfg; /* temporary configuration structure */ } ADV_DVC_VAR; #define NO_OF_SG_PER_BLOCK 15 typedef struct asc_sg_block { uchar reserved1; uchar reserved2; uchar first_entry_no; /* starting entry number */ uchar last_entry_no; /* last entry number */ struct asc_sg_block *sg_ptr; /* links to the next sg block */ struct { ulong sg_addr; /* SG element address */ ulong sg_count; /* SG element count */ } sg_list[NO_OF_SG_PER_BLOCK]; } ADV_SG_BLOCK; /* * ASC_SCSI_REQ_Q - microcode request structure * * All fields in this structure up to byte 60 are used by the microcode. * The microcode makes assumptions about the size and ordering of fields * in this structure. Do not change the structure definition here without * coordinating the change with the microcode. */ typedef struct adv_scsi_req_q { uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ uchar sg_entry_cnt; /* SG element count. Zero for no SG. */ uchar target_id; /* Device target identifier. */ uchar target_lun; /* Device target logical unit number. */ ulong data_addr; /* Data buffer physical address. */ ulong data_cnt; /* Data count. Ucode sets to residual. */ ulong sense_addr; /* Sense buffer physical address. */ ulong srb_ptr; /* Driver request pointer. */ uchar a_flag; /* Adv Library flag field. */ uchar sense_len; /* Auto-sense length. Ucode sets to residual. */ uchar cdb_len; /* SCSI CDB length. */ uchar tag_code; /* SCSI-2 Tag Queue Code: 00, 20-22. */ uchar done_status; /* Completion status. */ uchar scsi_status; /* SCSI status byte. */ uchar host_status; /* Ucode host status. */ uchar ux_sg_ix; /* Ucode working SG variable. */ uchar cdb[12]; /* SCSI command block. */ ulong sg_real_addr; /* SG list physical address. */ struct adv_scsi_req_q *free_scsiq_link; ulong ux_wk_data_cnt; /* Saved data count at disconnection. */ struct adv_scsi_req_q *scsiq_ptr; ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ /* * End of microcode structure - 60 bytes. The rest of the structure * is used by the Adv Library and ignored by the microcode. */ ulong vsense_addr; /* Sense buffer virtual address. */ ulong vdata_addr; /* Data buffer virtual address. */ uchar orig_sense_len; /* Original length of sense buffer. */ } ADV_SCSI_REQ_Q; /* BIOS - 70 bytes, DOS - 76 bytes, W95, WNT - 69 bytes */ /* * Microcode idle loop commands */ #define IDLE_CMD_COMPLETED 0 #define IDLE_CMD_STOP_CHIP 0x0001 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 #define IDLE_CMD_SEND_INT 0x0004 #define IDLE_CMD_ABORT 0x0008 #define IDLE_CMD_DEVICE_RESET 0x0010 #define IDLE_CMD_SCSI_RESET 0x0020 /* * AdvSendIdleCmd() flag definitions. */ #define ADV_NOWAIT 0x01 /* * Wait loop time out values. */ #define SCSI_WAIT_10_SEC 10 /* 10 seconds */ #define SCSI_MS_PER_SEC 1000 /* milliseconds per second */ /* * Device drivers must define the following functions. */ STATIC int DvcEnterCritical(void); STATIC void DvcLeaveCritical(int); STATIC void DvcSleepMilliSecond(ulong); STATIC uchar DvcAdvReadPCIConfigByte(ADV_DVC_VAR *, ushort); STATIC void DvcAdvWritePCIConfigByte(ADV_DVC_VAR *, ushort, uchar); STATIC ulong DvcGetPhyAddr(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *, uchar *, long *, int); STATIC void DvcDelayMicroSecond(ADV_DVC_VAR *, ushort); /* * Adv Library functions available to drivers. */ STATIC int AdvExeScsiQueue(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *); STATIC int AdvISR(ADV_DVC_VAR *); STATIC int AdvInitGetConfig(ADV_DVC_VAR *); STATIC int AdvInitAsc3550Driver(ADV_DVC_VAR *); STATIC int AdvResetSB(ADV_DVC_VAR *); /* * Internal Adv Library functions. */ STATIC int AdvSendIdleCmd(ADV_DVC_VAR *, ushort, ulong, int); STATIC void AdvResetChip(ADV_DVC_VAR *); STATIC int AdvSendScsiCmd(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *); STATIC void AdvInquiryHandling(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *); STATIC int AdvInitFromEEP(ADV_DVC_VAR *); STATIC ushort AdvGetEEPConfig(AdvPortAddr, ADVEEP_CONFIG *); STATIC void AdvSetEEPConfig(AdvPortAddr, ADVEEP_CONFIG *); STATIC void AdvWaitEEPCmd(AdvPortAddr); STATIC ushort AdvReadEEPWord(AdvPortAddr, int); STATIC void AdvResetSCSIBus(ADV_DVC_VAR *); /* * PCI Bus Definitions */ #define AscPCICmdRegBits_BusMastering 0x0007 #define AscPCICmdRegBits_ParErrRespCtrl 0x0040 #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) /* Read byte from a register. */ #define AdvReadByteRegister(iop_base, reg_off) \ (inp((iop_base) + (reg_off))) /* Write byte to a register. */ #define AdvWriteByteRegister(iop_base, reg_off, byte) \ (outp((iop_base) + (reg_off), (byte))) /* Read word (2 bytes) from a register. */ #define AdvReadWordRegister(iop_base, reg_off) \ (inpw((iop_base) + (reg_off))) /* Write word (2 bytes) to a register. */ #define AdvWriteWordRegister(iop_base, reg_off, word) \ (outpw((iop_base) + (reg_off), (word))) /* Read byte from LRAM. */ #define AdvReadByteLram(iop_base, addr, byte) \ do { \ outpw((iop_base) + IOPW_RAM_ADDR, (addr)); \ (byte) = inp((iop_base) + IOPB_RAM_DATA); \ } while (0) /* Write byte to LRAM. */ #define AdvWriteByteLram(iop_base, addr, byte) \ (outpw((iop_base) + IOPW_RAM_ADDR, (addr)), \ outp((iop_base) + IOPB_RAM_DATA, (byte))) /* Read word (2 bytes) from LRAM. */ #define AdvReadWordLram(iop_base, addr, word) \ do { \ outpw((iop_base) + IOPW_RAM_ADDR, (addr)); \ (word) = inpw((iop_base) + IOPW_RAM_DATA); \ } while (0) /* Write word (2 bytes) to LRAM. */ #define AdvWriteWordLram(iop_base, addr, word) \ (outpw((iop_base) + IOPW_RAM_ADDR, (addr)), \ outpw((iop_base) + IOPW_RAM_DATA, (word))) /* Write double word (4 bytes) to LRAM */ /* Because of unspecified C language ordering don't use auto-increment. */ #define AdvWriteDWordLram(iop_base, addr, dword) \ ((outpw((iop_base) + IOPW_RAM_ADDR, (addr)), \ outpw((iop_base) + IOPW_RAM_DATA, (ushort) ((dword) & 0xFFFF))), \ (outpw((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ outpw((iop_base) + IOPW_RAM_DATA, (ushort) ((dword >> 16) & 0xFFFF)))) /* Read word (2 bytes) from LRAM assuming that the address is already set. */ #define AdvReadWordAutoIncLram(iop_base) \ (inpw((iop_base) + IOPW_RAM_DATA)) /* Write word (2 bytes) to LRAM assuming that the address is already set. */ #define AdvWriteWordAutoIncLram(iop_base, word) \ (outpw((iop_base) + IOPW_RAM_DATA, (word))) #else /* version >= v1,3,0 */ /* Read byte from a register. */ #define AdvReadByteRegister(iop_base, reg_off) \ (ADV_MEM_READB((iop_base) + (reg_off))) /* Write byte to a register. */ #define AdvWriteByteRegister(iop_base, reg_off, byte) \ (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) /* Read word (2 bytes) from a register. */ #define AdvReadWordRegister(iop_base, reg_off) \ (ADV_MEM_READW((iop_base) + (reg_off))) /* Write word (2 bytes) to a register. */ #define AdvWriteWordRegister(iop_base, reg_off, word) \ (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) /* Read byte from LRAM. */ #define AdvReadByteLram(iop_base, addr, byte) \ do { \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ } while (0) /* Write byte to LRAM. */ #define AdvWriteByteLram(iop_base, addr, byte) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) /* Read word (2 bytes) from LRAM. */ #define AdvReadWordLram(iop_base, addr, word) \ do { \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ (word) = ADV_MEM_READW((iop_base) + IOPW_RAM_DATA); \ } while (0) /* Write word (2 bytes) to LRAM. */ #define AdvWriteWordLram(iop_base, addr, word) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) /* Write double word (4 bytes) to LRAM */ /* Because of unspecified C language ordering don't use auto-increment. */ #define AdvWriteDWordLram(iop_base, addr, dword) \ ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ (ushort) ((dword) & 0xFFFF))), \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ (ushort) ((dword >> 16) & 0xFFFF)))) /* Read word (2 bytes) from LRAM assuming that the address is already set. */ #define AdvReadWordAutoIncLram(iop_base) \ (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) /* Write word (2 bytes) to LRAM assuming that the address is already set. */ #define AdvWriteWordAutoIncLram(iop_base, word) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) #endif /* version >= v1,3,0 */ /* * Define macro to check for Condor signature. * * Evaluate to ADV_TRUE if a Condor chip is found the specified port * address 'iop_base'. Otherwise evalue to ADV_FALSE. */ #define AdvFindSignature(iop_base) \ (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ ADV_CHIP_ID_BYTE) && \ (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) /* * Define macro to Return the version number of the chip at 'iop_base'. * * The second parameter 'bus_type' is currently unused. */ #define AdvGetChipVersion(iop_base, bus_type) \ AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) /* * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must * match the ASC_SCSI_REQ_Q 'srb_ptr' field. * * If the request has not yet been sent to the device it will simply be * aborted from RISC memory. If the request is disconnected it will be * aborted on reselection by sending an Abort Message to the target ID. * * Return value: * ADV_TRUE(1) - Queue was successfully aborted. * ADV_FALSE(0) - Queue was not found on the active queue list. */ #define AdvAbortSRB(asc_dvc, srb_ptr) \ AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ (ulong) (srb_ptr), 0) /* * Send a Bus Device Reset Message to the specified target ID. * * All outstanding commands will be purged if sending the * Bus Device Reset Message is successful. * * Return Value: * ADV_TRUE(1) - All requests on the target are purged. * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests * are not purged. */ #define AdvResetDevice(asc_dvc, target_id) \ AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ (ulong) (target_id), 0) /* * SCSI Wide Type definition. */ #define ADV_SCSI_BIT_ID_TYPE ushort /* * AdvInitScsiTarget() 'cntl_flag' options. */ #define ADV_SCAN_LUN 0x01 #define ADV_CAPINFO_NOLUN 0x02 /* * Convert target id to target id bit mask. */ #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) /* * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values. */ #define QD_NO_STATUS 0x00 /* Request not completed yet. */ #define QD_NO_ERROR 0x01 #define QD_ABORTED_BY_HOST 0x02 #define QD_WITH_ERROR 0x04 #define QHSTA_NO_ERROR 0x00 #define QHSTA_M_SEL_TIMEOUT 0x11 #define QHSTA_M_DATA_OVER_RUN 0x12 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 #define QHSTA_M_QUEUE_ABORTED 0x15 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ #define QHSTA_M_WTM_TIMEOUT 0x41 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ typedef int (* ADV_ISR_CALLBACK) (ADV_DVC_VAR *, ADV_SCSI_REQ_Q *); typedef int (* ADV_SBRESET_CALLBACK) (ADV_DVC_VAR *); /* * Default EEPROM Configuration structure defined in a_init.c. */ extern ADVEEP_CONFIG Default_EEPROM_Config; /* * DvcGetPhyAddr() flag arguments */ #define ADV_IS_SCSIQ_FLAG 0x01 /* 'addr' is ASC_SCSI_REQ_Q pointer */ #define ADV_ASCGETSGLIST_VADDR 0x02 /* 'addr' is AscGetSGList() virtual addr */ #define ADV_IS_SENSE_FLAG 0x04 /* 'addr' is sense virtual pointer */ #define ADV_IS_DATA_FLAG 0x08 /* 'addr' is data virtual pointer */ #define ADV_IS_SGLIST_FLAG 0x10 /* 'addr' is sglist virtual pointer */ /* 'IS_SCSIQ_FLAG is now obsolete; Instead use ADV_IS_SCSIQ_FLAG. */ #define IS_SCSIQ_FLAG ADV_IS_SCSIQ_FLAQ /* Return the address that is aligned at the next doubleword >= to 'addr'. */ #define ADV_DWALIGN(addr) (((ulong) (addr) + 0x3) & ~0x3) /* * Total contiguous memory needed for driver SG blocks. * * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum * number of scatter-gather elements the driver supports in a * single request. */ #ifndef ADV_MAX_SG_LIST Forced Error: Driver must define ADV_MAX_SG_LIST. #endif /* ADV_MAX_SG_LIST */ #define ADV_SG_LIST_MAX_BYTE_SIZE \ (sizeof(ADV_SG_BLOCK) * \ ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) /* * A driver may optionally define the assertion macro ADV_ASSERT() in * its d_os_dep.h file. If the macro has not already been defined, * then define the macro to a no-op. */ #ifndef ADV_ASSERT #define ADV_ASSERT(a) #endif /* ADV_ASSERT */ /* * --- Driver Constants and Macros */ #define ASC_NUM_BOARD_SUPPORTED 16 #define ASC_NUM_IOPORT_PROBE 4 #define ASC_NUM_BUS 4 /* Reference Scsi_Host hostdata */ #define ASC_BOARDP(host) ((asc_board_t *) &((host)->hostdata)) /* asc_board_t flags */ #define ASC_HOST_IN_RESET 0x01 #define ASC_HOST_IN_ABORT 0x02 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ #define ASC_SELECT_QUEUE_DEPTHS 0x08 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) #define ASC_WIDE_BOARD(boardp) ((boardp)->flags & ASC_IS_WIDE_BOARD) #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ /* * If the Linux kernel version supports freeing initialization code * and data after loading, define macros for this purpose. These macros * are not used when the driver is built as a module, cf. linux/init.h. */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,1,23) #define ASC_INITFUNC(func) func #define ASC_INITDATA #define ASC_INIT #else /* version >= v2.1.23 */ #define ASC_INITFUNC(func) __initfunc(func) #define ASC_INITDATA __initdata #define ASC_INIT __init #endif /* version >= v2.1.23 */ #define ASC_INFO_SIZE 128 /* advansys_info() line size */ /* /proc/scsi/advansys/[0...] related definitions */ #define ASC_PRTBUF_SIZE 2048 #define ASC_PRTLINE_SIZE 160 #define ASC_PRT_NEXT() \ if (cp) { \ totlen += len; \ leftlen -= len; \ if (leftlen == 0) { \ return totlen; \ } \ cp += len; \ } #define ASC_MIN(a, b) (((a) < (b)) ? (a) : (b)) /* Asc Library return codes */ #define ASC_TRUE 1 #define ASC_FALSE 0 #define ASC_NOERROR 1 #define ASC_BUSY 0 #define ASC_ERROR (-1) /* Scsi_Cmnd function return codes */ #define STATUS_BYTE(byte) (byte) #define MSG_BYTE(byte) ((byte) << 8) #define HOST_BYTE(byte) ((byte) << 16) #define DRIVER_BYTE(byte) ((byte) << 24) /* * The following definitions and macros are OS independent interfaces to * the queue functions: * REQ - SCSI request structure * REQP - pointer to SCSI request structure * REQPTID(reqp) - reqp's target id * REQPNEXT(reqp) - reqp's next pointer * REQPNEXTP(reqp) - pointer to reqp's next pointer * REQPTIME(reqp) - reqp's time stamp value * REQTIMESTAMP() - system time stamp value */ typedef Scsi_Cmnd REQ, *REQP; #define REQPNEXT(reqp) ((REQP) ((reqp)->host_scribble)) #define REQPNEXTP(reqp) ((REQP *) &((reqp)->host_scribble)) #define REQPTID(reqp) ((reqp)->target) #define REQPTIME(reqp) ((reqp)->SCp.this_residual) #define REQTIMESTAMP() (jiffies) #define REQTIMESTAT(function, ascq, reqp, tid) \ { \ /* * If the request time stamp is less than the system time stamp, then \ * maybe the system time stamp wrapped. Set the request time to zero.\ */ \ if (REQPTIME(reqp) <= REQTIMESTAMP()) { \ REQPTIME(reqp) = REQTIMESTAMP() - REQPTIME(reqp); \ } else { \ /* Indicate an error occurred with the assertion. */ \ ASC_ASSERT(REQPTIME(reqp) <= REQTIMESTAMP()); \ REQPTIME(reqp) = 0; \ } \ /* Handle first minimum time case without external initialization. */ \ if (((ascq)->q_tot_cnt[tid] == 1) || \ (REQPTIME(reqp) < (ascq)->q_min_tim[tid])) { \ (ascq)->q_min_tim[tid] = REQPTIME(reqp); \ ASC_DBG3(1, "%s: new q_min_tim[%d] %u\n", \ (function), (tid), (ascq)->q_min_tim[tid]); \ } \ if (REQPTIME(reqp) > (ascq)->q_max_tim[tid]) { \ (ascq)->q_max_tim[tid] = REQPTIME(reqp); \ ASC_DBG3(1, "%s: new q_max_tim[%d] %u\n", \ (function), tid, (ascq)->q_max_tim[tid]); \ } \ (ascq)->q_tot_tim[tid] += REQPTIME(reqp); \ /* Reset the time stamp field. */ \ REQPTIME(reqp) = 0; \ } /* asc_enqueue() flags */ #define ASC_FRONT 1 #define ASC_BACK 2 /* asc_dequeue_list() argument */ #define ASC_TID_ALL (-1) /* Return non-zero, if the queue is empty. */ #define ASC_QUEUE_EMPTY(ascq) ((ascq)->q_tidmask == 0) /* PCI configuration declarations */ #define PCI_BASE_CLASS_PREDEFINED 0x00 #define PCI_BASE_CLASS_MASS_STORAGE 0x01 #define PCI_BASE_CLASS_NETWORK 0x02 #define PCI_BASE_CLASS_DISPLAY 0x03 #define PCI_BASE_CLASS_MULTIMEDIA 0x04 #define PCI_BASE_CLASS_MEMORY_CONTROLLER 0x05 #define PCI_BASE_CLASS_BRIDGE_DEVICE 0x06 /* MASS STORAGE */ #define PCI_SUB_CLASS_SCSI_CONTROLLER 0x00 #define PCI_SUB_CLASS_IDE_CONTROLLER 0x01 #define PCI_SUB_CLASS_FLOPPY_DISK_CONTROLLER 0x02 #define PCI_SUB_CLASS_IPI_BUS_CONTROLLER 0x03 #define PCI_SUB_CLASS_OTHER_MASS_CONTROLLER 0x80 /* NETWORK CONTROLLER */ #define PCI_SUB_CLASS_ETHERNET_CONTROLLER 0x00 #define PCI_SUB_CLASS_TOKEN_RING_CONTROLLER 0x01 #define PCI_SUB_CLASS_FDDI_CONTROLLER 0x02 #define PCI_SUB_CLASS_OTHER_NETWORK_CONTROLLER 0x80 /* DISPLAY CONTROLLER */ #define PCI_SUB_CLASS_VGA_CONTROLLER 0x00 #define PCI_SUB_CLASS_XGA_CONTROLLER 0x01 #define PCI_SUB_CLASS_OTHER_DISPLAY_CONTROLLER 0x80 /* MULTIMEDIA CONTROLLER */ #define PCI_SUB_CLASS_VIDEO_DEVICE 0x00 #define PCI_SUB_CLASS_AUDIO_DEVICE 0x01 #define PCI_SUB_CLASS_OTHER_MULTIMEDIA_DEVICE 0x80 /* MEMORY CONTROLLER */ #define PCI_SUB_CLASS_RAM_CONTROLLER 0x00 #define PCI_SUB_CLASS_FLASH_CONTROLLER 0x01 #define PCI_SUB_CLASS_OTHER_MEMORY_CONTROLLER 0x80 /* BRIDGE CONTROLLER */ #define PCI_SUB_CLASS_HOST_BRIDGE_CONTROLLER 0x00 #define PCI_SUB_CLASS_ISA_BRIDGE_CONTROLLER 0x01 #define PCI_SUB_CLASS_EISA_BRIDGE_CONTROLLER 0x02 #define PCI_SUB_CLASS_MC_BRIDGE_CONTROLLER 0x03 #define PCI_SUB_CLASS_PCI_TO_PCI_BRIDGE_CONTROLLER 0x04 #define PCI_SUB_CLASS_PCMCIA_BRIDGE_CONTROLLER 0x05 #define PCI_SUB_CLASS_OTHER_BRIDGE_CONTROLLER 0x80 #define PCI_MAX_SLOT 0x1F #define PCI_MAX_BUS 0xFF #define PCI_IOADDRESS_MASK 0xFFFE #define ASC_PCI_VENDORID 0x10CD #define ASC_PCI_DEVICE_ID_1100 0x1100 #define ASC_PCI_DEVICE_ID_1200 0x1200 #define ASC_PCI_DEVICE_ID_1300 0x1300 #define ASC_PCI_DEVICE_ID_2300 0x2300 /* PCI IO Port Addresses to generate special cycle */ #define PCI_CONFIG_ADDRESS_MECH1 0x0CF8 #define PCI_CONFIG_DATA_MECH1 0x0CFC #define PCI_CONFIG_FORWARD_REGISTER 0x0CFA /* 0=type 0; 1=type 1; */ #define PCI_CONFIG_BUS_NUMBER_MASK 0x00FF0000 #define PCI_CONFIG_DEVICE_FUNCTION_MASK 0x0000FF00 #define PCI_CONFIG_REGISTER_NUMBER_MASK 0x000000F8 #define PCI_DEVICE_FOUND 0x0000 #define PCI_DEVICE_NOT_FOUND 0xffff #define SUBCLASS_OFFSET 0x0A #define CLASSCODE_OFFSET 0x0B #define VENDORID_OFFSET 0x00 #define DEVICEID_OFFSET 0x02 #ifndef ADVANSYS_STATS #define ASC_STATS(shp, counter) #define ASC_STATS_ADD(shp, counter, count) #else /* ADVANSYS_STATS */ #define ASC_STATS(shp, counter) \ (ASC_BOARDP(shp)->asc_stats.counter++) #define ASC_STATS_ADD(shp, counter, count) \ (ASC_BOARDP(shp)->asc_stats.counter += (count)) #endif /* ADVANSYS_STATS */ #define ASC_CEILING(val, unit) (((val) + ((unit) - 1))/(unit)) /* If the result wraps when calculating tenths, return 0. */ #define ASC_TENTHS(num, den) \ (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) /* * Display a message to the console. */ #define ASC_PRINT(s) \ { \ printk("advansys: "); \ printk(s); \ } #define ASC_PRINT1(s, a1) \ { \ printk("advansys: "); \ printk((s), (a1)); \ } #define ASC_PRINT2(s, a1, a2) \ { \ printk("advansys: "); \ printk((s), (a1), (a2)); \ } #define ASC_PRINT3(s, a1, a2, a3) \ { \ printk("advansys: "); \ printk((s), (a1), (a2), (a3)); \ } #define ASC_PRINT4(s, a1, a2, a3, a4) \ { \ printk("advansys: "); \ printk((s), (a1), (a2), (a3), (a4)); \ } #ifndef ADVANSYS_DEBUG #define ASC_DBG(lvl, s) #define ASC_DBG1(lvl, s, a1) #define ASC_DBG2(lvl, s, a1, a2) #define ASC_DBG3(lvl, s, a1, a2, a3) #define ASC_DBG4(lvl, s, a1, a2, a3, a4) #define ASC_DBG_PRT_SCSI_HOST(lvl, s) #define ASC_DBG_PRT_SCSI_CMND(lvl, s) #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) #define ASC_DBG_PRT_HEX(lvl, name, start, length) #define ASC_DBG_PRT_CDB(lvl, cdb, len) #define ASC_DBG_PRT_SENSE(lvl, sense, len) #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) #else /* ADVANSYS_DEBUG */ /* * Debugging Message Levels: * 0: Errors Only * 1: High-Level Tracing * 2-N: Verbose Tracing */ #define ASC_DBG(lvl, s) \ { \ if (asc_dbglvl >= (lvl)) { \ printk(s); \ } \ } #define ASC_DBG1(lvl, s, a1) \ { \ if (asc_dbglvl >= (lvl)) { \ printk((s), (a1)); \ } \ } #define ASC_DBG2(lvl, s, a1, a2) \ { \ if (asc_dbglvl >= (lvl)) { \ printk((s), (a1), (a2)); \ } \ } #define ASC_DBG3(lvl, s, a1, a2, a3) \ { \ if (asc_dbglvl >= (lvl)) { \ printk((s), (a1), (a2), (a3)); \ } \ } #define ASC_DBG4(lvl, s, a1, a2, a3, a4) \ { \ if (asc_dbglvl >= (lvl)) { \ printk((s), (a1), (a2), (a3), (a4)); \ } \ } #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_scsi_host(s); \ } \ } #define ASC_DBG_PRT_SCSI_CMND(lvl, s) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_scsi_cmnd(s); \ } \ } #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_asc_scsi_q(scsiqp); \ } \ } #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_asc_qdone_info(qdone); \ } \ } #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_adv_scsi_req_q(scsiqp); \ } \ } #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_hex((name), (start), (length)); \ } \ } #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); #endif /* ADVANSYS_DEBUG */ #ifndef ADVANSYS_ASSERT #define ASC_ASSERT(a) #else /* ADVANSYS_ASSERT */ #define ASC_ASSERT(a) \ { \ if (!(a)) { \ printk("ASC_ASSERT() Failure: file %s, line %d\n", \ __FILE__, __LINE__); \ } \ } #endif /* ADVANSYS_ASSERT */ /* * --- Driver Structures */ #ifdef ADVANSYS_STATS /* Per board statistics structure */ struct asc_stats { /* Driver Entrypoint Statistics */ ulong command; /* # calls to advansys_command() */ ulong queuecommand; /* # calls to advansys_queuecommand() */ ulong abort; /* # calls to advansys_abort() */ ulong reset; /* # calls to advansys_reset() */ ulong biosparam; /* # calls to advansys_biosparam() */ ulong interrupt; /* # advansys_interrupt() calls */ ulong callback; /* # calls to asc/adv_isr_callback() */ ulong done; /* # calls to request's scsi_done function */ ulong build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ ulong adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ ulong adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ ulong exe_noerror; /* # ASC_NOERROR returns. */ ulong exe_busy; /* # ASC_BUSY returns. */ ulong exe_error; /* # ASC_ERROR returns. */ ulong exe_unknown; /* # unknown returns. */ /* Data Transfer Statistics */ ulong cont_cnt; /* # non-scatter-gather I/O requests received */ ulong cont_xfer; /* # contiguous transfer 512-bytes */ ulong sg_cnt; /* # scatter-gather I/O requests received */ ulong sg_elem; /* # scatter-gather elements */ ulong sg_xfer; /* # scatter-gather transfer 512-bytes */ }; #endif /* ADVANSYS_STATS */ /* * Request queuing structure */ typedef struct asc_queue { ADV_SCSI_BIT_ID_TYPE q_tidmask; /* queue mask */ REQP q_first[ADV_MAX_TID+1]; /* first queued request */ REQP q_last[ADV_MAX_TID+1]; /* last queued request */ #ifdef ADVANSYS_STATS short q_cur_cnt[ADV_MAX_TID+1]; /* current queue count */ short q_max_cnt[ADV_MAX_TID+1]; /* maximum queue count */ ulong q_tot_cnt[ADV_MAX_TID+1]; /* total enqueue count */ ulong q_tot_tim[ADV_MAX_TID+1]; /* total time queued */ ushort q_max_tim[ADV_MAX_TID+1]; /* maximum time queued */ ushort q_min_tim[ADV_MAX_TID+1]; /* minimum time queued */ #endif /* ADVANSYS_STATS */ } asc_queue_t; /* * Adv Library Request Structures * * The following two se structures are used to process Wide Board requests. * One structure is needed for each command received from the Mid-Level SCSI * driver. * * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the * Mid-Level SCSI request structure. * * The adv_sgblk_t structure is used to handle requests that include * scatter-gather elements. */ typedef struct adv_sgblk { ADV_SG_BLOCK sg_block[ADV_NUM_SG_BLOCK + ADV_NUM_PAGE_CROSSING]; uchar align2[4]; /* Sgblock structure padding. */ struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ } adv_sgblk_t; typedef struct adv_req { ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ uchar align1[4]; /* Request structure padding. */ Scsi_Cmnd *cmndp; /* Mid-Level SCSI command pointer. */ adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ struct adv_req *next_reqp; /* Next Request Structure. */ } adv_req_t; /* * Structure allocated for each board. * * This structure is allocated by scsi_register() at the end * of the 'Scsi_Host' structure starting at the 'hostdata' * field. It is guaranteed to be allocated from DMA-able memory. */ typedef struct asc_board { int id; /* Board Id */ uint flags; /* Board flags */ union { ASC_DVC_VAR asc_dvc_var; /* Narrow board */ ADV_DVC_VAR adv_dvc_var; /* Wide board */ } dvc_var; union { ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ } dvc_cfg; asc_queue_t active; /* Active command queue */ asc_queue_t waiting; /* Waiting command queue */ asc_queue_t done; /* Done command queue */ ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ Scsi_Device *device[ADV_MAX_TID+1]; /* Mid-Level Scsi Device */ ushort reqcnt[ADV_MAX_TID+1]; /* Starvation request count */ #if ASC_QUEUE_FLOW_CONTROL ushort nerrcnt[ADV_MAX_TID+1]; /* No error request count */ #endif /* ASC_QUEUE_FLOW_CONTROL */ ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ ushort queue_full_cnt[ADV_MAX_TID+1]; /* Queue full count */ union { ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ ADVEEP_CONFIG adv_eep; /* Wide EEPROM config. */ } eep_config; ulong last_reset; /* Saved last reset time */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) /* /proc/scsi/advansys/[0...] */ char *prtbuf; /* Statistics Print Buffer */ #endif /* version >= v1.3.0 */ #ifdef ADVANSYS_STATS struct asc_stats asc_stats; /* Board statistics */ #endif /* ADVANSYS_STATS */ /* * The following fields are used only for Narrow Boards. */ /* The following three structures must be in DMA-able memory. */ ASC_SCSI_REQ_Q scsireqq; ASC_CAP_INFO cap_info; ASC_SCSI_INQUIRY inquiry; uchar sdtr_data[ASC_MAX_TID+1]; /* SDTR information */ /* * The following fields are used only for Wide Boards. */ void *ioremap_addr; /* I/O Memory remap address. */ ushort ioport; /* I/O Port address. */ adv_req_t *orig_reqp; /* adv_req_t memory block. */ adv_req_t *adv_reqp; /* Request structures. */ adv_sgblk_t *orig_sgblkp; /* adv_sgblk_t memory block. */ adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */ ushort bios_signature; /* BIOS Signature. */ ushort bios_version; /* BIOS Version. */ ushort bios_codeseg; /* BIOS Code Segment. */ ushort bios_codelen; /* BIOS Code Segment Length. */ } asc_board_t; /* * PCI configuration structures */ typedef struct _PCI_DATA_ { uchar type; uchar bus; uchar slot; uchar func; uchar offset; } PCI_DATA; typedef struct _PCI_DEVICE_ { ushort vendorID; ushort deviceID; ushort slotNumber; ushort slotFound; uchar busNumber; uchar maxBusNumber; uchar devFunc; ushort startSlot; ushort endSlot; uchar bridge; uchar type; } PCI_DEVICE; typedef struct _PCI_CONFIG_SPACE_ { ushort vendorID; ushort deviceID; ushort command; ushort status; uchar revision; uchar classCode[3]; uchar cacheSize; uchar latencyTimer; uchar headerType; uchar bist; ulong baseAddress[6]; ushort reserved[4]; ulong optionRomAddr; ushort reserved2[4]; uchar irqLine; uchar irqPin; uchar minGnt; uchar maxLatency; } PCI_CONFIG_SPACE; /* * --- Driver Data */ /* Note: All driver global data should be initialized. */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) struct proc_dir_entry proc_scsi_advansys = { PROC_SCSI_ADVANSYS, /* unsigned short low_ino */ 8, /* unsigned short namelen */ "advansys", /* const char *name */ S_IFDIR | S_IRUGO | S_IXUGO, /* mode_t mode */ 2 /* nlink_t nlink */ }; #endif /* version >= v1.3.0 */ /* Number of boards detected in system. */ STATIC int asc_board_count = 0; STATIC struct Scsi_Host *asc_host[ASC_NUM_BOARD_SUPPORTED] = { 0 }; /* Overrun buffer shared between all boards. */ STATIC uchar overrun_buf[ASC_OVERRUN_BSIZE] = { 0 }; /* * Global structures required to issue a command. */ STATIC ASC_SCSI_Q asc_scsi_q = { { 0 } }; STATIC ASC_SG_HEAD asc_sg_head = { 0 }; /* List of supported bus types. */ STATIC ushort asc_bus[ASC_NUM_BUS] ASC_INITDATA = { ASC_IS_ISA, ASC_IS_VL, ASC_IS_EISA, ASC_IS_PCI, }; STATIC int pci_scan_method ASC_INITDATA = -1; /* * Used with the LILO 'advansys' option to eliminate or * limit I/O port probing at boot time, cf. advansys_setup(). */ STATIC int asc_iopflag = ASC_FALSE; STATIC int asc_ioport[ASC_NUM_IOPORT_PROBE] = { 0, 0, 0, 0 }; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) /* * In kernels earlier than v1.3.0, kmalloc() does not work * during driver initialization. Therefore statically declare * 16 elements of each structure. v1.3.0 kernels will probably * not need any more than this number. */ uchar adv_req_buf[16 * sizeof(adv_req_t)] = { 0 }; uchar adv_sgblk_buf[16 * sizeof(adv_sgblk_t)] = { 0 }; #endif /* version >= v1,3,0 */ #ifdef ADVANSYS_DEBUG STATIC char * asc_bus_name[ASC_NUM_BUS] = { "ASC_IS_ISA", "ASC_IS_VL", "ASC_IS_EISA", "ASC_IS_PCI", }; STATIC int asc_dbglvl = 0; #endif /* ADVANSYS_DEBUG */ /* Declaration for Asc Library internal data referenced by driver. */ STATIC PortAddr _asc_def_iop_base[]; /* * --- Driver Function Prototypes * * advansys.h contains function prototypes for functions global to Linux. */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) STATIC int asc_proc_copy(off_t, off_t, char *, int , char *, int); #endif /* version >= v1.3.0 */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,70) STATIC void advansys_interrupt(int, struct pt_regs *); #else /* version >= v1.3.70 */ STATIC void advansys_interrupt(int, void *, struct pt_regs *); #endif /* version >= v1.3.70 */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC void advansys_select_queue_depths(struct Scsi_Host *, Scsi_Device *); #endif /* version >= v1.3.89 */ STATIC void advansys_command_done(Scsi_Cmnd *); STATIC void asc_scsi_done_list(Scsi_Cmnd *); STATIC int asc_execute_scsi_cmnd(Scsi_Cmnd *); STATIC int asc_build_req(asc_board_t *, Scsi_Cmnd *); STATIC int adv_build_req(asc_board_t *, Scsi_Cmnd *, ADV_SCSI_REQ_Q **); STATIC int adv_get_sglist(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *, Scsi_Cmnd *); STATIC void asc_isr_callback(ASC_DVC_VAR *, ASC_QDONE_INFO *); STATIC void adv_isr_callback(ADV_DVC_VAR *, ADV_SCSI_REQ_Q *); STATIC int asc_init_dev(ASC_DVC_VAR *, Scsi_Cmnd *); STATIC int asc_srch_pci_dev(PCI_DEVICE *); STATIC uchar asc_scan_method(void); STATIC int asc_pci_find_dev(PCI_DEVICE *); STATIC void asc_get_pci_cfg(PCI_DEVICE *, PCI_CONFIG_SPACE *); STATIC ushort asc_get_cfg_word(PCI_DATA *); STATIC uchar asc_get_cfg_byte(PCI_DATA *); STATIC void asc_put_cfg_byte(PCI_DATA *, uchar); STATIC void asc_enqueue(asc_queue_t *, REQP, int); STATIC REQP asc_dequeue(asc_queue_t *, int); STATIC REQP asc_dequeue_list(asc_queue_t *, REQP *, int); STATIC int asc_rmqueue(asc_queue_t *, REQP); STATIC int asc_isqueued(asc_queue_t *, REQP); STATIC void asc_execute_queue(asc_queue_t *); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) STATIC int asc_prt_board_devices(struct Scsi_Host *, char *, int); STATIC int asc_prt_adv_bios(struct Scsi_Host *, char *, int); STATIC int asc_get_eeprom_string(ushort *serialnum, uchar *cp); STATIC int asc_prt_asc_board_eeprom(struct Scsi_Host *, char *, int); STATIC int asc_prt_adv_board_eeprom(struct Scsi_Host *, char *, int); STATIC int asc_prt_driver_conf(struct Scsi_Host *, char *, int); STATIC int asc_prt_asc_board_info(struct Scsi_Host *, char *, int); STATIC int asc_prt_adv_board_info(struct Scsi_Host *, char *, int); STATIC int asc_prt_line(char *, int, char *fmt, ...); #endif /* version >= v1.3.0 */ /* Declaration for Asc Library internal functions reference by driver. */ STATIC int AscFindSignature(PortAddr); STATIC ushort AscGetEEPConfig(PortAddr, ASCEEP_CONFIG *, ushort); #ifdef ADVANSYS_STATS STATIC int asc_prt_board_stats(struct Scsi_Host *, char *, int); #endif /* ADVANSYS_STATS */ #ifdef ADVANSYS_DEBUG STATIC void asc_prt_scsi_host(struct Scsi_Host *); STATIC void asc_prt_scsi_cmnd(Scsi_Cmnd *); STATIC void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *); STATIC void asc_prt_asc_dvc_var(ASC_DVC_VAR *); STATIC void asc_prt_asc_scsi_q(ASC_SCSI_Q *); STATIC void asc_prt_asc_qdone_info(ASC_QDONE_INFO *); STATIC void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *); STATIC void asc_prt_adv_dvc_var(ADV_DVC_VAR *); STATIC void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *); STATIC void asc_prt_adv_sgblock(int, ADV_SG_BLOCK *); STATIC void asc_prt_hex(char *f, uchar *, int); #endif /* ADVANSYS_DEBUG */ #ifdef ADVANSYS_ASSERT STATIC int interrupts_enabled(void); #endif /* ADVANSYS_ASSERT */ /* * --- Linux 'Scsi_Host_Template' and advansys_setup() Functions */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) /* * advansys_proc_info() - /proc/scsi/advansys/[0-(ASC_NUM_BOARD_SUPPORTED-1)] * * *buffer: I/O buffer * **start: if inout == FALSE pointer into buffer where user read should start * offset: current offset into a /proc/scsi/advansys/[0...] file * length: length of buffer * hostno: Scsi_Host host_no * inout: TRUE - user is writing; FALSE - user is reading * * Return the number of bytes read from or written to a * /proc/scsi/advansys/[0...] file. * * Note: This function uses the per board buffer 'prtbuf' which is * allocated when the board is initialized in advansys_detect(). The * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is * used to write to the buffer. The way asc_proc_copy() is written * if 'prtbuf' is too small it will not be overwritten. Instead the * user just won't get all the available statistics. */ int advansys_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int inout) { struct Scsi_Host *shp; asc_board_t *boardp; int i; char *cp; int cplen; int cnt; int totcnt; int leftlen; char *curbuf; off_t advoffset; Scsi_Device *scd; ASC_DBG(1, "advansys_proc_info: begin\n"); /* * User write not supported. */ if (inout == TRUE) { return(-ENOSYS); } /* * User read of /proc/scsi/advansys/[0...] file. */ /* Find the specified board. */ for (i = 0; i < asc_board_count; i++) { if (asc_host[i]->host_no == hostno) { break; } } if (i == asc_board_count) { return(-ENOENT); } shp = asc_host[i]; boardp = ASC_BOARDP(shp); /* Copy read data starting at the beginning of the buffer. */ *start = buffer; curbuf = buffer; advoffset = 0; totcnt = 0; leftlen = length; /* * Get board configuration information. * * advansys_info() returns the board string from its own static buffer. */ cp = (char *) advansys_info(shp); strcat(cp, "\n"); cplen = strlen(cp); /* Copy board information. */ cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; /* * Display Wide Board BIOS Information. */ if (ASC_WIDE_BOARD(boardp)) { cp = boardp->prtbuf; cplen = asc_prt_adv_bios(shp, cp, ASC_PRTBUF_SIZE); ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; } /* * Display driver information for each device attached to the board. */ cp = boardp->prtbuf; cplen = asc_prt_board_devices(shp, cp, ASC_PRTBUF_SIZE); ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; /* * Display target driver information for each device attached * to the board. */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,1,75) for (scd = scsi_devices; scd; scd = scd->next) #else /* version >= v2.1.75 */ for (scd = shp->host_queue; scd; scd = scd->next) #endif /* version >= v2.1.75 */ { if (scd->host == shp) { cp = boardp->prtbuf; /* * Note: If proc_print_scsidevice() writes more than * ASC_PRTBUF_SIZE bytes, it will overrun 'prtbuf'. */ proc_print_scsidevice(scd, cp, &cplen, 0); ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; } } /* * Display EEPROM configuration for the board. */ cp = boardp->prtbuf; if (ASC_NARROW_BOARD(boardp)) { cplen = asc_prt_asc_board_eeprom(shp, cp, ASC_PRTBUF_SIZE); } else { cplen = asc_prt_adv_board_eeprom(shp, cp, ASC_PRTBUF_SIZE); } ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; /* * Display driver configuration and information for the board. */ cp = boardp->prtbuf; cplen = asc_prt_driver_conf(shp, cp, ASC_PRTBUF_SIZE); ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; #ifdef ADVANSYS_STATS /* * Display driver statistics for the board. */ cp = boardp->prtbuf; cplen = asc_prt_board_stats(shp, cp, ASC_PRTBUF_SIZE); ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; #endif /* ADVANSYS_STATS */ /* * Display Asc Library dynamic configuration information * for the board. */ cp = boardp->prtbuf; if (ASC_NARROW_BOARD(boardp)) { cplen = asc_prt_asc_board_info(shp, cp, ASC_PRTBUF_SIZE); } else { cplen = asc_prt_adv_board_info(shp, cp, ASC_PRTBUF_SIZE); } ASC_ASSERT(cplen < ASC_PRTBUF_SIZE); cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); totcnt += cnt; leftlen -= cnt; if (leftlen == 0) { ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } advoffset += cplen; curbuf += cnt; ASC_DBG1(1, "advansys_proc_info: totcnt %d\n", totcnt); return totcnt; } #endif /* version >= v1.3.0 */ /* * advansys_detect() * * Detect function for AdvanSys adapters. * * Argument is a pointer to the host driver's scsi_hosts entry. * * Return number of adapters found. * * Note: Because this function is called during system initialization * it must not call SCSI mid-level functions including scsi_malloc() * and scsi_free(). */ ASC_INITFUNC( int advansys_detect(Scsi_Host_Template *tpnt) ) { static int detect_called = ASC_FALSE; int iop; int bus; struct Scsi_Host *shp; asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp = NULL; ADV_DVC_VAR *adv_dvc_varp = NULL; int ioport = 0; int share_irq = FALSE; PCI_DEVICE pciDevice; PCI_CONFIG_SPACE pciConfig; int warn_code, err_code; int ret; if (detect_called == ASC_FALSE) { detect_called = ASC_TRUE; } else { printk("AdvanSys SCSI: advansys_detect() multiple calls ignored\n"); return 0; } ASC_DBG(1, "advansys_detect: begin\n"); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) tpnt->proc_dir = &proc_scsi_advansys; #endif /* version >= v1.3.0 */ asc_board_count = 0; /* * If I/O port probing has been modified, then verify and * clean-up the 'asc_ioport' list. */ if (asc_iopflag == ASC_TRUE) { for (ioport = 0; ioport < ASC_NUM_IOPORT_PROBE; ioport++) { ASC_DBG2(1, "advansys_detect: asc_ioport[%d] %x\n", ioport, asc_ioport[ioport]); if (asc_ioport[ioport] != 0) { for (iop = 0; iop < ASC_IOADR_TABLE_MAX_IX; iop++) { if (_asc_def_iop_base[iop] == asc_ioport[ioport]) { break; } } if (iop == ASC_IOADR_TABLE_MAX_IX) { printk( "AdvanSys SCSI: specified I/O Port 0x%X is invalid\n", asc_ioport[ioport]); asc_ioport[ioport] = 0; } } } ioport = 0; } memset(&pciDevice, 0, sizeof(PCI_DEVICE)); memset(&pciConfig, 0, sizeof(PCI_CONFIG_SPACE)); pciDevice.maxBusNumber = PCI_MAX_BUS; pciDevice.endSlot = PCI_MAX_SLOT; for (bus = 0; bus < ASC_NUM_BUS; bus++) { ASC_DBG2(1, "advansys_detect: bus search type %d (%s)\n", bus, asc_bus_name[bus]); iop = 0; while (asc_board_count < ASC_NUM_BOARD_SUPPORTED) { ASC_DBG1(2, "advansys_detect: asc_board_count %d\n", asc_board_count); switch (asc_bus[bus]) { case ASC_IS_ISA: case ASC_IS_VL: if (asc_iopflag == ASC_FALSE) { iop = AscSearchIOPortAddr(iop, asc_bus[bus]); } else { /* * ISA and VL I/O port scanning has either been * eliminated or limited to selected ports on * the LILO command line, /etc/lilo.conf, or * by setting variables when the module was loaded. */ ASC_DBG(1, "advansys_detect: I/O port scanning modified\n"); ioport_try_again: iop = 0; for (; ioport < ASC_NUM_IOPORT_PROBE; ioport++) { if ((iop = asc_ioport[ioport]) != 0) { break; } } if (iop) { ASC_DBG1(1, "advansys_detect: probing I/O port %x...\n", iop); if (check_region(iop, ASC_IOADR_GAP) != 0) { printk( "AdvanSys SCSI: specified I/O Port 0x%X is busy\n", iop); /* Don't try this I/O port twice. */ asc_ioport[ioport] = 0; goto ioport_try_again; } else if (AscFindSignature(iop) == ASC_FALSE) { printk( "AdvanSys SCSI: specified I/O Port 0x%X has no adapter\n", iop); /* Don't try this I/O port twice. */ asc_ioport[ioport] = 0; goto ioport_try_again; } else { /* * If this isn't an ISA board, then it must be * a VL board. If currently looking an ISA * board is being looked for then try for * another ISA board in 'asc_ioport'. */ if (asc_bus[bus] == ASC_IS_ISA && (AscGetChipVersion(iop, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT) == 0) { /* * Don't clear 'asc_ioport[ioport]'. Try * this board again for VL. Increment * 'ioport' past this board. */ ioport++; goto ioport_try_again; } } /* * This board appears good, don't try the I/O port * again by clearing its value. Increment 'ioport' * for the next iteration. */ asc_ioport[ioport++] = 0; } } break; case ASC_IS_EISA: iop = AscSearchIOPortAddr(iop, asc_bus[bus]); break; case ASC_IS_PCI: if (asc_srch_pci_dev(&pciDevice) != PCI_DEVICE_FOUND) { iop = 0; } else { ASC_DBG2(2, "advansys_detect: slotFound %d, busNumber %d\n", pciDevice.slotFound, pciDevice.busNumber); asc_get_pci_cfg(&pciDevice, &pciConfig); iop = pciConfig.baseAddress[0] & PCI_IOADDRESS_MASK; ASC_DBG2(1, "advansys_detect: vendorID %X, deviceID %X\n", pciConfig.vendorID, pciConfig.deviceID); ASC_DBG2(2, "advansys_detect: iop %X, irqLine %d\n", iop, pciConfig.irqLine); } break; default: ASC_PRINT1("advansys_detect: unknown bus type: %d\n", asc_bus[bus]); break; } ASC_DBG1(1, "advansys_detect: iop %x\n", iop); /* * Adapter not found, try next bus type. */ if (iop == 0) { break; } /* * Adapter found. * * Register the adapter, get its configuration, and * initialize it. */ ASC_DBG(2, "advansys_detect: scsi_register()\n"); shp = scsi_register(tpnt, sizeof(asc_board_t)); /* Save a pointer to the Scsi_host of each board found. */ asc_host[asc_board_count++] = shp; /* Initialize private per board data */ boardp = ASC_BOARDP(shp); memset(boardp, 0, sizeof(asc_board_t)); boardp->id = asc_board_count - 1; /* * Handle both narrow and wide PCI boards. * * If a Wide board was detected, set the board structure * wide board flag. Set-up the board structure based on * the board type. */ if ((asc_bus[bus] == ASC_IS_PCI && pciConfig.deviceID == ASC_PCI_DEVICE_ID_2300) == 0) { ASC_DBG(1, "advansys_detect: narrow board\n"); asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; asc_dvc_varp->bus_type = asc_bus[bus]; asc_dvc_varp->drv_ptr = (ulong) boardp; asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; asc_dvc_varp->cfg->overrun_buf = &overrun_buf[0]; asc_dvc_varp->iop_base = iop; asc_dvc_varp->isr_callback = (Ptr2Func) asc_isr_callback; } else { ASC_DBG(1, "advansys_detect: wide board\n"); boardp->flags |= ASC_IS_WIDE_BOARD; adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; adv_dvc_varp->drv_ptr = (ulong) boardp; adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; adv_dvc_varp->isr_callback = (Ptr2Func) adv_isr_callback; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) adv_dvc_varp->iop_base = iop; #else /* version >= v1,3,0 */ /* * Map the board's registers into virtual memory for * PCI slave access. Only memory accesses are used to * access the board's registers. * * Note: The PCI register base address is not always * page aligned, but the address passed to ioremap() * must be page aligned. It is guaranteed that the * PCI register base address will not cross a page * boundary. */ if ((boardp->ioremap_addr = ioremap(pciConfig.baseAddress[1] & PAGE_MASK, PAGE_SIZE)) == 0) { ASC_PRINT3( "advansys_detect: board %d: ioremap(%lx, %d) returned NULL\n", boardp->id, pciConfig.baseAddress[1], ADV_CONDOR_IOLEN); scsi_unregister(shp); asc_board_count--; continue; } adv_dvc_varp->iop_base = (AdvPortAddr) (boardp->ioremap_addr + (pciConfig.baseAddress[1] - (pciConfig.baseAddress[1] & PAGE_MASK))); #endif /* version >= v1,3,0 */ /* * Even though it isn't used to access the board in * kernels greater than or equal to v1.3.0, save * the I/O Port address so that it can be reported and * displayed. */ boardp->ioport = iop; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) /* * Allocate buffer for printing information from * /proc/scsi/advansys/[0...]