/* * eata.c - Low-level driver for EATA/DMA SCSI host adapters. * * 16 Sep 1999 Rev. 5.11 for linux 2.2.12 and 2.3.18 * + Updated to the new __setup interface for boot command line options. * + When loaded as a module, accepts the new parameter boot_options * which value is a string with the same format of the kernel boot * command line options. A valid example is: * modprobe eata 'boot_options=\"0x7410,0x230,lc:y,tc:n,mq:4\"' * * 9 Sep 1999 Rev. 5.10 for linux 2.2.12 and 2.3.17 * + 64bit cleanup for Linux/Alpha platform support * (contribution from H.J. Lu). * * 22 Jul 1999 Rev. 5.00 for linux 2.2.10 and 2.3.11 * + Removed pre-2.2 source code compatibility. * + Added call to pci_set_master. * * 26 Jul 1998 Rev. 4.33 for linux 2.0.35 and 2.1.111 * + Added command line option (rs:[y|n]) to reverse the scan order * of PCI boards. The default is rs:y, which reverses the BIOS order * while registering PCI boards. The default value rs:y generates * the same order of all previous revisions of this driver. * Pls. note that "BIOS order" might have been reversed itself * after the 2.1.9x PCI modifications in the linux kernel. * The rs value is ignored when the explicit list of addresses * is used by the "eata=port0,port1,..." command line option. * + Added command line option (et:[y|n]) to force use of extended * translation (255 heads, 63 sectors) as disk geometry. * The default is et:n, which uses the disk geometry returned * by scsicam_bios_param. The default value et:n is compatible with * all previous revisions of this driver. * * 28 May 1998 Rev. 4.32 for linux 2.0.33 and 2.1.104 * Increased busy timeout from 10 msec. to 200 msec. while * processing interrupts. * * 16 May 1998 Rev. 4.31 for linux 2.0.33 and 2.1.102 * Improved abort handling during the eh recovery process. * * 13 May 1998 Rev. 4.30 for linux 2.0.33 and 2.1.101 * The driver is now fully SMP safe, including the * abort and reset routines. * Added command line options (eh:[y|n]) to choose between * new_eh_code and the old scsi code. * If linux version >= 2.1.101 the default is eh:y, while the eh * option is ignored for previous releases and the old scsi code * is used. * * 18 Apr 1998 Rev. 4.20 for linux 2.0.33 and 2.1.97 * Reworked interrupt handler. * * 11 Apr 1998 rev. 4.05 for linux 2.0.33 and 2.1.95 * Major reliability improvement: when a batch with overlapping * requests is detected, requests are queued one at a time * eliminating any possible board or drive reordering. * * 10 Apr 1998 rev. 4.04 for linux 2.0.33 and 2.1.95 * Improved SMP support (if linux version >= 2.1.95). * * 9 Apr 1998 rev. 4.03 for linux 2.0.33 and 2.1.94 * Added support for new PCI code and IO-APIC remapping of irqs. * Performance improvement: when sequential i/o is detected, * always use direct sort instead of reverse sort. * * 4 Apr 1998 rev. 4.02 for linux 2.0.33 and 2.1.92 * io_port is now unsigned long. * * 17 Mar 1998 rev. 4.01 for linux 2.0.33 and 2.1.88 * Use new scsi error handling code (if linux version >= 2.1.88). * Use new interrupt code. * * 12 Sep 1997 rev. 3.11 for linux 2.0.30 and 2.1.55 * Use of udelay inside the wait loops to avoid timeout * problems with fast cpus. * Removed check about useless calls to the interrupt service * routine (reported on SMP systems only). * At initialization time "sorted/unsorted" is displayed instead * of "linked/unlinked" to reinforce the fact that "linking" is * nothing but "elevator sorting" in the actual implementation. * * 17 May 1997 rev. 3.10 for linux 2.0.30 and 2.1.38 * Use of serial_number_at_timeout in abort and reset processing. * Use of the __initfunc and __initdata macro in setup code. * Minor cleanups in the list_statistics code. * Increased controller busy timeout in order to better support * slow SCSI devices. * * 24 Feb 1997 rev. 3.00 for linux 2.0.29 and 2.1.26 * When loading as a module, parameter passing is now supported * both in 2.0 and in 2.1 style. * Fixed data transfer direction for some SCSI opcodes. * Immediate acknowledge to request sense commands. * Linked commands to each disk device are now reordered by elevator * sorting. Rare cases in which reordering of write requests could * cause wrong results are managed. * Fixed spurious timeouts caused by long simple queue tag sequences. * New command line option (tm:[0-3]) to choose the type of tags: * 0 -> mixed (default); 1 -> simple; 2 -> head; 3 -> ordered. * * 18 Jan 1997 rev. 2.60 for linux 2.1.21 and 2.0.28 * Added command line options to enable/disable linked commands * (lc:[y|n]), tagged commands (tc:[y|n]) and to set the max queue * depth (mq:xx). Default is "eata=lc:n,tc:n,mq:16". * Improved command linking. * Documented how to setup RAID-0 with DPT SmartRAID boards. * * 8 Jan 1997 rev. 2.50 for linux 2.1.20 and 2.0.27 * Added linked command support. * Improved detection of PCI boards using ISA base addresses. * * 3 Dec 1996 rev. 2.40 for linux 2.1.14 and 2.0.27 * Added support for tagged commands and queue depth adjustment. * * 22 Nov 1996 rev. 2.30 for linux 2.1.12 and 2.0.26 * When CONFIG_PCI is defined, BIOS32 is used to include in the * list of i/o ports to be probed all the PCI SCSI controllers. * The list of i/o ports to be probed can be overwritten by the * "eata=port0,port1,...." boot command line option. * Scatter/gather lists are now allocated by a number of kmalloc * calls, in order to avoid the previous size limit of 64Kb. * * 16 Nov 1996 rev. 2.20 for linux 2.1.10 and 2.0.25 * Added support for EATA 2.0C, PCI, multichannel and wide SCSI. * * 27 Sep 1996 rev. 2.12 for linux 2.1.0 * Portability cleanups (virtual/bus addressing, little/big endian * support). * * 09 Jul 1996 rev. 2.11 for linux 2.0.4 * Number of internal retries is now limited. * * 16 Apr 1996 rev. 2.10 for linux 1.3.90 * New argument "reset_flags" to the reset routine. * * 6 Jul 1995 rev. 2.01 for linux 1.3.7 * Update required by the new /proc/scsi support. * * 11 Mar 1995 rev. 2.00 for linux 1.2.0 * Fixed a bug which prevented media change detection for removable * disk drives. * * 23 Feb 1995 rev. 1.18 for linux 1.1.94 * Added a check for scsi_register returning NULL. * * 11 Feb 1995 rev. 1.17 for linux 1.1.91 * Now DEBUG_RESET is disabled by default. * Register a board even if it does not assert DMA protocol support * (DPT SK2011B does not report correctly the dmasup bit). * * 9 Feb 1995 rev. 1.16 for linux 1.1.90 * Use host->wish_block instead of host->block. * New list of Data Out SCSI commands. * * 8 Feb 1995 rev. 1.15 for linux 1.1.89 * Cleared target_time_out counter while performing a reset. * All external symbols renamed to avoid possible name conflicts. * * 28 Jan 1995 rev. 1.14 for linux 1.1.86 * Added module support. * Log and do a retry when a disk drive returns a target status * different from zero on a recovered error. * * 24 Jan 1995 rev. 1.13 for linux 1.1.85 * Use optimized board configuration, with a measured performance * increase in the range 10%-20% on i/o throughput. * * 16 Jan 1995 rev. 1.12 for linux 1.1.81 * Fix mscp structure comments (no functional change). * Display a message if check_region detects a port address * already in use. * * 17 Dec 1994 rev. 1.11 for linux 1.1.74 * Use the scsicam_bios_param routine. This allows an easy * migration path from disk partition tables created using * different SCSI drivers and non optimal disk geometry. * * 15 Dec 1994 rev. 1.10 for linux 1.1.74 * Added support for ISA EATA boards (DPT PM2011, DPT PM2021). * The host->block flag is set for all the detected ISA boards. * The detect routine no longer enforces LEVEL triggering * for EISA boards, it just prints a warning message. * * 30 Nov 1994 rev. 1.09 for linux 1.1.68 * Redo i/o on target status CHECK_CONDITION for TYPE_DISK only. * Added optional support for using a single board at a time. * * 18 Nov 1994 rev. 1.08 for linux 1.1.64 * Forces sg_tablesize = 64 and can_queue = 64 if these * values are not correctly detected (DPT PM2012). * * 14 Nov 1994 rev. 1.07 for linux 1.1.63 Final BETA release. * 04 Aug 1994 rev. 1.00 for linux 1.1.39 First BETA release. * * * This driver is based on the CAM (Common Access Method Committee) * EATA (Enhanced AT Bus Attachment) rev. 2.0A, using DMA protocol. * * Copyright (C) 1994-1999 Dario Ballabio (dario@milano.europe.dg.