. */ if ((boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_ATOMIC)) == NULL) { ASC_PRINT3( "advansys_detect: board %d: kmalloc(%d, %d) returned NULL\n", boardp->id, ASC_PRTBUF_SIZE, GFP_ATOMIC); scsi_unregister(shp); asc_board_count--; continue; } #endif /* version >= v1.3.0 */ if (ASC_NARROW_BOARD(boardp)) { /* * Set the board bus type and PCI IRQ before * calling AscInitGetConfig(). */ switch (asc_dvc_varp->bus_type) { case ASC_IS_ISA: shp->unchecked_isa_dma = TRUE; share_irq = FALSE; break; case ASC_IS_VL: shp->unchecked_isa_dma = FALSE; share_irq = FALSE; break; case ASC_IS_EISA: shp->unchecked_isa_dma = FALSE; share_irq = TRUE; break; case ASC_IS_PCI: shp->irq = asc_dvc_varp->irq_no = pciConfig.irqLine; shp->unchecked_isa_dma = FALSE; share_irq = TRUE; asc_dvc_varp->cfg->pci_device_id = pciConfig.deviceID; asc_dvc_varp->cfg->pci_slot_info = ASC_PCI_MKID(pciDevice.busNumber, pciDevice.slotFound, pciDevice.devFunc); break; default: ASC_PRINT2( "advansys_detect: board %d: unknown adapter type: %d\n", boardp->id, asc_dvc_varp->bus_type); shp->unchecked_isa_dma = TRUE; share_irq = FALSE; break; } } else { /* * For Wide boards set PCI information before calling * AdvInitGetConfig(). */ shp->irq = adv_dvc_varp->irq_no = pciConfig.irqLine; shp->unchecked_isa_dma = FALSE; share_irq = TRUE; adv_dvc_varp->cfg->pci_device_id = pciConfig.deviceID; adv_dvc_varp->cfg->pci_slot_info = ASC_PCI_MKID(pciDevice.busNumber, pciDevice.slotFound, pciDevice.devFunc); } /* * Read the board configuration. */ if (ASC_NARROW_BOARD(boardp)) { /* * NOTE: AscInitGetConfig() may change the board's * bus_type value. The asc_bus[bus] value should no * longer be used. If the bus_type field must be * referenced only use the bit-wise AND operator "&". */ ASC_DBG(2, "advansys_detect: AscInitGetConfig()\n"); switch(ret = AscInitGetConfig(asc_dvc_varp)) { case 0: /* No error */ break; case ASC_WARN_IO_PORT_ROTATE: ASC_PRINT1( "AscInitGetConfig: board %d: I/O port address modified\n", boardp->id); break; case ASC_WARN_AUTO_CONFIG: ASC_PRINT1( "AscInitGetConfig: board %d: I/O port increment switch enabled\n", boardp->id); break; case ASC_WARN_EEPROM_CHKSUM: ASC_PRINT1( "AscInitGetConfig: board %d: EEPROM checksum error\n", boardp->id); break; case ASC_WARN_IRQ_MODIFIED: ASC_PRINT1( "AscInitGetConfig: board %d: IRQ modified\n", boardp->id); break; case ASC_WARN_CMD_QNG_CONFLICT: ASC_PRINT1( "AscInitGetConfig: board %d: tag queuing enabled w/o disconnects\n", boardp->id); break; default: ASC_PRINT2( "AscInitGetConfig: board %d: unknown warning: %x\n", boardp->id, ret); break; } if ((err_code = asc_dvc_varp->err_code) != 0) { ASC_PRINT3( "AscInitGetConfig: board %d error: init_state %x, err_code %x\n", boardp->id, asc_dvc_varp->init_state, asc_dvc_varp->err_code); } } else { ASC_DBG(2, "advansys_detect: AdvInitGetConfig()\n"); if ((ret = AdvInitGetConfig(adv_dvc_varp)) != 0) { ASC_PRINT2("AdvInitGetConfig: board %d: warning: %x\n", boardp->id, ret); } if ((err_code = adv_dvc_varp->err_code) != 0) { ASC_PRINT2( "AdvInitGetConfig: board %d error: err_code %x\n", boardp->id, adv_dvc_varp->err_code); } } if (err_code != 0) { #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ scsi_unregister(shp); asc_board_count--; continue; } /* * Save the EEPROM configuration so that it can be displayed * from /proc/scsi/advansys/[0...]. */ if (ASC_NARROW_BOARD(boardp)) { ASCEEP_CONFIG *ep; /* * Set the adapter's target id bit in the 'init_tidmask' field. */ boardp->init_tidmask |= ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); /* * Save EEPROM settings for the board. */ ep = &boardp->eep_config.asc_eep; ep->init_sdtr = asc_dvc_varp->init_sdtr; ep->disc_enable = asc_dvc_varp->cfg->disc_enable; ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; ep->isa_dma_speed = asc_dvc_varp->cfg->isa_dma_speed; ep->start_motor = asc_dvc_varp->start_motor; ep->cntl = asc_dvc_varp->dvc_cntl; ep->no_scam = asc_dvc_varp->no_scam; ep->max_total_qng = asc_dvc_varp->max_total_qng; ep->chip_scsi_id = asc_dvc_varp->cfg->chip_scsi_id; /* 'max_tag_qng' is set to the same value for every device. */ ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; ep->adapter_info[6] = asc_dvc_varp->cfg->adapter_info[6]; /* * Modify board configuration. */ ASC_DBG(2, "advansys_detect: AscInitSetConfig()\n"); switch (ret = AscInitSetConfig(asc_dvc_varp)) { case 0: /* No error. */ break; case ASC_WARN_IO_PORT_ROTATE: ASC_PRINT1( "AscInitSetConfig: board %d: I/O port address modified\n", boardp->id); break; case ASC_WARN_AUTO_CONFIG: ASC_PRINT1( "AscInitSetConfig: board %d: I/O port increment switch enabled\n", boardp->id); break; case ASC_WARN_EEPROM_CHKSUM: ASC_PRINT1( "AscInitSetConfig: board %d: EEPROM checksum error\n", boardp->id); break; case ASC_WARN_IRQ_MODIFIED: ASC_PRINT1( "AscInitSetConfig: board %d: IRQ modified\n", boardp->id); break; case ASC_WARN_CMD_QNG_CONFLICT: ASC_PRINT1( "AscInitSetConfig: board %d: tag queuing w/o disconnects\n", boardp->id); break; default: ASC_PRINT2( "AscInitSetConfig: board %d: unknown warning: %x\n", boardp->id, ret); break; } if (asc_dvc_varp->err_code != 0) { ASC_PRINT3( "AscInitSetConfig: board %d error: init_state %x, err_code %x\n", boardp->id, asc_dvc_varp->init_state, asc_dvc_varp->err_code); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ scsi_unregister(shp); asc_board_count--; continue; } /* * Finish initializing the 'Scsi_Host' structure. */ /* AscInitSetConfig() will set the IRQ for non-PCI boards. */ if ((asc_dvc_varp->bus_type & ASC_IS_PCI) == 0) { shp->irq = asc_dvc_varp->irq_no; } } else { ADVEEP_CONFIG *ep; /* * Save Wide EEP Configuration Information. */ ep = &boardp->eep_config.adv_eep; ep->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep->max_host_qng = adv_dvc_varp->max_host_qng; ep->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep->termination = adv_dvc_varp->cfg->termination; ep->disc_enable = adv_dvc_varp->cfg->disc_enable; ep->bios_ctrl = adv_dvc_varp->bios_ctrl; ep->wdtr_able = adv_dvc_varp->wdtr_able; ep->sdtr_able = adv_dvc_varp->sdtr_able; ep->ultra_able = adv_dvc_varp->ultra_able; ep->tagqng_able = adv_dvc_varp->tagqng_able; ep->start_motor = adv_dvc_varp->start_motor; ep->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep->bios_boot_delay = adv_dvc_varp->cfg->bios_boot_wait; ep->serial_number_word1 = adv_dvc_varp->cfg->serial1; ep->serial_number_word2 = adv_dvc_varp->cfg->serial2; ep->serial_number_word3 = adv_dvc_varp->cfg->serial3; /* * Set the adapter's target id bit in the 'init_tidmask' field. */ boardp->init_tidmask |= ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); /* * Finish initializing the 'Scsi_Host' structure. */ shp->irq = adv_dvc_varp->irq_no; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) /* * Channels are numbered beginning with 0. For AdvanSys One host * structure supports one channel. Multi-channel boards have a * separate host structure for each channel. */ shp->max_channel = 0; #endif /* version >= v1.3.89 */ if (ASC_NARROW_BOARD(boardp)) { shp->max_id = ASC_MAX_TID + 1; shp->max_lun = ASC_MAX_LUN + 1; shp->io_port = asc_dvc_varp->iop_base; shp->n_io_port = ASC_IOADR_GAP; shp->this_id = asc_dvc_varp->cfg->chip_scsi_id; /* Set maximum number of queues the adapter can handle. */ shp->can_queue = asc_dvc_varp->max_total_qng; } else { shp->max_id = ADV_MAX_TID + 1; shp->max_lun = ADV_MAX_LUN + 1; /* * Save the I/O Port address and length even though the * in v1.3.0 and greater kernels the region is not used * by a Wide board. Instead the board is accessed with * Memory Mapped I/O. */ shp->io_port = iop; shp->n_io_port = ADV_CONDOR_IOLEN; shp->this_id = adv_dvc_varp->chip_scsi_id; /* Set maximum number of queues the adapter can handle. */ shp->can_queue = adv_dvc_varp->max_host_qng; } #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,89) /* * In old kernels without tag queuing support and with memory * allocation problems set a conservative 'cmd_per_lun' value. */ #ifdef MODULE shp->cmd_per_lun = 1; #else /* MODULE */ shp->cmd_per_lun = 4; #endif /* MODULE */ ASC_DBG1(1, "advansys_detect: cmd_per_lun: %d\n", shp->cmd_per_lun); #else /* version >= v1.3.89 */ /* * Following v1.3.89, 'cmd_per_lun' is no longer needed * and should be set to zero. * * But because of a bug introduced in v1.3.89 if the driver is * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level * SCSI function 'allocate_device' will panic. To allow the driver * to work as a module in these kernels set 'cmd_per_lun' to 1. */ #ifdef MODULE shp->cmd_per_lun = 1; #else /* MODULE */ shp->cmd_per_lun = 0; #endif /* MODULE */ /* * Use the host 'select_queue_depths' function to determine * the number of commands to queue per device. */ shp->select_queue_depths = advansys_select_queue_depths; #endif /* version >= v1.3.89 */ /* * Set the maximum number of scatter-gather elements the * adapter can handle. */ if (ASC_NARROW_BOARD(boardp)) { /* * Allow two commands with 'sg_tablesize' scatter-gather * elements to be executed simultaneously. This value is * the theoretical hardware limit. It may be decreased * below. */ shp->sg_tablesize = (((asc_dvc_varp->max_total_qng - 2) / 2) * ASC_SG_LIST_PER_Q) + 1; } else { shp->sg_tablesize = ADV_MAX_SG_LIST; } #ifdef MODULE /* * If the driver is compiled as a module, set a limit on the * 'sg_tablesize' value to prevent memory allocation failures. * Memory allocation errors are more likely to occur at module * load time, then at driver initialization time. */ if (shp->sg_tablesize > 64) { shp->sg_tablesize = 64; } #endif /* MODULE */ /* * The value of 'sg_tablesize' can not exceed the SCSI * mid-level driver definition of SG_ALL. SG_ALL also * must not be exceeded, because it is used to define the * size of the scatter-gather table in 'struct asc_sg_head'. */ if (shp->sg_tablesize > SG_ALL) { shp->sg_tablesize = SG_ALL; } ASC_DBG1(1, "advansys_detect: sg_tablesize: %d\n", shp->sg_tablesize); /* BIOS start address. */ if (ASC_NARROW_BOARD(boardp)) { shp->base = (char *) ((ulong) AscGetChipBiosAddress( asc_dvc_varp->iop_base, asc_dvc_varp->bus_type)); } else { /* * Fill-in BIOS board variables. The Wide BIOS saves * information in LRAM that is used by the driver. */ AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_SIGNATURE, boardp->bios_signature); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_VERSION, boardp->bios_version); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_CODESEG, boardp->bios_codeseg); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_CODELEN, boardp->bios_codelen); ASC_DBG2(1, "advansys_detect: bios_signature %x, bios_version %x\n", boardp->bios_signature, boardp->bios_version); ASC_DBG2(1, "advansys_detect: bios_codeseg %x, bios_codelen %x\n", boardp->bios_codeseg, boardp->bios_codelen); /* * If the BIOS saved a valid signature, then fill in * the BIOS code segment base address. */ if (boardp->bios_signature == 0x55AA) { /* * Convert x86 realmode code segment to a linear * address by shifting left 4. */ shp->base = (uchar *) (boardp->bios_codeseg << 4); } else { shp->base = 0; } } /* * Register Board Resources - I/O Port, DMA, IRQ */ /* Register I/O port range. */ ASC_DBG(2, "advansys_detect: request_region()\n"); request_region(shp->io_port, shp->n_io_port, "advansys"); /* Register DMA Channel for Narrow boards. */ shp->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ if (ASC_NARROW_BOARD(boardp)) { /* Register DMA channel for ISA bus. */ if (asc_dvc_varp->bus_type & ASC_IS_ISA) { shp->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; if ((ret = request_dma(shp->dma_channel, "advansys")) != 0) { ASC_PRINT3( "advansys_detect: board %d: request_dma() %d failed %d\n", boardp->id, shp->dma_channel, ret); release_region(shp->io_port, shp->n_io_port); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ scsi_unregister(shp); asc_board_count--; continue; } AscEnableIsaDma(shp->dma_channel); } } /* Register IRQ Number. */ ASC_DBG1(2, "advansys_detect: request_irq() %d\n", shp->irq); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,70) if ((ret = request_irq(shp->irq, advansys_interrupt, SA_INTERRUPT, "advansys")) != 0) #else /* version >= v1.3.70 */ if ((ret = request_irq(shp->irq, advansys_interrupt, SA_INTERRUPT | (share_irq == TRUE ? SA_SHIRQ : 0), "advansys", boardp)) != 0) #endif /* version >= v1.3.70 */ { ASC_PRINT2( "advansys_detect: board %d: request_irq() failed %d\n", boardp->id, ret); release_region(shp->io_port, shp->n_io_port); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) iounmap(boardp->ioremap_addr); #endif /* version >= v1,3,0 */ if (shp->dma_channel != NO_ISA_DMA) { free_dma(shp->dma_channel); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ scsi_unregister(shp); asc_board_count--; continue; } /* * Initialize board RISC chip and enable interrupts. */ if (ASC_NARROW_BOARD(boardp)) { ASC_DBG(2, "advansys_detect: AscInitAsc1000Driver()\n"); warn_code = AscInitAsc1000Driver(asc_dvc_varp); err_code = asc_dvc_varp->err_code; if (warn_code || err_code) { ASC_PRINT4( "AscInitAsc1000Driver: board %d: error: init_state %x, warn %x error %x\n", boardp->id, asc_dvc_varp->init_state, warn_code, err_code); } } else { int req_cnt; adv_req_t *reqp = NULL; int sg_cnt; adv_sgblk_t *sgp = NULL; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) req_cnt = sizeof(adv_req_buf)/sizeof(adv_req_t); sg_cnt = sizeof(adv_sgblk_buf)/sizeof(adv_sgblk_t); reqp = (adv_req_t *) &adv_req_buf[0]; sgp = (adv_sgblk_t *) &adv_sgblk_buf[0]; #else /* version >= v1.3.0 */ /* * Allocate up to 'max_host_qng' request structures for * the Wide board. */ for (req_cnt = adv_dvc_varp->max_host_qng; req_cnt > 0; req_cnt--) { reqp = (adv_req_t *) kmalloc(sizeof(adv_req_t) * req_cnt, GFP_ATOMIC); ASC_DBG3(1, "advansys_detect: reqp %x, req_cnt %d, bytes %d\n", (unsigned) reqp, req_cnt, sizeof(adv_req_t) * req_cnt); if (reqp != NULL) { break; } } /* * Allocate up to ADV_TOT_SG_LIST request structures for * the Wide board. */ for (sg_cnt = ADV_TOT_SG_LIST; sg_cnt > 0; sg_cnt--) { sgp = (adv_sgblk_t *) kmalloc(sizeof(adv_sgblk_t) * sg_cnt, GFP_ATOMIC); ASC_DBG3(1, "advansys_detect: sgp %x, sg_cnt %d, bytes %d\n", (unsigned) sgp, sg_cnt, sizeof(adv_sgblk_t) * sg_cnt); if (sgp != NULL) { break; } } #endif /* version >= v1.3.0 */ /* * If no request structures or scatter-gather structures could * be allocated, then return an error. Otherwise continue with * initialization. */ if (reqp == NULL) { ASC_PRINT1( "advansys_detect: board %d: error: failed to kmalloc() adv_req_t buffer.\n", boardp->id); err_code = ADV_ERROR; } else if (sgp == NULL) { kfree(reqp); ASC_PRINT1( "advansys_detect: board %d: error: failed to kmalloc() adv_sgblk_t buffer.\n", boardp->id); err_code = ADV_ERROR; } else { /* * Save original pointer for kfree() in case the * driver is built as a module and can be unloaded. */ boardp->orig_reqp = reqp; /* * Point 'adv_reqp' to the request structures and * link them together. */ req_cnt--; reqp[req_cnt].next_reqp = NULL; for (; req_cnt > 0; req_cnt--) { reqp[req_cnt - 1].next_reqp = &reqp[req_cnt]; } boardp->adv_reqp = &reqp[0]; /* * Save original pointer for kfree() in case the * driver is built as a module and can be unloaded. */ boardp->orig_sgblkp = sgp; /* * Point 'adv_sgblkp' to the request structures and * link them together. */ sg_cnt--; sgp[sg_cnt].next_sgblkp = NULL; for (; sg_cnt > 0; sg_cnt--) { sgp[sg_cnt - 1].next_sgblkp = &sgp[sg_cnt]; } boardp->adv_sgblkp = &sgp[0]; ASC_DBG(2, "advansys_detect: AdvInitAsc3550Driver()\n"); warn_code = AdvInitAsc3550Driver(adv_dvc_varp); err_code = adv_dvc_varp->err_code; if (warn_code || err_code) { ASC_PRINT3( "AdvInitAsc3550Driver: board %d: error: warn %x, error %x\n", boardp->id, warn_code, adv_dvc_varp->err_code); } } } if (err_code != 0) { release_region(shp->io_port, shp->n_io_port); if (ASC_WIDE_BOARD(boardp)) { #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) iounmap(boardp->ioremap_addr); #endif /* version >= v1,3,0 */ if (boardp->orig_reqp) { kfree(boardp->orig_reqp); boardp->orig_reqp = boardp->adv_reqp = NULL; } if (boardp->orig_sgblkp) { kfree(boardp->orig_sgblkp); boardp->orig_sgblkp = boardp->adv_sgblkp = NULL; } } if (shp->dma_channel != NO_ISA_DMA) { free_dma(shp->dma_channel); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,70) free_irq(shp->irq); #else /* version >= v1.3.70 */ free_irq(shp->irq, boardp); #endif /* version >= v1.3.70 */ scsi_unregister(shp); asc_board_count--; continue; } ASC_DBG_PRT_SCSI_HOST(2, shp); } } ASC_DBG1(1, "advansys_detect: done: asc_board_count %d\n", asc_board_count); return asc_board_count; } /* * advansys_release() * * Release resources allocated for a single AdvanSys adapter. */ int advansys_release(struct Scsi_Host *shp) { asc_board_t *boardp; ASC_DBG(1, "advansys_release: begin\n"); boardp = ASC_BOARDP(shp); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,70) free_irq(shp->irq); #else /* version >= v1.3.70 */ free_irq(shp->irq, boardp); #endif /* version >= v1.3.70 */ if (shp->dma_channel != NO_ISA_DMA) { ASC_DBG(1, "advansys_release: free_dma()\n"); free_dma(shp->dma_channel); } release_region(shp->io_port, shp->n_io_port); if (ASC_WIDE_BOARD(boardp)) { #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) iounmap(boardp->ioremap_addr); #endif /* version >= v1,3,0 */ if (boardp->orig_reqp) { kfree(boardp->orig_reqp); boardp->orig_reqp = boardp->adv_reqp = NULL; } if (boardp->orig_sgblkp) { kfree(boardp->orig_sgblkp); boardp->orig_sgblkp = boardp->adv_sgblkp = NULL; } } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) ASC_ASSERT(boardp->prtbuf != NULL); kfree(boardp->prtbuf); #endif /* version >= v1.3.0 */ scsi_unregister(shp); ASC_DBG(1, "advansys_release: end\n"); return 0; } /* * advansys_info() * * Return suitable for printing on the console with the argument * adapter's configuration information. * * Note: The information line should not exceed ASC_INFO_SIZE bytes, * otherwise the static 'info' array will be overrun. */ const char * advansys_info(struct Scsi_Host *shp) { static char info[ASC_INFO_SIZE]; asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp; ADV_DVC_VAR *adv_dvc_varp; char *busname; boardp = ASC_BOARDP(shp); if (ASC_NARROW_BOARD(boardp)) { asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; ASC_DBG(1, "advansys_info: begin\n"); if (asc_dvc_varp->bus_type & ASC_IS_ISA) { if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == ASC_IS_ISAPNP) { busname = "ISA PnP"; } else { busname = "ISA"; } sprintf(info, "AdvanSys SCSI %s: %s %u CDB: BIOS %X, IO %X/%X, IRQ %u, DMA %u", ASC_VERSION, busname, asc_dvc_varp->max_total_qng, (unsigned) shp->base, shp->io_port, shp->n_io_port - 1, shp->irq, shp->dma_channel); } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { busname = "PCI Ultra"; } else { busname = "PCI"; } sprintf(info, "AdvanSys SCSI %s: %s %u CDB: IO %X/%X, IRQ %u", ASC_VERSION, busname, asc_dvc_varp->max_total_qng, shp->io_port, shp->n_io_port - 1, shp->irq); } else { if (asc_dvc_varp->bus_type & ASC_IS_VL) { busname = "VL"; } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { busname = "EISA"; } else { busname = "?"; ASC_PRINT2( "advansys_info: board %d: unknown bus type %d\n", boardp->id, asc_dvc_varp->bus_type); } sprintf(info, "AdvanSys SCSI %s: %s %u CDB: BIOS %X, IO %X/%X, IRQ %u", ASC_VERSION, busname, asc_dvc_varp->max_total_qng, (unsigned) shp->base, shp->io_port - 1, shp->n_io_port, shp->irq); } } else { /* * Wide Adapter Information * * Memory-mapped I/O is used instead of I/O space to access * the adapter, but display the I/O Port range. The Memory * I/O address is displayed through the driver /proc file. */ adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; if (boardp->bios_signature == 0x55AA) { sprintf(info, "AdvanSys SCSI %s: PCI Ultra-Wide: BIOS %X/%X, IO %X/%X, IRQ %u", ASC_VERSION, boardp->bios_codeseg << 4, boardp->bios_codelen > 0 ? (boardp->bios_codelen << 9) - 1 : 0, (unsigned) boardp->ioport, ADV_CONDOR_IOLEN - 1, shp->irq); } else { sprintf(info, "AdvanSys SCSI %s: PCI Ultra-Wide: IO %X/%X, IRQ %u", ASC_VERSION, (unsigned) boardp->ioport, (ADV_CONDOR_IOLEN - 1), shp->irq); } } ASC_ASSERT(strlen(info) < ASC_INFO_SIZE); ASC_DBG(1, "advansys_info: end\n"); return info; } /* * advansys_command() - polled I/O entrypoint. * * Apparently host drivers shouldn't return until the command * is finished. * * Note: This is an old interface that is no longer used by the SCSI * mid-level driver. The new interface, advansys_queuecommand(), * currently handles all requests. */ int advansys_command(Scsi_Cmnd *scp) { ASC_DBG1(1, "advansys_command: scp %x\n", (unsigned) scp); ASC_STATS(scp->host, command); scp->SCp.Status = 0; /* Set to a known state */ advansys_queuecommand(scp, advansys_command_done); while (scp->SCp.Status == 0) { continue; } ASC_DBG1(1, "advansys_command: result %x\n", scp->result); return scp->result; } /* * advansys_queuecommand() - interrupt-driven I/O entrypoint. * * This function always returns 0. Command return status is saved * in the 'scp' result field. */ int advansys_queuecommand(Scsi_Cmnd *scp, void (*done)(Scsi_Cmnd *)) { struct Scsi_Host *shp; asc_board_t *boardp; int flags; Scsi_Cmnd *done_scp; shp = scp->host; boardp = ASC_BOARDP(shp); ASC_STATS(shp, queuecommand); /* * Disable interrupts to preserve request ordering and provide * mutually exclusive access to global structures used to initiate * a request. */ save_flags(flags); cli(); /* * Block new commands while handling a reset or abort request. */ if (boardp->flags & (ASC_HOST_IN_RESET | ASC_HOST_IN_ABORT)) { if (boardp->flags & ASC_HOST_IN_RESET) { ASC_DBG1(1, "advansys_queuecommand: scp %x blocked for reset request\n", (unsigned) scp); scp->result = HOST_BYTE(DID_RESET); } else { ASC_DBG1(1, "advansys_queuecommand: scp %x blocked for abort request\n", (unsigned) scp); scp->result = HOST_BYTE(DID_ABORT); } /* * Add blocked requests to the board's 'done' queue. The queued * requests will be completed at the end of the abort or reset * handling. */ asc_enqueue(&boardp->done, scp, ASC_BACK); restore_flags(flags); return 0; } /* * Attempt to execute any waiting commands for the board. */ if (!ASC_QUEUE_EMPTY(&boardp->waiting)) { ASC_DBG(1, "advansys_queuecommand: before asc_execute_queue() waiting\n"); asc_execute_queue(&boardp->waiting); } /* * Save the function pointer to Linux mid-level 'done' function * and attempt to execute the command. * * If ASC_ERROR is returned the request has been added to the * board's 'active' queue and will be completed by the interrupt * handler. * * If ASC_BUSY is returned add the request to the board's per * target waiting list. * * If an error occurred, the request will have been placed on the * board's 'done' queue and must be completed before returning. */ scp->scsi_done = done; switch (asc_execute_scsi_cmnd(scp)) { case ASC_NOERROR: break; case ASC_BUSY: asc_enqueue(&boardp->waiting, scp, ASC_BACK); break; case ASC_ERROR: default: done_scp = asc_dequeue_list(&boardp->done, NULL, ASC_TID_ALL); /* Interrupts could be enabled here. */ asc_scsi_done_list(done_scp); break; } restore_flags(flags); return 0; } /* * advansys_abort() * * Abort the command specified by 'scp'. */ int advansys_abort(Scsi_Cmnd *scp) { struct Scsi_Host *shp; asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp; ADV_DVC_VAR *adv_dvc_varp; int flags; int do_scsi_done; int scp_found; Scsi_Cmnd *done_scp = NULL; int ret; /* Save current flags and disable interrupts. */ save_flags(flags); cli(); ASC_DBG1(1, "advansys_abort: scp %x\n", (unsigned) scp); #ifdef ADVANSYS_STATS if (scp->host != NULL) { ASC_STATS(scp->host, abort); } #endif /* ADVANSYS_STATS */ #ifdef ADVANSYS_ASSERT do_scsi_done = ASC_ERROR; scp_found = ASC_ERROR; ret = ASC_ERROR; #endif /* ADVANSYS_ASSERT */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) if (scp->serial_number != scp->serial_number_at_timeout) { ASC_PRINT1( "advansys_abort: timeout serial number changed for request %x\n", (unsigned) scp); do_scsi_done = ASC_FALSE; scp_found = ASC_FALSE; ret = SCSI_ABORT_NOT_RUNNING; } else #endif /* version >= v1.3.89 */ if ((shp = scp->host) == NULL) { scp->result = HOST_BYTE(DID_ERROR); do_scsi_done = ASC_TRUE; scp_found = ASC_FALSE; ret = SCSI_ABORT_ERROR; } else if ((boardp = ASC_BOARDP(shp))->flags & (ASC_HOST_IN_RESET | ASC_HOST_IN_ABORT)) { ASC_PRINT2( "advansys_abort: board %d: Nested host reset or abort, flags 0x%x\n", boardp->id, boardp->flags); do_scsi_done = ASC_TRUE; if ((asc_rmqueue(&boardp->active, scp) == ASC_TRUE) || (asc_rmqueue(&boardp->waiting, scp) == ASC_TRUE)) { scp_found = ASC_TRUE; } else { scp_found = ASC_FALSE; } scp->result = HOST_BYTE(DID_ERROR); ret = SCSI_ABORT_ERROR; } else { /* Set abort flag to avoid nested reset or abort requests. */ boardp->flags |= ASC_HOST_IN_ABORT; do_scsi_done = ASC_TRUE; if (asc_rmqueue(&boardp->waiting, scp) == ASC_TRUE) { /* * If asc_rmqueue() found the command on the waiting * queue, it had not been sent to the device. After * the queue is removed, no other handling is required. */ ASC_DBG1(1, "advansys_abort: scp %x found on waiting queue\n", (unsigned) scp); scp_found = ASC_TRUE; scp->result = HOST_BYTE(DID_ABORT); ret = SCSI_ABORT_SUCCESS; } else if (asc_isqueued(&boardp->active, scp) == ASC_TRUE) { /* * If asc_isqueued() found the command on the active * queue, it has been sent to the device. The command * will be returned through the interrupt handler after * it has been aborted. */ if (ASC_NARROW_BOARD(boardp)) { /* * Narrow Board */ asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; scp->result = HOST_BYTE(DID_ABORT); sti(); /* Enable interrupts for AscAbortSRB(). */ ASC_DBG1(1, "advansys_abort: before AscAbortSRB(), scp %x\n", (unsigned) scp); switch (AscAbortSRB(asc_dvc_varp, (ulong) scp)) { case ASC_TRUE: /* asc_isr_callback() will be called */ ASC_DBG(1, "advansys_abort: AscAbortSRB() TRUE\n"); ret = SCSI_ABORT_PENDING; break; case ASC_FALSE: /* Request has apparently already completed. */ ASC_DBG(1, "advansys_abort: AscAbortSRB() FALSE\n"); ret = SCSI_ABORT_NOT_RUNNING; break; case ASC_ERROR: default: ASC_DBG(1, "advansys_abort: AscAbortSRB() ERROR\n"); ret = SCSI_ABORT_ERROR; break; } cli(); } else { /* * Wide Board */ adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; scp->result = HOST_BYTE(DID_ABORT); ASC_DBG1(1, "advansys_abort: before AdvAbortSRB(), scp %x\n", (unsigned) scp); switch (AdvAbortSRB(adv_dvc_varp, (ulong) scp)) { case ASC_TRUE: /* asc_isr_callback() will be called */ ASC_DBG(1, "advansys_abort: AdvAbortSRB() TRUE\n"); ret = SCSI_ABORT_PENDING; break; case ASC_FALSE: /* Request has apparently already completed. */ ASC_DBG(1, "advansys_abort: AdvAbortSRB() FALSE\n"); ret = SCSI_ABORT_NOT_RUNNING; break; case ASC_ERROR: default: ASC_DBG(1, "advansys_abort: AdvAbortSRB() ERROR\n"); ret = SCSI_ABORT_ERROR; break; } /* * Ensure all requests completed by the microcode have * been processed by calling AdvISR(). */ (void) AdvISR(adv_dvc_varp); } /* * The request will either still be on the active queue * or have been added to the board's done queue. */ if (asc_rmqueue(&boardp->active, scp) == ASC_TRUE) { scp->result = HOST_BYTE(DID_ABORT); scp_found = ASC_TRUE; } else { scp_found = asc_rmqueue(&boardp->done, scp); ASC_ASSERT(scp_found == ASC_TRUE); } } else { /* * The command was not found on the active or waiting queues. */ do_scsi_done = ASC_TRUE; scp_found = ASC_FALSE; ret = SCSI_ABORT_NOT_RUNNING; } /* Clear abort flag. */ boardp->flags &= ~ASC_HOST_IN_ABORT; /* * Because the ASC_HOST_IN_ABORT flag causes both * 'advansys_interrupt' and 'asc_isr_callback' to * queue requests to the board's 'done' queue and * prevents waiting commands from being executed, * these queued requests must be handled here. */ done_scp = asc_dequeue_list(&boardp->done, NULL, ASC_TID_ALL); /* * Start any waiting commands for the board. */ if (!ASC_QUEUE_EMPTY(&boardp->waiting)) { ASC_DBG(1, "advansys_interrupt: before asc_execute_queue()\n"); asc_execute_queue(&boardp->waiting); } } /* Interrupts could be enabled here. */ /* * Complete the request to be aborted, unless it has been * restarted as detected above, even if it was not found on * the device active or waiting queues. */ ASC_ASSERT(do_scsi_done != ASC_ERROR); ASC_ASSERT(scp_found != ASC_ERROR); if (do_scsi_done == ASC_TRUE) { if (scp->scsi_done == NULL) { ASC_PRINT1( "advansys_abort: aborted request scsi_done() is NULL, %x\n", (unsigned) scp); } else { if (scp_found == ASC_FALSE) { ASC_PRINT1( "advansys_abort: abort request not active or waiting, completing anyway %x\n", (unsigned) scp); } ASC_STATS(scp->host, done); scp->scsi_done(scp); } } /* * It is possible for the request done function to re-enable * interrupts without confusing the driver. But here interrupts * aren't enabled until all requests have been completed. */ if (done_scp != NULL) { asc_scsi_done_list(done_scp); } ASC_DBG1(1, "advansys_abort: ret %d\n", ret); /* Re-enable interrupts, if they were enabled on entry. */ restore_flags(flags); ASC_ASSERT(ret != ASC_ERROR); return ret; } /* * advansys_reset() * * Reset the device associated with the command 'scp'. */ int #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,89) advansys_reset(Scsi_Cmnd *scp) #else /* version >= v1.3.89 */ advansys_reset(Scsi_Cmnd *scp, unsigned int reset_flags) #endif /* version >= v1.3.89 */ { struct Scsi_Host *shp; asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp; ADV_DVC_VAR *adv_dvc_varp; int flags; Scsi_Cmnd *done_scp = NULL, *last_scp = NULL; Scsi_Cmnd *tscp, *new_last_scp; int do_scsi_done; int scp_found; int status; int target; int ret; int device_reset = ASC_FALSE; /* Save current flags and disable interrupts. */ save_flags(flags); cli(); ASC_DBG1(1, "advansys_reset: %x\n", (unsigned) scp); #ifdef ADVANSYS_STATS if (scp->host != NULL) { ASC_STATS(scp->host, reset); } #endif /* ADVANSYS_STATS */ #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) if ((reset_flags & SCSI_RESET_ASYNCHRONOUS) && (scp->serial_number != scp->serial_number_at_timeout)) { ASC_PRINT1( "advansys_reset: timeout serial number changed for request %x\n", (unsigned) scp); do_scsi_done = ASC_FALSE; scp_found = ASC_FALSE; ret = SCSI_RESET_NOT_RUNNING; } else #endif /* version >= v1.3.89 */ if ((shp = scp->host) == NULL) { scp->result = HOST_BYTE(DID_ERROR); do_scsi_done = ASC_TRUE; scp_found = ASC_FALSE; ret = SCSI_RESET_ERROR; } else if ((boardp = ASC_BOARDP(shp))->flags & (ASC_HOST_IN_RESET | ASC_HOST_IN_ABORT)) { ASC_PRINT2( "advansys_reset: board %d: Nested host reset or abort, flags 0x%x\n", boardp->id, boardp->flags); do_scsi_done = ASC_TRUE; if ((asc_rmqueue(&boardp->active, scp) == ASC_TRUE) || (asc_rmqueue(&boardp->waiting, scp) == ASC_TRUE)) { scp_found = ASC_TRUE; } else { scp_found = ASC_FALSE; } scp->result = HOST_BYTE(DID_ERROR); ret = SCSI_RESET_ERROR; } else if (jiffies >= boardp->last_reset && jiffies < (boardp->last_reset + (10 * HZ))) { /* * Don't allow a reset to be attempted within 10 seconds * of the last reset. * * If 'jiffies' wrapping occurs, the reset request will go * through, because a wrapped 'jiffies' would not pass the * test above. */ ASC_DBG(1, "advansys_reset: reset within 10 sec of last reset ignored\n"); do_scsi_done = ASC_TRUE; if ((asc_rmqueue(&boardp->active, scp) == ASC_TRUE) || (asc_rmqueue(&boardp->waiting, scp) == ASC_TRUE)) { scp_found = ASC_TRUE; } else { scp_found = ASC_FALSE; } scp->result = HOST_BYTE(DID_ERROR); ret = SCSI_RESET_ERROR; } else { do_scsi_done = ASC_TRUE; /* Set reset flag to avoid nested reset or abort requests. */ boardp->flags |= ASC_HOST_IN_RESET; /* * If the request is on the target waiting or active queue * or the board done queue, then remove it and note that it * was found. */ if (asc_rmqueue(&boardp->active, scp) == ASC_TRUE) { ASC_DBG(1, "advansys_reset: active scp_found = TRUE\n"); scp_found = ASC_TRUE; } else if (asc_rmqueue(&boardp->waiting, scp) == ASC_TRUE) { ASC_DBG(1, "advansys_reset: waiting scp_found = TRUE\n"); scp_found = ASC_TRUE; } else if (asc_rmqueue(&boardp->done, scp) == ASC_TRUE) { scp_found = ASC_TRUE; } else { scp_found = ASC_FALSE; } if (ASC_NARROW_BOARD(boardp)) { /* * Narrow Board * * If the suggest reset bus flags are set, then reset the bus. * Otherwise only reset the device. */ asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) if (reset_flags & (SCSI_RESET_SUGGEST_BUS_RESET | SCSI_RESET_SUGGEST_HOST_RESET)) { #endif /* version >= v1.3.89 */ /* * Reset the target's SCSI bus. */ ASC_DBG(1, "advansys_reset: before AscResetSB()\n"); sti(); /* Enable interrupts for AscResetSB(). */ status = AscResetSB(asc_dvc_varp); cli(); switch (status) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AscResetSB() success\n"); ret = SCSI_RESET_SUCCESS; break; case ASC_ERROR: default: ASC_DBG(1, "advansys_reset: AscResetSB() failed\n"); ret = SCSI_RESET_ERROR; break; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) } else { /* * Reset the specified device. If the device reset fails, * then reset the SCSI bus. */ ASC_DBG1(1, "advansys_reset: before AscResetDevice(), target %d\n", scp->target); sti(); /* Enable interrupts for AscResetDevice(). */ status = AscResetDevice(asc_dvc_varp, scp->target); cli(); /* * If the device has been reset, try to initialize it. */ if (status == ASC_TRUE) { status = asc_init_dev(asc_dvc_varp, scp); } switch (status) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AscResetDevice() success\n"); device_reset = ASC_TRUE; ret = SCSI_RESET_SUCCESS; break; case ASC_ERROR: default: ASC_DBG(1, "advansys_reset: AscResetDevice() failed; Calling AscResetSB()\n"); sti(); /* Enable interrupts for AscResetSB(). */ status = AscResetSB(asc_dvc_varp); cli(); switch (status) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AscResetSB() TRUE\n"); ret = SCSI_RESET_SUCCESS; break; case ASC_ERROR: default: ASC_DBG(1, "advansys_reset: AscResetSB() ERROR\n"); ret = SCSI_RESET_ERROR; break; } break; } } #endif /* version >= v1.3.89 */ } else { /* * Wide Board * * If the suggest reset bus flags are set, then reset the bus. * Otherwise only reset the device. */ adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) if (reset_flags & (SCSI_RESET_SUGGEST_BUS_RESET | SCSI_RESET_SUGGEST_HOST_RESET)) { #endif /* version >= v1.3.89 */ /* * Reset the target's SCSI bus. */ ASC_DBG(1, "advansys_reset: before AdvResetSB()\n"); switch (AdvResetSB(adv_dvc_varp)) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AdvResetSB() success\n"); ret = SCSI_RESET_SUCCESS; break; case ASC_FALSE: default: ASC_DBG(1, "advansys_reset: AdvResetSB() failed\n"); ret = SCSI_RESET_ERROR; break; } /* * Ensure all requests completed by the microcode have * been processed by calling AdvISR(). */ (void) AdvISR(adv_dvc_varp); #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) } else { /* * Reset the specified device. If the device reset fails, * then reset the SCSI bus. */ ASC_DBG1(1, "advansys_reset: before AdvResetDevice(), target %d\n", scp->target); switch (AdvResetDevice(adv_dvc_varp, scp->target)) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AdvResetDevice() success\n"); device_reset = ASC_TRUE; ret = SCSI_RESET_SUCCESS; break; case ASC_FALSE: default: ASC_DBG(1, "advansys_reset: AdvResetDevice() failed; Calling AdvResetSB()\n"); switch (AdvResetSB(adv_dvc_varp)) { case ASC_TRUE: ASC_DBG(1, "advansys_reset: AdvResetSB() TRUE\n"); ret = SCSI_RESET_SUCCESS; break; case ASC_FALSE: default: ASC_DBG(1, "advansys_reset: AdvResetSB() ERROR\n"); ret = SCSI_RESET_ERROR; break; } break; } /* * Ensure all requests completed by the microcode have * been processed by calling AdvISR(). */ (void) AdvISR(adv_dvc_varp); } #endif /* version >= v1.3.89 */ } /* * Because the ASC_HOST_IN_RESET flag causes both * 'advansys_interrupt' and 'asc_isr_callback' to * queue requests to the board's 'done' queue and * prevents waiting commands from being executed, * these queued requests must be handled here. */ done_scp = asc_dequeue_list(&boardp->done, &last_scp, ASC_TID_ALL); /* * If a device reset was performed dequeue all waiting * and active requests for the device and set the request * status to DID_RESET. * * If a SCSI bus reset was performed dequeue all waiting * and active requests for all devices and set the request * status to DID_RESET. */ if (device_reset == ASC_TRUE) { target = scp->target; } else { target = ASC_TID_ALL; } /* * Add active requests to 'done_scp' and set the request status * to DID_RESET. */ if (done_scp == NULL) { done_scp = asc_dequeue_list(&boardp->active, &last_scp, target); for (tscp = done_scp; tscp; tscp = REQPNEXT(tscp)) { tscp->result = HOST_BYTE(DID_RESET); } } else { ASC_ASSERT(last_scp != NULL); REQPNEXT(last_scp) = asc_dequeue_list(&boardp->active, &new_last_scp, target); if (new_last_scp != NULL) { ASC_ASSERT(REQPNEXT(last_scp) != NULL); for (tscp = REQPNEXT(last_scp); tscp; tscp = REQPNEXT(tscp)) { tscp->result = HOST_BYTE(DID_RESET); } last_scp = new_last_scp; } } /* * Add waiting requests to 'done_scp' and set the request status * to DID_RESET. */ if (done_scp == NULL) { done_scp = asc_dequeue_list(&boardp->waiting, &last_scp, target); for (tscp = done_scp; tscp; tscp = REQPNEXT(tscp)) { tscp->result = HOST_BYTE(DID_RESET); } } else { ASC_ASSERT(last_scp != NULL); REQPNEXT(last_scp) = asc_dequeue_list(&boardp->waiting, &new_last_scp, target); if (new_last_scp != NULL) { ASC_ASSERT(REQPNEXT(last_scp) != NULL); for (tscp = REQPNEXT(last_scp); tscp; tscp = REQPNEXT(tscp)) { tscp->result = HOST_BYTE(DID_RESET); } last_scp = new_last_scp; } } /* Save the time of the most recently completed reset. */ boardp->last_reset = jiffies; /* Clear reset flag. */ boardp->flags &= ~ASC_HOST_IN_RESET; /* * Start any waiting commands for the board. */ if (!ASC_QUEUE_EMPTY(&boardp->waiting)) { ASC_DBG(1, "advansys_interrupt: before asc_execute_queue()\n"); asc_execute_queue(&boardp->waiting); } ret = SCSI_RESET_SUCCESS; } /* Interrupts could be enabled here. */ ASC_ASSERT(do_scsi_done != ASC_ERROR); ASC_ASSERT(scp_found != ASC_ERROR); if (do_scsi_done == ASC_TRUE) { if (scp->scsi_done == NULL) { ASC_PRINT1( "advansys_reset: reset request scsi_done() is NULL, %x\n", (unsigned) scp); } else { if (scp_found == ASC_FALSE) { ASC_PRINT1( "advansys_reset: reset request not active or waiting, completing anyway %x\n", (unsigned) scp); } ASC_STATS(scp->host, done); scp->scsi_done(scp); } } /* * It is possible for the request done function to re-enable * interrupts without confusing the driver. But here interrupts * aren't enabled until requests have been completed. */ if (done_scp != NULL) { asc_scsi_done_list(done_scp); } ASC_DBG1(1, "advansys_reset: ret %d", ret); /* Re-enable interrupts, if they were enabled on entry. */ restore_flags(flags); ASC_ASSERT(ret != ASC_ERROR); return ret; } /* * advansys_biosparam() * * Translate disk drive geometry if the "BIOS greater than 1 GB" * support is enabled for a drive. * * ip (information pointer) is an int array with the following definition: * ip[0]: heads * ip[1]: sectors * ip[2]: cylinders */ int #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) advansys_biosparam(Disk *dp, int dep, int ip[]) #else /* version >= v1.3.0 */ advansys_biosparam(Disk *dp, kdev_t dep, int ip[]) #endif /* version >= v1.3.0 */ { asc_board_t *boardp; ASC_DBG(1, "advansys_biosparam: begin\n"); ASC_STATS(dp->device->host, biosparam); boardp = ASC_BOARDP(dp->device->host); if (ASC_NARROW_BOARD(boardp)) { if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & ASC_CNTL_BIOS_GT_1GB) && dp->capacity > 0x200000) { ip[0] = 255; ip[1] = 63; } else { ip[0] = 64; ip[1] = 32; } } else { if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & BIOS_CTRL_EXTENDED_XLAT) && dp->capacity > 0x200000) { ip[0] = 255; ip[1] = 63; } else { ip[0] = 64; ip[1] = 32; } } ip[2] = dp->capacity / (ip[0] * ip[1]); ASC_DBG(1, "advansys_biosparam: end\n"); return 0; } /* * advansys_setup() * * This function is called from init/main.c at boot time. * It it passed LILO parameters that can be set from the * LILO command line or in /etc/lilo.conf. * * It is used by the AdvanSys driver to either disable I/O * port scanning or to limit scanning to 1 - 4 I/O ports. * Regardless of the option setting EISA and PCI boards * will still be searched for and detected. This option * only affects searching for ISA and VL boards. * * If ADVANSYS_DEBUG is defined the driver debug level may * be set using the 5th (ASC_NUM_IOPORT_PROBE + 1) I/O Port. * * Examples: * 1. Eliminate I/O port scanning: * boot: linux advansys= * or * boot: linux advansys=0x0 * 2. Limit I/O port scanning to one I/O port: * boot: linux advansys=0x110 * 3. Limit I/O port scanning to four I/O ports: * boot: linux advansys=0x110,0x210,0x230,0x330 * 4. If ADVANSYS_DEBUG, limit I/O port scanning to four I/O ports and * set the driver debug level to 2. * boot: linux advansys=0x110,0x210,0x230,0x330,0xdeb2 * * ints[0] - number of arguments * ints[1] - first argument * ints[2] - second argument * ... */ ASC_INITFUNC( void advansys_setup(char *str, int *ints) ) { int i; if (asc_iopflag == ASC_TRUE) { printk("AdvanSys SCSI: 'advansys' LILO option may appear only once\n"); return; } asc_iopflag = ASC_TRUE; if (ints[0] > ASC_NUM_IOPORT_PROBE) { #ifdef ADVANSYS_DEBUG if ((ints[0] == ASC_NUM_IOPORT_PROBE + 1) && (ints[ASC_NUM_IOPORT_PROBE + 1] >> 4 == 0xdeb)) { asc_dbglvl = ints[ASC_NUM_IOPORT_PROBE + 1] & 0xf; } else { #endif /* ADVANSYS_DEBUG */ printk("AdvanSys SCSI: only %d I/O ports accepted\n", ASC_NUM_IOPORT_PROBE); #ifdef ADVANSYS_DEBUG } #endif /* ADVANSYS_DEBUG */ } #ifdef ADVANSYS_DEBUG ASC_DBG1(1, "advansys_setup: ints[0] %d\n", ints[0]); for (i = 1; i < ints[0]; i++) { ASC_DBG2(1, " ints[%d] %x", i, ints[i]); } ASC_DBG(1, "\n"); #endif /* ADVANSYS_DEBUG */ for (i = 1; i <= ints[0] && i <= ASC_NUM_IOPORT_PROBE; i++) { asc_ioport[i-1] = ints[i]; ASC_DBG2(1, "advansys_setup: asc_ioport[%d] %x\n", i - 1, asc_ioport[i-1]); } } /* * --- Loadable Driver Support */ #ifdef MODULE Scsi_Host_Template driver_template = ADVANSYS; # include "scsi_module.c" #endif /* MODULE */ /* * --- Miscellaneous Driver Functions */ /* * First-level interrupt handler. * * For versions > v1.3.70, 'dev_id' is a pointer to the interrupting * adapter's asc_board_t. Because all boards are currently checked * for interrupts on each interrupt, 'dev_id' is not referenced. 'dev_id' * could be used to identify an interrupt passed to the AdvanSys driver, * which is for a device sharing an interrupt with an AdvanSys adapter. */ STATIC void #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,70) advansys_interrupt(int irq, struct pt_regs *regs) #else /* version >= v1.3.70 */ advansys_interrupt(int irq, void *dev_id, struct pt_regs *regs) #endif /* version >= v1.3.70 */ { int flags; int i; asc_board_t *boardp; Scsi_Cmnd *done_scp = NULL, *last_scp = NULL; Scsi_Cmnd *new_last_scp; /* Disable interrupts, if they aren't already disabled. */ save_flags(flags); cli(); ASC_DBG(1, "advansys_interrupt: begin\n"); /* * Check for interrupts on all boards. * AscISR() will call asc_isr_callback(). */ for (i = 0; i < asc_board_count; i++) { boardp = ASC_BOARDP(asc_host[i]); ASC_DBG2(2, "advansys_interrupt: i %d, boardp %lx\n", i, (ulong) boardp) if (ASC_NARROW_BOARD(boardp)) { /* * Narrow Board */ if (AscIsIntPending(asc_host[i]->io_port)) { ASC_STATS(asc_host[i], interrupt); ASC_DBG(1, "advansys_interrupt: before AscISR()\n"); AscISR(&boardp->dvc_var.asc_dvc_var); } } else { /* * Wide Board */ ASC_DBG(1, "advansys_interrupt: before AdvISR()\n"); if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { ASC_STATS(asc_host[i], interrupt); } } /* * Start waiting requests and create a list of completed requests. * * If a reset or abort request is being performed for the board, * the reset or abort handler will complete pending requests after * it has completed. */ if ((boardp->flags & (ASC_HOST_IN_RESET | ASC_HOST_IN_ABORT)) == 0) { ASC_DBG2(1, "advansys_interrupt: done_scp %lx, last_scp %lx\n", (ulong) done_scp, (ulong) last_scp); /* Start any waiting commands for the board. */ if (!ASC_QUEUE_EMPTY(&boardp->waiting)) { ASC_DBG(1, "advansys_interrupt: before asc_execute_queue()\n"); asc_execute_queue(&boardp->waiting); } /* * Add to the list of requests that must be completed. * * 'done_scp' will always be NULL on the first iteration * of this loop. 'last_scp' is set at the same time as * 'done_scp'. */ if (done_scp == NULL) { done_scp = asc_dequeue_list(&boardp->done, &last_scp, ASC_TID_ALL); } else { ASC_ASSERT(last_scp != NULL); REQPNEXT(last_scp) = asc_dequeue_list(&boardp->done, &new_last_scp, ASC_TID_ALL); if (new_last_scp != NULL) { ASC_ASSERT(REQPNEXT(last_scp) != NULL); last_scp = new_last_scp; } } } } /* Interrupts could be enabled here. */ /* * It is possible for the request done function to re-enable * interrupts without confusing the driver. But here interrupts * aren't enabled until all requests have been completed. */ asc_scsi_done_list(done_scp); /* Re-enable interrupts, if they were enabled on entry. */ restore_flags(flags); ASC_DBG(1, "advansys_interrupt: end\n"); return; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) /* * Set the number of commands to queue per device for the * specified host adapter. */ STATIC void advansys_select_queue_depths(struct Scsi_Host *shp, Scsi_Device *devicelist) { Scsi_Device *device; asc_board_t *boardp; boardp = ASC_BOARDP(shp); boardp->flags |= ASC_SELECT_QUEUE_DEPTHS; for (device = devicelist; device != NULL; device = device->next) { if (device->host != shp) { continue; } /* * Save a pointer to the device and set its initial/maximum * queue depth. */ boardp->device[device->id] = device; if (ASC_NARROW_BOARD(boardp)) { device->queue_depth = boardp->dvc_var.asc_dvc_var.max_dvc_qng[device->id]; } else { device->queue_depth = boardp->dvc_var.adv_dvc_var.max_dvc_qng; } ASC_DBG3(1, "advansys_select_queue_depths: shp %x, id %d, depth %d\n", (unsigned) shp, device->id, device->queue_depth); } } #endif /* version >= v1.3.89 */ /* * Function used only with polled I/O requests that are initiated by * advansys_command(). */ STATIC void advansys_command_done(Scsi_Cmnd *scp) { ASC_DBG1(1, "advansys_command_done: scp %x\n", (unsigned) scp); scp->SCp.Status = 1; } /* * Complete all requests on the singly linked list pointed * to by 'scp'. * * Interrupts can be enabled on entry. */ STATIC void asc_scsi_done_list(Scsi_Cmnd *scp) { Scsi_Cmnd *tscp; ASC_DBG(2, "asc_scsi_done_list: begin\n"); while (scp != NULL) { ASC_DBG1(3, "asc_scsi_done_list: scp %x\n", (unsigned) scp); tscp = REQPNEXT(scp); REQPNEXT(scp) = NULL; ASC_STATS(scp->host, done); ASC_ASSERT(scp->scsi_done != NULL); scp->scsi_done(scp); scp = tscp; } ASC_DBG(2, "asc_scsi_done_list: done\n"); return; } /* * Execute a single 'Scsi_Cmnd'. * * The function 'done' is called when the request has been completed. * * Scsi_Cmnd: * * host - board controlling device * device - device to send command * target - target of device * lun - lun of device * cmd_len - length of SCSI CDB * cmnd - buffer for SCSI 8, 10, or 12 byte CDB * use_sg - if non-zero indicates scatter-gather request with use_sg elements * * if (use_sg == 0) { * request_buffer - buffer address for request * request_bufflen - length of request buffer * } else { * request_buffer - pointer to scatterlist structure * } * * sense_buffer - sense command buffer * * result (4 bytes of an int): * Byte Meaning * 0 SCSI Status Byte Code * 1 SCSI One Byte Message Code * 2 Host Error Code * 3 Mid-Level Error Code * * host driver fields: * SCp - Scsi_Pointer used for command processing status * scsi_done - used to save caller's done function * host_scribble - used for pointer to another Scsi_Cmnd * * If this function returns ASC_NOERROR or ASC_ERROR the request * has been enqueued on the board's 'done' queue and must be * completed by the caller. * * If ASC_BUSY is returned the request must be enqueued by the * caller and re-tried later. */ STATIC int asc_execute_scsi_cmnd(Scsi_Cmnd *scp) { asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp; ADV_DVC_VAR *adv_dvc_varp; ADV_SCSI_REQ_Q *adv_scsiqp; Scsi_Device *device; int ret; ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_DBG2(1, "asc_execute_scsi_cmnd: scp %x, done %x\n", (unsigned) scp, (unsigned) scp->scsi_done); boardp = ASC_BOARDP(scp->host); device = boardp->device[scp->target]; if (ASC_NARROW_BOARD(boardp)) { /* * Build and execute Narrow Board request. */ asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; /* * Narrow Board - Asc Library requires special device initialization. * * If this is the first command, then initialize the device. If * no device is found set 'DID_BAD_TARGET' and return. */ if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->target)) == 0) { if (asc_init_dev(asc_dvc_varp, scp) == ASC_FALSE) { scp->result = HOST_BYTE(DID_BAD_TARGET); asc_enqueue(&boardp->done, scp, ASC_BACK); return ASC_ERROR; } boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->target); } /* * Build Asc Library request structure using the * global structures 'asc_scsi_req' and 'asc_sg_head'. * * asc_build_req() can not return ASC_BUSY. */ if (asc_build_req(boardp, scp) == ASC_ERROR) { ASC_STATS(scp->host, build_error); return ASC_ERROR; } /* * Execute the command. If there is no error, add the command * to the active queue. */ switch (ret = AscExeScsiQueue(asc_dvc_varp, &asc_scsi_q)) { case ASC_NOERROR: ASC_STATS(scp->host, exe_noerror); /* * Increment monotonically increasing per device successful * request counter. Wrapping doesn't matter. */ boardp->reqcnt[scp->target]++; #if ASC_QUEUE_FLOW_CONTROL /* * Conditionally increment the device queue depth. * * If no error occurred and there have been 100 consecutive * successful requests and the current queue depth is less * than the maximum queue depth, then increment the current * queue depth. */ if (boardp->nerrcnt[scp->target]++ > 100) { boardp->nerrcnt[scp->target] = 0; if (device != NULL && (device->queue_curr_depth < device->queue_depth) && (!(boardp->queue_full & ADV_TID_TO_TIDMASK(scp->target)) || (boardp->queue_full_cnt[scp->target] > device->queue_curr_depth))) { device->queue_curr_depth++; } } #endif /* ASC_QUEUE_FLOW_CONTROL */ asc_enqueue(&boardp->active, scp, ASC_BACK); ASC_DBG(1, "asc_execute_scsi_cmnd: AscExeScsiQueue(), ASC_NOERROR\n"); break; case ASC_BUSY: /* Caller must enqueue request and retry later. */ ASC_STATS(scp->host, exe_busy); #if ASC_QUEUE_FLOW_CONTROL /* * Clear consecutive no error counter and if possible decrement * queue depth. */ boardp->nerrcnt[scp->target] = 0; if (device != NULL && device->queue_curr_depth > 1) { device->queue_curr_depth--; } #endif /* ASC_QUEUE_FLOW_CONTROL */ break; case ASC_ERROR: ASC_PRINT2( "asc_execute_scsi_cmnd: board %d: AscExeScsiQueue() ASC_ERROR, err_code %x\n", boardp->id, asc_dvc_varp->err_code); ASC_STATS(scp->host, exe_error); #if ASC_QUEUE_FLOW_CONTROL /* Clear consecutive no error counter. */ boardp->nerrcnt[scp->target] = 0; #endif /* ASC_QUEUE_FLOW_CONTROL */ scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); break; default: ASC_PRINT2( "asc_execute_scsi_cmnd: board %d: AscExeScsiQueue() unknown, err_code %x\n", boardp->id, asc_dvc_varp->err_code); ASC_STATS(scp->host, exe_unknown); #if ASC_QUEUE_FLOW_CONTROL /* Clear consecutive no error counter. */ boardp->nerrcnt[scp->target] = 0; #endif /* ASC_QUEUE_FLOW_CONTROL */ scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); break; } } else { /* * Build and execute Wide Board request. */ adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; /* * Build and get a pointer to an Adv Library request structure. * * If the request is successfully built then send it below, * otherwise return with an error. */ switch (adv_build_req(boardp, scp, &adv_scsiqp)) { case ASC_NOERROR: ASC_DBG(3, "asc_execute_scsi_cmnd: adv_build_req ASC_NOERROR\n"); break; case ASC_BUSY: ASC_DBG(1, "asc_execute_scsi_cmnd: adv_build_req ASC_BUSY\n"); return ASC_BUSY; case ASC_ERROR: default: ASC_DBG(1, "asc_execute_scsi_cmnd: adv_build_req ASC_ERROR\n"); ASC_STATS(scp->host, build_error); return ASC_ERROR; } /* * Execute the command. If there is no error, add the command * to the active queue. */ switch (ret = AdvExeScsiQueue(adv_dvc_varp, adv_scsiqp)) { case ASC_NOERROR: ASC_STATS(scp->host, exe_noerror); /* * Increment monotonically increasing per device successful * request counter. Wrapping doesn't matter. */ boardp->reqcnt[scp->target]++; asc_enqueue(&boardp->active, scp, ASC_BACK); ASC_DBG(1, "asc_execute_scsi_cmnd: AdvExeScsiQueue(), ASC_NOERROR\n"); break; case ASC_BUSY: /* Caller must enqueue request and retry later. */ ASC_STATS(scp->host, exe_busy); break; case ASC_ERROR: ASC_PRINT2( "asc_execute_scsi_cmnd: board %d: AdvExeScsiQueue() ASC_ERROR, err_code %x\n", boardp->id, adv_dvc_varp->err_code); ASC_STATS(scp->host, exe_error); scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); break; default: ASC_PRINT2( "asc_execute_scsi_cmnd: board %d: AdvExeScsiQueue() unknown, err_code %x\n", boardp->id, adv_dvc_varp->err_code); ASC_STATS(scp->host, exe_unknown); scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); break; } } ASC_DBG(1, "asc_execute_scsi_cmnd: end\n"); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); return ret; } /* * Build a request structure for the Asc Library (Narrow Board). * * The global structures 'asc_scsi_q' and 'asc_sg_head' are * used to build the request. * * If an error occurs, then return ASC_ERROR. */ STATIC int asc_build_req(asc_board_t *boardp, Scsi_Cmnd *scp) { /* * Mutually exclusive access is required to 'asc_scsi_q' and * 'asc_sg_head' until after the request is started. */ memset(&asc_scsi_q, 0, sizeof(ASC_SCSI_Q)); /* * Point the ASC_SCSI_Q to the 'Scsi_Cmnd'. */ asc_scsi_q.q2.srb_ptr = (ulong) scp; /* * Build the ASC_SCSI_Q request. */ ASC_ASSERT(scp->cmd_len <= ASC_MAX_CDB_LEN); if (scp->cmd_len > ASC_MAX_CDB_LEN) { scp->cmd_len = ASC_MAX_CDB_LEN; } asc_scsi_q.cdbptr = &scp->cmnd[0]; asc_scsi_q.q2.cdb_len = scp->cmd_len; asc_scsi_q.q1.target_id = ASC_TID_TO_TARGET_ID(scp->target); asc_scsi_q.q1.target_lun = scp->lun; asc_scsi_q.q2.target_ix = ASC_TIDLUN_TO_IX(scp->target, scp->lun); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) asc_scsi_q.q1.sense_addr = (ulong) &scp->sense_buffer[0]; #else /* version >= v2.0.0 */ asc_scsi_q.q1.sense_addr = virt_to_bus(&scp->sense_buffer[0]); #endif /* version >= v2.0.0 */ asc_scsi_q.q1.sense_len = sizeof(scp->sense_buffer); /* * If there are any outstanding requests for the current target, * then every 255th request send an ORDERED request. This heuristic * tries to retain the benefit of request sorting while preventing * request starvation. 255 is the max number of tags or pending commands * a device may have outstanding. * * The request count is incremented below for every successfully * started request. * */ if ((boardp->dvc_var.asc_dvc_var.cur_dvc_qng[scp->target] > 0) && (boardp->reqcnt[scp->target] % 255) == 0) { asc_scsi_q.q2.tag_code = M2_QTAG_MSG_ORDERED; } else { asc_scsi_q.q2.tag_code = M2_QTAG_MSG_SIMPLE; } /* * Build ASC_SCSI_Q for a contiguous buffer or a scatter-gather * buffer command. */ if (scp->use_sg == 0) { /* * CDB request of single contiguous buffer. */ ASC_STATS(scp->host, cont_cnt); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) asc_scsi_q.q1.data_addr = (ulong) scp->request_buffer; #else /* version >= v2.0.0 */ asc_scsi_q.q1.data_addr = virt_to_bus(scp->request_buffer); #endif /* version >= v2.0.0 */ asc_scsi_q.q1.data_cnt = scp->request_bufflen; ASC_STATS_ADD(scp->host, cont_xfer, ASC_CEILING(scp->request_bufflen, 512)); asc_scsi_q.q1.sg_queue_cnt = 0; asc_scsi_q.sg_head = NULL; } else { /* * CDB scatter-gather request list. */ int sgcnt; struct scatterlist *slp; if (scp->use_sg > scp->host->sg_tablesize) { ASC_PRINT3( "asc_build_req: board %d: use_sg %d > sg_tablesize %d\n", boardp->id, scp->use_sg, scp->host->sg_tablesize); scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); return ASC_ERROR; } ASC_STATS(scp->host, sg_cnt); /* * Use global ASC_SG_HEAD structure and set the ASC_SCSI_Q * structure to point to it. */ memset(&asc_sg_head, 0, sizeof(ASC_SG_HEAD)); asc_scsi_q.q1.cntl |= QC_SG_HEAD; asc_scsi_q.sg_head = &asc_sg_head; asc_scsi_q.q1.data_cnt = 0; asc_scsi_q.q1.data_addr = 0; asc_sg_head.entry_cnt = asc_scsi_q.q1.sg_queue_cnt = scp->use_sg; ASC_STATS_ADD(scp->host, sg_elem, asc_sg_head.entry_cnt); /* * Convert scatter-gather list into ASC_SG_HEAD list. */ slp = (struct scatterlist *) scp->request_buffer; for (sgcnt = 0; sgcnt < scp->use_sg; sgcnt++, slp++) { #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) asc_sg_head.sg_list[sgcnt].addr = (ulong) slp->address; #else /* version >= v2.0.0 */ asc_sg_head.sg_list[sgcnt].addr = virt_to_bus(slp->address); #endif /* version >= v2.0.0 */ asc_sg_head.sg_list[sgcnt].bytes = slp->length; ASC_STATS_ADD(scp->host, sg_xfer, ASC_CEILING(slp->length, 512)); } } ASC_DBG_PRT_ASC_SCSI_Q(2, &asc_scsi_q); ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); return ASC_NOERROR; } /* * Build a request structure for the Adv Library (Wide Board). * * If an adv_req_t can not be allocated to issue the request, * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. */ STATIC int adv_build_req(asc_board_t *boardp, Scsi_Cmnd *scp, ADV_SCSI_REQ_Q **adv_scsiqpp) { adv_req_t *reqp; ADV_SCSI_REQ_Q *scsiqp; int i; /* * Allocate an adv_req_t structure from the board to execute * the command. */ if (boardp->adv_reqp == NULL) { ASC_DBG(1, "adv_build_req: no free adv_req_t\n"); ASC_STATS(scp->host, adv_build_noreq); return ASC_BUSY; } else { reqp = boardp->adv_reqp; boardp->adv_reqp = reqp->next_reqp; reqp->next_reqp = NULL; } /* * Get 4-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers. */ scsiqp = (ADV_SCSI_REQ_Q *) ADV_DWALIGN(&reqp->scsi_req_q); memset(scsiqp, 0, sizeof(ADV_SCSI_REQ_Q)); /* * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure. */ scsiqp->srb_ptr = (ulong) reqp; /* * Set the adv_req_t 'cmndp' to point to the Scsi_Cmnd structure. */ reqp->cmndp = scp; /* * Build the ADV_SCSI_REQ_Q request. */ /* * Set CDB length and copy it to the request structure. */ ASC_ASSERT(scp->cmd_len <= ASC_MAX_CDB_LEN); if (scp->cmd_len > ASC_MAX_CDB_LEN) { scp->cmd_len = ASC_MAX_CDB_LEN; } scsiqp->cdb_len = scp->cmd_len; for (i = 0; i < scp->cmd_len; i++) { scsiqp->cdb[i] = scp->cmnd[i]; } scsiqp->target_id = scp->target; scsiqp->target_lun = scp->lun; scsiqp->vsense_addr = (ulong) &scp->sense_buffer[0]; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) scsiqp->sense_addr = (ulong) &scp->sense_buffer[0]; #else /* version >= v2.0.0 */ scsiqp->sense_addr = virt_to_bus(&scp->sense_buffer[0]); #endif /* version >= v2.0.0 */ scsiqp->sense_len = sizeof(scp->sense_buffer); /* * Build ADV_SCSI_REQ_Q for a contiguous buffer or a scatter-gather * buffer command. */ scsiqp->data_cnt = scp->request_bufflen; scsiqp->vdata_addr = (ulong) scp->request_buffer; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) scsiqp->data_addr = (ulong) scp->request_buffer; #else /* version >= v2.0.0 */ scsiqp->data_addr = virt_to_bus(scp->request_buffer); #endif /* version >= v2.0.0 */ if (scp->use_sg == 0) { /* * CDB request of single contiguous buffer. */ reqp->sgblkp = NULL; scsiqp->sg_list_ptr = NULL; ASC_STATS(scp->host, cont_cnt); ASC_STATS_ADD(scp->host, cont_xfer, ASC_CEILING(scp->request_bufflen, 512)); } else { /* * CDB scatter-gather request list. */ if (scp->use_sg > ADV_MAX_SG_LIST) { ASC_PRINT3( "adv_build_req: board %d: use_sg %d > ADV_MAX_SG_LIST %d\n", boardp->id, scp->use_sg, scp->host->sg_tablesize); scp->result = HOST_BYTE(DID_ERROR); asc_enqueue(&boardp->done, scp, ASC_BACK); /* * Free the 'adv_req_t' structure by adding it back to the * board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return ASC_ERROR; } /* * Allocate an 'adv_sgblk_t' structure from the board to * execute the command. */ if (boardp->adv_sgblkp == NULL) { ASC_DBG(1, "adv_build_req: no free adv_sgblk_t\n"); ASC_STATS(scp->host, adv_build_nosg); /* * Free the 'adv_req_t' structure by adding it back to the * board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return ASC_BUSY; } else { reqp->sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = reqp->sgblkp->next_sgblkp; reqp->sgblkp->next_sgblkp = NULL; } /* * Build scatter-gather list. */ scsiqp->sg_list_ptr = (ADV_SG_BLOCK *) ADV_DWALIGN(&reqp->sgblkp->sg_block[0]); memset(scsiqp->sg_list_ptr, 0, sizeof(ADV_SG_BLOCK) * (ADV_NUM_SG_BLOCK + ADV_NUM_PAGE_CROSSING)); if (adv_get_sglist(&boardp->dvc_var.adv_dvc_var, scsiqp, scp) == ADV_ERROR) { /* * Free the adv_sgblk_t structure, if any, by adding it back * to the board free list. */ ASC_ASSERT(reqp->sgblkp != NULL); reqp->sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = reqp->sgblkp; /* * Free the adv_req_t structure by adding it back to the * board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return ADV_ERROR; } ASC_STATS(scp->host, sg_cnt); ASC_STATS_ADD(scp->host, sg_elem, scp->use_sg); } ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); *adv_scsiqpp = scsiqp; return ASC_NOERROR; } /* * Build scatter-gather list for Adv Library (Wide Board). * * Return: * ADV_SUCCESS(1) - SG List successfully created * ADV_ERROR(-1) - SG List creation failed */ STATIC int adv_get_sglist(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp, Scsi_Cmnd *scp) { ADV_SG_BLOCK *sg_block; /* virtual address of a SG */ ulong sg_block_next_addr; /* block and its next */ ulong sg_block_physical_addr; int sg_block_index, i; /* how many SG entries */ struct scatterlist *slp; int sg_elem_cnt; slp = (struct scatterlist *) scp->request_buffer; sg_elem_cnt = scp->use_sg; sg_block = scsiqp->sg_list_ptr; sg_block_next_addr = (ulong) sg_block; /* allow math operation */ sg_block_physical_addr = #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) (ulong) scsiqp->sg_list_ptr; #else /* version >= v2.0.0 */ virt_to_bus(scsiqp->sg_list_ptr); #endif /* version >= v2.0.0 */ ADV_ASSERT(ADV_DWALIGN(sg_block_physical_addr) == sg_block_physical_addr); scsiqp->sg_real_addr = sg_block_physical_addr; sg_block_index = 0; do { sg_block->first_entry_no = sg_block_index; for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { sg_block->sg_list[i].sg_addr = #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) (ulong) slp->address; #else /* version >= v2.0.0 */ virt_to_bus(slp->address); #endif /* version >= v2.0.0 */ sg_block->sg_list[i].sg_count = slp->length; ASC_STATS_ADD(scp->host, sg_xfer, ASC_CEILING(slp->length, 512)); if (--sg_elem_cnt == 0) { /* last entry, get out */ scsiqp->sg_entry_cnt = sg_block_index + i + 1; sg_block->last_entry_no = sg_block_index + i; sg_block->sg_ptr = 0L; /* next link = NULL */ return ADV_SUCCESS; } slp++; } sg_block_next_addr += sizeof(ADV_SG_BLOCK); sg_block_physical_addr += sizeof(ADV_SG_BLOCK); ADV_ASSERT(ADV_DWALIGN(sg_block_physical_addr) == sg_block_physical_addr); sg_block_index += NO_OF_SG_PER_BLOCK; sg_block->sg_ptr = (ADV_SG_BLOCK *) sg_block_physical_addr; sg_block->last_entry_no = sg_block_index - 1; sg_block = (ADV_SG_BLOCK *) sg_block_next_addr; /* virtual addr */ } while (1); /* NOTREACHED */ } /* * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). * * Interrupt callback function for the Narrow SCSI Asc Library. */ STATIC void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) { asc_board_t *boardp; Scsi_Cmnd *scp; struct Scsi_Host *shp; int underrun = ASC_FALSE; int i; ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_DBG2(1, "asc_isr_callback: asc_dvc_varp %x, qdonep %x\n", (unsigned) asc_dvc_varp, (unsigned) qdonep); ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); /* * Get the Scsi_Cmnd structure and Scsi_Host structure for the * command that has been completed. */ scp = (Scsi_Cmnd *) qdonep->d2.srb_ptr; ASC_DBG1(1, "asc_isr_callback: scp %x\n", (unsigned) scp); if (scp == NULL) { ASC_PRINT("asc_isr_callback: scp is NULL\n"); return; } ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); /* * If the request's host pointer is not valid, display a * message and return. */ shp = scp->host; for (i = 0; i < asc_board_count; i++) { if (asc_host[i] == shp) { break; } } if (i == asc_board_count) { ASC_PRINT2("asc_isr_callback: scp %x has bad host pointer, host %x\n", (unsigned) scp, (unsigned) shp); return; } ASC_STATS(shp, callback); ASC_DBG1(1, "asc_isr_callback: shp %x\n", (unsigned) shp); /* * If the request isn't found on the active queue, it may * have been removed to handle a reset or abort request. * Display a message and return. */ boardp = ASC_BOARDP(shp); if (asc_rmqueue(&boardp->active, scp) == ASC_FALSE) { ASC_PRINT2("asc_isr_callback: board %d: scp %x not on active queue\n", boardp->id, (unsigned) scp); return; } /* * Check for an underrun condition. */ if (scp->request_bufflen != 0 && qdonep->remain_bytes != 0 && qdonep->remain_bytes <= scp->request_bufflen != 0) { ASC_DBG1(1, "asc_isr_callback: underrun condition %u bytes\n", (unsigned) qdonep->remain_bytes); underrun = ASC_TRUE; } /* * 'qdonep' contains the command's ending status. */ switch (qdonep->d3.done_stat) { case QD_NO_ERROR: ASC_DBG(2, "asc_isr_callback: QD_NO_ERROR\n"); switch (qdonep->d3.host_stat) { case QHSTA_NO_ERROR: scp->result = 0; break; default: /* QHSTA error occurred */ scp->result = HOST_BYTE(DID_ERROR); break; } /* * If there was an underrun without any other error, * set DID_ERROR to indicate the underrun error. */ if (scp->result == 0 && underrun == ASC_TRUE) { scp->result = HOST_BYTE(DID_UNDERRUN); } break; case QD_WITH_ERROR: ASC_DBG(2, "asc_isr_callback: QD_WITH_ERROR\n"); switch (qdonep->d3.host_stat) { case QHSTA_NO_ERROR: if (qdonep->d3.scsi_stat == SS_CHK_CONDITION) { ASC_DBG(2, "asc_isr_callback: SS_CHK_CONDITION\n"); ASC_DBG_PRT_SENSE(2, scp->sense_buffer, sizeof(scp->sense_buffer)); /* * Note: The 'status_byte()' macro used by target drivers * defined in scsi.h shifts the status byte returned by * host drivers right by 1 bit. This is why target drivers * also use right shifted status byte definitions. For * instance target drivers use CHECK_CONDITION, defined to * 0x1, instead of the SCSI defined check condition value * of 0x2. Host drivers are supposed to return the status * byte as it is defined by SCSI. */ scp->result = DRIVER_BYTE(DRIVER_SENSE) | STATUS_BYTE(qdonep->d3.scsi_stat); } else { scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); } break; default: /* QHSTA error occurred */ ASC_DBG1(2, "asc_isr_callback: host_stat %x\n", qdonep->d3.host_stat); scp->result = HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.scsi_msg) | STATUS_BYTE(qdonep->d3.scsi_stat); break; } break; case QD_ABORTED_BY_HOST: ASC_DBG(1, "asc_isr_callback: QD_ABORTED_BY_HOST\n"); scp->result = HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.scsi_msg) | STATUS_BYTE(qdonep->d3.scsi_stat); break; default: ASC_PRINT1("asc_isr_callback: done_stat %x\n", qdonep->d3.done_stat); scp->result = HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.scsi_msg) | STATUS_BYTE(qdonep->d3.scsi_stat); break; } /* * Because interrupts may be enabled by the 'Scsi_Cmnd' done * function, add the command to the end of the board's done queue. * The done function for the command will be called from * advansys_interrupt(). */ asc_enqueue(&boardp->done, scp, ASC_BACK); return; } /* * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). * * Callback function for the Wide SCSI Adv Library. */ STATIC void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) { asc_board_t *boardp; adv_req_t *reqp; Scsi_Cmnd *scp; struct Scsi_Host *shp; int underrun = ASC_FALSE; int i; ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_DBG2(1, "adv_isr_callback: adv_dvc_varp %x, scsiqp %x\n", (unsigned) adv_dvc_varp, (unsigned) scsiqp); ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); /* * Get the adv_req_t structure for the command that has been * completed. The adv_req_t structure actually contains the * completed ADV_SCSI_REQ_Q structure. */ reqp = (adv_req_t *) scsiqp->srb_ptr; ASC_DBG1(1, "adv_isr_callback: reqp %x\n", (unsigned) reqp); if (reqp == NULL) { ASC_PRINT("adv_isr_callback: reqp is NULL\n"); return; } /* * Get the Scsi_Cmnd structure and Scsi_Host structure for the * command that has been completed. * * Note: The adv_req_t request structure and adv_sgblk_t structure, * if any, * dropped, because a board structure pointer can not be * determined. */ scp = reqp->cmndp; ASC_DBG1(1, "adv_isr_callback: scp %x\n", (unsigned) scp); if (scp == NULL) { ASC_PRINT("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); return; } ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); /* * If the request's host pointer is not valid, display a message * and return. */ shp = scp->host; for (i = 0; i < asc_board_count; i++) { if (asc_host[i] == shp) { break; } } /* * Note: If the host structure is not found, the adv_req_t request * structure and adv_sgblk_t structure, if any, is dropped. */ if (i == asc_board_count) { ASC_PRINT2("adv_isr_callback: scp %x has bad host pointer, host %x\n", (unsigned) scp, (unsigned) shp); return; } ASC_STATS(shp, callback); ASC_DBG1(1, "adv_isr_callback: shp %x\n", (unsigned) shp); /* * If the request isn't found on the active queue, it may have been * removed to handle a reset or abort request. Display a message and * return. * * Note: Because the structure may still be in use don't attempt * to free the adv_req_t and adv_sgblk_t, if any, structures. */ boardp = ASC_BOARDP(shp); if (asc_rmqueue(&boardp->active, scp) == ASC_FALSE) { ASC_PRINT2("adv_isr_callback: board %d: scp %x not on active queue\n", boardp->id, (unsigned) scp); return; } /* * Check for an underrun condition. */ if (scp->request_bufflen != 0 && scsiqp->data_cnt != 0) { ASC_DBG1(1, "adv_isr_callback: underrun condition %lu bytes\n", scsiqp->data_cnt); underrun = ASC_TRUE; } /* * 'done_status' contains the command's ending status. */ switch (scsiqp->done_status) { case QD_NO_ERROR: ASC_DBG(2, "adv_isr_callback: QD_NO_ERROR\n"); switch (scsiqp->host_status) { case QHSTA_NO_ERROR: scp->result = 0; break; default: /* QHSTA error occurred. */ ASC_DBG1(2, "adv_isr_callback: host_status %x\n", scsiqp->host_status); scp->result = HOST_BYTE(DID_ERROR); break; } /* * If there was an underrun without any other error, * set DID_ERROR to indicate the underrun error. */ if (scp->result == 0 && underrun == ASC_TRUE) { scp->result = HOST_BYTE(DID_UNDERRUN); } break; case QD_WITH_ERROR: ASC_DBG(2, "adv_isr_callback: QD_WITH_ERROR\n"); switch (scsiqp->host_status) { case QHSTA_NO_ERROR: if (scsiqp->scsi_status == SS_CHK_CONDITION) { ASC_DBG(2, "adv_isr_callback: SS_CHK_CONDITION\n"); ASC_DBG_PRT_SENSE(2, scp->sense_buffer, sizeof(scp->sense_buffer)); /* * Note: The 'status_byte()' macro used by target drivers * defined in scsi.h shifts the status byte returned by * host drivers right by 1 bit. This is why target drivers * also use right shifted status byte definitions. For * instance target drivers use CHECK_CONDITION, defined to * 0x1, instead of the SCSI defined check condition value * of 0x2. Host drivers are supposed to return the status * byte as it is defined by SCSI. */ scp->result = DRIVER_BYTE(DRIVER_SENSE) | STATUS_BYTE(scsiqp->scsi_status); } else { scp->result = STATUS_BYTE(scsiqp->scsi_status); } break; default: /* Some other QHSTA error occurred. */ ASC_DBG1(2, "adv_isr_callback: host_status %x\n", scsiqp->host_status); scp->result = HOST_BYTE(DID_BAD_TARGET); break; } break; case QD_ABORTED_BY_HOST: ASC_DBG(1, "adv_isr_callback: QD_ABORTED_BY_HOST\n"); scp->result = HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); break; default: ASC_PRINT1("adv_isr_callback: done_status %x\n", scsiqp->done_status); scp->result = HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); break; } /* * If the 'init_tidmask' bit isn't already set for the target and the * current request did not finish with a Selection Timeout, then set * the bit for the target to indicate that a device is present. */ if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->target)) == 0 && scsiqp->done_status == QD_NO_ERROR && scsiqp->host_status == QHSTA_NO_ERROR) { boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->target); } /* * Because interrupts may be enabled by the 'Scsi_Cmnd' done * function, add the command to the end of the board's done queue. * The done function for the command will be called from * advansys_interrupt(). */ asc_enqueue(&boardp->done, scp, ASC_BACK); /* * Free the adv_sgblk_t structure, if any, by adding it back * to the board free list. */ if (reqp->sgblkp != NULL) { reqp->sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = reqp->sgblkp; } /* * Free the adv_req_t structure used with the command by adding * it back to the board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; ASC_DBG(1, "adv_isr_callback: done\n"); return; } /* * asc_init_dev() - Narrow Board initialization function. * * Perform one-time initialization of a device for Asc Library */ STATIC int asc_init_dev(ASC_DVC_VAR *asc_dvc_varp, Scsi_Cmnd *scp) { asc_board_t *boardp; ASC_SCSI_REQ_Q *scsireqq; ASC_CAP_INFO *cap_info; ASC_SCSI_INQUIRY *inquiry; int found; ASC_SCSI_BIT_ID_TYPE save_use_tagged_qng; ASC_SCSI_BIT_ID_TYPE save_can_tagged_qng; int ret; #ifdef ADVANSYS_DEBUG ASC_SCSI_BIT_ID_TYPE tidmask; /* target id bit mask: 1 - 128 */ #endif /* ADVANSYS_DEBUG */ ASC_DBG1(1, "asc_init_dev: target %d\n", (unsigned) scp->target); /* The host's target id is set in init_tidmask during initialization. */ ASC_ASSERT(asc_dvc_varp->cfg->chip_scsi_id != scp->target); boardp = ASC_BOARDP(scp->host); /* Set-up AscInitPollTarget() arguments. */ scsireqq = &boardp->scsireqq; memset(scsireqq, 0, sizeof(ASC_SCSI_REQ_Q)); cap_info = &boardp->cap_info; memset(cap_info, 0, sizeof(ASC_CAP_INFO)); inquiry = &boardp->inquiry; memset(inquiry, 0, sizeof(ASC_SCSI_INQUIRY)); /* * AscInitPollBegin() re-initializes these bitmask fields to zero. * Save the current bitmask value and 'or' them back in after calling * AscInitPollEnd() below.. */ save_use_tagged_qng = asc_dvc_varp->use_tagged_qng; save_can_tagged_qng = asc_dvc_varp->cfg->can_tagged_qng; ASC_DBG(2, "asc_init_dev: AscInitPollBegin()\n"); if (AscInitPollBegin(asc_dvc_varp)) { ASC_PRINT1("asc_init_dev: board %d: AscInitPollBegin() failed\n", boardp->id); return ASC_FALSE; } scsireqq->sense_ptr = &scsireqq->sense[0]; scsireqq->r1.sense_len = ASC_MIN_SENSE_LEN; scsireqq->r1.target_id = ASC_TID_TO_TARGET_ID(scp->target); scsireqq->r1.target_lun = 0; scsireqq->r2.target_ix = ASC_TIDLUN_TO_IX(scp->target, 0); found = ASC_FALSE; ASC_DBG(2, "asc_init_dev: AscInitPollTarget()\n"); switch (ret = AscInitPollTarget(asc_dvc_varp, scsireqq, inquiry, cap_info)) { case ASC_TRUE: found = ASC_TRUE; #ifdef ADVANSYS_DEBUG tidmask = ADV_TID_TO_TIDMASK(scp->target); ASC_DBG2(1, "asc_init_dev: lba %lu, blk_size %lu\n", cap_info->lba, cap_info->blk_size); ASC_DBG1(1, "asc_init_dev: peri_dvc_type %x\n", inquiry->byte0.peri_dvc_type); if (asc_dvc_varp->use_tagged_qng & tidmask) { ASC_DBG1(1, "asc_init_dev: command queuing enabled: %d\n", asc_dvc_varp->max_dvc_qng[scp->target]); } else { ASC_DBG(1, "asc_init_dev: command queuing disabled\n"); } if (asc_dvc_varp->init_sdtr & tidmask) { ASC_DBG(1, "asc_init_dev: synchronous transfers enabled\n"); } else { ASC_DBG(1, "asc_init_dev: synchronous transfers disabled\n"); } /* Set bit means fix disabled. */ if (asc_dvc_varp->pci_fix_asyn_xfer & tidmask) { ASC_DBG(1, "asc_init_dev: synchronous transfer fix disabled\n"); } else { ASC_DBG(1, "asc_init_dev: synchronous transfer fix enabled\n"); } #endif /* ADVANSYS_DEBUG */ break; case ASC_FALSE: ASC_DBG(1, "asc_init_dev: no device found\n"); break; case ASC_ERROR: ASC_PRINT1("asc_init_dev: board %d: AscInitPollTarget() ASC_ERROR\n", boardp->id); break; default: ASC_PRINT2( "asc_init_dev: board %d: AscInitPollTarget() unknown ret %d\n", boardp->id, ret); break; } /* Restore previously set bits in the bitmask fields. */ asc_dvc_varp->use_tagged_qng |= save_use_tagged_qng; asc_dvc_varp->cfg->can_tagged_qng |= save_can_tagged_qng; ASC_DBG(2, "asc_init_dev: AscInitPollEnd()\n"); AscInitPollEnd(asc_dvc_varp); ASC_DBG1(1, "asc_init_dev: found %d\n", found); return found; } /* * Search for an AdvanSys PCI device in the PCI configuration space. */ ASC_INITFUNC( STATIC int asc_srch_pci_dev(PCI_DEVICE *pciDevice) ) { int ret; ASC_DBG(2, "asc_srch_pci_dev: begin\n"); if (pci_scan_method == -1) { pci_scan_method = asc_scan_method(); } pciDevice->type = pci_scan_method; ASC_DBG1(2, "asc_srch_pci_dev: type %d\n", pciDevice->type); ret = asc_pci_find_dev(pciDevice); ASC_DBG1(2, "asc_srch_pci_dev: asc_pci_find_dev() return %d\n", ret); if (ret == PCI_DEVICE_FOUND) { pciDevice->slotNumber = pciDevice->slotFound + 1; pciDevice->startSlot = pciDevice->slotFound + 1; } else { if (pciDevice->bridge > pciDevice->busNumber) { ASC_DBG2(2, "asc_srch_pci_dev: bridge %x, busNumber %x\n", pciDevice->bridge, pciDevice->busNumber); pciDevice->busNumber++; pciDevice->slotNumber = 0; pciDevice->startSlot = 0; pciDevice->endSlot = 0x0f; ret = asc_srch_pci_dev(pciDevice); ASC_DBG1(2, "asc_srch_pci_dev: recursive call return %d\n", ret); } } ASC_DBG1(2, "asc_srch_pci_dev: return %d\n", ret); return ret; } /* * Determine the access method to be used for 'pciDevice'. */ ASC_INITFUNC( STATIC uchar asc_scan_method(void) ) { ushort data; PCI_DATA pciData; uchar type; uchar slot; ASC_DBG(2, "asc_scan_method: begin\n"); memset(&pciData, 0, sizeof(pciData)); for (type = 1; type < 3; type++) { pciData.type = type; for (slot = 0; slot < PCI_MAX_SLOT; slot++) { pciData.slot = slot; data = asc_get_cfg_word(&pciData); if ((data != 0xFFFF) && (data != 0x0000)) { ASC_DBG2(4, "asc_scan_method: data %x, type %d\n", data, type); return (type); } } } ASC_DBG1(4, "asc_scan_method: type %d\n", type); return (type); } /* * Check for an AdvanSys PCI device in 'pciDevice'. * * Return PCI_DEVICE_FOUND if found, otherwise return PCI_DEVICE_NOT_FOUND. */ ASC_INITFUNC( STATIC int asc_pci_find_dev(PCI_DEVICE *pciDevice) ) { PCI_DATA pciData; ushort vendorid, deviceid; uchar classcode, subclass; uchar lslot; ASC_DBG(3, "asc_pci_find_dev: begin\n"); pciData.type = pciDevice->type; pciData.bus = pciDevice->busNumber; pciData.func = pciDevice->devFunc; lslot = pciDevice->startSlot; for (; lslot < pciDevice->endSlot; lslot++) { pciData.slot = lslot; pciData.offset = VENDORID_OFFSET; vendorid = asc_get_cfg_word(&pciData); ASC_DBG1(3, "asc_pci_find_dev: vendorid %x\n", vendorid); if (vendorid != 0xffff) { pciData.offset = DEVICEID_OFFSET; deviceid = asc_get_cfg_word(&pciData); ASC_DBG1(3, "asc_pci_find_dev: deviceid %x\n", deviceid); if ((vendorid == ASC_PCI_VENDORID) && ((deviceid == ASC_PCI_DEVICE_ID_1100) || (deviceid == ASC_PCI_DEVICE_ID_1200) || (deviceid == ASC_PCI_DEVICE_ID_1300) || (deviceid == ASC_PCI_DEVICE_ID_2300))) { pciDevice->slotFound = lslot; ASC_DBG(3, "asc_pci_find_dev: PCI_DEVICE_FOUND\n"); return PCI_DEVICE_FOUND; } else { pciData.offset = SUBCLASS_OFFSET; subclass = asc_get_cfg_byte(&pciData); pciData.offset = CLASSCODE_OFFSET; classcode = asc_get_cfg_byte(&pciData); if ((classcode & PCI_BASE_CLASS_BRIDGE_DEVICE) && (subclass & PCI_SUB_CLASS_PCI_TO_PCI_BRIDGE_CONTROLLER)) { pciDevice->bridge++; } ASC_DBG2(3, "asc_pci_find_dev: subclass %x, classcode %x\n", subclass, classcode); } } } return PCI_DEVICE_NOT_FOUND; } /* * Read PCI configuration data into 'pciConfig'. */ ASC_INITFUNC( STATIC void asc_get_pci_cfg(PCI_DEVICE *pciDevice, PCI_CONFIG_SPACE *pciConfig) ) { PCI_DATA pciData; uchar counter; uchar *localConfig; ASC_DBG1(4, "asc_get_pci_cfg: slot found - %d\n ", pciDevice->slotFound); pciData.type = pciDevice->type; pciData.bus = pciDevice->busNumber; pciData.slot = pciDevice->slotFound; pciData.func = pciDevice->devFunc; localConfig = (uchar *) pciConfig; for (counter = 0; counter < sizeof(PCI_CONFIG_SPACE); counter++) { pciData.offset = counter; *localConfig = asc_get_cfg_byte(&pciData); ASC_DBG1(4, "asc_get_pci_cfg: byte %x\n", *localConfig); localConfig++; } ASC_DBG1(4, "asc_get_pci_cfg: counter %d\n", counter); } /* * Read a word (16 bits) from the PCI configuration space. * * The configuration mechanism is checked for the correct access method. */ ASC_INITFUNC( STATIC ushort asc_get_cfg_word(PCI_DATA *pciData) ) { ushort tmp; ulong address; ulong lbus = pciData->bus; ulong lslot = pciData->slot; ulong lfunc = pciData->func; uchar t2CFA, t2CF8; ulong t1CF8, t1CFC; ASC_DBG4(4, "asc_get_cfg_word: type %d, bus %lu, slot %lu, func %lu\n", pciData->type, lbus, lslot, lfunc); /* * Check type of configuration mechanism. */ if (pciData->type == 2) { /* * Save registers to be restored later. */ t2CFA = inp(0xCFA); /* save PCI bus register */ t2CF8 = inp(0xCF8); /* save config space enable register */ /* * Write the bus and enable registers. */ /* set for type 1 cycle, if needed */ outp(0xCFA, pciData->bus); /* set the function number */ outp(0xCF8, 0x10 | (pciData->func << 1)) ; /* * Read the configuration space type 2 locations. */ tmp = (ushort) inpw(0xC000 | ((pciData->slot << 8) + pciData->offset)); outp(0xCFA, t2CFA); /* save PCI bus register */ outp(0xCF8, t2CF8); /* save config space enable register */ } else { /* * Type 1 or 3 configuration mechanism. * * Save the CONFIG_ADDRESS and CONFIG_DATA register values. */ t1CF8 = inpl(0xCF8); t1CFC = inpl(0xCFC); /* * enable <31>, bus = <23:16>, slot = <15:11>, * func = <10:8>, reg = <7:2> */ address = (ulong) ((lbus << 16) | (lslot << 11) | (lfunc << 8) | (pciData->offset & 0xFC) | 0x80000000L); /* * Write out the address to CONFIG_ADDRESS. */ outpl(0xCF8, address); /* * Read in word from CONFIG_DATA. */ tmp = (ushort) ((inpl(0xCFC) >> ((pciData->offset & 2) * 8)) & 0xFFFF); /* * Restore registers. */ outpl(0xCF8, t1CF8); outpl(0xCFC, t1CFC); } ASC_DBG1(4, "asc_get_cfg_word: config data: %x\n", tmp); return tmp; } /* * Reads a byte from the PCI configuration space. * * The