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. * */ /* * * Here is a brief description of the DPT SCSI host adapters. * All these boards provide an EATA/DMA compatible programming interface * and are fully supported by this driver in any configuration, including * multiple SCSI channels: * * PM2011B/9X - Entry Level ISA * PM2021A/9X - High Performance ISA * PM2012A Old EISA * PM2012B Old EISA * PM2022A/9X - Entry Level EISA * PM2122A/9X - High Performance EISA * PM2322A/9X - Extra High Performance EISA * PM3021 - SmartRAID Adapter for ISA * PM3222 - SmartRAID Adapter for EISA (PM3222W is 16-bit wide SCSI) * PM3224 - SmartRAID Adapter for PCI (PM3224W is 16-bit wide SCSI) * PM33340UW - SmartRAID Adapter for PCI ultra wide multichannel * * The above list is just an indication: as a matter of fact all DPT * boards using the EATA/DMA protocol are supported by this driver, * since they use exactely the same programming interface. * * The DPT PM2001 provides only the EATA/PIO interface and hence is not * supported by this driver. * * This code has been tested with up to 3 Distributed Processing Technology * PM2122A/9X (DPT SCSI BIOS v002.D1, firmware v05E.0) EISA controllers, * in any combination of private and shared IRQ. * PCI support has been tested using up to 2 DPT PM3224W (DPT SCSI BIOS * v003.D0, firmware v07G.0). * * DPT SmartRAID boards support "Hardware Array" - a group of disk drives * which are all members of the same RAID-0, RAID-1 or RAID-5 array implemented * in host adapter hardware. Hardware Arrays are fully compatible with this * driver, since they look to it as a single disk drive. * * WARNING: to create a RAID-0 "Hardware Array" you must select "Other Unix" * as the current OS in the DPTMGR "Initial System Installation" menu. * Otherwise RAID-0 is generated as an "Array Group" (i.e. software RAID-0), * which is not supported by the actual SCSI subsystem. * To get the "Array Group" functionality, the Linux MD driver must be used * instead of the DPT "Array Group" feature. * * Multiple ISA, EISA and PCI boards can be configured in the same system. * It is suggested to put all the EISA boards on the same IRQ level, all * the PCI boards on another IRQ level, while ISA boards cannot share * interrupts. * * If you configure multiple boards on the same IRQ, the interrupt must * be _level_ triggered (not _edge_ triggered). * * This driver detects EATA boards by probes at fixed port addresses, * so no BIOS32 or PCI BIOS support is required. * The suggested way to detect a generic EATA PCI board is to force on it * any unused EISA address, even if there are other controllers on the EISA * bus, or even if you system has no EISA bus at all. * Do not force any ISA address on EATA PCI boards. * * If PCI bios support is configured into the kernel, BIOS32 is used to * include in the list of i/o ports to be probed all the PCI SCSI controllers. * * Due to a DPT BIOS "feature", it might not be possible to force an EISA * address on more then a single DPT PCI board, so in this case you have to * let the PCI BIOS assign the addresses. * * The sequence of detection probes is: * * - ISA 0x1F0; * - PCI SCSI controllers (only if BIOS32 is available); * - EISA/PCI 0x1C88 through 0xFC88 (corresponding to EISA slots 1 to 15); * - ISA 0x170, 0x230, 0x330. * * The above list of detection probes can be totally replaced by the * boot command line option: "eata=port0,port1,port2,...", where the * port0, port1... arguments are ISA/EISA/PCI addresses to be probed. * For example using "eata=0x7410,0x7450,0x230", the driver probes * only the two PCI addresses 0x7410 and 0x7450 and the ISA address 0x230, * in this order; "eata=0" totally disables this driver. * * After the optional list of detection probes, other possible command line * options are: * * eh:y use new scsi code; * eh:n use old scsi code; * et:y force use of extended translation (255 heads, 63 sectors); * et:n use disk geometry detected by scsicam_bios_param; * rs:y reverse scan order while detecting PCI boards; * rs:n use BIOS order while detecting PCI boards; * lc:y enables linked commands; * lc:n disables linked commands; * tc:y enables tagged commands; * tc:n disables tagged commands; * tm:0 use head/simple/ordered queue tag sequences; * tm:1 use only simple queue tags; * tm:2 use only head of queue tags; * tm:3 use only ordered queue tags; * mq:xx set the max queue depth to the value xx (2 <= xx <= 32). * * The default value is: "eata=lc:n,tc:n,mq:16,tm:0,et:n,rs:n". * An example using the list of detection probes could be: * "eata=0x7410,0x230,lc:y,tc:n,mq:4,eh:n,et:n". * * When loading as a module, parameters can be specified as well. * The above example would be (use 1 in place of y and 0 in place of n): * * modprobe eata io_port=0x7410,0x230 linked_comm=1 tagged_comm=0 \ * max_queue_depth=4 tag_mode=0 use_new_eh_code=0 \ * ext_tran=0 rev_scan=1 * * ---------------------------------------------------------------------------- * In this implementation, linked commands are designed to work with any DISK * or CD-ROM, since this linking