configuration mechanism is checked for the correct access method. */ ASC_INITFUNC( STATIC uchar asc_get_cfg_byte(PCI_DATA *pciData) ) { uchar tmp; pcibios_read_config_byte(pciData->bus, pciData->slot * 8 + pciData->func, pciData->offset, &tmp); return tmp; } /* * Write a byte to the PCI configuration space. */ ASC_INITFUNC( STATIC void asc_put_cfg_byte(PCI_DATA *pciData, uchar byte_data) ) { ulong tmpl; ulong address; ulong lbus = pciData->bus, lslot = pciData->slot, lfunc = pciData->func; uchar t2CFA, t2CF8; ulong t1CF8, t1CFC; ASC_DBG2(4, "asc_put_cfg_byte: type: %d, byte_data %x\n", pciData->type, byte_data); /* * Check type of configuration mechanism. */ if (pciData->type == 2) { /* * Save registers to be restored later. */ t2CFA = inp(0xCFA); /* save PCI bus register */ t2CF8 = inp(0xCF8); /* save config space enable register */ /* * Write bus and enable registers. */ outp(0xCFA, pciData->bus); /* * Set the function number. */ outp(0xCF8, 0x10 | (pciData->func << 1)); /* * Write the configuration space type 2 locations. */ outp(0xC000 | ((pciData->slot << 8) + pciData->offset), byte_data); /* * Restore registers. */ outp(0xCF8, t2CF8); /* restore the enable register */ outp(0xCFA, t2CFA); /* restore PCI bus register */ } else { /* * Type 1 or 3 configuration mechanism. * * Save the CONFIG_ADDRESS and CONFIG_DATA register values. */ t1CF8 = inpl(0xCF8); t1CFC = inpl(0xCFC); /* * enable <31>, bus = <23:16>, slot = <15:11>, func = <10:8>, * reg = <7:2> */ address = (ulong) ((lbus << 16) | (lslot << 11) | (lfunc << 8) | (pciData->offset & 0xFC) | 0x80000000L); /* * Write out address to CONFIG_ADDRESS. */ outpl(0xCF8, address); /* * Write double word to CONFIG_DATA preserving the bytes * in the double not written. */ tmpl = inpl(0xCFC) & ~(0xFF << ((pciData->offset & 3) * 8)); outpl(0xCFC, tmpl | (byte_data << ((pciData->offset & 3) * 8))); /* * Restore registers. */ outpl(0xCF8, t1CF8); outpl(0xCFC, t1CFC); } ASC_DBG(4, "asc_put_cfg_byte: end\n"); } /* * Add a 'REQP' to the end of specified queue. Set 'tidmask' * to indicate a command is queued for the device. * * 'flag' may be either ASC_FRONT or ASC_BACK. * * 'REQPNEXT(reqp)' returns reqp's next pointer. */ STATIC void asc_enqueue(asc_queue_t *ascq, REQP reqp, int flag) { int tid; ASC_DBG3(3, "asc_enqueue: ascq %x, reqp %x, flag %d\n", (unsigned) ascq, (unsigned) reqp, flag); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_ASSERT(reqp != NULL); ASC_ASSERT(flag == ASC_FRONT || flag == ASC_BACK); tid = REQPTID(reqp); ASC_ASSERT(tid >= 0 && tid <= ADV_MAX_TID); if (flag == ASC_FRONT) { REQPNEXT(reqp) = ascq->q_first[tid]; ascq->q_first[tid] = reqp; /* If the queue was empty, set the last pointer. */ if (ascq->q_last[tid] == NULL) { ascq->q_last[tid] = reqp; } } else { /* ASC_BACK */ if (ascq->q_last[tid] != NULL) { REQPNEXT(ascq->q_last[tid]) = reqp; } ascq->q_last[tid] = reqp; REQPNEXT(reqp) = NULL; /* If the queue was empty, set the first pointer. */ if (ascq->q_first[tid] == NULL) { ascq->q_first[tid] = reqp; } } /* The queue has at least one entry, set its bit. */ ascq->q_tidmask |= ADV_TID_TO_TIDMASK(tid); #ifdef ADVANSYS_STATS /* Maintain request queue statistics. */ ascq->q_tot_cnt[tid]++; ascq->q_cur_cnt[tid]++; if (ascq->q_cur_cnt[tid] > ascq->q_max_cnt[tid]) { ascq->q_max_cnt[tid] = ascq->q_cur_cnt[tid]; ASC_DBG2(2, "asc_enqueue: new q_max_cnt[%d] %d\n", tid, ascq->q_max_cnt[tid]); } REQPTIME(reqp) = REQTIMESTAMP(); #endif /* ADVANSYS_STATS */ ASC_DBG1(3, "asc_enqueue: reqp %x\n", (unsigned) reqp); return; } /* * Return first queued 'REQP' on the specified queue for * the specified target device. Clear the 'tidmask' bit for * the device if no more commands are left queued for it. * * 'REQPNEXT(reqp)' returns reqp's next pointer. */ STATIC REQP asc_dequeue(asc_queue_t *ascq, int tid) { REQP reqp; ASC_DBG2(3, "asc_dequeue: ascq %x, tid %d\n", (unsigned) ascq, tid); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_ASSERT(tid >= 0 && tid <= ADV_MAX_TID); if ((reqp = ascq->q_first[tid]) != NULL) { ASC_ASSERT(ascq->q_tidmask & ADV_TID_TO_TIDMASK(tid)); ascq->q_first[tid] = REQPNEXT(reqp); /* If the queue is empty, clear its bit and the last pointer. */ if (ascq->q_first[tid] == NULL) { ascq->q_tidmask &= ~ADV_TID_TO_TIDMASK(tid); ASC_ASSERT(ascq->q_last[tid] == reqp); ascq->q_last[tid] = NULL; } #ifdef ADVANSYS_STATS /* Maintain request queue statistics. */ ascq->q_cur_cnt[tid]--; ASC_ASSERT(ascq->q_cur_cnt[tid] >= 0); REQTIMESTAT("asc_dequeue", ascq, reqp, tid); #endif /* ADVANSYS_STATS */ } ASC_DBG1(3, "asc_dequeue: reqp %x\n", (unsigned) reqp); return reqp; } /* * Return a pointer to a singly linked list of all the requests queued * for 'tid' on the 'asc_queue_t' pointed to by 'ascq'. * * If 'lastpp' is not NULL, '*lastpp' will be set to point to the * the last request returned in the singly linked list. * * 'tid' should either be a valid target id or if it is ASC_TID_ALL, * then all queued requests are concatenated into one list and * returned. * * Note: If 'lastpp' is used to append a new list to the end of * an old list, only change the old list last pointer if '*lastpp' * (or the function return value) is not NULL, i.e. use a temporary * variable for 'lastpp' and check its value after the function return * before assigning it to the list last pointer. * * Unfortunately collecting queuing time statistics adds overhead to * the function that isn't inherent to the function's algorithm. */ STATIC REQP asc_dequeue_list(asc_queue_t *ascq, REQP *lastpp, int tid) { REQP firstp, lastp; int i; ASC_DBG2(3, "asc_dequeue_list: ascq %x, tid %d\n", (unsigned) ascq, tid); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_ASSERT((tid == ASC_TID_ALL) || (tid >= 0 && tid <= ADV_MAX_TID)); /* * If 'tid' is not ASC_TID_ALL, return requests only for * the specified 'tid'. If 'tid' is ASC_TID_ALL, return all * requests for all tids. */ if (tid != ASC_TID_ALL) { /* Return all requests for the specified 'tid'. */ if ((ascq->q_tidmask & ADV_TID_TO_TIDMASK(tid)) == 0) { /* List is empty; Set first and last return pointers to NULL. */ firstp = lastp = NULL; } else { firstp = ascq->q_first[tid]; lastp = ascq->q_last[tid]; ascq->q_first[tid] = ascq->q_last[tid] = NULL; ascq->q_tidmask &= ~ADV_TID_TO_TIDMASK(tid); #ifdef ADVANSYS_STATS { REQP reqp; ascq->q_cur_cnt[tid] = 0; for (reqp = firstp; reqp; reqp = REQPNEXT(reqp)) { REQTIMESTAT("asc_dequeue_list", ascq, reqp, tid); } } #endif /* ADVANSYS_STATS */ } } else { /* Return all requests for all tids. */ firstp = lastp = NULL; for (i = 0; i <= ADV_MAX_TID; i++) { if (ascq->q_tidmask & ADV_TID_TO_TIDMASK(i)) { if (firstp == NULL) { firstp = ascq->q_first[i]; lastp = ascq->q_last[i]; } else { ASC_ASSERT(lastp != NULL); REQPNEXT(lastp) = ascq->q_first[i]; lastp = ascq->q_last[i]; } ascq->q_first[i] = ascq->q_last[i] = NULL; ascq->q_tidmask &= ~ADV_TID_TO_TIDMASK(i); #ifdef ADVANSYS_STATS ascq->q_cur_cnt[i] = 0; #endif /* ADVANSYS_STATS */ } } #ifdef ADVANSYS_STATS { REQP reqp; for (reqp = firstp; reqp; reqp = REQPNEXT(reqp)) { REQTIMESTAT("asc_dequeue_list", ascq, reqp, reqp->target); } } #endif /* ADVANSYS_STATS */ } if (lastpp) { *lastpp = lastp; } ASC_DBG1(3, "asc_dequeue_list: firstp %x\n", (unsigned) firstp); return firstp; } /* * Remove the specified 'REQP' from the specified queue for * the specified target device. Clear the 'tidmask' bit for the * device if no more commands are left queued for it. * * 'REQPNEXT(reqp)' returns reqp's the next pointer. * * Return ASC_TRUE if the command was found and removed, * otherwise return ASC_FALSE. */ STATIC int asc_rmqueue(asc_queue_t *ascq, REQP reqp) { REQP currp, prevp; int tid; int ret = ASC_FALSE; ASC_DBG2(3, "asc_rmqueue: ascq %x, reqp %x\n", (unsigned) ascq, (unsigned) reqp); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_ASSERT(reqp != NULL); tid = REQPTID(reqp); ASC_ASSERT(tid >= 0 && tid <= ADV_MAX_TID); /* * Handle the common case of 'reqp' being the first * entry on the queue. */ if (reqp == ascq->q_first[tid]) { ret = ASC_TRUE; ascq->q_first[tid] = REQPNEXT(reqp); /* If the queue is now empty, clear its bit and the last pointer. */ if (ascq->q_first[tid] == NULL) { ascq->q_tidmask &= ~ADV_TID_TO_TIDMASK(tid); ASC_ASSERT(ascq->q_last[tid] == reqp); ascq->q_last[tid] = NULL; } } else if (ascq->q_first[tid] != NULL) { ASC_ASSERT(ascq->q_last[tid] != NULL); /* * Because the case of 'reqp' being the first entry has been * handled above and it is known the queue is not empty, if * 'reqp' is found on the queue it is guaranteed the queue will * not become empty and that 'q_first[tid]' will not be changed. * * Set 'prevp' to the first entry, 'currp' to the second entry, * and search for 'reqp'. */ for (prevp = ascq->q_first[tid], currp = REQPNEXT(prevp); currp; prevp = currp, currp = REQPNEXT(currp)) { if (currp == reqp) { ret = ASC_TRUE; REQPNEXT(prevp) = REQPNEXT(currp); REQPNEXT(reqp) = NULL; if (ascq->q_last[tid] == reqp) { ascq->q_last[tid] = prevp; } break; } } } #ifdef ADVANSYS_STATS /* Maintain request queue statistics. */ if (ret == ASC_TRUE) { ascq->q_cur_cnt[tid]--; REQTIMESTAT("asc_rmqueue", ascq, reqp, tid); } ASC_ASSERT(ascq->q_cur_cnt[tid] >= 0); #endif /* ADVANSYS_STATS */ ASC_DBG2(3, "asc_rmqueue: reqp %x, ret %d\n", (unsigned) reqp, ret); return ret; } /* * If the specified 'REQP' is queued on the specified queue for * the specified target device, return ASC_TRUE. */ STATIC int asc_isqueued(asc_queue_t *ascq, REQP reqp) { REQP treqp; int tid; int ret = ASC_FALSE; ASC_DBG2(3, "asc_isqueued: ascq %x, reqp %x\n", (unsigned) ascq, (unsigned) reqp); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); ASC_ASSERT(reqp != NULL); tid = REQPTID(reqp); ASC_ASSERT(tid >= 0 && tid <= ADV_MAX_TID); for (treqp = ascq->q_first[tid]; treqp; treqp = REQPNEXT(treqp)) { ASC_ASSERT(ascq->q_tidmask & ADV_TID_TO_TIDMASK(tid)); if (treqp == reqp) { ret = ASC_TRUE; break; } } ASC_DBG1(3, "asc_isqueued: ret %x\n", ret); return ret; } /* * Execute as many queued requests as possible for the specified queue. * * Calls asc_execute_scsi_cmnd() to execute a REQP/Scsi_Cmnd. */ STATIC void asc_execute_queue(asc_queue_t *ascq) { ADV_SCSI_BIT_ID_TYPE scan_tidmask; REQP reqp; int i; ASC_DBG1(1, "asc_execute_queue: ascq %x\n", (unsigned) ascq); ASC_ASSERT(interrupts_enabled() == ASC_FALSE); /* * Execute queued commands for devices attached to * the current board in round-robin fashion. */ scan_tidmask = ascq->q_tidmask; do { for (i = 0; i <= ADV_MAX_TID; i++) { if (scan_tidmask & ADV_TID_TO_TIDMASK(i)) { if ((reqp = asc_dequeue(ascq, i)) == NULL) { scan_tidmask &= ~ADV_TID_TO_TIDMASK(i); } else if (asc_execute_scsi_cmnd((Scsi_Cmnd *) reqp) == ASC_BUSY) { scan_tidmask &= ~ADV_TID_TO_TIDMASK(i); /* Put the request back at front of the list. */ asc_enqueue(ascq, reqp, ASC_FRONT); } } } } while (scan_tidmask); return; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,0) /* * asc_prt_board_devices() * * Print driver information for devices attached to the board. * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_board_devices(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; int leftlen; int totlen; int len; int chip_scsi_id; int i; boardp = ASC_BOARDP(shp); leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nDevice Information for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); if (ASC_NARROW_BOARD(boardp)) { chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; } len = asc_prt_line(cp, leftlen, "Target IDs Detected:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) { len = asc_prt_line(cp, leftlen, " %X,", i); ASC_PRT_NEXT(); } } len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id); ASC_PRT_NEXT(); return totlen; } /* * Display Wide Board BIOS Information. */ STATIC int asc_prt_adv_bios(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; int leftlen; int totlen; int len; int upgrade = ASC_FALSE; ushort major, minor, letter; boardp = ASC_BOARDP(shp); leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: "); ASC_PRT_NEXT(); /* * If the BIOS saved a valid signature, then fill in * the BIOS code segment base address. */ if (boardp->bios_signature != 0x55AA) { len = asc_prt_line(cp, leftlen, "Pre-3.1\n"); ASC_PRT_NEXT(); upgrade = ASC_TRUE; } else { major = (boardp->bios_version >> 12) & 0xF; minor = (boardp->bios_version >> 8) & 0xF; letter = (boardp->bios_version & 0xFF); len = asc_prt_line(cp, leftlen, "%d.%d%c\n", major, minor, letter >= 26 ? '?' : letter + 'A'); ASC_PRT_NEXT(); /* Current available ROM BIOS release is 3.1E. */ if (major < 3 || (major <= 3 && minor < 1) || (major <= 3 && minor <= 1 && letter < ('E'- 'A'))) { upgrade = ASC_TRUE; } } if (upgrade == ASC_TRUE) { len = asc_prt_line(cp, leftlen, "Newer version of ROM BIOS available: ftp://ftp.advansys.com/pub\n"); ASC_PRT_NEXT(); } return totlen; } /* * Add serial number to information bar if signature AAh * is found in at bit 15-9 (7 bits) of word 1. * * Serial Number consists 12 alpha-numeric digits. * * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) * 3-4 - Product ID (0-99) Word0: 10-0 (11 bits) * 5 - Product revision Word0: " " * * Signature Word1: 15-9 (7 bits) * 6 - Year (4-9) Word1: 8-6 (3 bits) * 7-8 - Week of the year Word1: 5-0 (6 bits) * * 9-12 - Serial Number Word2: 15-0 (16 bits) * * Note 1: Only production cards will have a serial number. * * Note 2: Signature is most significant 7 bits (0xFE). * * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. */ STATIC int asc_get_eeprom_string(ushort *serialnum, uchar *cp) { ushort w, num; if ((serialnum[1] & 0xFE00) != ((ushort) 0xAA << 8)) { return ASC_FALSE; } else { /* * First word - 6 digits. */ w = serialnum[0]; /* Product type - 1st digit. */ *cp++ = 'A' + ((w & 0xE000) >> 13); /* Manufacturing location - 2nd digit. */ *cp++ = 'A' + ((w & 0x1C00) >> 10); /* Product ID - 3rd, 4th digits. */ num = w & 0x3FF; *cp++ = '0' + (num / 100); num %= 100; *cp++ = '0' + (num / 10); /* Product revision - 5th digit. */ *cp++ = 'A' + (num % 10); /* * Second word */ w = serialnum[1]; /* Year - 6th digit. */ *cp++ = '0' + ((w & 0x1C0) >> 6); /* Week of year - 7th, 8th digits. */ num = w & 0x003F; *cp++ = '0' + num / 10; num %= 10; *cp++ = '0' + num; /* * Third word */ w = serialnum[2]; /* Serial number - 9th digit. */ *cp++ = 'A' + (w / 1000); /* 10th, 11th, 12th digits. */ num = w % 1000; *cp++ = '0' + num / 100; num %= 100; *cp++ = '0' + num / 10; num %= 10; *cp++ = '0' + num; *cp = '\0'; /* Null Terminate the string. */ return ASC_TRUE; } } /* * asc_prt_asc_board_eeprom() * * Print board EEPROM configuration. * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_asc_board_eeprom(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; ASC_DVC_VAR *asc_dvc_varp; int leftlen; int totlen; int len; ASCEEP_CONFIG *ep; int i; int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; uchar serialstr[13]; boardp = ASC_BOARDP(shp); asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; ep = &boardp->eep_config.asc_eep; leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); if (asc_get_eeprom_string((ushort *) &ep->adapter_info[0], serialstr) == ASC_TRUE) { len = asc_prt_line(cp, leftlen, " Serial Number: %s\n", serialstr); ASC_PRT_NEXT(); } else { if (ep->adapter_info[5] == 0xBB) { len = asc_prt_line(cp, leftlen, " Default Settings Used for EEPROM-less Adapter.\n"); ASC_PRT_NEXT(); } else { len = asc_prt_line(cp, leftlen, " Serial Number Signature Not Present.\n"); ASC_PRT_NEXT(); } } len = asc_prt_line(cp, leftlen, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ep->chip_scsi_id, ep->max_total_qng, ep->max_tag_qng); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " cntl %x, no_scam %x\n", ep->cntl, ep->no_scam); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Target ID: "); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %d", i); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Disconnects: "); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Command Queuing: "); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Start Motor: "); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); if (asc_dvc_varp->bus_type & ASC_IS_ISA) { len = asc_prt_line(cp, leftlen, " Host ISA DMA speed: %d MB/S\n", isa_dma_speed[ep->isa_dma_speed]); ASC_PRT_NEXT(); } return totlen; } /* * asc_prt_adv_board_eeprom() * * Print board EEPROM configuration. * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_adv_board_eeprom(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; ADV_DVC_VAR *adv_dvc_varp; int leftlen; int totlen; int len; int i; char *termstr; uchar serialstr[13]; ADVEEP_CONFIG *ep; boardp = ASC_BOARDP(shp); adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; ep = &boardp->eep_config.adv_eep; leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); if (asc_get_eeprom_string(&ep->serial_number_word1, serialstr) == ASC_TRUE) { len = asc_prt_line(cp, leftlen, " Serial Number: %s\n", serialstr); ASC_PRT_NEXT(); } else { len = asc_prt_line(cp, leftlen, " Serial Number Signature Not Present.\n"); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ep->adapter_scsi_id, ep->max_host_qng, ep->max_dvc_qng); ASC_PRT_NEXT(); switch (ep->termination) { case 1: termstr = "Low Off/High Off"; break; case 2: termstr = "Low Off/High On"; break; case 3: termstr = "Low On/High On"; break; default: case 0: termstr = "Automatic"; break; } len = asc_prt_line(cp, leftlen, " termination: %u (%s), bios_ctrl: %x\n", ep->termination, termstr, ep->bios_ctrl); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Target ID: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %X", i); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Disconnects: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Command Queuing: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Start Motor: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Ultra Transfer: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->ultra_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Wide Transfer: "); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { len = asc_prt_line(cp, leftlen, " %c", (ep->wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); return totlen; } /* * asc_prt_driver_conf() * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_driver_conf(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; int leftlen; int totlen; int len; int chip_scsi_id; #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) int i; #endif /* version >= v1.3.89 */ boardp = ASC_BOARDP(shp); leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,89) " host_busy %u, last_reset %u, max_id %u, max_lun %u\n", shp->host_busy, shp->last_reset, shp->max_id, shp->max_lun); #else /* version >= v1.3.89 */ " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n", shp->host_busy, shp->last_reset, shp->max_id, shp->max_lun, shp->max_channel); #endif /* version >= v1.3.89 */ ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,57) " can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", shp->can_queue, shp->this_id, shp->sg_tablesize, shp->cmd_per_lun); #else /* version >= v1.3.57 */ " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", shp->unique_id, shp->can_queue, shp->this_id, shp->sg_tablesize, shp->cmd_per_lun); #endif /* version >= v1.3.57 */ ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,57) " unchecked_isa_dma %d, loaded_as_module %d\n", shp->unchecked_isa_dma, shp->loaded_as_module); #else /* version >= v1.3.57 */ " unchecked_isa_dma %d, use_clustering %d, loaded_as_module %d\n", shp->unchecked_isa_dma, shp->use_clustering, shp->loaded_as_module); #endif /* version >= v1.3.57 */ ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " flags %x, last_reset %x, jiffies %x\n", boardp->flags, boardp->last_reset, jiffies); ASC_PRT_NEXT(); if (ASC_NARROW_BOARD(boardp)) { chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) if (boardp->flags & ASC_SELECT_QUEUE_DEPTHS) { len = asc_prt_line(cp, leftlen, " queue_depth:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (boardp->device[i] == NULL) { continue; } len = asc_prt_line(cp, leftlen, " %X:%d", i, boardp->device[i]->queue_depth); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); } #endif /* version >= v1.3.89 */ #if ASC_QUEUE_FLOW_CONTROL if (ASC_NARROW_BOARD(boardp)) { len = asc_prt_line(cp, leftlen, " queue_curr_depth:"); ASC_PRT_NEXT(); /* Use ASC_MAX_TID for Narrow Board. */ for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (boardp->device[i] == NULL) { continue; } len = asc_prt_line(cp, leftlen, " %d:%d", i, boardp->device[i]->queue_curr_depth); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " queue_count:"); ASC_PRT_NEXT(); /* Use ASC_MAX_TID for Narrow Board. */ for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (boardp->device[i] == NULL) { continue; } len = asc_prt_line(cp, leftlen, " %d:%d", i, boardp->device[i]->queue_count); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); } #endif /* ASC_QUEUE_FLOW_CONTROL */ return totlen; } /* * asc_prt_asc_board_info() * * Print dynamic board configuration information. * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_asc_board_info(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; int leftlen; int totlen; int len; ASC_DVC_VAR *v; ASC_DVC_CFG *c; int i; boardp = ASC_BOARDP(shp); v = &boardp->dvc_var.asc_dvc_var; c = &boardp->dvc_cfg.asc_dvc_cfg; leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " chip_version %u, lib_version %x, lib_serial_no %u, mcode_date %x\n", c->chip_version, c->lib_version, c->lib_serial_no, c->mcode_date); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " mcode_version %x, err_code %u\n", c->mcode_version, v->err_code); ASC_PRT_NEXT(); /* Current number of commands waiting for the host. */ len = asc_prt_line(cp, leftlen, " Total Command Pending: %d\n", v->cur_total_qng); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Command Queuing:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %d:%c", i, (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); /* Current number of commands waiting for a device. */ len = asc_prt_line(cp, leftlen, " Command Queue Pending:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %d:%u", i, v->cur_dvc_qng[i]); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); /* Current limit on number of commands that can be sent to a device. */ len = asc_prt_line(cp, leftlen, " Command Queue Limit:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %d:%u", i, v->max_dvc_qng[i]); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); /* Indicate whether the device has returned queue full status. */ len = asc_prt_line(cp, leftlen, " Command Queue Full:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) { len = asc_prt_line(cp, leftlen, " %d:Y-%d", i, boardp->queue_full_cnt[i]); } else { len = asc_prt_line(cp, leftlen, " %d:N", i); } ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %d:%c", i, (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); for (i = 0; i <= ASC_MAX_TID; i++) { uchar syn_period_ix; if ((boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { continue; } syn_period_ix = (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 1); len = asc_prt_line(cp, leftlen, " %d:", i); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Transfer Period Factor: %d (%d.%d Mhz),", v->sdtr_period_tbl[syn_period_ix], 250 / v->sdtr_period_tbl[syn_period_ix], ASC_TENTHS(250, v->sdtr_period_tbl[syn_period_ix])); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d\n", boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); ASC_PRT_NEXT(); } return totlen; } /* * asc_prt_adv_board_info() * * Print dynamic board configuration information. * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_adv_board_info(struct Scsi_Host *shp, char *cp, int cplen) { asc_board_t *boardp; int leftlen; int totlen; int len; int i; ADV_DVC_VAR *v; ADV_DVC_CFG *c; AdvPortAddr iop_base; ushort chip_scsi_id; ushort lramword; uchar lrambyte; ushort sdtr_able; ushort period; boardp = ASC_BOARDP(shp); v = &boardp->dvc_var.adv_dvc_var; c = &boardp->dvc_cfg.adv_dvc_cfg; iop_base = v->iop_base; chip_scsi_id = v->chip_scsi_id; leftlen = cplen; totlen = len = 0; len = asc_prt_line(cp, leftlen, "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " iop_base %lx, cable_detect: %X, err_code %u, idle_cmd_done %u\n", v->iop_base, AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1) & CABLE_DETECT, v->err_code, v->idle_cmd_done); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " chip_version %u, lib_version %x, mcode_date %x, mcode_version %x\n", c->chip_version, c->lib_version, c->mcode_date, c->mcode_version); ASC_PRT_NEXT(); AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, lramword); len = asc_prt_line(cp, leftlen, " Queuing Enabled:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %X:%c", i, (lramword & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Queue Limit:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, lrambyte); len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Command Pending:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, lrambyte); len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, lramword); len = asc_prt_line(cp, leftlen, " Wide Enabled:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %X:%c", i, (lramword & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " Transfer Bit Width:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadWordLram(iop_base, ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), lramword); len = asc_prt_line(cp, leftlen, " %X:%d", i, (lramword & 0x8000) ? 16 : 8); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); len = asc_prt_line(cp, leftlen, " Synchronous Enabled:"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %X:%c", i, (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); ASC_PRT_NEXT(); } len = asc_prt_line(cp, leftlen, "\n"); ASC_PRT_NEXT(); for (i = 0; i <= ADV_MAX_TID; i++) { AdvReadWordLram(iop_base, ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), lramword); lramword &= ~0x8000; if ((chip_scsi_id == i) || ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0) || (lramword == 0)) { continue; } len = asc_prt_line(cp, leftlen, " %X:", i); ASC_PRT_NEXT(); period = (((lramword >> 8) * 25) + 50)/4; len = asc_prt_line(cp, leftlen, " Transfer Period Factor: %d (%d.%d Mhz),", period, 250/period, ASC_TENTHS(250, period)); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d\n", lramword & 0x1F); ASC_PRT_NEXT(); } return totlen; } /* * asc_proc_copy() * * Copy proc information to a read buffer taking into account the current * read offset in the file and the remaining space in the read buffer. */ STATIC int asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen, char *cp, int cplen) { int cnt = 0; ASC_DBG3(2, "asc_proc_copy: offset %d, advoffset %d, cplen %d\n", (unsigned) offset, (unsigned) advoffset, cplen); if (offset <= advoffset) { /* Read offset below current offset, copy everything. */ cnt = ASC_MIN(cplen, leftlen); ASC_DBG3(2, "asc_proc_copy: curbuf %x, cp %x, cnt %d\n", (unsigned) curbuf, (unsigned) cp, cnt); memcpy(curbuf, cp, cnt); } else if (offset < advoffset + cplen) { /* Read offset within current range, partial copy. */ cnt = (advoffset + cplen) - offset; cp = (cp + cplen) - cnt; cnt = ASC_MIN(cnt, leftlen); ASC_DBG3(2, "asc_proc_copy: curbuf %x, cp %x, cnt %d\n", (unsigned) curbuf, (unsigned) cp, cnt); memcpy(curbuf, cp, cnt); } return cnt; } /* * asc_prt_line() * * If 'cp' is NULL print to the console, otherwise print to a buffer. * * Return 0 if printing to the console, otherwise return the number of * bytes written to the buffer. * * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes. */ STATIC int asc_prt_line(char *buf, int buflen, char *fmt, ...) { va_list args; int ret; char s[ASC_PRTLINE_SIZE]; va_start(args, fmt); ret = vsprintf(s, fmt, args); ASC_ASSERT(ret < ASC_PRTLINE_SIZE); if (buf == NULL) { (void) printk(s); ret = 0; } else { ret = ASC_MIN(buflen, ret); memcpy(buf, s, ret); } va_end(args); return ret; } #endif /* version >= v1.3.0 */ /* * --- Functions Required by the Asc Library */ /* * Delay for 'n' milliseconds. Don't use the 'jiffies' * global variable which is incremented once every 5 ms * from a timer interrupt, because this function may be * called when interrupts are disabled. */ STATIC void DvcSleepMilliSecond(ulong n) { ulong i; ASC_DBG1(4, "DvcSleepMilliSecond: %lu\n", n); for (i = 0; i < n; i++) { udelay(1000); } } STATIC int DvcEnterCritical(void) { int flags; save_flags(flags); cli(); return flags; } STATIC void DvcLeaveCritical(int flags) { restore_flags(flags); } STATIC ulong DvcGetSGList(ASC_DVC_VAR *asc_dvc_sg, uchar *buf_addr, ulong buf_len, ASC_SG_HEAD *asc_sg_head_ptr) { ulong buf_size; buf_size = buf_len; asc_sg_head_ptr->entry_cnt = 1; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) asc_sg_head_ptr->sg_list[0].addr = (ulong) buf_addr; #else /* version >= v2.0.0 */ asc_sg_head_ptr->sg_list[0].addr = virt_to_bus(buf_addr); #endif /* version >= v2.0.0 */ asc_sg_head_ptr->sg_list[0].bytes = buf_size; return buf_size; } /* * void * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, ushort *outbuf, int words) * * Calling/Exit State: * none * * Description: * Output an ASC_SCSI_Q structure to the chip */ STATIC void DvcPutScsiQ(PortAddr iop_base, ushort s_addr, ushort *outbuf, int words) { int i; ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", (uchar *) outbuf, 2 * words); AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < words; i++, outbuf++) { if (i == 2 || i == 10) { continue; } AscSetChipLramDataNoSwap(iop_base, *outbuf); } } /* * void * DvcGetQinfo(PortAddr iop_base, ushort s_addr, ushort *inbuf, int words) * * Calling/Exit State: * none * * Description: * Input an ASC_QDONE_INFO structure from the chip */ STATIC void DvcGetQinfo(PortAddr iop_base, ushort s_addr, ushort *inbuf, int words) { int i; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < words; i++, inbuf++) { if (i == 5) { continue; } *inbuf = AscGetChipLramDataNoSwap(iop_base); } ASC_DBG_PRT_HEX(2, "DvcGetQinfo", (uchar *) inbuf, 2 * words); } /* * void DvcOutPortWords(ushort iop_base, ushort &outbuf, int words) * * Calling/Exit State: * none * * Description: * output a buffer to an i/o port address */ STATIC void DvcOutPortWords(ushort iop_base, ushort *outbuf, int words) { int i; for (i = 0; i < words; i++, outbuf++) outpw(iop_base, *outbuf); } /* * void DvcInPortWords(ushort iop_base, ushort &outbuf, int words) * * Calling/Exit State: * none * * Description: * input a buffer from an i/o port address */ STATIC void DvcInPortWords(ushort iop_base, ushort *inbuf, int words) { int i; for (i = 0; i < words; i++, inbuf++) *inbuf = inpw(iop_base); } /* * void DvcOutPortDWords(PortAddr port, ulong *pdw, int dwords) * * Calling/Exit State: * none * * Description: * output a buffer of 32-bit integers to an i/o port address in * 16 bit integer units */ STATIC void DvcOutPortDWords(PortAddr port, ulong *pdw, int dwords) { int i; int words; ushort *pw; pw = (ushort *) pdw; words = dwords << 1; for(i = 0; i < words; i++, pw++) { outpw(port, *pw); } return; } /* * Read a PCI configuration byte. */ ASC_INITFUNC( STATIC uchar DvcReadPCIConfigByte( ASC_DVC_VAR asc_ptr_type *asc_dvc, ushort offset) ) { PCI_DATA pciData; pciData.bus = ASC_PCI_ID2BUS(asc_dvc->cfg->pci_slot_info); pciData.slot = ASC_PCI_ID2DEV(asc_dvc->cfg->pci_slot_info); pciData.func = ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info); pciData.offset = offset; pciData.type = pci_scan_method; return asc_get_cfg_byte(&pciData); } /* * Write a PCI configuration byte. */ ASC_INITFUNC( STATIC void DvcWritePCIConfigByte( ASC_DVC_VAR asc_ptr_type *asc_dvc, ushort offset, uchar byte_data) ) { PCI_DATA pciData; pciData.bus = ASC_PCI_ID2BUS(asc_dvc->cfg->pci_slot_info); pciData.slot = ASC_PCI_ID2DEV(asc_dvc->cfg->pci_slot_info); pciData.func = ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info); pciData.offset = offset; pciData.type = pci_scan_method; asc_put_cfg_byte(&pciData, byte_data); } /* * Return the BIOS address of the adapter at the specified * I/O port and with the specified bus type. */ ASC_INITFUNC( STATIC ushort AscGetChipBiosAddress( PortAddr iop_base, ushort bus_type ) ) { ushort cfg_lsw ; ushort bios_addr ; /* * The PCI BIOS is re-located by the motherboard BIOS. Because * of this the driver can not determine where a PCI BIOS is * loaded and executes. */ if (bus_type & ASC_IS_PCI) { return(0); } if((bus_type & ASC_IS_EISA) != 0) { cfg_lsw = AscGetEisaChipCfg(iop_base) ; cfg_lsw &= 0x000F ; bios_addr = (ushort)(ASC_BIOS_MIN_ADDR + (cfg_lsw * ASC_BIOS_BANK_SIZE)) ; return(bios_addr) ; }/* if */ cfg_lsw = AscGetChipCfgLsw(iop_base) ; /* * ISA PnP uses the top bit as the 32K BIOS flag */ if (bus_type == ASC_IS_ISAPNP) { cfg_lsw &= 0x7FFF; }/* if */ bios_addr = (ushort)(((cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE) + ASC_BIOS_MIN_ADDR) ; return(bios_addr) ; } /* * --- Functions Required by the Adv Library */ /* * DvcGetPhyAddr() * * Return the physical address of 'vaddr' and set '*lenp' to the * number of physically contiguous bytes that follow 'vaddr'. * 'flag' indicates the type of structure whose physical address * is being translated. * * Note: Because Linux currently doesn't page the kernel and all * kernel buffers are physically contiguous, leave '*lenp' unchanged. */ ulong DvcGetPhyAddr(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq, uchar *vaddr, long *lenp, int flag) { ulong paddr; #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(2,0,0) paddr = (ulong) vaddr; #else /* version >= v2.0.0 */ paddr = virt_to_bus(vaddr); #endif /* version >= v2.0.0 */ ASC_DBG4(4, "DvcGetPhyAddr: vaddr 0x%lx, lenp 0x%lx *lenp %lu, paddr 0x%lx\n", (ulong) vaddr, (ulong) lenp, (ulong) *((ulong *) lenp), paddr); return paddr; } /* * Read a PCI configuration byte. */ ASC_INITFUNC( STATIC uchar DvcAdvReadPCIConfigByte( ADV_DVC_VAR *asc_dvc, ushort offset) ) { PCI_DATA pciData; pciData.bus = ASC_PCI_ID2BUS(asc_dvc->cfg->pci_slot_info); pciData.slot = ASC_PCI_ID2DEV(asc_dvc->cfg->pci_slot_info); pciData.func = ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info); pciData.offset = offset; pciData.type = pci_scan_method; return asc_get_cfg_byte(&pciData); } /* * Write a PCI configuration byte. */ ASC_INITFUNC( STATIC void DvcAdvWritePCIConfigByte( ADV_DVC_VAR *asc_dvc, ushort offset, uchar byte_data) ) { PCI_DATA pciData; pciData.bus = ASC_PCI_ID2BUS(asc_dvc->cfg->pci_slot_info); pciData.slot = ASC_PCI_ID2DEV(asc_dvc->cfg->pci_slot_info); pciData.func = ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info); pciData.offset = offset; pciData.type = pci_scan_method; asc_put_cfg_byte(&pciData, byte_data); } /* * --- Tracing and Debugging Functions */ #ifdef ADVANSYS_STATS /* * asc_prt_board_stats() * * Note: no single line should be greater than ASC_PRTLINE_SIZE, * cf. asc_prt_line(). * * Return the number of characters copied into 'cp'. No more than * 'cplen' characters will be copied to 'cp'. */ STATIC int asc_prt_board_stats(struct Scsi_Host *shp, char *cp, int cplen) { int leftlen; int totlen; int len; struct asc_stats *s; int i; ushort chip_scsi_id; asc_board_t *boardp; asc_queue_t *active; asc_queue_t *waiting; leftlen = cplen; totlen = len = 0; boardp = ASC_BOARDP(shp); s = &boardp->asc_stats; len = asc_prt_line(cp, leftlen, "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", shp->host_no); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " command %lu, queuecommand %lu, abort %lu, reset %lu, biosparam %lu\n", s->command, s->queuecommand, s->abort, s->reset, s->biosparam); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " interrupt %lu, callback %lu, done %lu\n", s->interrupt, s->callback, s->done); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n", s->exe_noerror, s->exe_busy, s->exe_error, s->exe_unknown); ASC_PRT_NEXT(); if (ASC_NARROW_BOARD(boardp)) { len = asc_prt_line(cp, leftlen, " build_error %lu\n", s->build_error); } else { len = asc_prt_line(cp, leftlen, " build_error %lu, build_noreq %lu, build_nosg %lu\n", s->build_error, s->adv_build_noreq, s->adv_build_nosg); } ASC_PRT_NEXT(); /* * Display data transfer statistics. */ if (s->cont_cnt > 0) { len = asc_prt_line(cp, leftlen, " cont_cnt %lu, ", s->cont_cnt); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, "cont_xfer %lu.%01lu kb ", s->cont_xfer/2, ASC_TENTHS(s->cont_xfer, 2)); ASC_PRT_NEXT(); /* Contiguous transfer average size */ len = asc_prt_line(cp, leftlen, "avg_xfer %lu.%01lu kb\n", (s->cont_xfer/2)/s->cont_cnt, ASC_TENTHS((s->cont_xfer/2), s->cont_cnt)); ASC_PRT_NEXT(); } if (s->sg_cnt > 0) { len = asc_prt_line(cp, leftlen, " sg_cnt %lu, sg_elem %lu, ", s->sg_cnt, s->sg_elem); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, "sg_xfer %lu.%01lu kb\n", s->sg_xfer/2, ASC_TENTHS(s->sg_xfer, 2)); ASC_PRT_NEXT(); /* Scatter gather transfer statistics */ len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ", s->sg_elem/s->sg_cnt, ASC_TENTHS(s->sg_elem, s->sg_cnt)); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ", (s->sg_xfer/2)/s->sg_elem, ASC_TENTHS((s->sg_xfer/2), s->sg_elem)); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n", (s->sg_xfer/2)/s->sg_cnt, ASC_TENTHS((s->sg_xfer/2), s->sg_cnt)); ASC_PRT_NEXT(); } /* * Display request queuing statistics. */ len = asc_prt_line(cp, leftlen, " Active and Waiting Request Queues (Time Unit: %d HZ):\n", HZ); ASC_PRT_NEXT(); active = &ASC_BOARDP(shp)->active; waiting = &ASC_BOARDP(shp)->waiting; if (ASC_NARROW_BOARD(boardp)) { chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; } for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (active->q_tot_cnt[i] > 0 || waiting->q_tot_cnt[i] > 0) { len = asc_prt_line(cp, leftlen, " target %d\n", i); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " active: cnt [cur %d, max %d, tot %u], time [min %d, max %d, avg %lu.%01lu]\n", active->q_cur_cnt[i], active->q_max_cnt[i], active->q_tot_cnt[i], active->q_min_tim[i], active->q_max_tim[i], (active->q_tot_cnt[i] == 0) ? 0 : (active->q_tot_tim[i]/active->q_tot_cnt[i]), (active->q_tot_cnt[i] == 0) ? 0 : ASC_TENTHS(active->q_tot_tim[i], active->q_tot_cnt[i])); ASC_PRT_NEXT(); len = asc_prt_line(cp, leftlen, " waiting: cnt [cur %d, max %d, tot %u], time [min %u, max %u, avg %lu.%01lu]\n", waiting->q_cur_cnt[i], waiting->q_max_cnt[i], waiting->q_tot_cnt[i], waiting->q_min_tim[i], waiting->q_max_tim[i], (waiting->q_tot_cnt[i] == 0) ? 0 : (waiting->q_tot_tim[i]/waiting->q_tot_cnt[i]), (waiting->q_tot_cnt[i] == 0) ? 0 : ASC_TENTHS(waiting->q_tot_tim[i], waiting->q_tot_cnt[i])); ASC_PRT_NEXT(); } } return totlen; } #endif /* ADVANSYS_STATS */ #ifdef ADVANSYS_DEBUG /* * asc_prt_scsi_host() */ STATIC void asc_prt_scsi_host(struct Scsi_Host *s) { asc_board_t *boardp; boardp = ASC_BOARDP(s); printk("Scsi_Host at addr %x\n", (unsigned) s); printk( " next %x, extra_bytes %u, host_busy %u, host_no %d, last_reset %d,\n", (unsigned) s->next, s->extra_bytes, s->host_busy, s->host_no, (unsigned) s->last_reset); printk( " host_wait %x, host_queue %x, hostt %x, block %x,\n", (unsigned) s->host_wait, (unsigned) s->host_queue, (unsigned) s->hostt, (unsigned) s->block); printk( " wish_block %d, base %x, io_port %d, n_io_port %d, irq %d, dma_channel %d,\n", s->wish_block, (unsigned) s->base, s->io_port, s->n_io_port, s->irq, s->dma_channel); printk( " this_id %d, can_queue %d,\n", s->this_id, s->can_queue); printk( " cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d, loaded_as_module %d\n", s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma, s->loaded_as_module); if (ASC_NARROW_BOARD(boardp)) { asc_prt_asc_dvc_var(&ASC_BOARDP(s)->dvc_var.asc_dvc_var); asc_prt_asc_dvc_cfg(&ASC_BOARDP(s)->dvc_cfg.asc_dvc_cfg); } else { asc_prt_adv_dvc_var(&ASC_BOARDP(s)->dvc_var.adv_dvc_var); asc_prt_adv_dvc_cfg(&ASC_BOARDP(s)->dvc_cfg.adv_dvc_cfg); } } /* * asc_prt_scsi_cmnd() */ STATIC void asc_prt_scsi_cmnd(Scsi_Cmnd *s) { printk("Scsi_Cmnd at addr %x\n", (unsigned) s); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,0) printk( " host %x, device %x, target %u, lun %u\n", (unsigned) s->host, (unsigned) s->device, s->target, s->lun); #else /* version >= v1.3.0 */ printk( " host %x, device %x, target %u, lun %u, channel %u,\n", (unsigned) s->host, (unsigned) s->device, s->target, s->lun, s->channel); #endif /* version >= v1.3.0 */ asc_prt_hex(" CDB", s->cmnd, s->cmd_len); printk( " use_sg %u, sglist_len %u, abort_reason %x\n", s->use_sg, s->sglist_len, s->abort_reason); #if LINUX_VERSION_CODE < ASC_LINUX_VERSION(1,3,89) printk( " retries %d, allowed %d\n", s->retries, s->allowed); #else /* version >= v1.3.89 */ printk( " serial_number %x, serial_number_at_timeout %x, retries %d, allowed %d\n", (unsigned) s->serial_number, (unsigned) s->serial_number_at_timeout, s->retries, s->allowed); #endif /* version >= v1.3.89 */ printk( " timeout_per_command %d, timeout_total %d, timeout %d\n", s->timeout_per_command, s->timeout_total, s->timeout); printk( " internal_timeout %u, flags %u, this_count %d\n", s->internal_timeout, s->flags, s->this_count); printk( " scsi_done %x, done %x, host_scribble %x, result %x\n", (unsigned) s->scsi_done, (unsigned) s->done, (unsigned) s->host_scribble, s->result); printk( " tag %u, pid %u\n", (unsigned) s->tag, (unsigned) s->pid); } /* * asc_prt_asc_dvc_var() */ STATIC void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) { printk("ASC_DVC_VAR at addr %x\n", (unsigned) h); printk( " iop_base %x, err_code %x, dvc_cntl %x, bug_fix_cntl %d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); printk( " bus_type %d, isr_callback %x, exe_callback %x, init_sdtr %x,\n", h->bus_type, (unsigned) h->isr_callback, (unsigned) h->exe_callback, (unsigned) h->init_sdtr); printk( " sdtr_done %x, use_tagged_qng %x, unit_not_ready %x, chip_no %x,\n", (unsigned) h->sdtr_done, (unsigned) h->use_tagged_qng, (unsigned) h->unit_not_ready, (unsigned) h->chip_no); printk( " queue_full_or_busy %x, start_motor %x, scsi_reset_wait %x, irq_no %x,\n", (unsigned) h->queue_full_or_busy, (unsigned) h->start_motor, (unsigned) h->scsi_reset_wait, (unsigned) h->irq_no); printk( " is_in_int %x, max_total_qng %x, cur_total_qng %x, in_critical_cnt %x,\n", (unsigned) h->is_in_int, (unsigned) h->max_total_qng, (unsigned) h->cur_total_qng, (unsigned) h->in_critical_cnt); printk( " last_q_shortage %x, init_state %x, no_scam %x, pci_fix_asyn_xfer %x,\n", (unsigned) h->last_q_shortage, (unsigned) h->init_state, (unsigned) h->no_scam, (unsigned) h->pci_fix_asyn_xfer); printk( " cfg %x, saved_ptr2func %x\n", (unsigned) h->cfg, (unsigned) h->saved_ptr2func); } /* * asc_prt_asc_dvc_cfg() */ STATIC void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) { printk("ASC_DVC_CFG at addr %x\n", (unsigned) h); printk( " can_tagged_qng %x, cmd_qng_enabled %x, disc_enable %x, res %x,\n", h->can_tagged_qng, h->cmd_qng_enabled, h->disc_enable, h->res); printk( " chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, h->isa_dma_channel, h->chip_version); printk( " pci_device_id %d, lib_serial_no %x, lib_version %x, mcode_date %x,\n", h->pci_device_id, h->lib_serial_no, h->lib_version, h->mcode_date); printk( " mcode_version %d, overrun_buf %x\n", h->mcode_version, (unsigned) h->overrun_buf); } /* * asc_prt_asc_scsi_q() */ STATIC void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) { ASC_SG_HEAD *sgp; int i; printk("ASC_SCSI_Q at addr %x\n", (unsigned) q); printk( " target_ix %u, target_lun %u, srb_ptr %x, tag_code %u,\n", q->q2.target_ix, q->q1.target_lun, (unsigned) q->q2.srb_ptr, q->q2.tag_code); printk( " data_addr %x, data_cnt %lu, sense_addr %x, sense_len %u,\n", (unsigned) q->q1.data_addr, q->q1.data_cnt, (unsigned) q->q1.sense_addr, q->q1.sense_len); printk( " cdbptr %x, cdb_len %u, sg_head %x, sg_queue_cnt %u\n", (unsigned) q->cdbptr, q->q2.cdb_len, (unsigned) q->sg_head, q->q1.sg_queue_cnt); if (q->sg_head) { sgp = q->sg_head; printk("ASC_SG_HEAD at addr %x\n", (unsigned) sgp); printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, sgp->queue_cnt); for (i = 0; i < sgp->entry_cnt; i++) { printk(" [%u]: addr %x, bytes %lu\n", i, (unsigned) sgp->sg_list[i].addr, sgp->sg_list[i].bytes); } } } /* * asc_prt_asc_qdone_info() */ STATIC void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) { printk("ASC_QDONE_INFO at addr %x\n", (unsigned) q); printk( " srb_ptr %x, target_ix %u, cdb_len %u, tag_code %u, done_stat %x\n", (unsigned) q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len, q->d2.tag_code, q->d3.done_stat); printk( " host_stat %x, scsi_stat %x, scsi_msg %x\n", q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); } /* * asc_prt_adv_dvc_var() * * Display an ADV_DVC_VAR structure. */ STATIC void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) { printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong) h); printk( " iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", (ulong) h->iop_base, h->err_code, (unsigned) h->ultra_able); printk( " isr_callback 0x%x, sdtr_able 0x%x, wdtr_able 0x%x\n", (unsigned) h->isr_callback, (unsigned) h->wdtr_able, (unsigned) h->sdtr_able); printk( " start_motor 0x%x, scsi_reset_wait 0x%x, irq_no 0x%x,\n", (unsigned) h->start_motor, (unsigned) h->scsi_reset_wait, (unsigned) h->irq_no); printk( " max_host_qng 0x%x, cur_host_qng 0x%x, max_dvc_qng 0x%x\n", (unsigned) h->max_host_qng, (unsigned) h->cur_host_qng, (unsigned) h->max_dvc_qng); printk( " no_scam 0x%x, tagqng_able 0x%x, chip_scsi_id 0x%x, cfg 0x%lx\n", (unsigned) h->no_scam, (unsigned) h->tagqng_able, (unsigned) h->chip_scsi_id, (ulong) h->cfg); } /* * asc_prt_adv_dvc_cfg() * * Display an ADV_DVC_CFG structure. */ STATIC void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) { printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong) h); printk( " disc_enable 0x%x, termination 0x%x\n", h->disc_enable, h->termination); printk( " chip_version 0x%x, mcode_date 0x%x\n", h->chip_version, h->mcode_date); printk( " mcode_version 0x%x, pci_device_id 0x%x, lib_version 0x%x\n", h->mcode_version, h->pci_device_id, h->lib_version); printk( " control_flag 0x%x, pci_slot_info 0x%x\n", h->control_flag, h->pci_slot_info); } /* * asc_prt_adv_scsi_req_q() * * Display an ADV_SCSI_REQ_Q structure. */ STATIC void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) { int i; struct asc_sg_block *sg_ptr; printk("ADV_SCSI_REQ_Q at addr %x\n", (unsigned) q); printk( " target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n", q->target_id, q->target_lun, q->srb_ptr, q->a_flag); printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n", q->cntl, q->data_addr, q->vdata_addr); printk( " data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", q->data_cnt, q->sense_addr, q->sense_len); printk( " cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", q->cdb_len, q->done_status, q->host_status, q->scsi_status); printk( " vsense_addr 0x%lx, scsiq_ptr 0x%lx, ux_wk_data_cnt %lu\n", (ulong) q->vsense_addr, (ulong) q->scsiq_ptr, (ulong) q->ux_wk_data_cnt); printk( " sg_list_ptr 0x%lx, sg_real_addr 0x%lx, sg_entry_cnt %u\n", (ulong) q->sg_list_ptr, (ulong) q->sg_real_addr, q->sg_entry_cnt); printk( " ux_sg_ix %u, orig_sense_len %u\n", q->ux_sg_ix, q->orig_sense_len); /* Display the request's ADV_SG_BLOCK structures. */ for (sg_ptr = q->sg_list_ptr, i = 0; sg_ptr != NULL; sg_ptr = sg_ptr->sg_ptr, i++) { /* * 'sg_ptr' is a physical address. Convert it to a virtual * address by indexing 'i' into the virtual address array * 'sg_list_ptr'. * * At the end of the each iteration of the loop 'sg_ptr' is * converted back into a physical address by setting 'sg_ptr' * to the next pointer 'sg_ptr->sg_ptr'. */ sg_ptr = &(((ADV_SG_BLOCK *) (q->sg_list_ptr))[i]); asc_prt_adv_sgblock(i, sg_ptr); } } /* * asc_prt_adv_sgblock() * * Display an ADV_SG_BLOCK structure. */ STATIC void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) { int i, s; /* Calculate starting entry number for the current block. */ s = sgblockno * NO_OF_SG_PER_BLOCK; printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %lu)\n", (ulong) b, (ulong) sgblockno); printk( " first_entry_no %lu, last_entry_no %lu, sg_ptr 0x%lx\n", (ulong) b->first_entry_no, (ulong) b->last_entry_no, (ulong) b->sg_ptr); ASC_ASSERT(b->first_entry_no - s >= 0); ASC_ASSERT(b->last_entry_no - s >= 0); ASC_ASSERT(b->last_entry_no - s <= NO_OF_SG_PER_BLOCK); ASC_ASSERT(b->first_entry_no - s <= NO_OF_SG_PER_BLOCK); ASC_ASSERT(b->first_entry_no - s <= NO_OF_SG_PER_BLOCK); ASC_ASSERT(b->first_entry_no - s <= b->last_entry_no - s); for (i = b->first_entry_no - s; i <= b->last_entry_no - s; i++) { printk(" [%lu]: sg_addr 0x%lx, sg_count 0x%lx\n", (ulong) i, (ulong) b->sg_list[i].sg_addr, (ulong) b->sg_list[i].sg_count); } } /* * asc_prt_hex() * * Print hexadecimal output in 4 byte groupings 32 bytes * or 8 double-words per line. */ STATIC void asc_prt_hex(char *f, uchar *s, int l) { int i; int j; int k; int m; printk("%s: (%d bytes)\n", f, l); for (i = 0; i < l; i += 32) { /* Display a maximum of 8 double-words per line. */ if ((k = (l - i) / 4) >= 8) { k = 8; m = 0; } else { m = (l - i) % 4 ; } for (j = 0; j < k; j++) { printk(" %2.2X%2.2X%2.2X%2.2X", (unsigned) s[i+(j*4)], (unsigned) s[i+(j*4)+1], (unsigned) s[i+(j*4)+2], (unsigned) s[i+(j*4)+3]); } switch (m) { case 0: default: break; case 1: printk(" %2.2X", (unsigned) s[i+(j*4)]); break; case 2: printk(" %2.2X%2.2X", (unsigned) s[i+(j*4)], (unsigned) s[i+(j*4)+1]); break; case 3: printk(" %2.2X%2.2X%2.2X", (unsigned) s[i+(j*4)+1], (unsigned) s[i+(j*4)+2], (unsigned) s[i+(j*4)+3]); break; } printk("\n"); } } #endif /* ADVANSYS_DEBUG */ #ifdef ADVANSYS_ASSERT /* * interrupts_enabled() * * Return 1 if interrupts are enabled, otherwise return 0. */ STATIC int interrupts_enabled(void) { int flags; save_flags(flags); if (flags & 0x0200) { return ASC_TRUE; } else { return ASC_FALSE; } } #endif /* ADVANSYS_ASSERT */ /* * --- Asc Library Functions */ ASC_INITFUNC( STATIC ushort AscGetEisaChipCfg( PortAddr iop_base ) ) { PortAddr eisa_cfg_iop; eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | (PortAddr) (ASC_EISA_CFG_IOP_MASK); return (inpw(eisa_cfg_iop)); } ASC_INITFUNC( STATIC uchar AscSetChipScsiID( PortAddr iop_base, uchar new_host_id ) ) { ushort cfg_lsw; if (AscGetChipScsiID(iop_base) == new_host_id) { return (new_host_id); } cfg_lsw = AscGetChipCfgLsw(iop_base); cfg_lsw &= 0xF8FF; cfg_lsw |= (ushort) ((new_host_id & ASC_MAX_TID) << 8); AscSetChipCfgLsw(iop_base, cfg_lsw); return (AscGetChipScsiID(iop_base)); } ASC_INITFUNC( STATIC uchar AscGetChipScsiCtrl( PortAddr iop_base ) ) { uchar sc; AscSetBank(iop_base, 1); sc = inp(iop_base + IOP_REG_SC); AscSetBank(iop_base, 0); return (sc); } ASC_INITFUNC( STATIC uchar AscGetChipVersion( PortAddr iop_base, ushort bus_type ) ) { if ((bus_type & ASC_IS_EISA) != 0) { PortAddr eisa_iop; uchar revision; eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | (PortAddr) ASC_EISA_REV_IOP_MASK; revision = inp(eisa_iop); return ((uchar) ((ASC_CHIP_MIN_VER_EISA - 1) + revision)); } return (AscGetChipVerNo(iop_base)); } ASC_INITFUNC( STATIC ushort AscGetChipBusType( PortAddr iop_base ) ) { ushort chip_ver; chip_ver = AscGetChipVerNo(iop_base); if ( (chip_ver >= ASC_CHIP_MIN_VER_VL) && (chip_ver <= ASC_CHIP_MAX_VER_VL) ) { if ( ((iop_base & 0x0C30) == 0x0C30) || ((iop_base & 0x0C50) == 0x0C50) ) { return (ASC_IS_EISA); } return (ASC_IS_VL); } if ((chip_ver >= ASC_CHIP_MIN_VER_ISA) && (chip_ver <= ASC_CHIP_MAX_VER_ISA)) { if (chip_ver >= ASC_CHIP_MIN_VER_ISA_PNP) { return (ASC_IS_ISAPNP); } return (ASC_IS_ISA); } else if ((chip_ver >= ASC_CHIP_MIN_VER_PCI) && (chip_ver <= ASC_CHIP_MAX_VER_PCI)) { return (ASC_IS_PCI); } return (0); } ASC_INITFUNC( STATIC ulong AscLoadMicroCode( PortAddr iop_base, ushort s_addr, ushort *mcode_buf, ushort mcode_size ) ) { ulong chksum; ushort mcode_word_size; ushort mcode_chksum; mcode_word_size = (ushort) (mcode_size >> 1); AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); AscMemWordCopyToLram(iop_base, s_addr, mcode_buf, mcode_word_size); chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); mcode_chksum = (ushort) AscMemSumLramWord(iop_base, (ushort) ASC_CODE_SEC_BEG, (ushort) ((mcode_size - s_addr - (ushort) ASC_CODE_SEC_BEG) / 2)); AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); return (chksum); } ASC_INITFUNC( STATIC int AscFindSignature( PortAddr iop_base ) ) { ushort sig_word; if (AscGetChipSignatureByte(iop_base) == (uchar) ASC_1000_ID1B) { sig_word = AscGetChipSignatureWord(iop_base); if ((sig_word == (ushort) ASC_1000_ID0W) || (sig_word == (ushort) ASC_1000_ID0W_FIX)) { return (1); } } return (0); } STATIC uchar _isa_pnp_inited ASC_INITDATA = 0; STATIC PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] ASC_INITDATA = { 0x100, ASC_IOADR_1, 0x120, ASC_IOADR_2, 0x140, ASC_IOADR_3, ASC_IOADR_4, ASC_IOADR_5, ASC_IOADR_6, ASC_IOADR_7, ASC_IOADR_8 }; ASC_INITFUNC( STATIC PortAddr AscSearchIOPortAddr( PortAddr iop_beg, ushort bus_type ) ) { if (bus_type & ASC_IS_VL) { while ((iop_beg = AscSearchIOPortAddr11(iop_beg)) != 0) { if (AscGetChipVersion(iop_beg, bus_type) <= ASC_CHIP_MAX_VER_VL) { return (iop_beg); } } return (0); } if (bus_type & ASC_IS_ISA) { if (_isa_pnp_inited == 0) { AscSetISAPNPWaitForKey(); _isa_pnp_inited++; } while ((iop_beg = AscSearchIOPortAddr11(iop_beg)) != 0) { if ((AscGetChipVersion(iop_beg, bus_type) & ASC_CHIP_VER_ISA_BIT) != 0) { return (iop_beg); } } return (0); } if (bus_type & ASC_IS_EISA) { if ((iop_beg = AscSearchIOPortAddrEISA(iop_beg)) != 0) { return (iop_beg); } return (0); } return (0); } ASC_INITFUNC( STATIC PortAddr AscSearchIOPortAddr11( PortAddr s_addr ) ) { int i; PortAddr iop_base; for (i = 0; i < ASC_IOADR_TABLE_MAX_IX; i++) { if (_asc_def_iop_base[i] > s_addr) { break; } } for (; i < ASC_IOADR_TABLE_MAX_IX; i++) { iop_base = _asc_def_iop_base[i]; if (check_region(iop_base, ASC_IOADR_GAP) != 0) { ASC_DBG1(1, "AscSearchIOPortAddr11: check_region() failed I/O port %x\n", iop_base); continue; } ASC_DBG1(1, "AscSearchIOPortAddr11: probing I/O port %x\n", iop_base); if (AscFindSignature(iop_base)) { return (iop_base); } } return (0); } ASC_INITFUNC( STATIC void AscToggleIRQAct( PortAddr iop_base ) ) { AscSetChipStatus(iop_base, CIW_IRQ_ACT); AscSetChipStatus(iop_base, 0); return; } ASC_INITFUNC( STATIC void AscSetISAPNPWaitForKey( void) ) { outp(ASC_ISA_PNP_PORT_ADDR, 0x02); outp(ASC_ISA_PNP_PORT_WRITE, 0x02); return; } ASC_INITFUNC( STATIC uchar AscGetChipIRQ( PortAddr iop_base, ushort bus_type ) ) { ushort cfg_lsw; uchar chip_irq; if ((bus_type & ASC_IS_EISA) != 0) { cfg_lsw = AscGetEisaChipCfg(iop_base); chip_irq = (uchar) (((cfg_lsw >> 8) & 0x07) + 10); if ((chip_irq == 13) || (chip_irq > 15)) { return (0); } return (chip_irq); } if ((bus_type & ASC_IS_VL) != 0) { cfg_lsw = AscGetChipCfgLsw(iop_base); chip_irq = (uchar) (((cfg_lsw >> 2) & 0x07)); if ((chip_irq == 0) || (chip_irq == 4) || (chip_irq == 7)) { return (0); } return ((uchar) (chip_irq + (ASC_MIN_IRQ_NO - 1))); } cfg_lsw = AscGetChipCfgLsw(iop_base); chip_irq = (uchar) (((cfg_lsw >> 2) & 0x03)); if (chip_irq == 3) chip_irq += (uchar) 2; return ((uchar) (chip_irq + ASC_MIN_IRQ_NO)); } ASC_INITFUNC( STATIC uchar AscSetChipIRQ( PortAddr iop_base, uchar irq_no, ushort bus_type ) ) { ushort cfg_lsw; if ((bus_type & ASC_IS_VL) != 0) { if (irq_no != 0) { if ((irq_no < ASC_MIN_IRQ_NO) || (irq_no > ASC_MAX_IRQ_NO)) { irq_no = 0; } else { irq_no -= (uchar) ((ASC_MIN_IRQ_NO - 1)); } } cfg_lsw = (ushort) (AscGetChipCfgLsw(iop_base) & 0xFFE3); cfg_lsw |= (ushort) 0x0010; AscSetChipCfgLsw(iop_base, cfg_lsw); AscToggleIRQAct(iop_base); cfg_lsw = (ushort) (AscGetChipCfgLsw(iop_base) & 0xFFE0); cfg_lsw |= (ushort) ((irq_no & 0x07) << 2); AscSetChipCfgLsw(iop_base, cfg_lsw); AscToggleIRQAct(iop_base); return (AscGetChipIRQ(iop_base, bus_type)); } if ((bus_type & (ASC_IS_ISA)) != 0) { if (irq_no == 15) irq_no -= (uchar) 2; irq_no -= (uchar) ASC_MIN_IRQ_NO; cfg_lsw = (ushort) (AscGetChipCfgLsw(iop_base) & 0xFFF3); cfg_lsw |= (ushort) ((irq_no & 0x03) << 2); AscSetChipCfgLsw(iop_base, cfg_lsw); return (AscGetChipIRQ(iop_base, bus_type)); } return (0); } ASC_INITFUNC( STATIC void AscEnableIsaDma( uchar dma_channel ) ) { if (dma_channel < 4) { outp(0x000B, (ushort) (0xC0 | dma_channel)); outp(0x000A, dma_channel); } else if (dma_channel < 8) { outp(0x00D6, (ushort) (0xC0 | (dma_channel - 4))); outp(0x00D4, (ushort) (dma_channel - 4)); } return; } STATIC int AscIsrChipHalted( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { EXT_MSG ext_msg; EXT_MSG out_msg; ushort halt_q_addr; int sdtr_accept; ushort int_halt_code; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; PortAddr iop_base; uchar tag_code; uchar q_status; uchar halt_qp; uchar sdtr_data; uchar target_ix; uchar q_cntl, tid_no; uchar cur_dvc_qng; uchar asyn_sdtr; uchar scsi_status; asc_board_t *boardp; ASC_ASSERT(asc_dvc->drv_ptr != 0); boardp = (asc_board_t *) asc_dvc->drv_ptr; iop_base = asc_dvc->iop_base; int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); target_ix = AscReadLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_TARGET_IX)); q_cntl = AscReadLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL)); tid_no = ASC_TIX_TO_TID(target_ix); target_id = (uchar) ASC_TID_TO_TARGET_ID(tid_no); if (asc_dvc->pci_fix_asyn_xfer & target_id) { asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; } else { asyn_sdtr = 0; } if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { if (asc_dvc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iop_base, 0, tid_no); boardp->sdtr_data[tid_no] = 0; } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { if (asc_dvc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { AscMemWordCopyFromLram(iop_base, ASCV_MSGIN_BEG, (ushort *) & ext_msg, (ushort) (sizeof (EXT_MSG) >> 1)); if (ext_msg.msg_type == MS_EXTEND && ext_msg.msg_req == MS_SDTR_CODE && ext_msg.msg_len == MS_SDTR_LEN) { sdtr_accept = TRUE; if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { sdtr_accept = FALSE; ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; } if ((ext_msg.xfer_period < asc_dvc->sdtr_period_tbl[asc_dvc->host_init_sdtr_index]) || (ext_msg.xfer_period > asc_dvc->sdtr_period_tbl[asc_dvc->max_sdtr_index])) { sdtr_accept = FALSE; ext_msg.xfer_period = asc_dvc->sdtr_period_tbl[asc_dvc->host_init_sdtr_index]; } if (sdtr_accept) { sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); if ((sdtr_data == 0xFF)) { q_cntl |= QC_MSG_OUT; asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } } if (ext_msg.req_ack_offset == 0) { q_cntl &= ~QC_MSG_OUT; asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); } else { if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { q_cntl &= ~QC_MSG_OUT; asc_dvc->sdtr_done |= target_id; asc_dvc->init_sdtr |= target_id; asc_dvc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); AscSetChipSDTR(iop_base, sdtr_data, tid_no); boardp->sdtr_data[tid_no] = sdtr_data; } else { q_cntl |= QC_MSG_OUT; AscMsgOutSDTR(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); asc_dvc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); AscSetChipSDTR(iop_base, sdtr_data, tid_no); boardp->sdtr_data[tid_no] = sdtr_data; asc_dvc->sdtr_done |= target_id; asc_dvc->init_sdtr |= target_id; } } AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (ext_msg.msg_type == MS_EXTEND && ext_msg.msg_req == MS_WDTR_CODE && ext_msg.msg_len == MS_WDTR_LEN) { ext_msg.wdtr_width = 0; AscMemWordCopyToLram(iop_base, ASCV_MSGOUT_BEG, (ushort *) & ext_msg, (ushort) (sizeof (EXT_MSG) >> 1)); q_cntl |= QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else { ext_msg.msg_type = M1_MSG_REJECT; AscMemWordCopyToLram(iop_base, ASCV_MSGOUT_BEG, (ushort *) & ext_msg, (ushort) (sizeof (EXT_MSG) >> 1)); q_cntl |= QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { q_cntl |= QC_REQ_SENSE; if ((asc_dvc->init_sdtr & target_id) != 0) { asc_dvc->sdtr_done &= ~target_id; sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); q_cntl |= QC_MSG_OUT; AscMsgOutSDTR(asc_dvc, asc_dvc->sdtr_period_tbl[(sdtr_data >> 4) & (uchar) (asc_dvc->max_sdtr_index - 1)], (uchar) (sdtr_data & (uchar) ASC_SYN_MAX_OFFSET)); } AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL), q_cntl); tag_code = AscReadLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_TAG_CODE)); tag_code &= 0xDC; if ( (asc_dvc->pci_fix_asyn_xfer & target_id) && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) ) { tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); } AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_TAG_CODE), tag_code); q_status = AscReadLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_STATUS)); q_status |= (QS_READY | QS_BUSY); AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_STATUS), q_status); scsi_busy = AscReadLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B, scsi_busy); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { AscMemWordCopyFromLram(iop_base, ASCV_MSGOUT_BEG, (ushort *) & out_msg, (ushort) (sizeof (EXT_MSG) >> 1)); if ((out_msg.msg_type == MS_EXTEND) && (out_msg.msg_len == MS_SDTR_LEN) && (out_msg.msg_req == MS_SDTR_CODE)) { asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } q_cntl &= ~QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort) (halt_q_addr + (ushort) ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { scsi_status = AscReadLramByte(iop_base, (ushort) ((ushort) halt_q_addr + (ushort) ASC_SCSIQ_SCSI_STATUS)); cur_dvc_qng = AscReadLramByte(iop_base, (ushort) ((ushort) ASC_QADR_BEG + (ushort) target_ix)); if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { scsi_busy = AscReadLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B); scsi_busy |= target_id; AscWriteLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B, scsi_busy); asc_dvc->queue_full_or_busy |= target_id; if (scsi_status == SS_QUEUE_FULL) { if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { cur_dvc_qng -= 1; asc_dvc->max_dvc_qng[tid_no] = cur_dvc_qng; AscWriteLramByte(iop_base, (ushort) ((ushort) ASCV_MAX_DVC_QNG_BEG + (ushort) tid_no), cur_dvc_qng); /* * Set the device queue depth to the number of * active requests when the QUEUE FULL condition * was encountered. */ boardp->queue_full |= target_id; boardp->queue_full_cnt[tid_no] = cur_dvc_qng; #if ASC_QUEUE_FLOW_CONTROL if (boardp->device[tid_no] != NULL && boardp->device[tid_no]->queue_curr_depth > cur_dvc_qng) { boardp->device[tid_no]->queue_curr_depth = cur_dvc_qng; } #endif /* ASC_QUEUE_FLOW_CONTROL */ } } } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } return (0); } STATIC uchar _AscCopyLramScsiDoneQ( PortAddr iop_base, ushort q_addr, REG ASC_QDONE_INFO * scsiq, ulong max_dma_count ) { ushort _val; uchar sg_queue_cnt; DvcGetQinfo(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_DONE_INFO_BEG), (ushort *) scsiq, (ushort) ((sizeof (ASC_SCSIQ_2) + sizeof (ASC_SCSIQ_3)) / 2)); _val = AscReadLramWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_STATUS)); scsiq->q_status = (uchar) _val; scsiq->q_no = (uchar) (_val >> 8); _val = AscReadLramWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_CNTL)); scsiq->cntl = (uchar) _val; sg_queue_cnt = (uchar) (_val >> 8); _val = AscReadLramWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_SENSE_LEN)); scsiq->sense_len = (uchar) _val; scsiq->extra_bytes = (uchar) (_val >> 8); scsiq->remain_bytes = AscReadLramWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_DW_REMAIN_XFER_CNT)); scsiq->remain_bytes &= max_dma_count; return (sg_queue_cnt); } STATIC int AscIsrQDone( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { uchar next_qp; uchar n_q_used; uchar sg_list_qp; uchar sg_queue_cnt; uchar q_cnt; uchar done_q_tail; uchar tid_no; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; PortAddr iop_base; ushort q_addr; ushort sg_q_addr; uchar cur_target_qng; ASC_QDONE_INFO scsiq_buf; REG ASC_QDONE_INFO *scsiq; int false_overrun; ASC_ISR_CALLBACK asc_isr_callback; iop_base = asc_dvc->iop_base; asc_isr_callback = (ASC_ISR_CALLBACK) asc_dvc->isr_callback; n_q_used = 1; scsiq = (ASC_QDONE_INFO *) & scsiq_buf; done_q_tail = (uchar) AscGetVarDoneQTail(iop_base); q_addr = ASC_QNO_TO_QADDR(done_q_tail); next_qp = AscReadLramByte(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_FWD)); if (next_qp != ASC_QLINK_END) { AscPutVarDoneQTail(iop_base, next_qp); q_addr = ASC_QNO_TO_QADDR(next_qp); sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, asc_dvc->max_dma_count); AscWriteLramByte(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_STATUS), (uchar) (scsiq->q_status & (uchar) ~ (QS_READY | QS_ABORTED))); tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); if ((scsiq->cntl & QC_SG_HEAD) != 0) { sg_q_addr = q_addr; sg_list_qp = next_qp; for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { sg_list_qp = AscReadLramByte(iop_base, (ushort) (sg_q_addr + (ushort) ASC_SCSIQ_B_FWD)); sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); if (sg_list_qp == ASC_QLINK_END) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_SG_Q_LINKS); scsiq->d3.done_stat = QD_WITH_ERROR; scsiq->d3.host_stat = QHSTA_D_QDONE_SG_LIST_CORRUPTED; goto FATAL_ERR_QDONE; } AscWriteLramByte(iop_base, (ushort) (sg_q_addr + (ushort) ASC_SCSIQ_B_STATUS), QS_FREE); } n_q_used = sg_queue_cnt + 1; AscPutVarDoneQTail(iop_base, sg_list_qp); } if (asc_dvc->queue_full_or_busy & target_id) { cur_target_qng = AscReadLramByte(iop_base, (ushort) ((ushort) ASC_QADR_BEG + (ushort) scsiq->d2.target_ix)); if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { scsi_busy = AscReadLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B, scsi_busy); asc_dvc->queue_full_or_busy &= ~target_id; } } if (asc_dvc->cur_total_qng >= n_q_used) { asc_dvc->cur_total_qng -= n_q_used; if (asc_dvc->cur_dvc_qng[tid_no] != 0) { asc_dvc->cur_dvc_qng[tid_no]--; } } else { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); scsiq->d3.done_stat = QD_WITH_ERROR; goto FATAL_ERR_QDONE; } if ((scsiq->d2.srb_ptr == 0UL) || ((scsiq->q_status & QS_ABORTED) != 0)) { return (0x11); } else if (scsiq->q_status == QS_DONE) { false_overrun = FALSE; if (scsiq->extra_bytes != 0) { scsiq->remain_bytes += (ulong) scsiq->extra_bytes; } if (scsiq->d3.done_stat == QD_WITH_ERROR) { if (scsiq->d3.host_stat == QHSTA_M_DATA_OVER_RUN) { if ((scsiq->cntl & (QC_DATA_IN | QC_DATA_OUT)) == 0) { scsiq->d3.done_stat = QD_NO_ERROR; scsiq->d3.host_stat = QHSTA_NO_ERROR; } else if (false_overrun) { scsiq->d3.done_stat = QD_NO_ERROR; scsiq->d3.host_stat = QHSTA_NO_ERROR; } } else if (scsiq->d3.host_stat == QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { AscStopChip(iop_base); AscSetChipControl(iop_base, (uchar) (CC_SCSI_RESET | CC_HALT)); DvcDelayNanoSecond(asc_dvc, 60000); AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); AscSetChipControl(iop_base, 0); } } if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { (*asc_isr_callback) (asc_dvc, scsiq); } else { if ((AscReadLramByte(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_CDB_BEG)) == SCSICMD_StartStopUnit)) { asc_dvc->unit_not_ready &= ~target_id; if (scsiq->d3.done_stat != QD_NO_ERROR) { asc_dvc->start_motor &= ~target_id; } } } return (1); } else { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); FATAL_ERR_QDONE: if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { (*asc_isr_callback) (asc_dvc, scsiq); } return (0x80); } } return (0); } STATIC int AscISR( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { ASC_CS_TYPE chipstat; PortAddr iop_base; ushort saved_ram_addr; uchar ctrl_reg; uchar saved_ctrl_reg; int int_pending; int status; uchar host_flag; iop_base = asc_dvc->iop_base; int_pending = FALSE; if (((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) || (asc_dvc->isr_callback == 0) ) { return (ERR); } if (asc_dvc->in_critical_cnt != 0) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); return (ERR); } if (asc_dvc->is_in_int) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); return (ERR); } asc_dvc->is_in_int = TRUE; ctrl_reg = AscGetChipControl(iop_base); saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | CC_SINGLE_STEP | CC_DIAG | CC_TEST)); chipstat = AscGetChipStatus(iop_base); if (chipstat & CSW_SCSI_RESET_LATCH) { if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { int_pending = TRUE; asc_dvc->sdtr_done = 0; saved_ctrl_reg &= (uchar) (~CC_HALT); while (AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) ; AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); chipstat = AscGetChipStatus(iop_base); } } saved_ram_addr = AscGetChipLramAddr(iop_base); host_flag = AscReadLramByte(iop_base, ASCV_HOST_FLAG_B) & (uchar) (~ASC_HOST_FLAG_IN_ISR); AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, (uchar) (host_flag | (uchar) ASC_HOST_FLAG_IN_ISR)); if ((chipstat & CSW_INT_PENDING) || (int_pending) ) { AscAckInterrupt(iop_base); int_pending = TRUE; if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { if (AscIsrChipHalted(asc_dvc) == ERR) { goto ISR_REPORT_QDONE_FATAL_ERROR; } else { saved_ctrl_reg &= (uchar) (~CC_HALT); } } else { ISR_REPORT_QDONE_FATAL_ERROR: if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { while (((status = AscIsrQDone(asc_dvc)) & 0x01) != 0) { } } else { do { if ((status = AscIsrQDone(asc_dvc)) == 1) { break; } } while (status == 0x11); } if ((status & 0x80) != 0) int_pending = ERR; } } AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); AscSetChipLramAddr(iop_base, saved_ram_addr); AscSetChipControl(iop_base, saved_ctrl_reg); asc_dvc->is_in_int = FALSE; return (int_pending); } STATIC int AscScsiSetupCmdQ( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, uchar * buf_addr, ulong buf_len ) { ulong phy_addr; scsiq->r1.cntl = 0; scsiq->r1.sg_queue_cnt = 0; scsiq->r1.q_no = 0; scsiq->r1.extra_bytes = 0; scsiq->r3.scsi_stat = 0; scsiq->r3.scsi_msg = 0; scsiq->r3.host_stat = 0; scsiq->r3.done_stat = 0; scsiq->r2.vm_id = 0; scsiq->r1.data_cnt = buf_len; scsiq->cdbptr = (uchar *) scsiq->cdb; scsiq->sense_ptr = (uchar *) scsiq->sense ; scsiq->r1.sense_len = ASC_MIN_SENSE_LEN ; scsiq->r2.tag_code = (uchar) M2_QTAG_MSG_SIMPLE; scsiq->r2.flag = (uchar) ASC_FLAG_SCSIQ_REQ; scsiq->r2.srb_ptr = (ulong) scsiq; scsiq->r1.status = (uchar) QS_READY; scsiq->r1.data_addr = 0L; if (buf_len != 0L) { if ((phy_addr = AscGetOnePhyAddr(asc_dvc, (uchar *) buf_addr, scsiq->r1.data_cnt)) == 0L) { return (ERR); } scsiq->r1.data_addr = phy_addr; } if ((phy_addr = AscGetOnePhyAddr(asc_dvc, (uchar *) scsiq->sense_ptr, (ulong) scsiq->r1.sense_len)) == 0L) { return (ERR); } scsiq->r1.sense_addr = phy_addr ; return (0); } STATIC uchar _asc_mcode_buf[] ASC_INITDATA = { 0x01, 0x03, 0x01, 0x19, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xDB, 0x0C, 0x0A, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x80, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x23, 0x00, 0x23, 0x00, 0x00, 0x00, 0x07, 0x00, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD4, 0x88, 0x00, 0x00, 0x00, 0x00, 0x80, 0x73, 0x48, 0x04, 0x36, 0x00, 0x00, 0xA2, 0xC2, 0x00, 0x80, 0x73, 0x03, 0x23, 0x36, 0x40, 0xB6, 0x00, 0x36, 0x00, 0x05, 0xD6, 0x0C, 0xD2, 0x12, 0xDA, 0x00, 0xA2, 0xC2, 0x00, 0x92, 0x80, 0x10, 0x98, 0x50, 0x00, 0xF5, 0x00, 0x3A, 0x98, 0xDF, 0x23, 0x36, 0x60, 0xB6, 0x00, 0x92, 0x80, 0x4F, 0x00, 0xF5, 0x00, 0x3A, 0x98, 0xEF, 0x23, 0x36, 0x60, 0xB6, 0x00, 0x92, 0x80, 0x80, 0x62, 0x92, 0x80, 0x00, 0x46, 0x17, 0xEE, 0x13, 0xEA, 0x02, 0x01, 0x09, 0xD8, 0xCD, 0x04, 0x4D, 0x00, 0x00, 0xA3, 0xD6, 0x00, 0x98, 0x97, 0x7F, 0x23, 0x04, 0x61, 0x84, 0x01, 0xE0, 0x84, 0xD2, 0xC1, 0x80, 0x73, 0xCD, 0x04, 0x4D, 0x00, 0x00, 0xA3, 0xE2, 0x01, 0x98, 0x97, 0xCE, 0x81, 0x00, 0x33, 0x02, 0x00, 0xB2, 0x88, 0x80, 0x73, 0x80, 0x77, 0x00, 0x01, 0x01, 0xA1, 0x02, 0x01, 0x4F, 0x00, 0x76, 0x97, 0x07, 0xA6, 0x0C, 0x01, 0x00, 0x33, 0x03, 0x00, 0xB2, 0x88, 0x03, 0x03, 0x03, 0xDE, 0x00, 0x33, 0x05, 0x00, 0xB2, 0x88, 0xCE, 0x00, 0x69, 0x60, 0xCE, 0x00, 0x02, 0x03, 0x4A, 0x60, 0x00, 0xA2, 0x80, 0x01, 0x80, 0x63, 0x07, 0xA6, 0x2C, 0x01, 0x80, 0x81, 0x03, 0x03, 0x80, 0x63, 0xE2, 0x00, 0x07, 0xA6, 0x3C, 0x01, 0x00, 0x33, 0x04, 0x00, 0xB2, 0x88, 0x03, 0x07, 0x02, 0x01, 0x04, 0xCA, 0x0D, 0x23, 0x5A, 0x98, 0x4D, 0x04, 0xFE, 0x84, 0x05, 0xD8, 0x0D, 0x23, 0x5A, 0x98, 0xCD, 0x04, 0x15, 0x23, 0xE8, 0x88, 0xFB, 0x23, 0x02, 0x61, 0x82, 0x01, 0x80, 0x63, 0x02, 0x03, 0x06, 0xA3, 0x6A, 0x01, 0x00, 0x33, 0x0A, 0x00, 0xB2, 0x88, 0x4E, 0x00, 0x07, 0xA3, 0x76, 0x01, 0x00, 0x33, 0x0B, 0x00, 0xB2, 0x88, 0xCD, 0x04, 0x36, 0x2D, 0x00, 0x33, 0x1A, 0x00, 0xB2, 0x88, 0x50, 0x04, 0x90, 0x81, 0x06, 0xAB, 0x8A, 0x01, 0x90, 0x81, 0x4E, 0x00, 0x07, 0xA3, 0x9A, 0x01, 0x50, 0x00, 0x00, 0xA3, 0x44, 0x01, 0x00, 0x05, 0x84, 0x81, 0x38, 0x97, 0x02, 0x01, 0x05, 0xC6, 0x04, 0x23, 0xA0, 0x01, 0x15, 0x23, 0xA1, 0x01, 0xC6, 0x81, 0xFD, 0x23, 0x02, 0x61, 0x82, 0x01, 0x0A, 0xDA, 0x4A, 0x00, 0x06, 0x61, 0x00, 0xA0, 0xBC, 0x01, 0x80, 0x63, 0xCD, 0x04, 0x36, 0x2D, 0x00, 0x33, 0x1B, 0x00, 0xB2, 0x88, 0x06, 0x23, 0x5A, 0x98, 0xCD, 0x04, 0xE0, 0x84, 0x06, 0x01, 0x00, 0xA2, 0xDC, 0x01, 0x57, 0x60, 0x00, 0xA0, 0xE2, 0x01, 0xE0, 0x84, 0x80, 0x23, 0xA0, 0x01, 0xE0, 0x84, 0x80, 0x73, 0x4B, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x08, 0x02, 0x04, 0x01, 0x0C, 0xDE, 0x02, 0x01, 0x03, 0xCC, 0x4F, 0x00, 0x76, 0x97, 0x04, 0x82, 0x08, 0x23, 0x02, 0x41, 0x82, 0x01, 0x4F, 0x00, 0x54, 0x97, 0x48, 0x04, 0x84, 0x80, 0xE2, 0x97, 0x00, 0x46, 0x56, 0x00, 0x03, 0xC0, 0x01, 0x23, 0xE8, 0x00, 0x81, 0x73, 0x06, 0x29, 0x03, 0x42, 0x06, 0xE2, 0x03, 0xEE, 0x67, 0xEB, 0x11, 0x23, 0xE8, 0x88, 0xF6, 0x97, 0xF4, 0x80, 0x80, 0x73, 0x80, 0x77, 0x06, 0xA6, 0x36, 0x02, 0x00, 0x33, 0x31, 0x00, 0xB2, 0x88, 0x04, 0x01, 0x03, 0xD8, 0xA4, 0x98, 0x4C, 0x96, 0x48, 0x82, 0xDC, 0x95, 0x80, 0x67, 0x83, 0x03, 0x80, 0x63, 0xB6, 0x2D, 0x02, 0xA6, 0x72, 0x02, 0x07, 0xA6, 0x60, 0x02, 0x06, 0xA6, 0x64, 0x02, 0x03, 0xA6, 0x68, 0x02, 0x00, 0x33, 0x10, 0x00, 0xB2, 0x88, 0x76, 0x95, 0x4A, 0x82, 0x42, 0x96, 0x4A, 0x82, 0x04, 0x23, 0xA0, 0x01, 0x14, 0x23, 0xA1, 0x01, 0x36, 0x84, 0x04, 0x01, 0x0C, 0xDC, 0xE0, 0x23, 0x25, 0x61, 0xEF, 0x00, 0x14, 0x01, 0x4F, 0x04, 0xA8, 0x01, 0x6F, 0x00, 0xA5, 0x01, 0x03, 0x23, 0xA4, 0x01, 0x06, 0x23, 0x9C, 0x01, 0x24, 0x2B, 0x1C, 0x01, 0x02, 0xA6, 0xB0, 0x02, 0x07, 0xA6, 0x60, 0x02, 0x06, 0xA6, 0x64, 0x02, 0x03, 0xA6, 0x1A, 0x04, 0x01, 0xA6, 0xBA, 0x02, 0x00, 0xA6, 0xBA, 0x02, 0x00, 0x33, 0x12, 0x00, 0xB2, 0x88, 0x00, 0x0E, 0x80, 0x63, 0x00, 0x43, 0x00, 0xA0, 0x92, 0x02, 0x4D, 0x04, 0x04, 0x01, 0x0B, 0xDC, 0xE7, 0x23, 0x04, 0x61, 0x84, 0x01, 0x10, 0x31, 0x12, 0x35, 0x14, 0x01, 0xEC, 0x00, 0x6C, 0x38, 0x00, 0x3F, 0x00, 0x00, 0xF0, 0x82, 0x18, 0x23, 0x04, 0x61, 0x18, 0xA0, 0xE8, 0x02, 0x04, 0x01, 0x9C, 0xC8, 0x00, 0x33, 0x1F, 0x00, 0xB2, 0x88, 0x08, 0x31, 0x0A, 0x35, 0x0C, 0x39, 0x0E, 0x3D, 0x70, 0x98, 0xB6, 0x2D, 0x01, 0xA6, 0x1A, 0x03, 0x00, 0xA6, 0x1A, 0x03, 0x07, 0xA6, 0x12, 0x03, 0x06, 0xA6, 0x16, 0x03, 0x03, 0xA6, 0x1A, 0x04, 0x02, 0xA6, 0x72, 0x02, 0x00, 0x33, 0x33, 0x00, 0xB2, 0x88, 0x76, 0x95, 0xF4, 0x82, 0x42, 0x96, 0xF4, 0x82, 0x74, 0x98, 0x80, 0x42, 0x70, 0x98, 0x60, 0xE4, 0x04, 0x01, 0x29, 0xC8, 0x31, 0x05, 0x07, 0x01, 0x00, 0xA2, 0x5A, 0x03, 0x00, 0x43, 0x87, 0x01, 0x05, 0x05, 0x78, 0x98, 0x70, 0x98, 0x00, 0xA6, 0x1C, 0x03, 0x07, 0xA6, 0x52, 0x03, 0x03, 0xA6, 0x36, 0x04, 0x06, 0xA6, 0x56, 0x03, 0x01, 0xA6, 0x1C, 0x03, 0x00, 0x33, 0x25, 0x00, 0xB2, 0x88, 0x76, 0x95, 0x38, 0x83, 0x42, 0x96, 0x38, 0x83, 0x04, 0x01, 0x0C, 0xCE, 0x03, 0xC8, 0x00, 0x33, 0x42, 0x00, 0xB2, 0x88, 0x00, 0x01, 0x05, 0x05, 0xFF, 0xA2, 0x78, 0x03, 0xB1, 0x01, 0x08, 0x23, 0xB2, 0x01, 0x34, 0x83, 0x05, 0x05, 0x15, 0x01, 0x00, 0xA2, 0x98, 0x03, 0xEC, 0x00, 0x6E, 0x00, 0x95, 0x01, 0x6C, 0x38, 0x00, 0x3F, 0x00, 0x00, 0x01, 0xA6, 0x94, 0x03, 0x00, 0xA6, 0x94, 0x03, 0x0C, 0x84, 0x80, 0x42, 0x70, 0x98, 0x01, 0xA6, 0xA2, 0x03, 0x00, 0xA6, 0xBA, 0x03, 0x0C, 0x84, 0x98, 0x98, 0x80, 0x42, 0x01, 0xA6, 0xA2, 0x03, 0x07, 0xA6, 0xB0, 0x03, 0xD2, 0x83, 0x76, 0x95, 0xA6, 0x83, 0x00, 0x33, 0x2F, 0x00, 0xB2, 0x88, 0x98, 0x98, 0x80, 0x42, 0x00, 0xA6, 0xBA, 0x03, 0x07, 0xA6, 0xC8, 0x03, 0xD2, 0x83, 0x76, 0x95, 0xBE, 0x83, 0x00, 0x33, 0x26, 0x00, 0xB2, 0x88, 0x38, 0x2B, 0x80, 0x32, 0x80, 0x36, 0x04, 0x23, 0xA0, 0x01, 0x12, 0x23, 0xA1, 0x01, 0x0C, 0x84, 0x06, 0xF0, 0x06, 0xA4, 0xF0, 0x03, 0x80, 0x6B, 0x05, 0x23, 0x83, 0x03, 0x80, 0x63, 0x03, 0xA6, 0x0A, 0x04, 0x07, 0xA6, 0x02, 0x04, 0x06, 0xA6, 0x06, 0x04, 0x00, 0x33, 0x17, 0x00, 0xB2, 0x88, 0x76, 0x95, 0xF0, 0x83, 0x42, 0x96, 0xF0, 0x83, 0x1A, 0x84, 0x06, 0xF0, 0x06, 0xA4, 0x1A, 0x04, 0x80, 0x6B, 0x05, 0x23, 0x83, 0x03, 0x80, 0x63, 0xB6, 0x2D, 0x03, 0xA6, 0x36, 0x04, 0x07, 0xA6, 0x2E, 0x04, 0x06, 0xA6, 0x32, 0x04, 0x00, 0x33, 0x30, 0x00, 0xB2, 0x88, 0x76, 0x95, 0x1A, 0x84, 0x42, 0x96, 0x1A, 0x84, 0x1D, 0x01, 0x06, 0xCC, 0x00, 0x33, 0x00, 0x84, 0xC0, 0x20, 0x00, 0x23, 0xEA, 0x00, 0x81, 0x62, 0xA2, 0x0D, 0x80, 0x63, 0x07, 0xA6, 0x54, 0x04, 0x00, 0x33, 0x18, 0x00, 0xB2, 0x88, 0x03, 0x03, 0x80, 0x63, 0xA3, 0x01, 0x07, 0xA4, 0x5E, 0x04, 0x23, 0x01, 0x00, 0xA2, 0x80, 0x04, 0x0A, 0xA0, 0x70, 0x04, 0xE0, 0x00, 0x00, 0x33, 0x1D, 0x00, 0xB2, 0x88, 0x0B, 0xA0, 0x7C, 0x04, 0xE0, 0x00, 0x00, 0x33, 0x1E, 0x00, 0xB2, 0x88, 0x42, 0x23, 0xE8, 0x88, 0x00, 0x23, 0x22, 0xA3, 0xE0, 0x04, 0x08, 0x23, 0x22, 0xA3, 0x9C, 0x04, 0x28, 0x23, 0x22, 0xA3, 0xA8, 0x04, 0x02, 0x23, 0x22, 0xA3, 0xBE, 0x04, 0x42, 0x23, 0xE8, 0x88, 0x4A, 0x00, 0x06, 0x61, 0x00, 0xA0, 0xA8, 0x04, 0x45, 0x23, 0xE8, 0x88, 0xF6, 0x97, 0x00, 0xA2, 0xBA, 0x04, 0xA4, 0x98, 0x00, 0x33, 0x00, 0x82, 0xC0, 0x20, 0x81, 0x62, 0xF0, 0x81, 0x47, 0x23, 0xE8, 0x88, 0x04, 0x01, 0x0B, 0xDE, 0xF6, 0x97, 0xA4, 0x98, 0x00, 0x33, 0x00, 0x81, 0xC0, 0x20, 0x81, 0x62, 0x14, 0x01, 0x00, 0xA0, 0x08, 0x02, 0x43, 0x23, 0xE8, 0x88, 0x04, 0x23, 0xA0, 0x01, 0x44, 0x23, 0xA1, 0x01, 0x80, 0x73, 0x4D, 0x00, 0x03, 0xA3, 0xEE, 0x04, 0x00, 0x33, 0x27, 0x00, 0xB2, 0x88, 0x04, 0x01, 0x04, 0xDC, 0x02, 0x23, 0xA2, 0x01, 0x04, 0x23, 0xA0, 0x01, 0xF6, 0x97, 0x20, 0x95, 0x4B, 0x00, 0xF6, 0x00, 0x4F, 0x04, 0x4F, 0x00, 0x00, 0xA3, 0x1C, 0x05, 0x00, 0x05, 0x76, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x16, 0x05, 0x04, 0x85, 0x38, 0x97, 0xCD, 0x04, 0x1E, 0x85, 0x48, 0x04, 0x84, 0x80, 0x02, 0x01, 0x03, 0xDA, 0x80, 0x23, 0x82, 0x01, 0x2E, 0x85, 0x02, 0x23, 0xA0, 0x01, 0x4A, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x3A, 0x05, 0x1D, 0x01, 0x04, 0xD6, 0xFF, 0x23, 0x86, 0x41, 0x4B, 0x60, 0xCB, 0x00, 0xFF, 0x23, 0x80, 0x01, 0x49, 0x00, 0x81, 0x01, 0x04, 0x01, 0x02, 0xC8, 0x30, 0x01, 0x80, 0x01, 0xF7, 0x04, 0x03, 0x01, 0x49, 0x04, 0x80, 0x01, 0xC9, 0x00, 0x00, 0x05, 0x00, 0x01, 0xFF, 0xA0, 0x5A, 0x05, 0x77, 0x04, 0x01, 0x23, 0xEA, 0x00, 0x5D, 0x00, 0xFE, 0xC7, 0x00, 0x62, 0x00, 0x23, 0xEA, 0x00, 0x00, 0x63, 0x07, 0xA4, 0xDA, 0x05, 0x03, 0x03, 0x02, 0xA0, 0x88, 0x05, 0xD6, 0x85, 0x00, 0x33, 0x2D, 0x00, 0xB2, 0x88, 0x04, 0xA0, 0xAE, 0x05, 0x80, 0x63, 0x4A, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x9A, 0x05, 0x1D, 0x01, 0x06, 0xD6, 0x02, 0x23, 0x02, 0x41, 0x82, 0x01, 0x50, 0x00, 0x54, 0x97, 0xFE, 0x84, 0x04, 0x23, 0x02, 0x41, 0x82, 0x01, 0xFE, 0x84, 0x08, 0xA0, 0xB4, 0x05, 0xD6, 0x85, 0x03, 0xA0, 0xBA, 0x05, 0xD6, 0x85, 0x01, 0xA0, 0xC4, 0x05, 0x88, 0x00, 0x80, 0x63, 0xB2, 0x86, 0x07, 0xA0, 0xD0, 0x05, 0x06, 0x23, 0x5A, 0x98, 0x48, 0x23, 0xE8, 0x88, 0x07, 0x23, 0x80, 0x00, 0xF8, 0x86, 0x80, 0x63, 0x76, 0x85, 0x00, 0x63, 0x4A, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x18, 0x06, 0x1D, 0x01, 0x18, 0xD4, 0xC0, 0x23, 0x07, 0x41, 0x83, 0x03, 0x80, 0x63, 0x06, 0xA6, 0xFA, 0x05, 0x00, 0x33, 0x37, 0x00, 0xB2, 0x88, 0x1D, 0x01, 0x02, 0xD6, 0x46, 0x23, 0xE8, 0x88, 0x63, 0x60, 0x83, 0x03, 0x80, 0x63, 0x06, 0xA6, 0x12, 0x06, 0x00, 0x33, 0x38, 0x00, 0xB2, 0x88, 0xEF, 0x04, 0x6F, 0x00, 0x00, 0x63, 0x4B, 0x00, 0x06, 0x41, 0xCB, 0x00, 0x52, 0x00, 0x06, 0x61, 0x00, 0xA2, 0x30, 0x06, 0x1D, 0x01, 0x03, 0xCA, 0xC0, 0x23, 0x07, 0x41, 0x00, 0x63, 0x1D, 0x01, 0x04, 0xCC, 0x00, 0x33, 0x00, 0x83, 0xC0, 0x20, 0x81, 0x62, 0x80, 0x23, 0x07, 0x41, 0x00, 0x63, 0x80, 0x67, 0x08, 0x23, 0x83, 0x03, 0x80, 0x63, 0x00, 0x63, 0x06, 0xA6, 0x5E, 0x06, 0x07, 0xA6, 0x76, 0x05, 0x02, 0xA6, 0xEC, 0x06, 0x00, 0x33, 0x39, 0x00, 0xB2, 0x88, 0x00, 0x00, 0x01, 0xA0, 0x06, 0x07, 0xDC, 0x95, 0x83, 0x03, 0x80, 0x63, 0x06, 0xA6, 0x72, 0x06, 0x07, 0xA6, 0x76, 0x05, 0x00, 0x00, 0x01, 0xA0, 0x06, 0x07, 0x00, 0x2B, 0x40, 0x0E, 0x80, 0x63, 0x01, 0x00, 0x06, 0xA6, 0x8E, 0x06, 0x07, 0xA6, 0x76, 0x05, 0x00, 0x33, 0x3A, 0x00, 0xB2, 0x88, 0x40, 0x0E, 0x80, 0x63, 0x00, 0x43, 0x00, 0xA0, 0x80, 0x06, 0x06, 0xA6, 0xA6, 0x06, 0x07, 0xA6, 0x76, 0x05, 0x00, 0x33, 0x3B, 0x00, 0xB2, 0x88, 0x80, 0x67, 0x40, 0x0E, 0x80, 0x63, 0x07, 0xA6, 0x76, 0x05, 0x00, 0x63, 0x07, 0xA6, 0xBC, 0x06, 0x00, 0x33, 0x2A, 0x00, 0xB2, 0x88, 0x03, 0x03, 0x80, 0x63, 0x89, 0x00, 0x0A, 0x2B, 0x07, 0xA6, 0xCE, 0x06, 0x00, 0x33, 0x29, 0x00, 0xB2, 0x88, 0x00, 0x43, 0x00, 0xA2, 0xDA, 0x06, 0xC0, 0x0E, 0x80, 0x63, 0xC4, 0x86, 0xC0, 0x0E, 0x00, 0x33, 0x00, 0x80, 0xC0, 0x20, 0x81, 0x62, 0x04, 0x01, 0x08, 0xDA, 0x80, 0x63, 0x76, 0x85, 0x80, 0x67, 0x00, 0x33, 0x00, 0x40, 0xC0, 0x20, 0x81, 0x62, 0x00, 0x63, 0x80, 0x7B, 0x80, 0x63, 0x06, 0xA6, 0x6A, 0x06, 0x00, 0x33, 0x2C, 0x00, 0xB2, 0x88, 0x0C, 0xA2, 0x20, 0x07, 0xDC, 0x95, 0x83, 0x03, 0x80, 0x63, 0x06, 0xA6, 0x1E, 0x07, 0x07, 0xA6, 0x76, 0x05, 0x00, 0x33, 0x3D, 0x00, 0xB2, 0x88, 0x00, 0x00, 0x80, 0x67, 0x83, 0x03, 0x80, 0x63, 0x0C, 0xA0, 0x36, 0x07, 0x07, 0xA6, 0x76, 0x05, 0xBF, 0x23, 0x04, 0x61, 0x84, 0x01, 0xE0, 0x84, 0x00, 0x63, 0xF0, 0x04, 0x01, 0x01, 0xF1, 0x00, 0x00, 0x01, 0xF2, 0x00, 0x01, 0x05, 0x80, 0x01, 0x72, 0x04, 0x71, 0x00, 0x81, 0x01, 0x70, 0x04, 0x80, 0x05, 0x81, 0x05, 0x00, 0x63, 0xF0, 0x04, 0xF2, 0x00, 0x72, 0x04, 0x01, 0x01, 0xF1, 0x00, 0x70, 0x00, 0x81, 0x01, 0x70, 0x04, 0x71, 0x00, 0x81, 0x01, 0x72, 0x00, 0x80, 0x01, 0x71, 0x04, 0x70, 0x00, 0x80, 0x01, 0x70, 0x04, 0x00, 0x63, 0xF0, 0x04, 0xF2, 0x00, 0x72, 0x04, 0x00, 0x01, 0xF1, 0x00, 0x70, 0x00, 0x80, 0x01, 0x70, 0x04, 0x71, 0x00, 0x80, 0x01, 0x72, 0x00, 0x81, 0x01, 0x71, 0x04, 0x70, 0x00, 0x81, 0x01, 0x70, 0x04, 0x00, 0x63, 0x00, 0x23, 0xB3, 0x01, 0x83, 0x05, 0xA3, 0x01, 0xA2, 0x01, 0xA1, 0x01, 0x01, 0x23, 0xA0, 0x01, 0x00, 0x01, 0xC8, 0x00, 0x03, 0xA1, 0xB6, 0x07, 0x00, 0x33, 0x07, 0x00, 0xB2, 0x88, 0x80, 0x05, 0x81, 0x05, 0x04, 0x01, 0x11, 0xC8, 0x48, 0x00, 0xB0, 0x01, 0xB1, 0x01, 0x08, 0x23, 0xB2, 0x01, 0x05, 0x01, 0x48, 0x04, 0x00, 0x43, 0x00, 0xA2, 0xD6, 0x07, 0x00, 0x05, 0xCC, 0x87, 0x00, 0x01, 0xC8, 0x00, 0xFF, 0x23, 0x80, 0x01, 0x05, 0x05, 0x00, 0x63, 0xF7, 0x04, 0x1A, 0x09, 0xF6, 0x08, 0x6E, 0x04, 0x00, 0x02, 0x80, 0x43, 0x76, 0x08, 0x80, 0x02, 0x77, 0x04, 0x00, 0x63, 0xF7, 0x04, 0x1A, 0x09, 0xF6, 0x08, 0x6E, 0x04, 0x00, 0x02, 0x00, 0xA0, 0x06, 0x08, 0x08, 0x88, 0x00, 0x43, 0x76, 0x08, 0x80, 0x02, 0x77, 0x04, 0x00, 0x63, 0xF3, 0x04, 0x00, 0x23, 0xF4, 0x00, 0x74, 0x00, 0x80, 0x43, 0xF4, 0x00, 0xCF, 0x40, 0x00, 0xA2, 0x36, 0x08, 0x74, 0x04, 0x02, 0x01, 0xF7, 0xC9, 0xF6, 0xD9, 0x00, 0x01, 0x01, 0xA1, 0x16, 0x08, 0xF6, 0x97, 0x20, 0x95, 0x16, 0x88, 0x73, 0x04, 0x00, 0x63, 0xF3, 0x04, 0x75, 0x04, 0x4C, 0x88, 0x02, 0x01, 0x04, 0xD8, 0x38, 0x97, 0xF6, 0x97, 0x20, 0x95, 0x3C, 0x88, 0x75, 0x00, 0x00, 0xA3, 0x56, 0x08, 0x00, 0x05, 0x40, 0x88, 0x73, 0x04, 0x00, 0x63, 0x80, 0x7B, 0x80, 0x63, 0x06, 0xA6, 0x68, 0x08, 0x00, 0x33, 0x3E, 0x00, 0xB2, 0x88, 0x80, 0x67, 0x83, 0x03, 0x80, 0x63, 0x00, 0x63, 0x38, 0x2B, 0x8E, 0x88, 0x38, 0x2B, 0x84, 0x88, 0x32, 0x09, 0x31, 0x05, 0x84, 0x98, 0x05, 0x05, 0xB2, 0x09, 0x00, 0x63, 0x00, 0x32, 0x00, 0x36, 0x00, 0x3A, 0x00, 0x3E, 0x00, 0x63, 0x80, 0x32, 0x80, 0x36, 0x80, 0x3A, 0x80, 0x3E, 0x00, 0x63, 0x38, 0x2B, 0x40, 0x32, 0x40, 0x36, 0x40, 0x3A, 0x40, 0x3E, 0x00, 0x63, 0x5A, 0x20, 0xC9, 0x40, 0x00, 0xA0, 0xA4, 0x08, 0x5D, 0x00, 0xFE, 0xC3, 0x00, 0x63, 0x80, 0x73, 0xE6, 0x20, 0x02, 0x23, 0xE8, 0x00, 0x82, 0x73, 0xFF, 0xFD, 0x80, 0x73, 0x13, 0x23, 0xE8, 0x88, 0x66, 0x20, 0xC0, 0x20, 0x04, 0x23, 0xA0, 0x01, 0xA1, 0x23, 0xA1, 0x01, 0x81, 0x62, 0xD2, 0x88, 0x80, 0x73, 0x80, 0x77, 0x68, 0x00, 0x00, 0xA2, 0x80, 0x00, 0x03, 0xC2, 0xF1, 0xC7, 0x41, 0x23, 0xE8, 0x88, 0x11, 0x23, 0xA1, 0x01, 0x04, 0x23, 0xA0, 0x01, 0xE0, 0x84, }; STATIC ushort _asc_mcode_size ASC_INITDATA = sizeof(_asc_mcode_buf); STATIC ulong _asc_mcode_chksum ASC_INITDATA = 0x012A727FUL ; #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 STATIC uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { SCSICMD_Inquiry, SCSICMD_RequestSense, SCSICMD_ReadCapacity, SCSICMD_ReadTOC, SCSICMD_ModeSelect6, SCSICMD_ModeSense6, SCSICMD_ModeSelect10, SCSICMD_ModeSense10, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; STATIC int AscExeScsiQueue( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_Q * scsiq ) { PortAddr iop_base; int last_int_level; int sta; int n_q_required; int disable_syn_offset_one_fix; int i; ulong addr; ASC_EXE_CALLBACK asc_exe_callback; ushort sg_entry_cnt = 0; ushort sg_entry_cnt_minus_one = 0; uchar target_ix; uchar tid_no; uchar sdtr_data; uchar extra_bytes; uchar scsi_cmd; uchar disable_cmd; ASC_SG_HEAD *sg_head; ulong data_cnt; iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; asc_exe_callback = (ASC_EXE_CALLBACK) asc_dvc->exe_callback; if (asc_dvc->err_code != 0) return (ERR); if (scsiq == (ASC_SCSI_Q *) 0L) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_SCSIQ_NULL_PTR); return (ERR); } scsiq->q1.q_no = 0; if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { scsiq->q1.extra_bytes = 0; } sta = 0; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); n_q_required = 1; if (scsiq->cdbptr[0] == SCSICMD_RequestSense) { if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { asc_dvc->sdtr_done &= ~scsiq->q1.target_id ; sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); AscMsgOutSDTR(asc_dvc, asc_dvc->sdtr_period_tbl[(sdtr_data >> 4) & (uchar) (asc_dvc->max_sdtr_index - 1)], (uchar) (sdtr_data & (uchar) ASC_SYN_MAX_OFFSET)); scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); } } last_int_level = DvcEnterCritical(); if (asc_dvc->in_critical_cnt != 0) { DvcLeaveCritical(last_int_level); AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); return (ERR); } asc_dvc->in_critical_cnt++; if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { asc_dvc->in_critical_cnt--; DvcLeaveCritical(last_int_level); return (ERR); } if (sg_entry_cnt > ASC_MAX_SG_LIST) { return (ERR); } if (sg_entry_cnt == 1) { scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); } sg_entry_cnt_minus_one = sg_entry_cnt - 1; } scsi_cmd = scsiq->cdbptr[0]; disable_syn_offset_one_fix = FALSE; if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { if (scsiq->q1.cntl & QC_SG_HEAD) { data_cnt = 0; for (i = 0; i < sg_entry_cnt; i++) { data_cnt += sg_head->sg_list[i].bytes; } } else { data_cnt = scsiq->q1.data_cnt; } if (data_cnt != 0UL) { if (data_cnt < 512UL) { disable_syn_offset_one_fix = TRUE; } else { for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; i++) { disable_cmd = _syn_offset_one_disable_cmd[i]; if (disable_cmd == 0xFF) { break; } if (scsi_cmd == disable_cmd) { disable_syn_offset_one_fix = TRUE; break; } } } } } if (disable_syn_offset_one_fix) { scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE; scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | ASC_TAG_FLAG_DISABLE_DISCONNECT); } else { scsiq->q2.tag_code &= 0x23; } if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { if (asc_dvc->bug_fix_cntl) { if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) { addr = sg_head->sg_list[sg_entry_cnt_minus_one].addr + sg_head->sg_list[sg_entry_cnt_minus_one].bytes; extra_bytes = (uchar) ((ushort) addr & 0x0003); if ((extra_bytes != 0) && ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; scsiq->q1.extra_bytes = extra_bytes; sg_head->sg_list[sg_entry_cnt_minus_one].bytes -= (ulong) extra_bytes; } } } } sg_head->entry_to_copy = sg_head->entry_cnt; n_q_required = AscSgListToQueue(sg_entry_cnt); if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= (uint) n_q_required) || ((scsiq->q1.cntl & QC_URGENT) != 0)) { if ((sta = AscSendScsiQueue(asc_dvc, scsiq, n_q_required)) == 1) { asc_dvc->in_critical_cnt--; if (asc_exe_callback != 0) { (*asc_exe_callback) (asc_dvc, scsiq); } DvcLeaveCritical(last_int_level); return (sta); } } } else { if (asc_dvc->bug_fix_cntl) { if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) { addr = scsiq->q1.data_addr + scsiq->q1.data_cnt; extra_bytes = (uchar) ((ushort) addr & 0x0003); if ((extra_bytes != 0) && ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { if (((ushort) scsiq->q1.data_cnt & 0x01FF) == 0) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; scsiq->q1.data_cnt -= (ulong) extra_bytes; scsiq->q1.extra_bytes = extra_bytes; } } } } } n_q_required = 1; if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || ((scsiq->q1.cntl & QC_URGENT) != 0)) { if ((sta = AscSendScsiQueue(asc_dvc, scsiq, n_q_required)) == 1) { asc_dvc->in_critical_cnt--; if (asc_exe_callback != 0) { (*asc_exe_callback) (asc_dvc, scsiq); } DvcLeaveCritical(last_int_level); return (sta); } } } asc_dvc->in_critical_cnt--; DvcLeaveCritical(last_int_level); return (sta); } STATIC int AscSendScsiQueue( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_Q * scsiq, uchar n_q_required ) { PortAddr iop_base; uchar free_q_head; uchar next_qp; uchar tid_no; uchar target_ix; int sta; iop_base = asc_dvc->iop_base; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); sta = 0; free_q_head = (uchar) AscGetVarFreeQHead(iop_base); if (n_q_required > 1) { if ((next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, (uchar) (n_q_required))) != (uchar) ASC_QLINK_END) { asc_dvc->last_q_shortage = 0; scsiq->sg_head->queue_cnt = n_q_required - 1; scsiq->q1.q_no = free_q_head; if ((sta = AscPutReadySgListQueue(asc_dvc, scsiq, free_q_head)) == 1) { AscPutVarFreeQHead(iop_base, next_qp); asc_dvc->cur_total_qng += (uchar) (n_q_required); asc_dvc->cur_dvc_qng[tid_no]++; } return (sta); } } else if (n_q_required == 1) { if ((next_qp = AscAllocFreeQueue(iop_base, free_q_head)) != ASC_QLINK_END) { scsiq->q1.q_no = free_q_head; if ((sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head)) == 1) { AscPutVarFreeQHead(iop_base, next_qp); asc_dvc->cur_total_qng++; asc_dvc->cur_dvc_qng[tid_no]++; } return (sta); } } return (sta); } STATIC int AscSgListToQueue( int sg_list ) { int n_sg_list_qs; n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) n_sg_list_qs++; return (n_sg_list_qs + 1); } STATIC uint AscGetNumOfFreeQueue( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar target_ix, uchar n_qs ) { uint cur_used_qs; uint cur_free_qs; ASC_SCSI_BIT_ID_TYPE target_id; uchar tid_no; target_id = ASC_TIX_TO_TARGET_ID(target_ix); tid_no = ASC_TIX_TO_TID(target_ix); if ((asc_dvc->unit_not_ready & target_id) || (asc_dvc->queue_full_or_busy & target_id)) { return (0); } if (n_qs == 1) { cur_used_qs = (uint) asc_dvc->cur_total_qng + (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; } else { cur_used_qs = (uint) asc_dvc->cur_total_qng + (uint) ASC_MIN_FREE_Q; } if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; if (asc_dvc->cur_dvc_qng[tid_no] >= asc_dvc->max_dvc_qng[tid_no]) { return (0); } return (cur_free_qs); } if (n_qs > 1) { if ((n_qs > asc_dvc->last_q_shortage) && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { asc_dvc->last_q_shortage = n_qs; } } return (0); } STATIC int AscPutReadyQueue( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_Q * scsiq, uchar q_no ) { ushort q_addr; uchar tid_no; uchar sdtr_data; uchar syn_period_ix; uchar syn_offset; PortAddr iop_base; iop_base = asc_dvc->iop_base; if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); syn_period_ix = (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; AscMsgOutSDTR(asc_dvc, asc_dvc->sdtr_period_tbl[syn_period_ix], syn_offset); scsiq->q1.cntl |= QC_MSG_OUT; } q_addr = ASC_QNO_TO_QADDR(q_no); if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE; } scsiq->q1.status = QS_FREE; AscMemWordCopyToLram(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_CDB_BEG), (ushort *) scsiq->cdbptr, (ushort) ((ushort) scsiq->q2.cdb_len >> 1)); DvcPutScsiQ(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_CPY_BEG), (ushort *) & scsiq->q1.cntl, (ushort) ((((sizeof (ASC_SCSIQ_1) + sizeof (ASC_SCSIQ_2)) / 2) - 1))); AscWriteLramWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_STATUS), (ushort) (((ushort) scsiq->q1.q_no << 8) | (ushort) QS_READY)); return (1); } STATIC int AscPutReadySgListQueue( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_Q * scsiq, uchar q_no ) { int sta; int i; ASC_SG_HEAD *sg_head; ASC_SG_LIST_Q scsi_sg_q; ulong saved_data_addr; ulong saved_data_cnt; PortAddr iop_base; ushort sg_list_dwords; ushort sg_index; ushort sg_entry_cnt; ushort q_addr; uchar next_qp; iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; saved_data_addr = scsiq->q1.data_addr; saved_data_cnt = scsiq->q1.data_cnt; scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; sg_entry_cnt = sg_head->entry_cnt - 1; if (sg_entry_cnt != 0) { scsiq->q1.cntl |= QC_SG_HEAD; q_addr = ASC_QNO_TO_QADDR(q_no); sg_index = 1; scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; scsi_sg_q.sg_head_qp = q_no; scsi_sg_q.cntl = QCSG_SG_XFER_LIST; for (i = 0; i < sg_head->queue_cnt; i++) { scsi_sg_q.seq_no = i + 1; if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { sg_list_dwords = (uchar) (ASC_SG_LIST_PER_Q * 2); sg_entry_cnt -= ASC_SG_LIST_PER_Q; if (i == 0) { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q; } else { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q - 1; } } else { scsi_sg_q.cntl |= QCSG_SG_XFER_END; sg_list_dwords = sg_entry_cnt << 1; if (i == 0) { scsi_sg_q.sg_list_cnt = sg_entry_cnt; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt; } else { scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; } sg_entry_cnt = 0; } next_qp = AscReadLramByte(iop_base, (ushort) (q_addr + ASC_SCSIQ_B_FWD)); scsi_sg_q.q_no = next_qp; q_addr = ASC_QNO_TO_QADDR(next_qp); AscMemWordCopyToLram(iop_base, (ushort) (q_addr + ASC_SCSIQ_SGHD_CPY_BEG), (ushort *) & scsi_sg_q, (ushort) (sizeof (ASC_SG_LIST_Q) >> 1)); AscMemDWordCopyToLram(iop_base, (ushort) (q_addr + ASC_SGQ_LIST_BEG), (ulong *) & sg_head->sg_list[sg_index], (ushort) sg_list_dwords); sg_index += ASC_SG_LIST_PER_Q; } } else { scsiq->q1.cntl &= ~QC_SG_HEAD; } sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); scsiq->q1.data_addr = saved_data_addr; scsiq->q1.data_cnt = saved_data_cnt; return (sta); } STATIC int AscAbortSRB( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, ulong srb_ptr ) { int sta; ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready; PortAddr iop_base; iop_base = asc_dvc->iop_base; sta = ERR; saved_unit_not_ready = asc_dvc->unit_not_ready; asc_dvc->unit_not_ready = 0xFF; AscWaitISRDone(asc_dvc); if (AscStopQueueExe(iop_base) == 1) { if (AscRiscHaltedAbortSRB(asc_dvc, srb_ptr) == 1) { sta = 1; AscCleanUpBusyQueue(iop_base); AscStartQueueExe(iop_base); } else { sta = 0; AscStartQueueExe(iop_base); } } asc_dvc->unit_not_ready = saved_unit_not_ready; return (sta); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscResetDevice( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar target_ix ) { PortAddr iop_base; int sta; uchar tid_no; ASC_SCSI_BIT_ID_TYPE target_id; int i; ASC_SCSI_REQ_Q scsiq_buf; ASC_SCSI_REQ_Q *scsiq; uchar *buf; ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready; iop_base = asc_dvc->iop_base; tid_no = ASC_TIX_TO_TID(target_ix); target_id = ASC_TID_TO_TARGET_ID(tid_no); saved_unit_not_ready = asc_dvc->unit_not_ready; asc_dvc->unit_not_ready = target_id; sta = ERR; AscWaitTixISRDone(asc_dvc, target_ix); if (AscStopQueueExe(iop_base) == 1) { if (AscRiscHaltedAbortTIX(asc_dvc, target_ix) == 1) { AscCleanUpBusyQueue(iop_base); AscStartQueueExe(iop_base); AscWaitTixISRDone(asc_dvc, target_ix); sta = TRUE; scsiq = (ASC_SCSI_REQ_Q *) & scsiq_buf; buf = (uchar *) & scsiq_buf; for (i = 0; i < sizeof (ASC_SCSI_REQ_Q); i++) { *buf++ = 0x00; } scsiq->r1.status = (uchar) QS_READY; scsiq->r2.cdb_len = 6; scsiq->r2.tag_code = M2_QTAG_MSG_SIMPLE; scsiq->r1.target_id = target_id; scsiq->r2.target_ix = ASC_TIDLUN_TO_IX(tid_no, 0); scsiq->cdbptr = (uchar *) scsiq->cdb; scsiq->r1.cntl = QC_NO_CALLBACK | QC_MSG_OUT | QC_URGENT; AscWriteLramByte(asc_dvc->iop_base, ASCV_MSGOUT_BEG, M1_BUS_DVC_RESET); asc_dvc->unit_not_ready &= ~target_id; asc_dvc->sdtr_done |= target_id; if (AscExeScsiQueue(asc_dvc, (ASC_SCSI_Q *) scsiq) == 1) { asc_dvc->unit_not_ready = target_id; DvcSleepMilliSecond(1000); _AscWaitQDone(iop_base, (ASC_SCSI_Q *) scsiq); if (AscStopQueueExe(iop_base) == 1) { AscCleanUpDiscQueue(iop_base); AscStartQueueExe(iop_base); if (asc_dvc->pci_fix_asyn_xfer & target_id) { AscSetRunChipSynRegAtID(iop_base, tid_no, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } AscWaitTixISRDone(asc_dvc, target_ix); } } else { sta = 0; } asc_dvc->sdtr_done &= ~target_id; } else { sta = ERR; AscStartQueueExe(iop_base); } } asc_dvc->unit_not_ready = saved_unit_not_ready; return (sta); } #endif /* version >= v1.3.89 */ STATIC int AscResetSB( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { int sta; int i; PortAddr iop_base; iop_base = asc_dvc->iop_base; asc_dvc->unit_not_ready = 0xFF; sta = TRUE; AscWaitISRDone(asc_dvc); AscStopQueueExe(iop_base); asc_dvc->sdtr_done = 0; AscResetChipAndScsiBus(asc_dvc); DvcSleepMilliSecond((ulong) ((ushort) asc_dvc->scsi_reset_wait * 1000)); AscReInitLram(asc_dvc); for (i = 0; i <= ASC_MAX_TID; i++) { asc_dvc->cur_dvc_qng[i] = 0; if (asc_dvc->pci_fix_asyn_xfer & (ASC_SCSI_BIT_ID_TYPE) (0x01 << i)) { AscSetChipSynRegAtID(iop_base, i, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } } asc_dvc->err_code = 0; AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { sta = ERR; } if (AscStartChip(iop_base) == 0) { sta = ERR; } AscStartQueueExe(iop_base); asc_dvc->unit_not_ready = 0; asc_dvc->queue_full_or_busy = 0; return (sta); } STATIC int AscSetRunChipSynRegAtID( PortAddr iop_base, uchar tid_no, uchar sdtr_data ) { int sta = FALSE; if (AscHostReqRiscHalt(iop_base)) { sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); AscStartChip(iop_base); return (sta); } return (sta); } STATIC int AscSetChipSynRegAtID( PortAddr iop_base, uchar id, uchar sdtr_data ) { ASC_SCSI_BIT_ID_TYPE org_id; int i; int sta = TRUE; AscSetBank(iop_base, 1); org_id = AscReadChipDvcID(iop_base); for (i = 0; i <= ASC_MAX_TID; i++) { if (org_id == (0x01 << i)) break; } org_id = i; AscWriteChipDvcID(iop_base, id); if (AscReadChipDvcID(iop_base) == (0x01 << id)) { AscSetBank(iop_base, 0); AscSetChipSyn(iop_base, sdtr_data); if (AscGetChipSyn(iop_base) != sdtr_data) { sta = FALSE; } } else { sta = FALSE; } AscSetBank(iop_base, 1); AscWriteChipDvcID(iop_base, org_id); AscSetBank(iop_base, 0); return (sta); } STATIC int AscReInitLram( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { AscInitLram(asc_dvc); AscInitQLinkVar(asc_dvc); return (0); } STATIC ushort AscInitLram( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { uchar i; ushort s_addr; PortAddr iop_base; ushort warn_code; iop_base = asc_dvc->iop_base; warn_code = 0; AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, (ushort) (((int) (asc_dvc->max_total_qng + 2 + 1) * 64) >> 1) ); i = ASC_MIN_ACTIVE_QNO; s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_FWD), (uchar) (i + 1)); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_BWD), (uchar) (asc_dvc->max_total_qng)); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_QNO), (uchar) i); i++; s_addr += ASC_QBLK_SIZE; for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_FWD), (uchar) (i + 1)); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_BWD), (uchar) (i - 1)); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_QNO), (uchar) i); } AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_FWD), (uchar) ASC_QLINK_END); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_BWD), (uchar) (asc_dvc->max_total_qng - 1)); AscWriteLramByte(iop_base, (ushort) (s_addr + ASC_SCSIQ_B_QNO), (uchar) asc_dvc->max_total_qng); i++; s_addr += ASC_QBLK_SIZE; for (; i <= (uchar) (asc_dvc->max_total_qng + 3); i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iop_base, (ushort) (s_addr + (ushort) ASC_SCSIQ_B_FWD), i); AscWriteLramByte(iop_base, (ushort) (s_addr + (ushort) ASC_SCSIQ_B_BWD), i); AscWriteLramByte(iop_base, (ushort) (s_addr + (ushort) ASC_SCSIQ_B_QNO), i); } return (warn_code); } STATIC ushort AscInitQLinkVar( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { PortAddr iop_base; int i; ushort lram_addr; iop_base = asc_dvc->iop_base; AscPutRiscVarFreeQHead(iop_base, 1); AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); AscPutVarFreeQHead(iop_base, 1); AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, (uchar) ((int) asc_dvc->max_total_qng + 1)); AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, (uchar) ((int) asc_dvc->max_total_qng + 2)); AscWriteLramByte(iop_base, (ushort) ASCV_TOTAL_READY_Q_B, asc_dvc->max_total_qng); AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); AscPutQDoneInProgress(iop_base, 0); lram_addr = ASC_QADR_BEG; for (i = 0; i < 32; i++, lram_addr += 2) { AscWriteLramWord(iop_base, lram_addr, 0); } return (0); } STATIC int AscSetLibErrorCode( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, ushort err_code ) { if (asc_dvc->err_code == 0) { asc_dvc->err_code = err_code; AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, err_code); } return (err_code); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int _AscWaitQDone( PortAddr iop_base, REG ASC_SCSI_Q * scsiq ) { ushort q_addr; uchar q_status; int count = 0; while (scsiq->q1.q_no == 0) ; q_addr = ASC_QNO_TO_QADDR(scsiq->q1.q_no); do { q_status = AscReadLramByte(iop_base, q_addr + ASC_SCSIQ_B_STATUS); DvcSleepMilliSecond(100L); if (count++ > 30) { return (0); } } while ((q_status & QS_READY) != 0); return (1); } #endif /* version >= v1.3.89 */ STATIC uchar AscMsgOutSDTR( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar sdtr_period, uchar sdtr_offset ) { EXT_MSG sdtr_buf; uchar sdtr_period_index; PortAddr iop_base; iop_base = asc_dvc->iop_base; sdtr_buf.msg_type = MS_EXTEND; sdtr_buf.msg_len = MS_SDTR_LEN; sdtr_buf.msg_req = MS_SDTR_CODE; sdtr_buf.xfer_period = sdtr_period; sdtr_offset &= ASC_SYN_MAX_OFFSET; sdtr_buf.req_ack_offset = sdtr_offset; if ((sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period)) <= asc_dvc->max_sdtr_index) { AscMemWordCopyToLram(iop_base, ASCV_MSGOUT_BEG, (ushort *) & sdtr_buf, (ushort) (sizeof (EXT_MSG) >> 1)); return ((sdtr_period_index << 4) | sdtr_offset); } else { sdtr_buf.req_ack_offset = 0; AscMemWordCopyToLram(iop_base, ASCV_MSGOUT_BEG, (ushort *) & sdtr_buf, (ushort) (sizeof (EXT_MSG) >> 1)); return (0); } } STATIC uchar AscCalSDTRData( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar sdtr_period, uchar syn_offset ) { uchar byte; uchar sdtr_period_ix; sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); if ( (sdtr_period_ix > asc_dvc->max_sdtr_index) ) { return (0xFF); } byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); return (byte); } STATIC void AscSetChipSDTR( PortAddr iop_base, uchar sdtr_data, uchar tid_no ) { AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); return; } STATIC uchar AscGetSynPeriodIndex( ASC_DVC_VAR asc_ptr_type * asc_dvc, ruchar syn_time ) { ruchar *period_table; int max_index; int min_index; int i; period_table = asc_dvc->sdtr_period_tbl; max_index = (int) asc_dvc->max_sdtr_index; min_index = (int)asc_dvc->host_init_sdtr_index ; if ((syn_time <= period_table[max_index])) { for (i = min_index; i < (max_index - 1); i++) { if (syn_time <= period_table[i]) { return ((uchar) i); } } return ((uchar) max_index); } else { return ((uchar) (max_index + 1)); } } STATIC uchar AscAllocFreeQueue( PortAddr iop_base, uchar free_q_head ) { ushort q_addr; uchar next_qp; uchar q_status; q_addr = ASC_QNO_TO_QADDR(free_q_head); q_status = (uchar) AscReadLramByte(iop_base, (ushort) (q_addr + ASC_SCSIQ_B_STATUS)); next_qp = AscReadLramByte(iop_base, (ushort) (q_addr + ASC_SCSIQ_B_FWD)); if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) { return (next_qp); } return (ASC_QLINK_END); } STATIC uchar AscAllocMultipleFreeQueue( PortAddr iop_base, uchar free_q_head, uchar n_free_q ) { uchar i; for (i = 0; i < n_free_q; i++) { if ((free_q_head = AscAllocFreeQueue(iop_base, free_q_head)) == ASC_QLINK_END) { return (ASC_QLINK_END); } } return (free_q_head); } STATIC int AscRiscHaltedAbortSRB( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, ulong srb_ptr ) { PortAddr iop_base; ushort q_addr; uchar q_no; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; ASC_ISR_CALLBACK asc_isr_callback; int last_int_level; iop_base = asc_dvc->iop_base; asc_isr_callback = (ASC_ISR_CALLBACK) asc_dvc->isr_callback; last_int_level = DvcEnterCritical(); scsiq = (ASC_QDONE_INFO *) & scsiq_buf; for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= asc_dvc->max_total_qng; q_no++) { q_addr = ASC_QNO_TO_QADDR(q_no); scsiq->d2.srb_ptr = AscReadLramDWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_D_SRBPTR)); if (scsiq->d2.srb_ptr == srb_ptr) { _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, asc_dvc->max_dma_count); if (((scsiq->q_status & QS_READY) != 0) && ((scsiq->q_status & QS_ABORTED) == 0) && ((scsiq->cntl & QCSG_SG_XFER_LIST) == 0)) { scsiq->q_status |= QS_ABORTED; scsiq->d3.done_stat = QD_ABORTED_BY_HOST; AscWriteLramDWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_D_SRBPTR), 0L); AscWriteLramByte(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_STATUS), scsiq->q_status); (*asc_isr_callback) (asc_dvc, scsiq); return (1); } } } DvcLeaveCritical(last_int_level); return (0); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscRiscHaltedAbortTIX( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar target_ix ) { PortAddr iop_base; ushort q_addr; uchar q_no; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; ASC_ISR_CALLBACK asc_isr_callback; int last_int_level; iop_base = asc_dvc->iop_base; asc_isr_callback = (ASC_ISR_CALLBACK) asc_dvc->isr_callback; last_int_level = DvcEnterCritical(); scsiq = (ASC_QDONE_INFO *) & scsiq_buf; for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= asc_dvc->max_total_qng; q_no++) { q_addr = ASC_QNO_TO_QADDR(q_no); _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, asc_dvc->max_dma_count); if (((scsiq->q_status & QS_READY) != 0) && ((scsiq->q_status & QS_ABORTED) == 0) && ((scsiq->cntl & QCSG_SG_XFER_LIST) == 0)) { if (scsiq->d2.target_ix == target_ix) { scsiq->q_status |= QS_ABORTED; scsiq->d3.done_stat = QD_ABORTED_BY_HOST; AscWriteLramDWord(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_D_SRBPTR), 0L); AscWriteLramByte(iop_base, (ushort) (q_addr + (ushort) ASC_SCSIQ_B_STATUS), scsiq->q_status); (*asc_isr_callback) (asc_dvc, scsiq); } } } DvcLeaveCritical(last_int_level); return (1); } #endif /* version >= v1.3.89 */ STATIC int AscHostReqRiscHalt( PortAddr iop_base ) { int count = 0; int sta = 0; uchar saved_stop_code; if (AscIsChipHalted(iop_base)) return (1); saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP ); do { if (AscIsChipHalted(iop_base)) { sta = 1; break; } DvcSleepMilliSecond(100); } while (count++ < 20); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); return (sta); } STATIC int AscStopQueueExe( PortAddr iop_base ) { int count = 0; if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_REQ_RISC_STOP); do { if ( AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & ASC_STOP_ACK_RISC_STOP) { return (1); } DvcSleepMilliSecond(100); } while (count++ < 20); } return (0); } STATIC int AscStartQueueExe( PortAddr iop_base ) { if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) != 0) { AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); } return (1); } STATIC int AscCleanUpBusyQueue( PortAddr iop_base ) { int count; uchar stop_code; count = 0; if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) != 0) { AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_BUSY_Q); do { stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); if ((stop_code & ASC_STOP_CLEAN_UP_BUSY_Q) == 0) break; DvcSleepMilliSecond(100); } while (count++ < 20); } return (1); } #if LINUX_VERSION_CODE >= ASC_LINUX_VERSION(1,3,89) STATIC int AscCleanUpDiscQueue( PortAddr iop_base ) { int count; uchar stop_code; count = 0; if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) != 0) { AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_DISC_Q); do { stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); if ((stop_code & ASC_STOP_CLEAN_UP_DISC_Q) == 0) break; DvcSleepMilliSecond(100); } while (count++ < 20); } return (1); } #endif /* version >= v1.3.89 */ STATIC int AscWaitTixISRDone( ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar target_ix ) { uchar cur_req; uchar tid_no; int i = 0; tid_no = ASC_TIX_TO_TID(target_ix); while (i++ < 10) { if ((cur_req = asc_dvc->cur_dvc_qng[tid_no]) == 0) { break; } DvcSleepMilliSecond(100L); if (asc_dvc->cur_dvc_qng[tid_no] == cur_req) { break; } } return (1); } STATIC int AscWaitISRDone( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { int tid; for (tid = 0; tid <= ASC_MAX_TID; tid++) { AscWaitTixISRDone(asc_dvc, ASC_TID_TO_TIX(tid)); } return (1); } STATIC ulong AscGetOnePhyAddr( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, uchar * buf_addr, ulong buf_size ) { ASC_MIN_SG_HEAD sg_head; sg_head.entry_cnt = ASC_MIN_SG_LIST; if (DvcGetSGList(asc_dvc, (uchar *) buf_addr, buf_size, (ASC_SG_HEAD *) & sg_head) != buf_size) { return (0L); } if (sg_head.entry_cnt > 1) { return (0L); } return (sg_head.sg_list[0].addr); } STATIC void DvcDelayMicroSecond(ADV_DVC_VAR *asc_dvc, ushort micro_sec) { udelay(micro_sec); } STATIC void DvcDelayNanoSecond(ASC_DVC_VAR asc_ptr_type * asc_dvc, ulong nano_sec) { udelay((nano_sec + 999)/1000); } ASC_INITFUNC( STATIC ulong AscGetEisaProductID( PortAddr iop_base ) ) { PortAddr eisa_iop; ushort product_id_high, product_id_low; ulong product_id; eisa_iop = ASC_GET_EISA_SLOT(iop_base) | ASC_EISA_PID_IOP_MASK; product_id_low = inpw(eisa_iop); product_id_high = inpw(eisa_iop + 2); product_id = ((ulong) product_id_high << 16) | (ulong) product_id_low; return (product_id); } ASC_INITFUNC( STATIC PortAddr AscSearchIOPortAddrEISA( PortAddr iop_base ) ) { ulong eisa_product_id; if (iop_base == 0) { iop_base = ASC_EISA_MIN_IOP_ADDR; } else { if (iop_base == ASC_EISA_MAX_IOP_ADDR) return (0); if ((iop_base & 0x0050) == 0x0050) { iop_base += ASC_EISA_BIG_IOP_GAP; } else { iop_base += ASC_EISA_SMALL_IOP_GAP; } } while (iop_base <= ASC_EISA_MAX_IOP_ADDR) { eisa_product_id = AscGetEisaProductID(iop_base); if ((eisa_product_id == ASC_EISA_ID_740) || (eisa_product_id == ASC_EISA_ID_750)) { if (AscFindSignature(iop_base)) { inpw(iop_base + 4); return (iop_base); } } if (iop_base == ASC_EISA_MAX_IOP_ADDR) return (0); if ((iop_base & 0x0050) == 0x0050) { iop_base += ASC_EISA_BIG_IOP_GAP; } else { iop_base += ASC_EISA_SMALL_IOP_GAP; } } return (0); } STATIC int AscStartChip( PortAddr iop_base ) { AscSetChipControl(iop_base, 0); if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { return (0); } return (1); } STATIC int AscStopChip( PortAddr iop_base ) { uchar cc_val; cc_val = AscGetChipControl(iop_base) & (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); AscSetChipControl(iop_base, (uchar) (cc_val | CC_HALT)); AscSetChipIH(iop_base, INS_HALT); AscSetChipIH(iop_base, INS_RFLAG_WTM); if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { return (0); } return (1); } STATIC int AscIsChipHalted( PortAddr iop_base ) { if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { return (1); } } return (0); } STATIC void AscSetChipIH( PortAddr iop_base, ushort ins_code ) { AscSetBank(iop_base, 1); AscWriteChipIH(iop_base, ins_code); AscSetBank(iop_base, 0); return; } STATIC void AscAckInterrupt( PortAddr iop_base ) { uchar host_flag; uchar risc_flag; ushort loop; loop = 0; do { risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); if (loop++ > 0x7FFF) { break; } } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); host_flag = AscReadLramByte(iop_base, ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, (uchar) (host_flag | ASC_HOST_FLAG_ACK_INT)); AscSetChipStatus(iop_base, CIW_INT_ACK); loop = 0; while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { AscSetChipStatus(iop_base, CIW_INT_ACK); if (loop++ > 3) { break; } } AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); return; } STATIC void AscDisableInterrupt( PortAddr iop_base ) { ushort cfg; cfg = AscGetChipCfgLsw(iop_base); AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); return; } STATIC void AscEnableInterrupt( PortAddr iop_base ) { ushort cfg; cfg = AscGetChipCfgLsw(iop_base); AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); return; } STATIC void AscSetBank( PortAddr iop_base, uchar bank ) { uchar val; val = AscGetChipControl(iop_base) & (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | CC_CHIP_RESET)); if (bank == 1) { val |= CC_BANK_ONE; } else if (bank == 2) { val |= CC_DIAG | CC_BANK_ONE; } else { val &= ~CC_BANK_ONE; } AscSetChipControl(iop_base, val); return; } STATIC int AscResetChipAndScsiBus( ASC_DVC_VAR *asc_dvc ) { PortAddr iop_base; iop_base = asc_dvc->iop_base; while (AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) ; AscStopChip(iop_base); AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); DvcDelayNanoSecond(asc_dvc, 60000); AscSetChipIH(iop_base, INS_RFLAG_WTM); AscSetChipIH(iop_base, INS_HALT); AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); AscSetChipControl(iop_base, CC_HALT); DvcSleepMilliSecond(200); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); return (AscIsChipHalted(iop_base)); } ASC_INITFUNC( STATIC ulong AscGetMaxDmaCount( ushort bus_type ) ) { if (bus_type & ASC_IS_ISA) return (ASC_MAX_ISA_DMA_COUNT); else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) return (ASC_MAX_VL_DMA_COUNT); return (ASC_MAX_PCI_DMA_COUNT); } ASC_INITFUNC( STATIC ushort AscGetIsaDmaChannel( PortAddr iop_base ) ) { ushort channel; channel = AscGetChipCfgLsw(iop_base) & 0x0003; if (channel == 0x03) return (0); else if (channel == 0x00) return (7); return (channel + 4); } ASC_INITFUNC( STATIC ushort AscSetIsaDmaChannel( PortAddr iop_base, ushort dma_channel ) ) { ushort cfg_lsw; uchar value; if ((dma_channel >= 5) && (dma_channel <= 7)) { if (dma_channel == 7) value = 0x00; else value = dma_channel - 4; cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; cfg_lsw |= value; AscSetChipCfgLsw(iop_base, cfg_lsw); return (AscGetIsaDmaChannel(iop_base)); } return (0); } ASC_INITFUNC( STATIC uchar AscSetIsaDmaSpeed( PortAddr iop_base, uchar speed_value ) ) { speed_value &= 0x07; AscSetBank(iop_base, 1); AscWriteChipDmaSpeed(iop_base, speed_value); AscSetBank(iop_base, 0); return (AscGetIsaDmaSpeed(iop_base)); } ASC_INITFUNC( STATIC uchar AscGetIsaDmaSpeed( PortAddr iop_base ) ) { uchar speed_value; AscSetBank(iop_base, 1); speed_value = AscReadChipDmaSpeed(iop_base); speed_value &= 0x07; AscSetBank(iop_base, 0); return (speed_value); } ASC_INITFUNC( STATIC ushort AscReadPCIConfigWord( ASC_DVC_VAR asc_ptr_type *asc_dvc, ushort pci_config_offset) ) { uchar lsb, msb; lsb = DvcReadPCIConfigByte(asc_dvc, pci_config_offset); msb = DvcReadPCIConfigByte(asc_dvc, pci_config_offset + 1); return ((ushort) ((msb << 8) | lsb)); } ASC_INITFUNC( STATIC ushort AscInitGetConfig( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { ushort warn_code; PortAddr iop_base; ushort PCIDeviceID; ushort PCIVendorID; uchar PCIRevisionID; uchar prevCmdRegBits; warn_code = 0; iop_base = asc_dvc->iop_base; asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; if (asc_dvc->err_code != 0) { return (UW_ERR); } if (asc_dvc->bus_type == ASC_IS_PCI) { PCIVendorID = AscReadPCIConfigWord(asc_dvc, AscPCIConfigVendorIDRegister); PCIDeviceID = AscReadPCIConfigWord(asc_dvc, AscPCIConfigDeviceIDRegister); PCIRevisionID = DvcReadPCIConfigByte(asc_dvc, AscPCIConfigRevisionIDRegister); if (PCIVendorID != ASC_PCI_VENDORID) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } prevCmdRegBits = DvcReadPCIConfigByte(asc_dvc, AscPCIConfigCommandRegister); if ((prevCmdRegBits & AscPCICmdRegBits_IOMemBusMaster) != AscPCICmdRegBits_IOMemBusMaster) { DvcWritePCIConfigByte(asc_dvc, AscPCIConfigCommandRegister, (prevCmdRegBits | AscPCICmdRegBits_IOMemBusMaster)); if ((DvcReadPCIConfigByte(asc_dvc, AscPCIConfigCommandRegister) & AscPCICmdRegBits_IOMemBusMaster) != AscPCICmdRegBits_IOMemBusMaster) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } } if ((PCIDeviceID == ASC_PCI_DEVICEID_1200A) || (PCIDeviceID == ASC_PCI_DEVICEID_1200B)) { DvcWritePCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer, 0x00); if (DvcReadPCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer) != 0x00) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } } else if (PCIDeviceID == ASC_PCI_DEVICEID_ULTRA) { if (DvcReadPCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer) < 0x20) { DvcWritePCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer, 0x20); if (DvcReadPCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer) < 0x20) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } } } } if (AscFindSignature(iop_base)) { warn_code |= AscInitAscDvcVar(asc_dvc); warn_code |= AscInitFromEEP(asc_dvc); asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) { asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; } } else { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; } return(warn_code); } ASC_INITFUNC( STATIC ushort AscInitSetConfig( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { ushort warn_code = 0; asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; if (asc_dvc->err_code != 0) return (UW_ERR); if (AscFindSignature(asc_dvc->iop_base)) { warn_code |= AscInitFromAscDvcVar(asc_dvc); asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; } else { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; } return (warn_code); } ASC_INITFUNC( STATIC ushort AscInitFromAscDvcVar( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { PortAddr iop_base; ushort cfg_msw; ushort warn_code; ushort pci_device_id; iop_base = asc_dvc->iop_base; pci_device_id = asc_dvc->cfg->pci_device_id; warn_code = 0; cfg_msw = AscGetChipCfgMsw(iop_base); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK)); warn_code |= ASC_WARN_CFG_MSW_RECOVER; AscSetChipCfgMsw(iop_base, cfg_msw); } if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != asc_dvc->cfg->cmd_qng_enabled) { asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; } if ((asc_dvc->bus_type & (ASC_IS_ISA | ASC_IS_VL)) != 0) { if (AscSetChipIRQ(iop_base, asc_dvc->irq_no, asc_dvc->bus_type) != asc_dvc->irq_no) { asc_dvc->err_code |= ASC_IERR_SET_IRQ_NO; } } if (asc_dvc->bus_type & ASC_IS_PCI) { cfg_msw &= 0xFFC0; AscSetChipCfgMsw(iop_base, cfg_msw); if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { } else { if ((pci_device_id == ASC_PCI_DEVICE_ID_REV_A) || (pci_device_id == ASC_PCI_DEVICE_ID_REV_B)) { asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } } else if (asc_dvc->bus_type == ASC_IS_ISAPNP) { if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == ASC_CHIP_VER_ASYN_BUG) { asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != asc_dvc->cfg->chip_scsi_id) { asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; } if (asc_dvc->bus_type & ASC_IS_ISA) { AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); } return (warn_code); } ASC_INITFUNC( STATIC ushort AscInitAsc1000Driver( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { ushort warn_code; PortAddr iop_base; extern ushort _asc_mcode_size; extern ulong _asc_mcode_chksum; extern uchar _asc_mcode_buf[]; iop_base = asc_dvc->iop_base; warn_code = 0; if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { AscResetChipAndScsiBus(asc_dvc); DvcSleepMilliSecond((ulong) ((ushort) asc_dvc->scsi_reset_wait * 1000)); } asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; if (asc_dvc->err_code != 0) return (UW_ERR); if (!AscFindSignature(asc_dvc->iop_base)) { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; return (warn_code); } AscDisableInterrupt(iop_base); warn_code |= AscInitLram(asc_dvc); if (asc_dvc->err_code != 0) return (UW_ERR); if (AscLoadMicroCode(iop_base, 0, (ushort *) _asc_mcode_buf, _asc_mcode_size) != _asc_mcode_chksum) { asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; return (warn_code); } warn_code |= AscInitMicroCodeVar(asc_dvc); asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; AscEnableInterrupt(iop_base); return (warn_code); } ASC_INITFUNC( STATIC ushort AscInitAscDvcVar( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { int i; PortAddr iop_base; ushort warn_code; uchar chip_version; iop_base = asc_dvc->iop_base; warn_code = 0; asc_dvc->err_code = 0; if ((asc_dvc->bus_type & (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; } AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, 0); asc_dvc->bug_fix_cntl = 0; asc_dvc->pci_fix_asyn_xfer = 0; asc_dvc->pci_fix_asyn_xfer_always = 0; asc_dvc->init_state = 0; asc_dvc->sdtr_done = 0; asc_dvc->cur_total_qng = 0; asc_dvc->is_in_int = 0; asc_dvc->in_critical_cnt = 0; asc_dvc->last_q_shortage = 0; asc_dvc->use_tagged_qng = 0; asc_dvc->no_scam = 0; asc_dvc->unit_not_ready = 0; asc_dvc->queue_full_or_busy = 0; asc_dvc->redo_scam = 0 ; asc_dvc->res2 = 0 ; asc_dvc->host_init_sdtr_index = 0 ; asc_dvc->res7 = 0 ; asc_dvc->res8 = 0 ; asc_dvc->cfg->can_tagged_qng = 0 ; asc_dvc->cfg->cmd_qng_enabled = 0; asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; asc_dvc->init_sdtr = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; asc_dvc->scsi_reset_wait = 3; asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; asc_dvc->cfg->lib_serial_no = ASC_LIB_SERIAL_NUMBER; asc_dvc->cfg->lib_version = (ASC_LIB_VERSION_MAJOR << 8) | ASC_LIB_VERSION_MINOR; chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); asc_dvc->cfg->chip_version = chip_version; asc_dvc->sdtr_period_tbl[0] = SYN_XFER_NS_0; asc_dvc->sdtr_period_tbl[1] = SYN_XFER_NS_1; asc_dvc->sdtr_period_tbl[2] = SYN_XFER_NS_2; asc_dvc->sdtr_period_tbl[3] = SYN_XFER_NS_3; asc_dvc->sdtr_period_tbl[4] = SYN_XFER_NS_4; asc_dvc->sdtr_period_tbl[5] = SYN_XFER_NS_5; asc_dvc->sdtr_period_tbl[6] = SYN_XFER_NS_6; asc_dvc->sdtr_period_tbl[7] = SYN_XFER_NS_7; asc_dvc->max_sdtr_index = 7; if ((asc_dvc->bus_type & ASC_IS_PCI) && (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { asc_dvc->bus_type = ASC_IS_PCI_ULTRA; asc_dvc->sdtr_period_tbl[0] = SYN_ULTRA_XFER_NS_0; asc_dvc->sdtr_period_tbl[1] = SYN_ULTRA_XFER_NS_1; asc_dvc->sdtr_period_tbl[2] = SYN_ULTRA_XFER_NS_2; asc_dvc->sdtr_period_tbl[3] = SYN_ULTRA_XFER_NS_3; asc_dvc->sdtr_period_tbl[4] = SYN_ULTRA_XFER_NS_4; asc_dvc->sdtr_period_tbl[5] = SYN_ULTRA_XFER_NS_5; asc_dvc->sdtr_period_tbl[6] = SYN_ULTRA_XFER_NS_6; asc_dvc->sdtr_period_tbl[7] = SYN_ULTRA_XFER_NS_7; asc_dvc->sdtr_period_tbl[8] = SYN_ULTRA_XFER_NS_8; asc_dvc->sdtr_period_tbl[9] = SYN_ULTRA_XFER_NS_9; asc_dvc->sdtr_period_tbl[10] = SYN_ULTRA_XFER_NS_10; asc_dvc->sdtr_period_tbl[11] = SYN_ULTRA_XFER_NS_11; asc_dvc->sdtr_period_tbl[12] = SYN_ULTRA_XFER_NS_12; asc_dvc->sdtr_period_tbl[13] = SYN_ULTRA_XFER_NS_13; asc_dvc->sdtr_period_tbl[14] = SYN_ULTRA_XFER_NS_14; asc_dvc->sdtr_period_tbl[15] = SYN_ULTRA_XFER_NS_15; asc_dvc->max_sdtr_index = 15; if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_ENABLE_FILTER)); } } if (asc_dvc->bus_type == ASC_IS_PCI) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); } asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; if (AscGetChipBusType(iop_base) == ASC_IS_ISAPNP) { AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); asc_dvc->bus_type = ASC_IS_ISAPNP; } if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { asc_dvc->cfg->isa_dma_channel = (uchar) AscGetIsaDmaChannel(iop_base); } for (i = 0; i <= ASC_MAX_TID; i++) { asc_dvc->cur_dvc_qng[i] = 0; asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *) 0L; asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *) 0L; asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; } return (warn_code); } ASC_INITFUNC( STATIC ushort AscInitFromEEP( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { ASCEEP_CONFIG eep_config_buf; ASCEEP_CONFIG *eep_config; PortAddr iop_base; ushort chksum; ushort warn_code; ushort cfg_msw, cfg_lsw; int i; int write_eep = 0; iop_base = asc_dvc->iop_base; warn_code = 0; AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); AscStopQueueExe(iop_base); if ((AscStopChip(iop_base) == FALSE) || (AscGetChipScsiCtrl(iop_base) != 0)) { asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; AscResetChipAndScsiBus(asc_dvc); DvcSleepMilliSecond((ulong) ((ushort) asc_dvc->scsi_reset_wait * 1000)); } if (AscIsChipHalted(iop_base) == FALSE) { asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; return (warn_code); } AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; return (warn_code); } eep_config = (ASCEEP_CONFIG *) & eep_config_buf; cfg_msw = AscGetChipCfgMsw(iop_base); cfg_lsw = AscGetChipCfgLsw(iop_base); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK)); warn_code |= ASC_WARN_CFG_MSW_RECOVER; AscSetChipCfgMsw(iop_base, cfg_msw); } chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); if (chksum == 0) { chksum = 0xaa55; } if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; if (asc_dvc->cfg->chip_version == 3) { if (eep_config->cfg_lsw != cfg_lsw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_lsw = AscGetChipCfgLsw(iop_base); } if (eep_config->cfg_msw != cfg_msw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); } } } eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; if (chksum != eep_config->chksum) { if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == ASC_CHIP_VER_PCI_ULTRA_3050 ) { eep_config->init_sdtr = 0xFF; eep_config->disc_enable = 0xFF; eep_config->start_motor = 0xFF; eep_config->use_cmd_qng = 0; eep_config->max_total_qng = 0xF0; eep_config->max_tag_qng = 0x20; eep_config->cntl = 0xBFFF; eep_config->chip_scsi_id = 7; eep_config->no_scam = 0; eep_config->adapter_info[0] = 0; eep_config->adapter_info[1] = 0; eep_config->adapter_info[2] = 0; eep_config->adapter_info[3] = 0; eep_config->adapter_info[4] = 0; /* Indicate EEPROM-less board. */ eep_config->adapter_info[5] = 0xBB; } else { write_eep = 1 ; warn_code |= ASC_WARN_EEPROM_CHKSUM ; } } asc_dvc->init_sdtr = eep_config->init_sdtr; asc_dvc->cfg->disc_enable = eep_config->disc_enable; asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; asc_dvc->cfg->isa_dma_speed = eep_config->isa_dma_speed; asc_dvc->start_motor = eep_config->start_motor; asc_dvc->dvc_cntl = eep_config->cntl; asc_dvc->no_scam = eep_config->no_scam; asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; if (!AscTestExternalLram(asc_dvc)) { if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA)) { eep_config->max_total_qng = ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; } else { eep_config->cfg_msw |= 0x0800; cfg_msw |= 0x0800; AscSetChipCfgMsw(iop_base, cfg_msw); eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; } } else { } if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; } if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; } if (eep_config->max_tag_qng > eep_config->max_total_qng) { eep_config->max_tag_qng = eep_config->max_total_qng; } if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; } asc_dvc->max_total_qng = eep_config->max_total_qng; if ((eep_config->use_cmd_qng & eep_config->disc_enable) != eep_config->use_cmd_qng) { eep_config->disc_enable = eep_config->use_cmd_qng; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } if (asc_dvc->bus_type & (ASC_IS_ISA | ASC_IS_VL | ASC_IS_EISA)) { asc_dvc->irq_no = AscGetChipIRQ(iop_base, asc_dvc->bus_type); } eep_config->chip_scsi_id &= ASC_MAX_TID; asc_dvc->cfg->chip_scsi_id = eep_config->chip_scsi_id; if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { asc_dvc->host_init_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; } for (i = 0; i <= ASC_MAX_TID; i++) { asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; asc_dvc->cfg->sdtr_period_offset[i] = (uchar) (ASC_DEF_SDTR_OFFSET | (asc_dvc->host_init_sdtr_index << 4)); } eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); if (write_eep) { (void) AscSetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); } return (warn_code); } ASC_INITFUNC( STATIC ushort AscInitMicroCodeVar( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { int i; ushort warn_code; PortAddr iop_base; ulong phy_addr; iop_base = asc_dvc->iop_base; warn_code = 0; for (i = 0; i <= ASC_MAX_TID; i++) { AscPutMCodeInitSDTRAtID(iop_base, i, asc_dvc->cfg->sdtr_period_offset[i] ); } AscInitQLinkVar(asc_dvc); AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, asc_dvc->cfg->disc_enable); AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); if ((phy_addr = AscGetOnePhyAddr(asc_dvc, (uchar *) asc_dvc->cfg->overrun_buf, ASC_OVERRUN_BSIZE)) == 0L) { asc_dvc->err_code |= ASC_IERR_GET_PHY_ADDR; } else { phy_addr = (phy_addr & 0xFFFFFFF8UL) + 8; AscWriteLramDWord(iop_base, ASCV_OVERRUN_PADDR_D, phy_addr); AscWriteLramDWord(iop_base, ASCV_OVERRUN_BSIZE_D, ASC_OVERRUN_BSIZE - 8); } asc_dvc->cfg->mcode_date = AscReadLramWord(iop_base, (ushort) ASCV_MC_DATE_W); asc_dvc->cfg->mcode_version = AscReadLramWord(iop_base, (ushort) ASCV_MC_VER_W); AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; return (warn_code); } if (AscStartChip(iop_base) != 1) { asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; return (warn_code); } return (warn_code); } STATIC void AscInitPollIsrCallBack( ASC_DVC_VAR asc_ptr_type * asc_dvc, ASC_QDONE_INFO * scsi_done_q ) { ASC_SCSI_REQ_Q *scsiq_req; ASC_ISR_CALLBACK asc_isr_callback; uchar cp_sen_len; uchar i; ASC_DBG(1, "AscInitPollIsrCallBack: begin\n"); if ((scsi_done_q->d2.flag & ASC_FLAG_SCSIQ_REQ) != 0) { scsiq_req = (ASC_SCSI_REQ_Q *) scsi_done_q->d2.srb_ptr; scsiq_req->r3.done_stat = scsi_done_q->d3.done_stat; scsiq_req->r3.host_stat = scsi_done_q->d3.host_stat; scsiq_req->r3.scsi_stat = scsi_done_q->d3.scsi_stat; scsiq_req->r3.scsi_msg = scsi_done_q->d3.scsi_msg; ASC_DBG4(1, "AscInitPollIsrCallBack: done_stat %x, host_stat %x, scsi_stat %x, scsi_msg %x\n", scsi_done_q->d3.done_stat, scsi_done_q->d3.host_stat, scsi_done_q->d3.scsi_stat, scsi_done_q->d3.scsi_msg); if ((scsi_done_q->d3.scsi_stat == SS_CHK_CONDITION) && (scsi_done_q->d3.host_stat == 0)) { cp_sen_len = (uchar) ASC_MIN_SENSE_LEN; if (scsiq_req->r1.sense_len < ASC_MIN_SENSE_LEN) { cp_sen_len = (uchar) scsiq_req->r1.sense_len; } for (i = 0; i < cp_sen_len; i++) { scsiq_req->sense[i] = scsiq_req->sense_ptr[i]; } } } else { if (asc_dvc->isr_callback != 0) { asc_isr_callback = (ASC_ISR_CALLBACK) asc_dvc->isr_callback; (*asc_isr_callback) (asc_dvc, scsi_done_q); } } ASC_DBG(1, "AscInitPollIsrCallBack: end\n"); return; } ASC_INITFUNC( STATIC int AscTestExternalLram( ASC_DVC_VAR asc_ptr_type * asc_dvc ) ) { PortAddr iop_base; ushort q_addr; ushort saved_word; int sta; iop_base = asc_dvc->iop_base; sta = 0; q_addr = ASC_QNO_TO_QADDR(241); saved_word = AscReadLramWord(iop_base, q_addr); AscSetChipLramAddr(iop_base, q_addr); AscSetChipLramData(iop_base, 0x55AA); DvcSleepMilliSecond(10); AscSetChipLramAddr(iop_base, q_addr); if (AscGetChipLramData(iop_base) == 0x55AA) { sta = 1; AscWriteLramWord(iop_base, q_addr, saved_word); } return (sta); } ASC_INITFUNC( STATIC int AscWriteEEPCmdReg( PortAddr iop_base, uchar cmd_reg ) ) { uchar read_back; int retry; retry = 0; while (TRUE) { AscSetChipEEPCmd(iop_base, cmd_reg); DvcSleepMilliSecond(1); read_back = AscGetChipEEPCmd(iop_base); if (read_back == cmd_reg) { return (1); } if (retry++ > ASC_EEP_MAX_RETRY) { return (0); } } } ASC_INITFUNC( STATIC int AscWriteEEPDataReg( PortAddr iop_base, ushort data_reg ) ) { ushort read_back; int retry; retry = 0; while (TRUE) { AscSetChipEEPData(iop_base, data_reg); DvcSleepMilliSecond(1); read_back = AscGetChipEEPData(iop_base); if (read_back == data_reg) { return (1); } if (retry++ > ASC_EEP_MAX_RETRY) { return (0); } } } ASC_INITFUNC( STATIC void AscWaitEEPRead( void ) ) { DvcSleepMilliSecond(1); return; } ASC_INITFUNC( STATIC void AscWaitEEPWrite( void ) ) { DvcSleepMilliSecond(20); return; } ASC_INITFUNC( STATIC ushort AscReadEEPWord( PortAddr iop_base, uchar addr ) ) { ushort read_wval; uchar cmd_reg; AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); cmd_reg = addr | ASC_EEP_CMD_READ; AscWriteEEPCmdReg(iop_base, cmd_reg); AscWaitEEPRead(); read_wval = AscGetChipEEPData(iop_base); AscWaitEEPRead(); return (read_wval); } ASC_INITFUNC( STATIC ushort AscWriteEEPWord( PortAddr iop_base, uchar addr, ushort word_val ) ) { ushort read_wval; read_wval = AscReadEEPWord(iop_base, addr); if (read_wval != word_val) { AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); AscWaitEEPRead(); AscWriteEEPDataReg(iop_base, word_val); AscWaitEEPRead(); AscWriteEEPCmdReg(iop_base, (uchar) ((uchar) ASC_EEP_CMD_WRITE | addr)); AscWaitEEPWrite(); AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); return (AscReadEEPWord(iop_base, addr)); } return (read_wval); } ASC_INITFUNC( STATIC ushort AscGetEEPConfig( PortAddr iop_base, ASCEEP_CONFIG * cfg_buf, ushort bus_type ) ) { ushort wval; ushort sum; ushort *wbuf; int cfg_beg; int cfg_end; int s_addr; int isa_pnp_wsize; wbuf = (ushort *) cfg_buf; sum = 0; isa_pnp_wsize = 0; for (s_addr = 0; s_addr < (2 + isa_pnp_wsize); s_addr++, wbuf++) { wval = AscReadEEPWord(iop_base, (uchar) s_addr); sum += wval; *wbuf = wval; } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { wval = AscReadEEPWord(iop_base, (uchar) s_addr); sum += wval; *wbuf = wval; } *wbuf = AscReadEEPWord(iop_base, (uchar) s_addr); return (sum); } ASC_INITFUNC( STATIC int AscSetEEPConfigOnce( PortAddr iop_base, ASCEEP_CONFIG * cfg_buf, ushort bus_type ) ) { int n_error; ushort *wbuf; ushort sum; int s_addr; int cfg_beg; int cfg_end; wbuf = (ushort *) cfg_buf; n_error = 0; sum = 0; for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { sum += *wbuf; if (*wbuf != AscWriteEEPWord(iop_base, (uchar) s_addr, *wbuf)) { n_error++; } } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { sum += *wbuf; if (*wbuf != AscWriteEEPWord(iop_base, (uchar) s_addr, *wbuf)) { n_error++; } } *wbuf = sum; if (sum != AscWriteEEPWord(iop_base, (uchar) s_addr, sum)) { n_error++; } wbuf = (ushort *) cfg_buf; for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { if (*wbuf != AscReadEEPWord(iop_base, (uchar) s_addr)) { n_error++; } } for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) { if (*wbuf != AscReadEEPWord(iop_base, (uchar) s_addr)) { n_error++; } } return (n_error); } ASC_INITFUNC( STATIC int AscSetEEPConfig( PortAddr iop_base, ASCEEP_CONFIG * cfg_buf, ushort bus_type ) ) { int retry; int n_error; retry = 0; while (TRUE) { if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, bus_type)) == 0) { break; } if (++retry > ASC_EEP_MAX_RETRY) { break; } } return (n_error); } STATIC int AscInitPollBegin( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { PortAddr iop_base; iop_base = asc_dvc->iop_base; AscDisableInterrupt(iop_base); asc_dvc->init_state |= ASC_INIT_STATE_BEG_INQUIRY; AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 0x00); asc_dvc->use_tagged_qng = 0; asc_dvc->cfg->can_tagged_qng = 0; asc_dvc->saved_ptr2func = (ulong) asc_dvc->isr_callback; asc_dvc->isr_callback = ASC_GET_PTR2FUNC(AscInitPollIsrCallBack); return (0); } STATIC int AscInitPollEnd( REG ASC_DVC_VAR asc_ptr_type * asc_dvc ) { PortAddr iop_base; rint i; iop_base = asc_dvc->iop_base; asc_dvc->isr_callback = (Ptr2Func) asc_dvc->saved_ptr2func; AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, asc_dvc->cfg->disc_enable); AscWriteLramByte(iop_base, ASCV_USE_TAGGED_QNG_B, asc_dvc->use_tagged_qng); AscWriteLramByte(iop_base, ASCV_CAN_TAGGED_QNG_B, asc_dvc->cfg->can_tagged_qng); for (i = 0; i <= ASC_MAX_TID; i++) { AscWriteLramByte(iop_base, (ushort) ((ushort) ASCV_MAX_DVC_QNG_BEG + (ushort) i), asc_dvc->max_dvc_qng[i]); } AscAckInterrupt(iop_base); AscEnableInterrupt(iop_base); asc_dvc->init_state |= ASC_INIT_STATE_END_INQUIRY; return (0); } STATIC int AscInitPollTarget( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, REG ASC_SCSI_INQUIRY * inq, REG ASC_CAP_INFO * cap_info ) { uchar tid_no, lun; uchar dvc_type; ASC_SCSI_BIT_ID_TYPE tid_bits; int dvc_found; int support_read_cap; int tmp_disable_init_sdtr; int sta; dvc_found = 0; tmp_disable_init_sdtr = FALSE; tid_bits = scsiq->r1.target_id; lun = scsiq->r1.target_lun; tid_no = ASC_TIX_TO_TID(scsiq->r2.target_ix); if (((asc_dvc->init_sdtr & tid_bits) != 0) && ((asc_dvc->sdtr_done & tid_bits) == 0)) { asc_dvc->init_sdtr &= ~tid_bits; tmp_disable_init_sdtr = TRUE; } ASC_DBG(1, "AscInitPollTarget: before PollScsiInquiry\n"); if (PollScsiInquiry(asc_dvc, scsiq, (uchar *) inq, sizeof (ASC_SCSI_INQUIRY)) == 1) { dvc_found = 1; dvc_type = inq->byte0.peri_dvc_type; if (dvc_type != SCSI_TYPE_UNKNOWN) { support_read_cap = TRUE; if ((dvc_type != SCSI_TYPE_DASD) && (dvc_type != SCSI_TYPE_WORM) && (dvc_type != SCSI_TYPE_CDROM) && (dvc_type != SCSI_TYPE_OPTMEM)) { asc_dvc->start_motor &= ~tid_bits; support_read_cap = FALSE; } if (lun == 0) { if ((inq->byte3.rsp_data_fmt >= 2) || (inq->byte2.ansi_apr_ver >= 2)) { if (inq->byte7.CmdQue) { asc_dvc->cfg->can_tagged_qng |= tid_bits; if (asc_dvc->cfg->cmd_qng_enabled & tid_bits) { asc_dvc->use_tagged_qng |= tid_bits; asc_dvc->max_dvc_qng[tid_no] = asc_dvc->cfg->max_tag_qng[tid_no]; } } if (!inq->byte7.Sync) { asc_dvc->init_sdtr &= ~tid_bits; asc_dvc->sdtr_done &= ~tid_bits; } else if (tmp_disable_init_sdtr) { asc_dvc->init_sdtr |= tid_bits; } } else { asc_dvc->init_sdtr &= ~tid_bits; asc_dvc->sdtr_done &= ~tid_bits; asc_dvc->use_tagged_qng &= ~tid_bits; } } if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN) { if (!(asc_dvc->init_sdtr & tid_bits)) { if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString((uchar *) inq->vendor_id, (uchar *) "HP ", 3) == 0)) { asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; } asc_dvc->pci_fix_asyn_xfer |= tid_bits; if ((dvc_type == SCSI_TYPE_PROC) || (dvc_type == SCSI_TYPE_SCANNER)) { asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_SASD) && (AscCompareString((uchar *) inq->vendor_id, (uchar *) "TANDBERG", 8) == 0) && (AscCompareString((uchar *) inq->product_id, (uchar *) " TDC 36", 7) == 0)) { asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_SASD) && (AscCompareString((uchar *) inq->vendor_id, (uchar *) "WANGTEK ", 8) == 0)) { asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString((uchar *)inq->vendor_id, (uchar *)"NEC ", 8) == 0) && (AscCompareString((uchar *)inq->product_id, (uchar *)"CD-ROM DRIVE ", 16) == 0)) { asc_dvc->pci_fix_asyn_xfer &= ~tid_bits ; } if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString((uchar *) inq->vendor_id, (uchar *) "YAMAHA", 6) == 0) && (AscCompareString((uchar *) inq->product_id, (uchar *) "CDR400", 6) == 0)) { asc_dvc->pci_fix_asyn_xfer &= ~tid_bits ; } if (asc_dvc->pci_fix_asyn_xfer & tid_bits) { AscSetRunChipSynRegAtID(asc_dvc->iop_base, tid_no, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } } } sta = 1; ASC_DBG(1, "AscInitPollTarget: before InitTestUnitReady\n"); sta = InitTestUnitReady(asc_dvc, scsiq); if (sta == 1) { if ((cap_info != 0L) && support_read_cap) { ASC_DBG(1, "AscInitPollTarget: before PollScsiReadCapacity\n"); if (PollScsiReadCapacity(asc_dvc, scsiq, cap_info) != 1) { cap_info->lba = 0L; cap_info->blk_size = 0x0000; } else { } } } } else { asc_dvc->start_motor &= ~tid_bits; } } else if (tmp_disable_init_sdtr) { asc_dvc->init_sdtr |= tid_bits; } ASC_DBG1(1, "AscInitPollTarget: dvc_found %d\n", dvc_found); return (dvc_found); } STATIC int PollQueueDone( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, int timeout_sec ) { int status; int retry = 0; ASC_DBG1(1, "PollQueueDone: timeout_sec %d\n", timeout_sec); do { ASC_DBG(1, "PollQueueDone: before AscExeScsiQueue\n"); if ((status = AscExeScsiQueue(asc_dvc, (ASC_SCSI_Q *) scsiq)) == 1) { ASC_DBG(1, "PollQueueDone: before AscPollQDone\n"); if ((status = AscPollQDone(asc_dvc, scsiq, timeout_sec)) != 1) { ASC_DBG1(1, "PollQueueDone: status %x\n", status); if (status == 0x80) { if (retry++ > ASC_MAX_INIT_BUSY_RETRY) { break; } scsiq->r3.done_stat = 0; scsiq->r3.host_stat = 0; scsiq->r3.scsi_stat = 0; scsiq->r3.scsi_msg = 0; DvcSleepMilliSecond(1000); continue; } scsiq->r3.done_stat = 0; scsiq->r3.host_stat = 0; scsiq->r3.scsi_stat = 0; scsiq->r3.scsi_msg = 0; ASC_DBG(1, "PollQueueDone: before AscAbortSRB()\n"); AscAbortSRB(asc_dvc, (ulong) scsiq); } ASC_DBG1(1, "PollQueueDone: status %x\n", status); ASC_DBG1(1, "PollQueueDone: done_stat %x\n", scsiq->r3.done_stat); return (scsiq->r3.done_stat); } ASC_DBG1(1, "PollQueueDone: status %x\n", status); DvcSleepMilliSecond(5); } while (((status == 0) || (status == 0x80)) && retry++ < ASC_MAX_INIT_BUSY_RETRY); ASC_DBG1(1, "PollQueueDone: status %x\n", status); ASC_DBG(1, "PollQueueDone: done_stat QD_WITH_ERROR\n"); return (scsiq->r3.done_stat = QD_WITH_ERROR); } STATIC int PollScsiInquiry( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, uchar * buf, int buf_len ) { if (AscScsiInquiry(asc_dvc, scsiq, buf, buf_len) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } return (PollQueueDone(asc_dvc, (ASC_SCSI_REQ_Q *) scsiq, 4)); } STATIC int PollScsiStartUnit( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq ) { if (AscScsiStartStopUnit(asc_dvc, scsiq, 1) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } return (PollQueueDone(asc_dvc, (ASC_SCSI_REQ_Q *) scsiq, 40)); } STATIC int PollScsiReadCapacity( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, REG ASC_CAP_INFO * cap_info ) { ASC_CAP_INFO scsi_cap_info; int status; if (AscScsiReadCapacity(asc_dvc, scsiq, (uchar *) & scsi_cap_info) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } status = PollQueueDone(asc_dvc, (ASC_SCSI_REQ_Q *) scsiq, 8); if (status == 1) { cap_info->lba = (ulong) * swapfarbuf4((uchar *) & scsi_cap_info.lba); cap_info->blk_size = (ulong) * swapfarbuf4((uchar *) & scsi_cap_info.blk_size); return (scsiq->r3.done_stat); } return (scsiq->r3.done_stat = QD_WITH_ERROR); } STATIC ulong * swapfarbuf4( uchar *buf ) { uchar tmp; tmp = buf[3]; buf[3] = buf[0]; buf[0] = tmp; tmp = buf[1]; buf[1] = buf[2]; buf[2] = tmp; return ((ulong *) buf); } STATIC int PollScsiTestUnitReady( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq ) { if (AscScsiTestUnitReady(asc_dvc, scsiq) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } return (PollQueueDone(asc_dvc, (ASC_SCSI_REQ_Q *) scsiq, 12)); } STATIC int InitTestUnitReady( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq ) { ASC_SCSI_BIT_ID_TYPE tid_bits; int retry; ASC_REQ_SENSE *sen; retry = 0; tid_bits = scsiq->r1.target_id; while (retry++ < 4) { PollScsiTestUnitReady(asc_dvc, scsiq); if (scsiq->r3.done_stat == 0x01) { return (1); } else if (scsiq->r3.done_stat == QD_WITH_ERROR) { sen = (ASC_REQ_SENSE *) scsiq->sense_ptr; if ((scsiq->r3.scsi_stat == SS_CHK_CONDITION) && ((sen->err_code & 0x70) != 0)) { if (sen->sense_key == SCSI_SENKEY_NOT_READY) { if (sen->asc == SCSI_ASC_NOMEDIA) { break; } if (asc_dvc->start_motor & tid_bits) { if (PollScsiStartUnit(asc_dvc, scsiq) == 1) { DvcSleepMilliSecond(250); continue; } else { asc_dvc->start_motor &= ~tid_bits; break; } } else { DvcSleepMilliSecond(250); } } else if (sen->sense_key == SCSI_SENKEY_ATTENTION) { DvcSleepMilliSecond(250); } else { break; } } else { break; } } else if (scsiq->r3.done_stat == QD_ABORTED_BY_HOST) { break; } else { break; } } return (0); } STATIC int AscPollQDone( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, int timeout_sec ) { int loop, loop_end; int sta; PortAddr iop_base; iop_base = asc_dvc->iop_base; loop = 0; loop_end = timeout_sec * 100; sta = 1; while (TRUE) { if (asc_dvc->err_code != 0) { scsiq->r3.done_stat = QD_WITH_ERROR; ASC_DBG1(1, "AscPollQDone: err_code %x\n", asc_dvc->err_code); sta = ERR; break; } if (scsiq->r3.done_stat != QD_IN_PROGRESS) { if ((scsiq->r3.done_stat == QD_WITH_ERROR) && (scsiq->r3.scsi_stat == SS_TARGET_BUSY)) { sta = 0x80; } break; } DvcSleepMilliSecond(10); if (loop++ > loop_end) { ASC_DBG(1, "AscPollQDone: loop finished\n"); sta = 0; break; } if (AscIsChipHalted(iop_base)) { ASC_DBG(1, "AscPollQDone: AscIsChipHalted()\n"); AscISR(asc_dvc); loop = 0; } else { if (AscIsIntPending(iop_base)) { ASC_DBG(1, "AscPollQDone: AscIsIntPending()\n"); AscISR(asc_dvc); } } } return (sta); } STATIC int AscCompareString( ruchar * str1, ruchar * str2, int len ) { int i; int diff; for (i = 0; i < len; i++) { diff = (int) (str1[i] - str2[i]); if (diff != 0) return (diff); } return (0); } STATIC uchar AscReadLramByte( PortAddr iop_base, ushort addr ) { uchar byte_data; ushort word_data; if (isodd_word(addr)) { AscSetChipLramAddr(iop_base, addr - 1); word_data = AscGetChipLramData(iop_base); byte_data = (uchar) ((word_data >> 8) & 0xFF); } else { AscSetChipLramAddr(iop_base, addr); word_data = AscGetChipLramData(iop_base); byte_data = (uchar) (word_data & 0xFF); } return (byte_data); } STATIC ushort AscReadLramWord( PortAddr iop_base, ushort addr ) { ushort word_data; AscSetChipLramAddr(iop_base, addr); word_data = AscGetChipLramData(iop_base); return (word_data); } STATIC ulong AscReadLramDWord( PortAddr iop_base, ushort addr ) { ushort val_low, val_high; ulong dword_data; AscSetChipLramAddr(iop_base, addr); val_low = AscGetChipLramData(iop_base); val_high = AscGetChipLramData(iop_base); dword_data = ((ulong) val_high << 16) | (ulong) val_low; return (dword_data); } STATIC void AscWriteLramWord( PortAddr iop_base, ushort addr, ushort word_val ) { AscSetChipLramAddr(iop_base, addr); AscSetChipLramData(iop_base, word_val); return; } STATIC void AscWriteLramDWord( PortAddr iop_base, ushort addr, ulong dword_val ) { ushort word_val; AscSetChipLramAddr(iop_base, addr); word_val = (ushort) dword_val; AscSetChipLramData(iop_base, word_val); word_val = (ushort) (dword_val >> 16); AscSetChipLramData(iop_base, word_val); return; } STATIC void AscWriteLramByte( PortAddr iop_base, ushort addr, uchar byte_val ) { ushort word_data; if (isodd_word(addr)) { addr--; word_data = AscReadLramWord(iop_base, addr); word_data &= 0x00FF; word_data |= (((ushort) byte_val << 8) & 0xFF00); } else { word_data = AscReadLramWord(iop_base, addr); word_data &= 0xFF00; word_data |= ((ushort) byte_val & 0x00FF); } AscWriteLramWord(iop_base, addr, word_data); return; } STATIC void AscMemWordCopyToLram( PortAddr iop_base, ushort s_addr, ushort * s_buffer, int words ) { AscSetChipLramAddr(iop_base, s_addr); DvcOutPortWords(iop_base + IOP_RAM_DATA, s_buffer, words); return; } STATIC void AscMemDWordCopyToLram( PortAddr iop_base, ushort s_addr, ulong * s_buffer, int dwords ) { AscSetChipLramAddr(iop_base, s_addr); DvcOutPortDWords(iop_base + IOP_RAM_DATA, s_buffer, dwords); return; } STATIC void AscMemWordCopyFromLram( PortAddr iop_base, ushort s_addr, ushort * d_buffer, int words ) { AscSetChipLramAddr(iop_base, s_addr); DvcInPortWords(iop_base + IOP_RAM_DATA, d_buffer, words); return; } STATIC ulong AscMemSumLramWord( PortAddr iop_base, ushort s_addr, rint words ) { ulong sum; int i; sum = 0L; for (i = 0; i < words; i++, s_addr += 2) { sum += AscReadLramWord(iop_base, s_addr); } return (sum); } STATIC void AscMemWordSetLram( PortAddr iop_base, ushort s_addr, ushort set_wval, rint words ) { rint i; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < words; i++) { AscSetChipLramData(iop_base, set_wval); } return; } STATIC int AscScsiInquiry( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, uchar * buf, int buf_len ) { if (AscScsiSetupCmdQ(asc_dvc, scsiq, buf, (ulong) buf_len) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } scsiq->cdb[0] = (uchar) SCSICMD_Inquiry; scsiq->cdb[1] = scsiq->r1.target_lun << 5; scsiq->cdb[2] = 0; scsiq->cdb[3] = 0; scsiq->cdb[4] = buf_len; scsiq->cdb[5] = 0; scsiq->r2.cdb_len = 6; return (0); } STATIC int AscScsiReadCapacity( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, uchar * info ) { if (AscScsiSetupCmdQ(asc_dvc, scsiq, info, 8L) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } scsiq->cdb[0] = (uchar) SCSICMD_ReadCapacity; scsiq->cdb[1] = scsiq->r1.target_lun << 5; scsiq->cdb[2] = 0; scsiq->cdb[3] = 0; scsiq->cdb[4] = 0; scsiq->cdb[5] = 0; scsiq->cdb[6] = 0; scsiq->cdb[7] = 0; scsiq->cdb[8] = 0; scsiq->cdb[9] = 0; scsiq->r2.cdb_len = 10; return (0); } STATIC int AscScsiTestUnitReady( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq ) { if (AscScsiSetupCmdQ(asc_dvc, scsiq, FNULLPTR, (ulong) 0L) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } scsiq->r1.cntl = (uchar) ASC_SCSIDIR_NODATA; scsiq->cdb[0] = (uchar) SCSICMD_TestUnitReady; scsiq->cdb[1] = scsiq->r1.target_lun << 5; scsiq->cdb[2] = 0; scsiq->cdb[3] = 0; scsiq->cdb[4] = 0; scsiq->cdb[5] = 0; scsiq->r2.cdb_len = 6; return (0); } STATIC int AscScsiStartStopUnit( REG ASC_DVC_VAR asc_ptr_type * asc_dvc, REG ASC_SCSI_REQ_Q * scsiq, uchar op_mode ) { if (AscScsiSetupCmdQ(asc_dvc, scsiq, FNULLPTR, (ulong) 0L) == ERR) { return (scsiq->r3.done_stat = QD_WITH_ERROR); } scsiq->r1.cntl = (uchar) ASC_SCSIDIR_NODATA; scsiq->cdb[0] = (uchar) SCSICMD_StartStopUnit; scsiq->cdb[1] = scsiq->r1.target_lun << 5; scsiq->cdb[2] = 0; scsiq->cdb[3] = 0; scsiq->cdb[4] = op_mode; scsiq->cdb[5] = 0; scsiq->r2.cdb_len = 6; return (0); } /* * --- Adv Library Functions */ /* a_qswap.h */ STATIC unsigned char _adv_mcode_buf[] ASC_INITDATA = { 0x9C, 0xF0, 0x80, 0x01, 0x00, 0xF0, 0x40, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x72, 0x01, 0xD2, 0x11, 0x00, 0x00, 0x70, 0x01, 0x30, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88, 0x0F, 0x22, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0xF7, 0x70, 0x01, 0x0C, 0x1C, 0x06, 0xF7, 0x02, 0x00, 0x00, 0xF2, 0xD2, 0x0A, 0x04, 0xF7, 0x70, 0x01, 0x06, 0xF7, 0x02, 0x00, 0x3E, 0x57, 0x3C, 0x56, 0x0C, 0x1C, 0x00, 0xFC, 0xA6, 0x00, 0x01, 0x58, 0xAA, 0x13, 0x20, 0xF0, 0x9A, 0x03, 0x06, 0xEC, 0xB9, 0x00, 0x0E, 0x47, 0x03, 0xE6, 0x10, 0x00, 0xCE, 0x45, 0x02, 0x13, 0x3E, 0x57, 0x06, 0xEA, 0xB9, 0x00, 0x47, 0x4B, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x01, 0x48, 0x4E, 0x12, 0x03, 0xF6, 0xC0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x41, 0x58, 0x03, 0xF6, 0xD0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x49, 0x44, 0x59, 0xF0, 0x0A, 0x02, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x44, 0x58, 0x00, 0xF2, 0xDE, 0x0D, 0x02, 0xCC, 0x4A, 0xE4, 0x01, 0x00, 0x55, 0xF0, 0x08, 0x03, 0x45, 0xF4, 0x02, 0x00, 0x83, 0x5A, 0x04, 0xCC, 0x01, 0x4A, 0x12, 0x12, 0x00, 0xF2, 0xDE, 0x0D, 0x00, 0xCD, 0x48, 0xE4, 0x01, 0x00, 0xE9, 0x13, 0x00, 0xF2, 0xC2, 0x0F, 0xFA, 0x10, 0x0E, 0x47, 0x03, 0xE6, 0x10, 0x00, 0xCE, 0x45, 0x02, 0x13, 0x3E, 0x57, 0xCE, 0x47, 0x97, 0x13, 0x04, 0xEC, 0xB4, 0x00, 0x00, 0xF2, 0xDE, 0x0D, 0x00, 0xCD, 0x48, 0xE4, 0x00, 0x00, 0x12, 0x12, 0x3E, 0x57, 0x06, 0xCC, 0x45, 0xF4, 0x02, 0x00, 0x83, 0x5A, 0x00, 0xCC, 0x00, 0xEA, 0xB4, 0x00, 0x92, 0x10, 0x00, 0xF0, 0x8C, 0x01, 0x43, 0xF0, 0x5C, 0x02, 0x44, 0xF0, 0x60, 0x02, 0x45, 0xF0, 0x64, 0x02, 0x46, 0xF0, 0x68, 0x02, 0x47, 0xF0, 0x6E, 0x02, 0x48, 0xF0, 0x9E, 0x02, 0xB9, 0x54, 0x62, 0x10, 0x00, 0x1C, 0x5A, 0x10, 0x02, 0x1C, 0x56, 0x10, 0x1E, 0x1C, 0x52, 0x10, 0x00, 0xF2, 0x1A, 0x11, 0x50, 0x10, 0x06, 0xFC, 0xA8, 0x00, 0x03, 0xF6, 0xBE, 0x00, 0x00, 0xF2, 0x4A, 0x0A, 0x8C, 0x10, 0x01, 0xF6, 0x01, 0x00, 0x01, 0xFA, 0xA8, 0x00, 0x00, 0xF2, 0x28, 0x0B, 0x06, 0x10, 0xB9, 0x54, 0x01, 0xFA, 0xA8, 0x00, 0x03, 0xF6, 0xBE, 0x00, 0x00, 0xF2, 0x54, 0x0A, 0x01, 0xFC, 0xA8, 0x00, 0x20, 0x10, 0x58, 0x1C, 0x00, 0xF2, 0x18, 0x0B, 0x5A, 0x1C, 0x01, 0xF6, 0x01, 0x00, 0x38, 0x54, 0x00, 0xFA, 0xA6, 0x00, 0x01, 0xFA, 0xA8, 0x00, 0x20, 0x1C, 0x00, 0xF0, 0x72, 0x01, 0x01, 0xF6, 0x01, 0x00, 0x38, 0x54, 0x00, 0xFA, 0xA6, 0x00, 0x01, 0xFA, 0xA8, 0x00, 0x20, 0x1C, 0x00, 0xF0, 0x80, 0x01, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x01, 0x48, 0x0A, 0x13, 0x00, 0xF2, 0x34, 0x10, 0x00, 0xF2, 0x50, 0x0F, 0x24, 0x10, 0x03, 0xF6, 0xC0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x02, 0xF6, 0xD0, 0x00, 0x02, 0x57, 0x03, 0x59, 0x01, 0xCC, 0x49, 0x44, 0x5B, 0xF0, 0x04, 0x03, 0x00, 0xF2, 0x98, 0x0F, 0x00, 0xF0, 0x80, 0x01, 0x00, 0xF2, 0x10, 0x10, 0x0C, 0x1C, 0x02, 0x4B, 0xBF, 0x57, 0x9E, 0x43, 0x77, 0x57, 0x07, 0x4B, 0x20, 0xF0, 0x9A, 0x03, 0x40, 0x1C, 0x1E, 0xF0, 0x30, 0x03, 0x26, 0xF0, 0x2C, 0x03, 0xA0, 0xF0, 0x1A, 0x03, 0x11, 0xF0, 0x9A, 0x03, 0x12, 0x10, 0x9F, 0xF0, 0x3E, 0x03, 0x46, 0x1C, 0x82, 0xE7, 0x05, 0x00, 0x9E, 0xE7, 0x11, 0x00, 0x00, 0xF0, 0x02, 0x0A, 0x0C, 0x1C, 0x48, 0x1C, 0x46, 0x1C, 0x38, 0x54, 0x00, 0xEC, 0xBA, 0x00, 0x08, 0x44, 0x00, 0xEA, 0xBA, 0x00, 0x03, 0xF6, 0xC0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x08, 0x44, 0x00, 0x4C, 0x82, 0xE7, 0x02, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x00, 0xF2, 0x0E, 0x11, 0x06, 0xF0, 0x74, 0x03, 0x1E, 0xF0, 0xF8, 0x09, 0x00, 0xF0, 0xFE, 0x09, 0x00, 0xFC, 0xBE, 0x00, 0x98, 0x57, 0x55, 0xF0, 0xA0, 0x04, 0x01, 0xE6, 0x0C, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x00, 0xF2, 0xB8, 0x11, 0x00, 0xF2, 0xC4, 0x11, 0x01, 0xF0, 0x7C, 0x02, 0x00, 0xF0, 0x8A, 0x02, 0x46, 0x1C, 0x0C, 0x1C, 0x67, 0x1B, 0xBF, 0x57, 0x77, 0x57, 0x02, 0x4B, 0x48, 0x1C, 0x32, 0x1C, 0x00, 0xF2, 0x8E, 0x0D, 0x30, 0x1C, 0x96, 0xF0, 0xB0, 0x03, 0xB1, 0xF0, 0xB4, 0x03, 0x1E, 0xF0, 0xF8, 0x09, 0x85, 0xF0, 0xFE, 0x09, 0x00, 0xFC, 0xBE, 0x00, 0x98, 0x57, 0x14, 0x12, 0x01, 0xE6, 0x0C, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x01, 0xF0, 0x7C, 0x02, 0x00, 0xF0, 0x8A, 0x02, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x01, 0x48, 0x55, 0xF0, 0x8C, 0x04, 0x03, 0x82, 0x03, 0xFC, 0xA0, 0x00, 0x9B, 0x57, 0x40, 0x12, 0x69, 0x18, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0x36, 0x04, 0x69, 0x08, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0xFE, 0x09, 0x68, 0x08, 0x4C, 0x44, 0x28, 0x12, 0x44, 0x48, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x45, 0x58, 0x00, 0xF2, 0xF2, 0x0D, 0x00, 0xCC, 0x01, 0x48, 0x55, 0xF0, 0x8C, 0x04, 0x4C, 0x44, 0xEF, 0x13, 0x00, 0xF2, 0xC2, 0x0F, 0x00, 0xF2, 0x10, 0x10, 0x08, 0x10, 0x68, 0x18, 0x45, 0x5A, 0x00, 0xF2, 0xF2, 0x0D, 0x04, 0x80, 0x18, 0xE4, 0x10, 0x00, 0x28, 0x12, 0x01, 0xE6, 0x06, 0x00, 0x04, 0x80, 0x18, 0xE4, 0x01, 0x00, 0x04, 0x12, 0x01, 0xE6, 0x0D, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x04, 0xE6, 0x02, 0x00, 0x9E, 0xE7, 0x15, 0x00, 0x01, 0xF0, 0x18, 0x0A, 0x00, 0xF0, 0xFE, 0x09, 0x69, 0x08, 0x05, 0x80, 0x48, 0xE4, 0x00, 0x00, 0x0C, 0x12, 0x00, 0xE6, 0x11, 0x00, 0x00, 0xEA, 0xB8, 0x00, 0x00, 0xF2, 0xB2, 0x10, 0x82, 0xE7, 0x02, 0x00, 0x1C, 0x90, 0x40, 0x5C, 0x00, 0x16, 0x01, 0xE6, 0x06, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x01, 0xF0, 0x80, 0x01, 0x1E, 0xF0, 0x80, 0x01, 0x00, 0xF0, 0x94, 0x04, 0x42, 0x5B, 0x06, 0xF7, 0x03, 0x00, 0x46, 0x59, 0xBF, 0x57, 0x77, 0x57, 0x01, 0xE6, 0x80, 0x00, 0x07, 0x80, 0x31, 0x44, 0x04, 0x80, 0x18, 0xE4, 0x20, 0x00, 0x5E, 0x13, 0x20, 0x80, 0x48, 0xE4, 0x03, 0x00, 0x56, 0x12, 0x04, 0x80, 0x18, 0xE4, 0x02, 0x00, 0x4C, 0x13, 0x00, 0xFC, 0xA2, 0x00, 0x98, 0x57, 0x55, 0xF0, 0x18, 0x05, 0x31, 0xE4, 0x40, 0x00, 0x00, 0xFC, 0xA0, 0x00, 0x98, 0x57, 0x36, 0x12, 0x4C, 0x1C, 0x00, 0xF2, 0x0E, 0x11, 0x89, 0x48, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0x2A, 0x05, 0x82, 0xE7, 0x06, 0x00, 0x1B, 0x80, 0x48, 0xE4, 0x22, 0x00, 0x5B, 0xF0, 0x08, 0x05, 0x48, 0xE4, 0x20, 0x00, 0x59, 0xF0, 0x0C, 0x05, 0x00, 0xE6, 0x20, 0x00, 0x09, 0x48, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0x2A, 0x05, 0x83, 0x80, 0x04, 0x10, 0x00, 0xF2, 0x9E, 0x0D, 0x00, 0xE6, 0x01, 0x00, 0x00, 0xEA, 0x26, 0x01, 0x01, 0xEA, 0x27, 0x01, 0x04, 0x80, 0x18, 0xE4, 0x10, 0x00, 0x36, 0x12, 0xB9, 0x54, 0x00, 0xF2, 0xF2, 0x0E, 0x01, 0xE6, 0x06, 0x00, 0x04, 0x80, 0x18, 0xE4, 0x01, 0x00, 0x04, 0x12, 0x01, 0xE6, 0x0D, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x00, 0xF2, 0xB8, 0x11, 0x00, 0xF2, 0xC4, 0x11, 0x04, 0xE6, 0x02, 0x00, 0x9E, 0xE7, 0x15, 0x00, 0x01, 0xF0, 0x18, 0x0A, 0x00, 0xF0, 0xFE, 0x09, 0x00, 0xFC, 0x20, 0x01, 0x98, 0x57, 0x34, 0x12, 0x00, 0xFC, 0x24, 0x01, 0x98, 0x57, 0x2C, 0x13, 0xB9, 0x54, 0x00, 0xF2, 0xF2, 0x0E, 0x86, 0xF0, 0xA4, 0x05, 0x03, 0xF6, 0x01, 0x00, 0x00, 0xF2, 0x88, 0x0E, 0x85, 0xF0, 0x9A, 0x05, 0x82, 0xE7, 0x03, 0x00, 0x00, 0xF2, 0x5C, 0x0B, 0x82, 0xE7, 0x02, 0x00, 0x00, 0xFC, 0x24, 0x01, 0xB0, 0x57, 0x00, 0xFA, 0x24, 0x01, 0x00, 0xFC, 0x9E, 0x00, 0x98, 0x57, 0x5A, 0x12, 0x00, 0xFC, 0xB6, 0x00, 0x98, 0x57, 0x52, 0x13, 0x03, 0xE6, 0x0C, 0x00, 0x00, 0xFC, 0x9C, 0x00, 0x98, 0x57, 0x04, 0x13, 0x03, 0xE6, 0x19, 0x00, 0x05, 0xE6, 0x08, 0x00, 0x00, 0xF6, 0x00, 0x01, 0x00, 0x57, 0x00, 0x57, 0x03, 0x58, 0x00, 0xDC, 0x18, 0xF4, 0x00, 0x80, 0x04, 0x13, 0x05, 0xE6, 0x0F, 0x00, 0xB9, 0x54, 0x00, 0xF2, 0xF2, 0x0E, 0x86, 0xF0, 0x06, 0x06, 0x00, 0xF2, 0xB6, 0x0E, 0x85, 0xF0, 0xFC, 0x05, 0x82, 0xE7, 0x03, 0x00, 0x00, 0xF2, 0x5C, 0x0B, 0x82, 0xE7, 0x02, 0x00, 0x00, 0xFC, 0xB6, 0x00, 0xB0, 0x57, 0x00, 0xFA, 0xB6, 0x00, 0x01, 0xF6, 0x01, 0x00, 0x00, 0xF2, 0xF2, 0x0E, 0x9C, 0x32, 0x4E, 0x1C, 0x32, 0x1C, 0x00, 0xF2, 0x8E, 0x0D, 0x30, 0x1C, 0x82, 0xE7, 0x04, 0x00, 0xB1, 0xF0, 0x1E, 0x06, 0x0A, 0xF0, 0x3A, 0x06, 0x05, 0xF0, 0xD2, 0x06, 0x06, 0xF0, 0xD8, 0x06, 0x09, 0xF0, 0x20, 0x09, 0x1E, 0xF0, 0xF8, 0x09, 0x00, 0xF0, 0xFE, 0x09, 0x04, 0x80, 0x18, 0xE4, 0x20, 0x00, 0x30, 0x12, 0x09, 0xE7, 0x03, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x21, 0x80, 0x18, 0xE4, 0xE0, 0x00, 0x09, 0x48, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x99, 0xA4, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x9A, 0x10, 0x04, 0x80, 0x18, 0xE4, 0x02, 0x00, 0x34, 0x12, 0x09, 0xE7, 0x1B, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x21, 0x80, 0x18, 0xE4, 0xE0, 0x00, 0x09, 0x48, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x01, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x09, 0xE7, 0x00, 0x00, 0x00, 0xF0, 0x08, 0x09, 0xBB, 0x55, 0x9A, 0x81, 0x03, 0xF7, 0x20, 0x00, 0x09, 0x6F, 0x93, 0x45, 0x55, 0xF0, 0xDE, 0x06, 0xB1, 0xF0, 0xBE, 0x06, 0x0A, 0xF0, 0xB6, 0x06, 0x09, 0xF0, 0x20, 0x09, 0x1E, 0xF0, 0xF8, 0x09, 0x00, 0xF0, 0xFE, 0x09, 0x00, 0xF2, 0x5C, 0x0B, 0x47, 0x10, 0x09, 0xE7, 0x08, 0x00, 0x41, 0x10, 0x05, 0x80, 0x48, 0xE4, 0x00, 0x00, 0x1E, 0x12, 0x00, 0xE6, 0x11, 0x00, 0x00, 0xEA, 0xB8, 0x00, 0x00, 0xF2, 0xB2, 0x10, 0x2C, 0x90, 0xAE, 0x90, 0x08, 0x50, 0x8A, 0x50, 0x38, 0x54, 0x1F, 0x40, 0x00, 0xF2, 0xB0, 0x0D, 0x08, 0x10, 0x08, 0x90, 0x8A, 0x90, 0x30, 0x50, 0xB2, 0x50, 0x9C, 0x32, 0x0C, 0x92, 0x8E, 0x92, 0x38, 0x54, 0x04, 0x80, 0x30, 0xE4, 0x08, 0x00, 0x04, 0x40, 0x0C, 0x1C, 0x00, 0xF6, 0x03, 0x00, 0xB1, 0xF0, 0x22, 0x07, 0x9E, 0xF0, 0x36, 0x07, 0x01, 0x48, 0x55, 0xF0, 0xF8, 0x09, 0x0C, 0x1C, 0x10, 0x44, 0xED, 0x10, 0x0B, 0xF0, 0x5A, 0x07, 0x0C, 0xF0, 0x5E, 0x07, 0x05, 0xF0, 0x4E, 0x07, 0x06, 0xF0, 0x54, 0x07, 0x09, 0xF0, 0x20, 0x09, 0x00, 0xF0, 0xFE, 0x09, 0x00, 0xF2, 0x5C, 0x0B, 0xCF, 0x10, 0x09, 0xE7, 0x08, 0x00, 0xC9, 0x10, 0x2E, 0x1C, 0x02, 0x10, 0x2C, 0x1C, 0xAA, 0xF0, 0x60, 0x07, 0xAC, 0xF0, 0x6E, 0x07, 0x40, 0x10, 0x34, 0x1C, 0xF3, 0x10, 0xAD, 0xF0, 0x78, 0x07, 0xC8, 0x10, 0x36, 0x1C, 0xE9, 0x10, 0x2B, 0xF0, 0x7E, 0x08, 0x6B, 0x18, 0x18, 0xF4, 0x00, 0xFE, 0x20, 0x12, 0x01, 0x58, 0xD2, 0xF0, 0x7E, 0x08, 0x76, 0x18, 0x18, 0xF4, 0x03, 0x00, 0xEC, 0x12, 0x00, 0xFC, 0x22, 0x01, 0x18, 0xF4, 0x01, 0x00, 0xE2, 0x12, 0x0B, 0xF0, 0x60, 0x07, 0x0C, 0xF0, 0x60, 0x07, 0x36, 0x1C, 0x34, 0x1C, 0xB7, 0x10, 0x38, 0x54, 0xB9, 0x54, 0x84, 0x80, 0x19, 0xE4, 0x20, 0x00, 0xB2, 0x13, 0x85, 0x80, 0x81, 0x48, 0x66, 0x12, 0x04, 0x80, 0x18, 0xE4, 0x08, 0x00, 0x58, 0x13, 0x1F, 0x80, 0x08, 0x44, 0xC8, 0x44, 0x9F, 0x12, 0x1F, 0x40, 0x34, 0x91, 0xB6, 0x91, 0x44, 0x55, 0xE5, 0x55, 0x02, 0xEC, 0xB8, 0x00, 0x02, 0x49, 0xBB, 0x55, 0x82, 0x81, 0xC0, 0x55, 0x48, 0xF4, 0x0F, 0x00, 0x5A, 0xF0, 0x16, 0x08, 0x4A, 0xE4, 0x17, 0x00, 0xD5, 0xF0, 0xF6, 0x07, 0x02, 0xF6, 0x0F, 0x00, 0x02, 0xF4, 0x02, 0x00, 0x02, 0xEA, 0xB8, 0x00, 0x04, 0x91, 0x86, 0x91, 0x02, 0x4B, 0x2C, 0x90, 0x08, 0x50, 0x2E, 0x90, 0x0A, 0x50, 0x2C, 0x51, 0xAE, 0x51, 0x00, 0xF2, 0xB2, 0x10, 0x38, 0x54, 0x00, 0xF2, 0xB0, 0x0D, 0x56, 0x10, 0x34, 0x91, 0xB6, 0x91, 0x0C, 0x10, 0x04, 0x80, 0x18, 0xE4, 0x08, 0x00, 0x41, 0x12, 0x0C, 0x91, 0x8E, 0x91, 0x04, 0x80, 0x18, 0xE4, 0xF7, 0x00, 0x04, 0x40, 0x30, 0x90, 0xB2, 0x90, 0x36, 0x10, 0x02, 0x80, 0x48, 0xE4, 0x10, 0x00, 0x31, 0x12, 0x82, 0xE7, 0x10, 0x00, 0x84, 0x80, 0x19, 0xE4, 0x20, 0x00, 0x10, 0x13, 0x0C, 0x90, 0x8E, 0x90, 0x5D, 0xF0, 0x74, 0x07, 0x0C, 0x58, 0x8D, 0x58, 0x00, 0xF0, 0x60, 0x07, 0x38, 0x54, 0xB9, 0x54, 0x19, 0x80, 0xF1, 0x10, 0x3A, 0x55, 0x19, 0x81, 0xBB, 0x55, 0x10, 0x90, 0x92, 0x90, 0x10, 0x58, 0x91, 0x58, 0x14, 0x59, 0x95, 0x59, 0x00, 0xF0, 0x60, 0x07, 0x04, 0x80, 0x18, 0xE4, 0x20, 0x00, 0x06, 0x12, 0x6C, 0x19, 0x19, 0x41, 0x7C, 0x10, 0x6C, 0x19, 0x0C, 0x51, 0xED, 0x19, 0x8E, 0x51, 0x6B, 0x18, 0x18, 0xF4, 0x00, 0xFF, 0x02, 0x13, 0x6A, 0x10, 0x01, 0x58, 0xD2, 0xF0, 0xBC, 0x08, 0x76, 0x18, 0x18, 0xF4, 0x03, 0x00, 0x0A, 0x12, 0x00, 0xFC, 0x22, 0x01, 0x18, 0xF4, 0x01, 0x00, 0x06, 0x13, 0x9E, 0xE7, 0x16, 0x00, 0x4C, 0x10, 0xD1, 0xF0, 0xC6, 0x08, 0x9E, 0xE7, 0x17, 0x00, 0x42, 0x10, 0xD0, 0xF0, 0xD0, 0x08, 0x9E, 0xE7, 0x19, 0x00, 0x38, 0x10, 0xCF, 0xF0, 0xDA, 0x08, 0x9E, 0xE7, 0x20, 0x00, 0x2E, 0x10, 0xCE, 0xF0, 0xE4, 0x08, 0x9E, 0xE7, 0x21, 0x00, 0x24, 0x10, 0xCD, 0xF0, 0xEE, 0x08, 0x9E, 0xE7, 0x22, 0x00, 0x1A, 0x10, 0xCC, 0xF0, 0x00, 0x09, 0x84, 0x80, 0x19, 0xE4, 0x04, 0x00, 0x06, 0x12, 0x9E, 0xE7, 0x12, 0x00, 0x08, 0x10, 0xCB, 0xF0, 0x08, 0x09, 0x9E, 0xE7, 0x24, 0x00, 0xB1, 0xF0, 0x08, 0x09, 0x05, 0xF0, 0x1A, 0x09, 0x09, 0xF0, 0x20, 0x09, 0x1E, 0xF0, 0xF8, 0x09, 0xE4, 0x10, 0x00, 0xF2, 0x5C, 0x0B, 0xE9, 0x10, 0x9C, 0x32, 0x82, 0xE7, 0x20, 0x00, 0x32, 0x1C, 0xE9, 0x09, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0xFE, 0x09, 0x69, 0x08, 0x01, 0xF0, 0x40, 0x09, 0x1E, 0xF0, 0xF8, 0x09, 0x00, 0xF0, 0x34, 0x09, 0x30, 0x44, 0x06, 0x12, 0x9E, 0xE7, 0x42, 0x00, 0xB8, 0x10, 0x04, 0xF6, 0x01, 0x00, 0xB3, 0x45, 0x74, 0x12, 0x04, 0x80, 0x18, 0xE4, 0x20, 0x00, 0x22, 0x13, 0x4B, 0xE4, 0x02, 0x00, 0x36, 0x12, 0x4B, 0xE4, 0x28, 0x00, 0xAC, 0x13, 0x00, 0xF2, 0xB8, 0x11, 0x00, 0xF2, 0xC4, 0x11, 0x03, 0xF6, 0xD0, 0x00, 0xFA, 0x14, 0x82, 0xE7, 0x01, 0x00, 0x00, 0xF0, 0x80, 0x01, 0x9E, 0xE7, 0x44, 0x00, 0x4B, 0xE4, 0x02, 0x00, 0x06, 0x12, 0x03, 0xE6, 0x02, 0x00, 0x76, 0x10, 0x00, 0xF2, 0x9E, 0x0D, 0x03, 0xE6, 0x02, 0x00, 0x6C, 0x10, 0x00, 0xF2, 0x9E, 0x0D, 0x19, 0x82, 0x34, 0x46, 0x0A, 0x13, 0x03, 0xE6, 0x02, 0x00, 0x9E, 0xE7, 0x43, 0x00, 0x68, 0x10, 0x04, 0x80, 0x30, 0xE4, 0x20, 0x00, 0x04, 0x40, 0x00, 0xF2, 0xB8, 0x11, 0x00, 0xF2, 0xC4, 0x11, 0x82, 0xE7, 0x01, 0x00, 0x06, 0xF7, 0x02, 0x00, 0x00, 0xF0, 0x08, 0x03, 0x04, 0x80, 0x18, 0xE4, 0x20, 0x00, 0x06, 0x12, 0x03, 0xE6, 0x02, 0x00, 0x3E, 0x10, 0x04, 0x80, 0x18, 0xE4, 0x02, 0x00, 0x3A, 0x12, 0x04, 0x80, 0x18, 0xE4, 0xFD, 0x00, 0x04, 0x40, 0x1C, 0x1C, 0x9D, 0xF0, 0xE6, 0x09, 0x1C, 0x1C, 0x9D, 0xF0, 0xEC, 0x09, 0xC1, 0x10, 0x9E, 0xE7, 0x13, 0x00, 0x0A, 0x10, 0x9E, 0xE7, 0x41, 0x00, 0x04, 0x10, 0x9E, 0xE7, 0x24, 0x00, 0x00, 0xFC, 0xBE, 0x00, 0x98, 0x57, 0xD5, 0xF0, 0x8A, 0x02, 0x04, 0xE6, 0x04, 0x00, 0x06, 0x10, 0x04, 0xE6, 0x04, 0x00, 0x9D, 0x41, 0x1C, 0x42, 0x9F, 0xE7, 0x00, 0x00, 0x06, 0xF7, 0x02, 0x00, 0x03, 0xF6, 0xE0, 0x00, 0x3C, 0x14, 0x44, 0x58, 0x45, 0x58, 0x00, 0xF2, 0xF2, 0x0D, 0x00, 0xF2, 0x7A, 0x10, 0x00, 0xF2, 0xC2, 0x0F, 0x3C, 0x14, 0x1E, 0x1C, 0x00, 0xF0, 0x80, 0x01, 0x12, 0x1C, 0x22, 0x1C, 0xD2, 0x14, 0x00, 0xF0, 0x72, 0x01, 0x83, 0x59, 0x03, 0xDC, 0x73, 0x57, 0x80, 0x5D, 0x00, 0x16, 0x83, 0x59, 0x03, 0xDC, 0x38, 0x54, 0x70, 0x57, 0x33, 0x54, 0x3B, 0x54, 0x80, 0x5D, 0x00, 0x16, 0x03, 0x57, 0x83, 0x59, 0x38, 0x54, 0x00, 0xCC, 0x00, 0x16, 0x03, 0x57, 0x83, 0x59, 0x00, 0x4C, 0x00, 0x16, 0x02, 0x80, 0x48, 0xE4, 0x01, 0x00, 0x0E, 0x12, 0x48, 0xE4, 0x05, 0x00, 0x08, 0x12, 0x00, 0xF2, 0xB8, 0x11, 0x00, 0xF2, 0xC4, 0x11, 0xC1, 0x5A, 0x3A, 0x55, 0x02, 0xEC, 0xB5, 0x00, 0x45, 0x59, 0x00, 0xF2, 0xF2, 0x0D, 0x83, 0x58, 0x30, 0xE7, 0x00, 0x00, 0x10, 0x4D, 0x30, 0xE7, 0x40, 0x00, 0x10, 0x4F, 0x38, 0x90, 0xBA, 0x90, 0x10, 0x5C, 0x80, 0x5C, 0x83, 0x5A, 0x10, 0x4E, 0x04, 0xEA, 0xB5, 0x00, 0x43, 0x5B, 0x03, 0xF4, 0xE0, 0x00, 0x83, 0x59, 0x04, 0xCC, 0x01, 0x4A, 0x0A, 0x12, 0x45, 0x5A, 0x00, 0xF2, 0xF2, 0x0D, 0x00, 0xF2, 0x34, 0x10, 0x00, 0x16, 0x08, 0x1C, 0x00, 0xFC, 0xAC, 0x00, 0x06, 0x58, 0x67, 0x18, 0x18, 0xF4, 0x8F, 0xE1, 0x01, 0xFC, 0xAE, 0x00, 0x19, 0xF4, 0x70, 0x1E, 0xB0, 0x54, 0x07, 0x58, 0x00, 0xFC, 0xB0, 0x00, 0x08, 0x58, 0x00, 0xFC, 0xB2, 0x00, 0x09, 0x58, 0x0A, 0x1C, 0x00, 0xE6, 0x0F, 0x00, 0x00, 0xEA, 0xB9, 0x00, 0x38, 0x54, 0x00, 0xFA, 0x24, 0x01, 0x00, 0xFA, 0xB6, 0x00, 0x18, 0x1C, 0x14, 0x1C, 0x10, 0x1C, 0x32, 0x1C, 0x12, 0x1C, 0x00, 0x16, 0x3E, 0x57, 0x0C, 0x14, 0x0E, 0x47, 0x07, 0xE6, 0x10, 0x00, 0xCE, 0x47, 0xF5, 0x13, 0x00, 0x16, 0x00, 0xF2, 0x9E, 0x0D, 0x02, 0x4B, 0x03, 0xF6, 0xE0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x01, 0x48, 0x20, 0x12, 0x44, 0x58, 0x45, 0x58, 0x9E, 0xE7, 0x15, 0x00, 0x9C, 0xE7, 0x04, 0x00, 0x00, 0xF2, 0xF2, 0x0D, 0x00, 0xF2, 0x7A, 0x10, 0x00, 0xF2, 0xC2, 0x0F, 0x00, 0xF2, 0x76, 0x0A, 0x1E, 0x1C, 0xD5, 0x10, 0x00, 0x16, 0x69, 0x08, 0x48, 0xE4, 0x04, 0x00, 0x64, 0x12, 0x48, 0xE4, 0x02, 0x00, 0x20, 0x12, 0x48, 0xE4, 0x03, 0x00, 0x1A, 0x12, 0x48, 0xE4, 0x08, 0x00, 0x14, 0x12, 0x48, 0xE4, 0x01, 0x00, 0xF0, 0x12, 0x48, 0xE4, 0x07, 0x00, 0x12, 0x12, 0x01, 0xE6, 0x07, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x05, 0xF0, 0x5C, 0x0B, 0x00, 0x16, 0x00, 0xE6, 0x01, 0x00, 0x00, 0xEA, 0x99, 0x00, 0x02, 0x80, 0x48, 0xE4, 0x03, 0x00, 0xB9, 0x12, 0x48, 0xE4, 0x06, 0x00, 0xB3, 0x12, 0x01, 0xE6, 0x06, 0x00, 0x00, 0xF2, 0x4A, 0x0D, 0x00, 0xF2, 0x0E, 0x11, 0x04, 0xE6, 0x02, 0x00, 0x9E, 0xE7, 0x15, 0x00, 0x01, 0xF0, 0x18, 0x0A, 0x00, 0xF0, 0xFE, 0x09, 0x00, 0x16, 0x02, 0x80, 0x48, 0xE4, 0x10, 0x00, 0x1C, 0x12, 0x82, 0xE7, 0x08, 0x00, 0x3C, 0x56, 0x03, 0x82, 0x00, 0xF2, 0xDE, 0x0D, 0x30, 0xE7, 0x08, 0x00, 0x04, 0xF7, 0x70, 0x01, 0x06, 0xF7, 0x02, 0x00, 0x00, 0xF0, 0x80, 0x01, 0x6C, 0x19, 0xED, 0x19, 0x5D, 0xF0, 0xD0, 0x0B, 0x44, 0x55, 0xE5, 0x55, 0x59, 0xF0, 0x4E, 0x0C, 0x04, 0x55, 0xA5, 0x55, 0x1F, 0x80, 0x01, 0xEC, 0xB8, 0x00, 0x82, 0x48, 0x82, 0x80, 0x49, 0x44, 0x2E, 0x13, 0x01, 0xEC, 0xB8, 0x00, 0x41, 0xE4, 0x02, 0x00, 0x01, 0xEA, 0xB8, 0x00, 0x49, 0xE4, 0x11, 0x00, 0x59, 0xF0, 0x2A, 0x0C, 0x01, 0xE6, 0x17, 0x00, 0x01, 0xEA, 0xB8, 0x00, 0x02, 0x4B, 0x88, 0x90, 0xAC, 0x50, 0x8A, 0x90, 0xAE, 0x50, 0x01, 0xEC, 0xB8, 0x00, 0x82, 0x48, 0x82, 0x80, 0x10, 0x44, 0x02, 0x4B, 0x1F, 0x40, 0xC0, 0x44, 0x00, 0xF2, 0xB0, 0x0D, 0x04, 0x55, 0xA5, 0x55, 0x9F, 0x10, 0x0C, 0x51, 0x8E, 0x51, 0x30, 0x90, 0xB2, 0x90, 0x00, 0x56, 0xA1, 0x56, 0x30, 0x50, 0xB2, 0x50, 0x34, 0x90, 0xB6, 0x90, 0x40, 0x56, 0xE1, 0x56, 0x34, 0x50, 0xB6, 0x50, 0x65, 0x10, 0xB1, 0xF0, 0x6C, 0x0C, 0x85, 0xF0, 0xC6, 0x0B, 0xE9, 0x09, 0x4B, 0xE4, 0x03, 0x00, 0x78, 0x12, 0x4B, 0xE4, 0x02, 0x00, 0x01, 0x13, 0xB1, 0xF0, 0x82, 0x0C, 0x85, 0xF0, 0xC6, 0x0B, 0x69, 0x08, 0x48, 0xE4, 0x03, 0x00, 0xD5, 0xF0, 0x82, 0x0B, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0xC6, 0x0B, 0xE8, 0x09, 0x3C, 0x56, 0x00, 0xFC, 0x20, 0x01, 0x98, 0x57, 0x02, 0x13, 0xBB, 0x45, 0x4B, 0xE4, 0x00, 0x00, 0x08, 0x12, 0x03, 0xE6, 0x01, 0x00, 0x04, 0xF6, 0x00, 0x80, 0xA8, 0x14, 0xD2, 0x14, 0x30, 0x1C, 0x02, 0x80, 0x48, 0xE4, 0x03, 0x00, 0x10, 0x13, 0x00, 0xFC, 0xB6, 0x00, 0x98, 0x57, 0x02, 0x13, 0x4C, 0x1C, 0x3E, 0x1C, 0x00, 0xF0, 0x8A, 0x0B, 0x00, 0xFC, 0x24, 0x01, 0xB0, 0x57, 0x00, 0xFA, 0x24, 0x01, 0x4C, 0x1C, 0x3E, 0x1C, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0x8A, 0x0B, 0x00, 0xF2, 0x88, 0x0E, 0x00, 0xF0, 0x8A, 0x0B, 0xB1, 0xF0, 0xF4, 0x0C, 0x85, 0xF0, 0x82, 0x0B, 0x69, 0x08, 0x48, 0xE4, 0x01, 0x00, 0xD5, 0xF0, 0x82, 0x0B, 0xFC, 0x14, 0x42, 0x58, 0x6C, 0x14, 0x80, 0x14, 0x30, 0x1C, 0x4A, 0xF4, 0x02, 0x00, 0x55, 0xF0, 0x82, 0x0B, 0x4A, 0xF4, 0x01, 0x00, 0x0E, 0x12, 0x02, 0x80, 0x48, 0xE4, 0x03, 0x00, 0x06, 0x13, 0x3E, 0x1C, 0x00, 0xF0, 0x8A, 0x0B, 0x00, 0xFC, 0xB6, 0x00, 0xB0, 0x57, 0x00, 0xFA, 0xB6, 0x00, 0x4C, 0x1C, 0x3E, 0x1C, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0x8A, 0x0B, 0x00, 0xF2, 0xB6, 0x0E, 0x00, 0xF0, 0x8A, 0x0B, 0x4C, 0x1C, 0xB1, 0xF0, 0x4C, 0x0D, 0x85, 0xF0, 0x58, 0x0D, 0x69, 0x08, 0xF3, 0x10, 0x86, 0xF0, 0x60, 0x0D, 0x4E, 0x1C, 0x89, 0x48, 0x00, 0x16, 0x00, 0xF6, 0x00, 0x01, 0x00, 0x57, 0x00, 0x57, 0x03, 0x58, 0x00, 0xDC, 0x18, 0xF4, 0xFF, 0x7F, 0x30, 0x56, 0x00, 0x5C, 0x00, 0x16, 0x00, 0xF6, 0x00, 0x01, 0x00, 0x57, 0x00, 0x57, 0x03, 0x58, 0x00, 0xDC, 0x18, 0xF4, 0x00, 0x80, 0x30, 0x56, 0x00, 0x5C, 0x00, 0x16, 0x00, 0xF6, 0x00, 0x01, 0x00, 0x57, 0x00, 0x57, 0x03, 0x58, 0x00, 0xDC, 0x0B, 0x58, 0x00, 0x16, 0x03, 0xF6, 0x24, 0x01, 0x00, 0xF2, 0x54, 0x0A, 0x03, 0xF6, 0xB6, 0x00, 0x00, 0xF2, 0x54, 0x0A, 0x00, 0x16, 0x02, 0xEC, 0xB8, 0x00, 0x02, 0x49, 0x18, 0xF4, 0xFF, 0x00, 0x00, 0x54, 0x00, 0x54, 0x00, 0x54, 0x00, 0xF4, 0x08, 0x00, 0xE1, 0x18, 0x80, 0x54, 0x03, 0x58, 0x00, 0xDD, 0x01, 0xDD, 0x02, 0xDD, 0x03, 0xDC, 0x02, 0x4B, 0x30, 0x50, 0xB2, 0x50, 0x34, 0x51, 0xB6, 0x51, 0x00, 0x16, 0x45, 0x5A, 0x1D, 0xF4, 0xFF, 0x00, 0x85, 0x56, 0x85, 0x56, 0x85, 0x56, 0x05, 0xF4, 0x02, 0x12, 0x83, 0x5A, 0x00, 0x16, 0x1D, 0xF4, 0xFF, 0x00, 0x85, 0x56, 0x85, 0x56, 0x85, 0x56, 0x05, 0xF4, 0x00, 0x12, 0x83, 0x5A, 0x00, 0x16, 0x38, 0x54, 0xBB, 0x55, 0x3C, 0x56, 0xBD, 0x56, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0x7E, 0x0E, 0xE9, 0x09, 0xC1, 0x59, 0x00, 0xF2, 0x0E, 0x11, 0x85, 0xF0, 0x7E, 0x0E, 0xE8, 0x0A, 0x83, 0x55, 0x83, 0x55, 0x4B, 0xF4, 0x90, 0x01, 0x5C, 0xF0, 0x32, 0x0E, 0xBD, 0x56, 0x40, 0x10, 0x4B, 0xF4, 0x30, 0x00, 0x59, 0xF0, 0x44, 0x0E, 0x01, 0xF6, 0x0C, 0x00, 0x00, 0xF6, 0x01, 0x00, 0x2E, 0x10, 0x02, 0xFC, 0x9C, 0x00, 0x9A, 0x57, 0x14, 0x13, 0x4B, 0xF4, 0x64, 0x00, 0x59, 0xF0, 0x60, 0x0E, 0x03, 0xF6, 0x64, 0x00, 0x01, 0xF6, 0x19, 0x00, 0x00, 0xF6, 0x01, 0x00, 0x43, 0xF4, 0x33, 0x00, 0x56, 0xF0, 0x72, 0x0E, 0x04, 0xF4, 0x00, 0x01, 0x43, 0xF4, 0x19, 0x00, 0xF3, 0x10, 0xB4, 0x56, 0xC3, 0x58, 0x02, 0xFC, 0x9E, 0x00, 0x9A, 0x57, 0x08, 0x13, 0x3C, 0x56, 0x00, 0xF6, 0x02, 0x00, 0x00, 0x16, 0x00, 0x16, 0x09, 0xE7, 0x01, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xB4, 0x0E, 0x09, 0xE7, 0x02, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xB4, 0x0E, 0x09, 0xE7, 0x03, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xB4, 0x0E, 0x4E, 0x1C, 0x89, 0x49, 0x00, 0xF2, 0x0E, 0x11, 0x00, 0x16, 0x09, 0xE7, 0x01, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xEE, 0x0E, 0x09, 0xE7, 0x03, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xEE, 0x0E, 0x09, 0xE7, 0x01, 0x00, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xEE, 0x0E, 0x89, 0x49, 0x00, 0xF2, 0x0E, 0x11, 0x86, 0xF0, 0xEE, 0x0E, 0x4E, 0x1C, 0x89, 0x4A, 0x00, 0xF2, 0x0E, 0x11, 0x00, 0x16, 0x3C, 0x56, 0x00, 0x16, 0x00, 0xEC, 0x26, 0x01, 0x48, 0xE4, 0x01, 0x00, 0x1E, 0x13, 0x38, 0x44, 0x00, 0xEA, 0x26, 0x01, 0x49, 0xF4, 0x00, 0x00, 0x04, 0x12, 0x4E, 0x1C, 0x02, 0x10, 0x4C, 0x1C, 0x01, 0xEC, 0x27, 0x01, 0x89, 0x48, 0x00, 0xF2, 0x0E, 0x11, 0x02, 0x14, 0x00, 0x16, 0x85, 0xF0, 0x4E, 0x0F, 0x38, 0x54, 0x00, 0xEA, 0x99, 0x00, 0x00, 0xF2, 0x5C, 0x0B, 0x02, 0x80, 0x48, 0xE4, 0x06, 0x00, 0x1C, 0x13, 0x00, 0xEC, 0x99, 0x00, 0x48, 0xE4, 0x01, 0x00, 0x0A, 0x12, 0x04, 0x80, 0x30, 0xE4, 0x01, 0x00, 0x04, 0x40, 0x08, 0x10, 0x04, 0x80, 0x18, 0xE4, 0xFE, 0x00, 0x04, 0x40, 0x00, 0x16, 0x02, 0xF6, 0xE0, 0x00, 0x02, 0x57, 0x03, 0x59, 0x01, 0xCC, 0x81, 0x48, 0x22, 0x12, 0x00, 0x4E, 0x83, 0x5A, 0x90, 0x4C, 0x20, 0xE7, 0x00, 0x00, 0xC3, 0x58, 0x1B, 0xF4, 0xFF, 0x00, 0x83, 0x55, 0x83, 0x55, 0x83, 0x55, 0x03, 0xF4, 0x00, 0x12, 0x8B, 0x55, 0x83, 0x59, 0x00, 0x4E, 0x00, 0x16, 0x00, 0x4E, 0x02, 0xF6, 0xF0, 0x00, 0x02, 0x57, 0x03, 0x59, 0x00, 0x4E, 0x83, 0x5A, 0x30, 0xE7, 0x00, 0x00, 0x20, 0xE7, 0x00, 0x00, 0x00, 0x16, 0x02, 0xF6, 0xF0, 0x00, 0x02, 0x57, 0x03, 0x59, 0x01, 0xCC, 0x00, 0x4E, 0x83, 0x5A, 0x30, 0xE7, 0x00, 0x00, 0x80, 0x4C, 0xC3, 0x58, 0x1B, 0xF4, 0xFF, 0x00, 0x83, 0x55, 0x83, 0x55, 0x83, 0x55, 0x03, 0xF4, 0x00, 0x12, 0x83, 0x59, 0x00, 0x4E, 0x00, 0x16, 0x03, 0xF6, 0xE0, 0x00, 0x03, 0x57, 0x83, 0x59, 0x3A, 0x55, 0x02, 0xCC, 0x45, 0x5A, 0x00, 0xF2, 0xF2, 0x0D, 0xC0, 0x5A, 0x40, 0x5C, 0x38, 0x54, 0x00, 0xCD, 0x01, 0xCC, 0x4A, 0x46, 0x0A, 0x13, 0x83, 0x59, 0x00, 0x4C, 0x01, 0x48, 0x16, 0x13, 0x0C, 0x10, 0xC5, 0x58, 0x00, 0xF2, 0xF2, 0x0D, 0x00, 0x4C, 0x01, 0x48, 0x08, 0x13, 0x05, 0xF6, 0xF0, 0x00, 0x05, 0x57, 0x08, 0x10, 0x45, 0x58, 0x00, 0xF2, 0xF2, 0x0D, 0x8D, 0x56, 0x83, 0x5A, 0x80, 0x4C, 0x05, 0x17, 0x00, 0x16, 0x02, 0x4B, 0x06, 0xF7, 0x04, 0x00, 0x62, 0x0B, 0x03, 0x82, 0x00, 0xF2, 0xDE, 0x0D, 0x02, 0x80, 0x00, 0x4C, 0x45, 0xF4, 0x02, 0x00, 0x52, 0x14, 0x06, 0xF7, 0x02, 0x00, 0x06, 0x14, 0x00, 0xF2, 0x50, 0x0F, 0x00, 0x16, 0x02, 0x4B, 0x01, 0xF6, 0xFF, 0x00, 0x38, 0x1C, 0x05, 0xF4, 0x04, 0x00, 0x83, 0x5A, 0x18, 0xDF, 0x19, 0xDF, 0x1D, 0xF7, 0x3C, 0x00, 0xB8, 0xF0, 0x4A, 0x10, 0x9C, 0x14, 0x01, 0x48, 0x1C, 0x13, 0x0E, 0xF7, 0x3C, 0x00, 0x03, 0xF7, 0x04, 0x00, 0xAF, 0x19, 0x03, 0x42, 0x45, 0xF4, 0x02, 0x00, 0x83, 0x5A, 0x02, 0xCC, 0x02, 0x41, 0x45, 0xF4, 0x02, 0x00, 0x00, 0x16, 0x91, 0x44, 0xD5, 0xF0, 0x3A, 0x10, 0x00, 0xF0, 0x9E, 0x02, 0x01, 0xF6, 0xFF, 0x00, 0x38, 0x1C, 0x05, 0xF4, 0x04, 0x00, 0x83, 0x5A, 0x18, 0xDF, 0x19, 0xDF, 0x0E, 0xF7, 0x3C, 0x00, 0x03, 0xF7, 0x04, 0x00, 0x0F, 0x79, 0x1C, 0xF7, 0x3C, 0x00, 0xB8, 0xF0, 0x98, 0x10, 0x4E, 0x14, 0x01, 0x48, 0x06, 0x13, 0x45, 0xF4, 0x04, 0x00, 0x00, 0x16, 0x91, 0x44, 0xD5, 0xF0, 0x7E, 0x10, 0x00, 0xF0, 0x9E, 0x02, 0x02, 0xF6, 0xFF, 0x00, 0x38, 0x1C, 0x2C, 0xBC, 0xAE, 0xBC, 0xE2, 0x08, 0x00, 0xEC, 0xB8, 0x00, 0x02, 0x48, 0x1D, 0xF7, 0x80, 0x00, 0xB8, 0xF0, 0xC8, 0x10, 0x1E, 0x14, 0x01, 0x48, 0x0E, 0x13, 0x0E, 0xF7, 0x80, 0x00, 0x38, 0x54, 0x03, 0x58, 0xAF, 0x19, 0x82, 0x48, 0x00, 0x16, 0x82, 0x48, 0x12, 0x45, 0xD5, 0xF0, 0xB6, 0x10, 0x00, 0xF0, 0x9E, 0x02, 0x39, 0xF0, 0xF4, 0x10, 0x38, 0x44, 0x00, 0x16, 0x7E, 0x18, 0x18, 0xF4, 0x03, 0x00, 0x04, 0x13, 0x61, 0x18, 0x00, 0x16, 0x38, 0x1C, 0x00, 0xFC, 0x22, 0x01, 0x18, 0xF4, 0x01, 0x00, 0xF1, 0x12, 0xE3, 0x10, 0x30, 0x44, 0x30, 0x44, 0x30, 0x44, 0xB1, 0xF0, 0x14, 0x11, 0x00, 0x16, 0x3E, 0x57, 0x03, 0xF6, 0xE0, 0x00, 0x03, 0x57, 0x83, 0x59, 0x04, 0xCC, 0x01, 0x4A, 0x6A, 0x12, 0x45, 0x5A, 0x00, 0xF2, 0xF2, 0x0D, 0x02, 0x4B, 0x70, 0x14, 0x34, 0x13, 0x02, 0x80, 0x48, 0xE4, 0x08, 0x00, 0x18, 0x12, 0x9C, 0xE7, 0x02, 0x00, 0x9E, 0xE7, 0x15, 0x00, 0x00, 0xF2, 0xC2, 0x0F, 0x00, 0xF2, 0x76, 0x0A, 0x1E, 0x1C, 0x01, 0xF6, 0x01, 0x00, 0x00, 0x16, 0x30, 0xE4, 0x10, 0x00, 0x04, 0x40, 0x00, 0xF2, 0xDE, 0x0D, 0x20, 0xE7, 0x01, 0x00, 0x01, 0xF6, 0x01, 0x00, 0x00, 0x16, 0x04, 0xDC, 0x01, 0x4A, 0x24, 0x12, 0x45, 0x5A, 0x00, 0xF2, 0xF2, 0x0D, 0x43, 0x5B, 0x06, 0xEC, 0x98, 0x00, 0x00, 0xF2, 0x34, 0x10, 0xC6, 0x59, 0x20, 0x14, 0x0A, 0x13, 0x00, 0xF2, 0xC2, 0x0F, 0x00, 0xF2, 0x10, 0x10, 0xA7, 0x10, 0x83, 0x5A, 0xD7, 0x10, 0x0E, 0x47, 0x07, 0xE6, 0x10, 0x00, 0xCE, 0x47, 0x5A, 0xF0, 0x1C, 0x11, 0xB9, 0x54, 0x00, 0x16, 0x14, 0x90, 0x96, 0x90, 0x02, 0xFC, 0xA8, 0x00, 0x03, 0xFC, 0xAA, 0x00, 0x48, 0x55, 0x02, 0x13, 0xC9, 0x55, 0x00, 0x16, 0x00, 0xEC, 0xBA, 0x00, 0x10, 0x44, 0x00, 0xEA, 0xBA, 0x00, 0x00, 0x16, 0x03, 0xF6, 0xC0, 0x00, 0x00, 0xF2, 0x64, 0x0A, 0x10, 0x44, 0x00, 0x4C, 0x00, 0x16 }; unsigned short _adv_mcode_size ASC_INITDATA = sizeof(_adv_mcode_buf); /* 0x11D2 */ unsigned long _adv_mcode_chksum ASC_INITDATA = 0x0347D07AUL; /* a_init.c */ /* * EEPROM Configuration. * * All drivers should use this structure to set the default EEPROM * configuration. The BIOS now uses this structure when it is built. * Additional structure information can be found in a_condor.h where * the structure is defined. */ STATIC ADVEEP_CONFIG Default_EEPROM_Config ASC_INITDATA = { ADV_EEPROM_BIOS_ENABLE, /* cfg_msw */ 0x0000, /* cfg_lsw */ 0xFFFF, /* disc_enable */ 0xFFFF, /* wdtr_able */ 0xFFFF, /* sdtr_able */ 0xFFFF, /* start_motor */ 0xFFFF, /* tagqng_able */ 0xFFFF, /* bios_scan */ 0, /* scam_tolerant */ 7, /* adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* termination */ 0, /* reserved1 */ 0xFFEF, /* bios_ctrl */ 0xFFFF, /* ultra_able */ 0, /* reserved2 */ ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* dvc_cntl */ 0, /* bug_fix */ 0, /* serial_number_word1 */ 0, /* serial_number_word2 */ 0, /* serial_number_word3 */ 0, /* check_sum */ { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* oem_name[16] */ 0, /* dvc_err_code */ 0, /* adv_err_code */ 0, /* adv_err_addr */ 0, /* saved_dvc_err_code */ 0, /* saved_adv_err_code */ 0, /* saved_adv_err_addr */ 0 /* num_of_err */ }; /* * Initialize the ADV_DVC_VAR structure. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. */ ASC_INITFUNC( int AdvInitGetConfig(ADV_DVC_VAR *asc_dvc) ) { ushort warn_code; AdvPortAddr iop_base; uchar pci_cmd_reg; int status; warn_code = 0; asc_dvc->err_code = 0; iop_base = asc_dvc->iop_base; /* * PCI Command Register */ if (((pci_cmd_reg = DvcAdvReadPCIConfigByte(asc_dvc, AscPCIConfigCommandRegister)) & AscPCICmdRegBits_BusMastering) != AscPCICmdRegBits_BusMastering) { pci_cmd_reg |= AscPCICmdRegBits_BusMastering; DvcAdvWritePCIConfigByte(asc_dvc, AscPCIConfigCommandRegister, pci_cmd_reg); if (((DvcAdvReadPCIConfigByte(asc_dvc, AscPCIConfigCommandRegister)) & AscPCICmdRegBits_BusMastering) != AscPCICmdRegBits_BusMastering) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } } /* * PCI Latency Timer * * If the "latency timer" register is 0x20 or above, then we don't need * to change it. Otherwise, set it to 0x20 (i.e. set it to 0x20 if it * comes up less than 0x20). */ if (DvcAdvReadPCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer) < 0x20) { DvcAdvWritePCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer, 0x20); if (DvcAdvReadPCIConfigByte(asc_dvc, AscPCIConfigLatencyTimer) < 0x20) { warn_code |= ASC_WARN_SET_PCI_CONFIG_SPACE; } } /* * Save the state of the PCI Configuration Command Register * "Parity Error Response Control" Bit. If the bit is clear (0), * in AdvInitAsc3550Driver() tell the microcode to ignore DMA * parity errors. */ asc_dvc->cfg->control_flag = 0; if (((DvcAdvReadPCIConfigByte(asc_dvc, AscPCIConfigCommandRegister) & AscPCICmdRegBits_ParErrRespCtrl)) == 0) { asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; } asc_dvc->cur_host_qng = 0; asc_dvc->cfg->lib_version = (ADV_LIB_VERSION_MAJOR << 8) | ADV_LIB_VERSION_MINOR; asc_dvc->cfg->chip_version = AdvGetChipVersion(iop_base, asc_dvc->bus_type); /* * Reset the chip to start and allow register writes. */ if (AdvFindSignature(iop_base) == 0) { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; return ADV_ERROR; } else { AdvResetChip(asc_dvc); if ((status = AdvInitFromEEP(asc_dvc)) == ADV_ERROR) { return ADV_ERROR; } warn_code |= status; /* * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus * Resets should be performed. */ if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { AdvResetSCSIBus(asc_dvc); } } return warn_code; } /* * Initialize the ASC3550. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. */ ASC_INITFUNC( int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) ) { AdvPortAddr iop_base; ushort warn_code; ulong sum; int begin_addr; int end_addr; int code_sum; int word; int rql_addr; /* RISC Queue List address */ int i; ushort scsi_cfg1; uchar biosmem[ASC_MC_BIOSLEN]; /* BIOS RISC Memory 0x40-0x8F. */ /* If there is already an error, don't continue. */ if (asc_dvc->err_code != 0) { return ADV_ERROR; } warn_code = 0; iop_base = asc_dvc->iop_base; /* * Save the RISC memory BIOS region before writing the microcode. * The BIOS may already be loaded and using its RISC LRAM region * so its region must be saved and restored. * * Note: This code makes the assumption, which is currently true, * that a chip reset does not clear RISC LRAM. */ for (i = 0; i < ASC_MC_BIOSLEN; i++) { AdvReadByteLram(iop_base, ASC_MC_BIOSMEM + i, biosmem[i]); } /* * Load the Microcode * * Write the microcode image to RISC memory starting at address 0. */ AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); for (word = 0; word < _adv_mcode_size; word += 2) { AdvWriteWordAutoIncLram(iop_base, *((ushort *) (&_adv_mcode_buf[word]))); } /* * Clear the rest of Condor's Internal RAM (8KB). */ for (; word < ADV_CONDOR_MEMSIZE; word += 2) { AdvWriteWordAutoIncLram(iop_base, 0); } /* * Verify the microcode checksum. */ sum = 0; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); for (word = 0; word < _adv_mcode_size; word += 2) { sum += AdvReadWordAutoIncLram(iop_base); } if (sum != _adv_mcode_chksum) { asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; return ADV_ERROR; } /* * Restore the RISC memory BIOS region. */ for (i = 0; i < ASC_MC_BIOSLEN; i++) { AdvWriteByteLram(iop_base, ASC_MC_BIOSMEM + i, biosmem[i]); } /* * Calculate and write the microcode code checksum to the microcode * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). */ AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); code_sum = 0; for (word = begin_addr; word < end_addr; word += 2) { code_sum += *((ushort *) (&_adv_mcode_buf[word])); } AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); /* * Read microcode version and date. */ AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, asc_dvc->cfg->mcode_date); AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, asc_dvc->cfg->mcode_version); /* * Initialize microcode operating variables */ AdvWriteWordLram(iop_base, ASC_MC_ADAPTER_SCSI_ID, asc_dvc->chip_scsi_id); /* * If the PCI Configuration Command Register "Parity Error Response * Control" Bit was clear (0), then set the microcode variable * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode * to ignore DMA parity errors. */ if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { /* * Note: Don't remove the use of a temporary variable in * the following code, otherwise the Microsoft C compiler * will turn the following lines into a no-op. */ AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); word |= CONTROL_FLAG_IGNORE_PERR; AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); } /* * Set default microcode operating variables for WDTR, SDTR, and * command tag queuing based on the EEPROM configuration values. * * These ADV_DVC_VAR fields and the microcode variables will be * changed in AdvInquiryHandling() if it is found a device is * incapable of a particular feature. */ /* * Set the microcode ULTRA target mask from EEPROM value. The * SDTR target mask overrides the ULTRA target mask in the * microcode so it is safe to set this value without determining * whether the device supports SDTR. * * Note: There is no way to know whether a device supports ULTRA * speed without attempting a SDTR ULTRA speed negotiation with * the device. The device will reject the speed if it does not * support it by responding with an SDTR message containing a * slower speed. */ AdvWriteWordLram(iop_base, ASC_MC_ULTRA_ABLE, asc_dvc->ultra_able); AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, asc_dvc->cfg->disc_enable); /* * Set SCSI_CFG0 Microcode Default Value. * * The microcode will set the SCSI_CFG0 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, PARITY_EN | SEL_TMO_LONG | OUR_ID_EN | asc_dvc->chip_scsi_id); /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); /* * If all three connectors are in use, return an error. */ if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; return ADV_ERROR; } /* * If the internal narrow cable is reversed all of the SCSI_CTRL * register signals will be set. Check for and return an error if * this condition is found. */ if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; return ADV_ERROR; } /* * If this is a differential board and a single-ended device * is attached to one of the connectors, return an error. */ if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; return ADV_ERROR; } /* * If automatic termination control is enabled, then set the * termination value based on a table listed in a_condor.h. * * If manual termination was specified with an EEPROM setting * then 'termination' was set-up in AdvInitFromEEP() and * is ready to be 'ored' into SCSI_CFG1. */ if (asc_dvc->cfg->termination == 0) { /* * The software always controls termination by setting TERM_CTL_SEL. * If TERM_CTL_SEL were set to 0, the hardware would set termination. */ asc_dvc->cfg->termination |= TERM_CTL_SEL; switch(scsi_cfg1 & CABLE_DETECT) { /* TERM_CTL_H: on, TERM_CTL_L: on */ case 0x3: case 0x7: case 0xB: case 0xD: case 0xE: case 0xF: asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); break; /* TERM_CTL_H: on, TERM_CTL_L: off */ case 0x1: case 0x5: case 0x9: case 0xA: case 0xC: asc_dvc->cfg->termination |= TERM_CTL_H; break; /* TERM_CTL_H: off, TERM_CTL_L: off */ case 0x2: case 0x6: break; } } /* * Clear any set TERM_CTL_H and TERM_CTL_L bits. */ scsi_cfg1 &= ~TERM_CTL; /* * Invert the TERM_CTL_H and TERM_CTL_L bits and then * set 'scsi_cfg1'. The TERM_POL bit does not need to be * referenced, because the hardware internally inverts * the Termination High and Low bits if TERM_POL is set. */ scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); /* * Set SCSI_CFG1 Microcode Default Value * * Set filter value and possibly modified termination control * bits in the Microcode SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, FLTR_11_TO_20NS | scsi_cfg1); /* * Set SEL_MASK Microcode Default Value * * The microcode will set the SEL_MASK register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); /* * Link all the RISC Queue Lists together in a doubly-linked * NULL terminated list. * * Skip the NULL (0) queue which is not used. */ for (i = 1, rql_addr = ASC_MC_RISC_Q_LIST_BASE + ASC_MC_RISC_Q_LIST_SIZE; i < ASC_MC_RISC_Q_TOTAL_CNT; i++, rql_addr += ASC_MC_RISC_Q_LIST_SIZE) { /* * Set the current RISC Queue List's RQL_FWD and RQL_BWD pointers * in a one word write and set the state (RQL_STATE) to free. */ AdvWriteWordLram(iop_base, rql_addr, ((i + 1) + ((i - 1) << 8))); AdvWriteByteLram(iop_base, rql_addr + RQL_STATE, ASC_MC_QS_FREE); } /* * Set the Host and RISC Queue List pointers. * * Both sets of pointers are initialized with the same values: * ASC_MC_RISC_Q_FIRST(0x01) and ASC_MC_RISC_Q_LAST (0xFF). */ AdvWriteByteLram(iop_base, ASC_MC_HOST_NEXT_READY, ASC_MC_RISC_Q_FIRST); AdvWriteByteLram(iop_base, ASC_MC_HOST_NEXT_DONE, ASC_MC_RISC_Q_LAST); AdvWriteByteLram(iop_base, ASC_MC_RISC_NEXT_READY, ASC_MC_RISC_Q_FIRST); AdvWriteByteLram(iop_base, ASC_MC_RISC_NEXT_DONE, ASC_MC_RISC_Q_LAST); /* * Finally, set up the last RISC Queue List (255) with * a NULL forward pointer. */ AdvWriteWordLram(iop_base, rql_addr, (ASC_MC_NULL_Q + ((i - 1) << 8))); AdvWriteByteLram(iop_base, rql_addr + RQL_STATE, ASC_MC_QS_FREE); AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, (ADV_INTR_ENABLE_HOST_INTR | ADV_INTR_ENABLE_GLOBAL_INTR)); /* * Note: Don't remove the use of a temporary variable in * the following code, otherwise the Microsoft C compiler * will turn the following lines into a no-op. */ AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); AdvWriteWordRegister(iop_base, IOPW_PC, word); /* finally, finally, gentlemen, start your engine */ AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); return warn_code; } /* * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while * all of this is done. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Note: Chip is stopped on entry. */ ASC_INITFUNC( STATIC int AdvInitFromEEP(ADV_DVC_VAR *asc_dvc) ) { AdvPortAddr iop_base; ushort warn_code; ADVEEP_CONFIG eep_config; int i; iop_base = asc_dvc->iop_base; warn_code = 0; /* * Read the board's EEPROM configuration. * * Set default values if a bad checksum is found. */ if (AdvGetEEPConfig(iop_base, &eep_config) != eep_config.check_sum) { warn_code |= ASC_WARN_EEPROM_CHKSUM; /* * Set EEPROM default values. */ for (i = 0; i < sizeof(ADVEEP_CONFIG); i++) { *((uchar *) &eep_config + i) = *((uchar *) &Default_EEPROM_Config + i); } /* * Assume the 6 byte board serial number that was read * from EEPROM is correct even if the EEPROM checksum * failed. */ eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, ASC_EEP_DVC_CFG_END - 1); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, ASC_EEP_DVC_CFG_END - 2); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, ASC_EEP_DVC_CFG_END - 3); AdvSetEEPConfig(iop_base, &eep_config); } /* * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the * EEPROM configuration that was read. * * This is the mapping of EEPROM fields to Adv Library fields. */ asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_able = eep_config.sdtr_able; asc_dvc->ultra_able = eep_config.ultra_able; asc_dvc->tagqng_able = eep_config.tagqng_able; asc_dvc->cfg->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->cfg->bios_boot_wait = eep_config.bios_boot_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; asc_dvc->cfg->serial1 = eep_config.serial_number_word1; asc_dvc->cfg->serial2 = eep_config.serial_number_word2; asc_dvc->cfg->serial3 = eep_config.serial_number_word3; /* * Set the host maximum queuing (max. 253, min. 16) and the per device * maximum queuing (max. 63, min. 4). */ if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_host_qng == 0) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else { eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; } } if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_dvc_qng == 0) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else { eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; } } /* * If 'max_dvc_qng' is greater than 'max_host_qng', then * set 'max_dvc_qng' to 'max_host_qng'. */ if (eep_config.max_dvc_qng > eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } /* * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_CFG 'max_dvc_qng' * values based on possibly adjusted EEPROM values. */ asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; /* * If the EEPROM 'termination' field is set to automatic (0), then set * the ADV_DVC_CFG 'termination' field to automatic also. * * If the termination is specified with a non-zero 'termination' * value check that a legal value is set and set the ADV_DVC_CFG * 'termination' field appropriately. */ if (eep_config.termination == 0) { asc_dvc->cfg->termination = 0; /* auto termination */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination == 1) { asc_dvc->cfg->termination = TERM_CTL_SEL; /* Enable manual control with low off / high on. */ } else if (eep_config.termination == 2) { asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; /* Enable manual control with low on / high on. */ } else if (eep_config.termination == 3) { asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; } else { /* * The EEPROM 'termination' field contains a bad value. Use * automatic termination instead. */ asc_dvc->cfg->termination = 0; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } return warn_code; } /* * Read EEPROM configuration into the specified buffer. * * Return a checksum based on the EEPROM configuration read. */ ASC_INITFUNC( STATIC ushort AdvGetEEPConfig(AdvPortAddr iop_base, ADVEEP_CONFIG *cfg_buf) ) { ushort wval, chksum; ushort *wbuf; int eep_addr; wbuf = (ushort *) cfg_buf; chksum = 0; for (eep_addr = ASC_EEP_DVC_CFG_BEGIN; eep_addr < ASC_EEP_DVC_CFG_END; eep_addr++, wbuf++) { wval = AdvReadEEPWord(iop_base, eep_addr); chksum += wval; *wbuf = wval; } *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf++; for (eep_addr = ASC_EEP_DVC_CTL_BEGIN; eep_addr < ASC_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { *wbuf = AdvReadEEPWord(iop_base, eep_addr); } return chksum; } /* * Read the EEPROM from specified location */ ASC_INITFUNC( STATIC ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) ) { AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_READ | eep_word_addr); AdvWaitEEPCmd(iop_base); return AdvReadWordRegister(iop_base, IOPW_EE_DATA); } /* * Wait for EEPROM command to complete */ ASC_INITFUNC( STATIC void AdvWaitEEPCmd(AdvPortAddr iop_base) ) { int eep_delay_ms; for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++) { if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) { break; } DvcSleepMilliSecond(1); } if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 0) { ADV_ASSERT(0); } return; } /* * Write the EEPROM from 'cfg_buf'. */ ASC_INITFUNC( STATIC void AdvSetEEPConfig(AdvPortAddr iop_base, ADVEEP_CONFIG *cfg_buf) ) { ushort *wbuf; ushort addr, chksum; wbuf = (ushort *) cfg_buf; chksum = 0; AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); AdvWaitEEPCmd(iop_base); /* * Write EEPROM from word 0 to word 15 */ for (addr = ASC_EEP_DVC_CFG_BEGIN; addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) { chksum += *wbuf; AdvWriteWordRegister(iop_base, IOPW_EE_DATA, *wbuf); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); DvcSleepMilliSecond(ASC_EEP_DELAY_MS); } /* * Write EEPROM checksum at word 18 */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); wbuf++; /* skip over check_sum */ /* * Write EEPROM OEM name at words 19 to 26 */ for (addr = ASC_EEP_DVC_CTL_BEGIN; addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) { AdvWriteWordRegister(iop_base, IOPW_EE_DATA, *wbuf); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); } AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); AdvWaitEEPCmd(iop_base); return; } /* * This function resets the chip and SCSI bus * * It is up to the caller to add a delay to let the bus settle after * calling this function. * * The SCSI_CFG0, SCSI_CFG1, and MEM_CFG registers are set-up in * AdvInitAsc3550Driver(). Here when doing a write to one of these * registers read first and then write. * * Note: A SCSI Bus Reset can not be done until after the EEPROM * configuration is read to determine whether SCSI Bus Resets * should be performed. */ ASC_INITFUNC( STATIC void AdvResetChip(ADV_DVC_VAR *asc_dvc) ) { AdvPortAddr iop_base; ushort word; uchar byte; iop_base = asc_dvc->iop_base; /* * Reset Chip. */ AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); DvcSleepMilliSecond(100); AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_WR_IO_REG); /* * Initialize Chip registers. * * Note: Don't remove the use of a temporary variable in the following * code, otherwise the Microsoft C compiler will turn the following lines * into a no-op. */ byte = AdvReadByteRegister(iop_base, IOPB_MEM_CFG); byte |= RAM_SZ_8KB; AdvWriteByteRegister(iop_base, IOPB_MEM_CFG, byte); word = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); word &= ~BIG_ENDIAN; AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, word); /* * Setting the START_CTL_EMFU 3:2 bits sets a FIFO threshold * of 128 bytes. This register is only accessible to the host. */ AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, START_CTL_EMFU | READ_CMD_MRM); } /* a_advlib.c */ /* * Description: * Send a SCSI request to the ASC3550 chip * * If there is no SG list for the request, set 'sg_entry_cnt' to 0. * * If 'sg_real_addr' is non-zero on entry, AscGetSGList() will not be * called. It is assumed the caller has already initialized 'sg_real_addr'. * * Return: * ADV_SUCCESS(1) - the request is in the mailbox * ADV_BUSY(0) - total request count > 253, try later * ADV_ERROR(-1) - invalid scsi request Q */ STATIC int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) { if (scsiq == (ADV_SCSI_REQ_Q *) 0L) { /* 'scsiq' should never be NULL. */ ADV_ASSERT(0); return ADV_ERROR; } return AdvSendScsiCmd(asc_dvc, scsiq); } /* * Reset SCSI Bus and purge all outstanding requests. * * Return Value: * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. * * Note: Should always return ADV_TRUE. */ STATIC int AdvResetSB(ADV_DVC_VAR *asc_dvc) { int status; status = AdvSendIdleCmd(asc_dvc, (ushort) IDLE_CMD_SCSI_RESET, 0L, 0); AdvResetSCSIBus(asc_dvc); return status; } /* * Reset SCSI Bus and delay. */ STATIC void AdvResetSCSIBus(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; ushort scsi_ctrl; iop_base = asc_dvc->iop_base; /* * The microcode currently sets the SCSI Bus Reset signal while * handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET command above. * But the SCSI Bus Reset Hold Time in the microcode is not deterministic * (it may in fact be for less than the SCSI Spec. minimum of 25 us). * Therefore on return the Adv Library sets the SCSI Bus Reset signal * for ASC_SCSI_RESET_HOLD_TIME_US, which is defined to be greater * than 25 us. */ scsi_ctrl = AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL); AdvWriteWordRegister(iop_base, IOPW_SCSI_CTRL, scsi_ctrl | ADV_SCSI_CTRL_RSTOUT); DvcDelayMicroSecond(asc_dvc, (ushort) ASC_SCSI_RESET_HOLD_TIME_US); AdvWriteWordRegister(iop_base, IOPW_SCSI_CTRL, scsi_ctrl & ~ADV_SCSI_CTRL_RSTOUT); DvcSleepMilliSecond((ulong) asc_dvc->scsi_reset_wait * 1000); } /* * Adv Library Interrupt Service Routine * * This function is called by a driver's interrupt service routine. * The function disables and re-enables interrupts. * * When a microcode idle command is completed, the ADV_DVC_VAR * 'idle_cmd_done' field is set to ADV_TRUE. * * Note: AdvISR() can be called when interrupts are disabled or even * when there is no hardware interrupt condition present. It will * always check for completed idle commands and microcode requests. * This is an important feature that shouldn't be changed because it * allows commands to be completed from polling mode loops. * * Return: * ADV_TRUE(1) - interrupt was pending * ADV_FALSE(0) - no interrupt was pending */ STATIC int AdvISR(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; uchar int_stat; ushort next_done_loc, target_bit; int completed_q; int flags; ADV_SCSI_REQ_Q *scsiq; ASC_REQ_SENSE *sense_data; int ret; flags = DvcEnterCritical(); iop_base = asc_dvc->iop_base; if (AdvIsIntPending(iop_base)) { ret = ADV_TRUE; } else { ret = ADV_FALSE; } /* Reading the register clears the interrupt. */ int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); if (int_stat & ADV_INTR_STATUS_INTRB) { asc_dvc->idle_cmd_done = ADV_TRUE; } /* * Notify the driver of a hardware detected SCSI Bus Reset. */ if (int_stat & ADV_INTR_STATUS_INTRC) { if (asc_dvc->sbreset_callback != 0) { (*(ADV_SBRESET_CALLBACK) asc_dvc->sbreset_callback)(asc_dvc); } } /* * ASC_MC_HOST_NEXT_DONE (0x129) is actually the last completed RISC * Queue List request. Its forward pointer (RQL_FWD) points to the * current completed RISC Queue List request. */ AdvReadByteLram(iop_base, ASC_MC_HOST_NEXT_DONE, next_done_loc); next_done_loc = ASC_MC_RISC_Q_LIST_BASE + (next_done_loc * ASC_MC_RISC_Q_LIST_SIZE) + RQL_FWD; AdvReadByteLram(iop_base, next_done_loc, completed_q); /* Loop until all completed Q's are processed. */ while (completed_q != ASC_MC_NULL_Q) { AdvWriteByteLram(iop_base, ASC_MC_HOST_NEXT_DONE, completed_q); next_done_loc = ASC_MC_RISC_Q_LIST_BASE + (completed_q * ASC_MC_RISC_Q_LIST_SIZE); /* * Read the ADV_SCSI_REQ_Q virtual address pointer from * the RISC list entry. The microcode has changed the * ADV_SCSI_REQ_Q physical address to its virtual address. * * Refer to comments at the end of AdvSendScsiCmd() for * more information on the RISC list structure. */ { ushort lsw, msw; AdvReadWordLram(iop_base, next_done_loc + RQL_PHYADDR, lsw); AdvReadWordLram(iop_base, next_done_loc + RQL_PHYADDR + 2, msw); scsiq = (ADV_SCSI_REQ_Q *) (((ulong) msw << 16) | lsw); } ADV_ASSERT(scsiq != NULL); target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); /* * Clear request microcode control flag. */ scsiq->cntl = 0; /* * Check Condition handling */ if ((scsiq->done_status == QD_WITH_ERROR) && (scsiq->scsi_status == SS_CHK_CONDITION) && (sense_data = (ASC_REQ_SENSE *) scsiq->vsense_addr) != 0 && (scsiq->orig_sense_len - scsiq->sense_len) >= ASC_MIN_SENSE_LEN) { /* * Command returned with a check condition and valid * sense data. */ } /* * If the command that completed was a SCSI INQUIRY and * LUN 0 was sent the command, then process the INQUIRY * command information for the device. */ else if (scsiq->done_status == QD_NO_ERROR && scsiq->cdb[0] == SCSICMD_Inquiry && scsiq->target_lun == 0) { AdvInquiryHandling(asc_dvc, scsiq); } /* Change the RISC Queue List state to free. */ AdvWriteByteLram(iop_base, next_done_loc + RQL_STATE, ASC_MC_QS_FREE); /* Get the RISC Queue List forward pointer. */ AdvReadByteLram(iop_base, next_done_loc + RQL_FWD, completed_q); /* * Notify the driver of the completed request by passing * the ADV_SCSI_REQ_Q pointer to its callback function. */ ADV_ASSERT(asc_dvc->cur_host_qng > 0); asc_dvc->cur_host_qng--; scsiq->a_flag |= ADV_SCSIQ_DONE; (*(ADV_ISR_CALLBACK) asc_dvc->isr_callback)(asc_dvc, scsiq); /* * Note: After the driver callback function is called, 'scsiq' * can no longer be referenced. * * Fall through and continue processing other completed * requests... */ /* * Disable interrupts again in case the driver inadvertently * enabled interrupts in its callback function. * * The DvcEnterCritical() return value is ignored, because * the 'flags' saved when AdvISR() was first entered will be * used to restore the interrupt flag on exit. */ (void) DvcEnterCritical(); } DvcLeaveCritical(flags); return ret; } /* * Send an idle command to the chip and wait for completion. * * Interrupts do not have to be enabled on entry. * * Return Values: * ADV_TRUE - command completed successfully * ADV_FALSE - command failed */ STATIC int AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, ushort idle_cmd, ulong idle_cmd_parameter, int flags) { int last_int_level; ulong i; AdvPortAddr iop_base; int ret; asc_dvc->idle_cmd_done = 0; last_int_level = DvcEnterCritical(); iop_base = asc_dvc->iop_base; /* * Write the idle command value after the idle command parameter * has been written to avoid a race condition. If the order is not * followed, the microcode may process the idle command before the * parameters have been written to LRAM. */ AdvWriteDWordLram(iop_base, ASC_MC_IDLE_PARA_STAT, idle_cmd_parameter); AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); DvcLeaveCritical(last_int_level); /* * If the 'flags' argument contains the ADV_NOWAIT flag, then * return with success. */ if (flags & ADV_NOWAIT) { return ADV_TRUE; } for (i = 0; i < SCSI_WAIT_10_SEC * SCSI_MS_PER_SEC; i++) { /* * 'idle_cmd_done' is set by AdvISR(). */ if (asc_dvc->idle_cmd_done) { break; } DvcSleepMilliSecond(1); /* * If interrupts were disabled on entry to AdvSendIdleCmd(), * then they will still be disabled here. Call AdvISR() to * check for the idle command completion. */ (void) AdvISR(asc_dvc); } last_int_level = DvcEnterCritical(); if (asc_dvc->idle_cmd_done == ADV_FALSE) { ADV_ASSERT(0); /* The idle command should never timeout. */ return ADV_FALSE; } else { AdvReadWordLram(iop_base, ASC_MC_IDLE_PARA_STAT, ret); return ret; } } /* * Send the SCSI request block to the adapter * * Each of the 255 Adv Library/Microcode RISC Lists or mailboxes has the * following structure: * * 0: RQL_FWD - RISC list forward pointer (1 byte) * 1: RQL_BWD - RISC list backward pointer (1 byte) * 2: RQL_STATE - RISC list state byte - free, ready, done, aborted (1 byte) * 3: RQL_TID - request target id (1 byte) * 4: RQL_PHYADDR - ADV_SCSI_REQ_Q physical pointer (4 bytes) * * Return: * ADV_SUCCESS(1) - the request is in the mailbox * ADV_BUSY(0) - total request count > 253, try later */ STATIC int AdvSendScsiCmd( ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) { ushort next_ready_loc; uchar next_ready_loc_fwd; int last_int_level; AdvPortAddr iop_base; long req_size; ulong q_phy_addr; /* * The ADV_SCSI_REQ_Q 'target_id' field should never be equal * to the host adapter ID or exceed ADV_MAX_TID. */ if (scsiq->target_id == asc_dvc->chip_scsi_id || scsiq->target_id > ADV_MAX_TID) { scsiq->host_status = QHSTA_M_INVALID_DEVICE; scsiq->done_status = QD_WITH_ERROR; return ADV_ERROR; } iop_base = asc_dvc->iop_base; last_int_level = DvcEnterCritical(); if (asc_dvc->cur_host_qng >= asc_dvc->max_host_qng) { DvcLeaveCritical(last_int_level); return ADV_BUSY; } else { ADV_ASSERT(asc_dvc->cur_host_qng < ASC_MC_RISC_Q_TOTAL_CNT); asc_dvc->cur_host_qng++; } /* * Clear the ADV_SCSI_REQ_Q done flag. */ scsiq->a_flag &= ~ADV_SCSIQ_DONE; /* * Save the original sense buffer length. * * After the request completes 'sense_len' will be set to the residual * byte count of the Auto-Request Sense if a command returns CHECK * CONDITION and the Sense Data is valid indicated by 'host_status' not * being set to QHSTA_M_AUTO_REQ_SENSE_FAIL. To determine the valid * Sense Data Length subtract 'sense_len' from 'orig_sense_len'. */ scsiq->orig_sense_len = scsiq->sense_len; AdvReadByteLram(iop_base, ASC_MC_HOST_NEXT_READY, next_ready_loc); next_ready_loc = ASC_MC_RISC_Q_LIST_BASE + (next_ready_loc * ASC_MC_RISC_Q_LIST_SIZE); /* * Write the physical address of the Q to the mailbox. * We need to skip the first four bytes, because the microcode * uses them internally for linking Q's together. */ req_size = sizeof(ADV_SCSI_REQ_Q); q_phy_addr = DvcGetPhyAddr(asc_dvc, scsiq, (uchar *) scsiq, &req_size, ADV_IS_SCSIQ_FLAG); ADV_ASSERT(ADV_DWALIGN(q_phy_addr) == q_phy_addr); ADV_ASSERT(req_size >= sizeof(ADV_SCSI_REQ_Q)); scsiq->scsiq_ptr = (ADV_SCSI_REQ_Q *) scsiq; /* * The RISC list structure, which 'next_ready_loc' is a pointer * to in microcode LRAM, has the format detailed in the comment * header for this function. * * Write the ADV_SCSI_REQ_Q physical pointer to 'next_ready_loc' request. */ AdvWriteDWordLram(iop_base, next_ready_loc + RQL_PHYADDR, q_phy_addr); /* Write target_id to 'next_ready_loc' request. */ AdvWriteByteLram(iop_base, next_ready_loc + RQL_TID, scsiq->target_id); /* * Set the ASC_MC_HOST_NEXT_READY (0x128) microcode variable to * the 'next_ready_loc' request forward pointer. * * Do this *before* changing the 'next_ready_loc' queue to QS_READY. * After the state is changed to QS_READY 'RQL_FWD' will be changed * by the microcode. * * NOTE: The temporary variable 'next_ready_loc_fwd' is required to * prevent some compilers from optimizing out 'AdvReadByteLram()' if * it were used as the 3rd argument to 'AdvWriteByteLram()'. */ AdvReadByteLram(iop_base, next_ready_loc + RQL_FWD, next_ready_loc_fwd); AdvWriteByteLram(iop_base, ASC_MC_HOST_NEXT_READY, next_ready_loc_fwd); /* * Change the state of 'next_ready_loc' request from QS_FREE to * QS_READY which will cause the microcode to pick it up and * execute it. * * Can't reference 'next_ready_loc' after changing the request * state to QS_READY. The microcode now owns the request. */ AdvWriteByteLram(iop_base, next_ready_loc + RQL_STATE, ASC_MC_QS_READY); DvcLeaveCritical(last_int_level); return ADV_SUCCESS; } /* * Inquiry Information Byte 7 Handling * * Handle SCSI Inquiry Command information for a device by setting * microcode operating variables that affect WDTR, SDTR, and Tag * Queuing. */ STATIC void AdvInquiryHandling( ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) { AdvPortAddr iop_base; uchar tid; ASC_SCSI_INQUIRY *inq; ushort tidmask; ushort cfg_word; /* * AdvInquiryHandling() requires up to INQUIRY information Byte 7 * to be available. * * If less than 8 bytes of INQUIRY information were requested or less * than 8 bytes were transferred, then return. cdb[4] is the request * length and the ADV_SCSI_REQ_Q 'data_cnt' field is set by the * microcode to the transfer residual count. */ if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) { return; } iop_base = asc_dvc->iop_base; tid = scsiq->target_id; inq = (ASC_SCSI_INQUIRY *) scsiq->vdata_addr; /* * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices. */ if (inq->byte3.rsp_data_fmt < 2 && inq->byte2.ansi_apr_ver < 2) { return; } else { /* * INQUIRY Byte 7 Handling * * Use a device's INQUIRY byte 7 to determine whether it * supports WDTR, SDTR, and Tag Queuing. If the feature * is enabled in the EEPROM and the device supports the * feature, then enable it in the microcode. */ tidmask = ADV_TID_TO_TIDMASK(tid); /* * Wide Transfers * * If the EEPROM enabled WDTR for the device and the device * supports wide bus (16 bit) transfers, then turn on the * device's 'wdtr_able' bit and write the new value to the * microcode. */ if ((asc_dvc->wdtr_able & tidmask) && inq->byte7.WBus16) { AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); if ((cfg_word & tidmask) == 0) { cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); /* * Clear the microcode "WDTR negotiation" done indicator * for the target to cause it to negotiate with the new * setting set above. */ AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); cfg_word &= ~tidmask; AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); } } /* * Synchronous Transfers * * If the EEPROM enabled SDTR for the device and the device * supports synchronous transfers, then turn on the device's * 'sdtr_able' bit. Write the new value to the microcode. */ if ((asc_dvc->sdtr_able & tidmask) && inq->byte7.Sync) { AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); if ((cfg_word & tidmask) == 0) { cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); /* * Clear the microcode "SDTR negotiation" done indicator * for the target to cause it to negotiate with the new * setting set above. */ AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); cfg_word &= ~tidmask; AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); } } /* * If the EEPROM enabled Tag Queuing for device and the * device supports Tag Queuing, then turn on the device's * 'tagqng_enable' bit in the microcode and set the microcode * maximum command count to the ADV_DVC_VAR 'max_dvc_qng' * value. * * Tag Queuing is disabled for the BIOS which runs in polled * mode and would see no benefit from Tag Queuing. Also by * disabling Tag Queuing in the BIOS devices with Tag Queuing * bugs will at least work with the BIOS. */ if ((asc_dvc->tagqng_able & tidmask) && inq->byte7.CmdQue) { AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, asc_dvc->max_dvc_qng); } } }