has only the intent of clustering (time-wise) * and reordering by elevator sorting commands directed to each device, * without any relation with the actual SCSI protocol between the controller * and the device. * If Q is the queue depth reported at boot time for each device (also named * cmds/lun) and Q > 2, whenever there is already an active command to the * device all other commands to the same device (up to Q-1) are kept waiting * in the elevator sorting queue. When the active command completes, the * commands in this queue are sorted by sector address. The sort is chosen * between increasing or decreasing by minimizing the seek distance between * the sector of the commands just completed and the sector of the first * command in the list to be sorted. * Trivial math assures that the unsorted average seek distance when doing * random seeks over S sectors is S/3. * When (Q-1) requests are uniformly distributed over S sectors, the average * distance between two adjacent requests is S/((Q-1) + 1), so the sorted * average seek distance for (Q-1) random requests over S sectors is S/Q. * The elevator sorting hence divides the seek distance by a factor Q/3. * The above pure geometric remarks are valid in all cases and the * driver effectively reduces the seek distance by the predicted factor * when there are Q concurrent read i/o operations on the device, but this * does not necessarily results in a noticeable performance improvement: * your mileage may vary.... * * Note: command reordering inside a batch of queued commands could cause * wrong results only if there is at least one write request and the * intersection (sector-wise) of all requests is not empty. * When the driver detects a batch including overlapping requests * (a really rare event) strict serial (pid) order is enforced. * ---------------------------------------------------------------------------- * The extended translation option (et:y) is useful when using large physical * disks/arrays. It could also be useful when switching between Adaptec boards * and DPT boards without reformatting the disk. * When a boot disk is partitioned with extended translation, in order to * be able to boot it with a DPT board is could be necessary to add to * lilo.conf additional commands as in the following example: * * fix-table * disk=/dev/sda bios=0x80 sectors=63 heads=128 cylindres=546 * * where the above geometry should be replaced with the one reported at * power up by the DPT controller. * ---------------------------------------------------------------------------- * * The boards are named EATA0, EATA1,... according to the detection order. * * In order to support multiple ISA boards in a reliable way, * the driver sets host->wish_block = TRUE for all ISA boards. */ #include #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) #define MAX_INT_PARAM 10 #if defined(MODULE) #include MODULE_PARM(boot_options, "s"); MODULE_PARM(io_port, "1-" __MODULE_STRING(MAX_INT_PARAM) "i"); MODULE_PARM(linked_comm, "i"); MODULE_PARM(tagged_comm, "i"); MODULE_PARM(link_statistics, "i"); MODULE_PARM(max_queue_depth, "i"); MODULE_PARM(tag_mode, "i"); MODULE_PARM(use_new_eh_code, "i"); MODULE_PARM(ext_tran, "i"); MODULE_PARM(rev_scan, "i"); MODULE_AUTHOR("Dario Ballabio"); #endif #include #include #include #include #include #include #include #include #include #include #include "scsi.h" #include "hosts.h" #include "sd.h" #include #include #include "eata.h" #include #include #include #include #include #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,18) #include #else #include #endif #define SPIN_FLAGS unsigned long spin_flags; #define SPIN_LOCK spin_lock_irq(&io_request_lock); #define SPIN_LOCK_SAVE spin_lock_irqsave(&io_request_lock, spin_flags); #define SPIN_UNLOCK spin_unlock_irq(&io_request_lock); #define SPIN_UNLOCK_RESTORE \ spin_unlock_irqrestore(&io_request_lock, spin_flags); /* Subversion values */ #define ISA 0 #define ESA 1 #undef FORCE_CONFIG #undef DEBUG_LINKED_COMMANDS #undef DEBUG_DETECT #undef DEBUG_PCI_DETECT #undef DEBUG_INTERRUPT #undef DEBUG_RESET #undef DEBUG_GENERATE_ERRORS #undef DEBUG_GENERATE_ABORTS #undef DEBUG_GEOMETRY #define MAX_ISA 4 #define MAX_VESA 0 #define MAX_EISA 15 #define MAX_PCI 16 #define MAX_BOARDS (MAX_ISA + MAX_VESA + MAX_EISA + MAX_PCI) #define MAX_CHANNEL 4 #define MAX_LUN 32 #define MAX_TARGET 32 #define MAX_MAILBOXES 64 #define MAX_SGLIST 64 #define MAX_LARGE_SGLIST 122 #define MAX_INTERNAL_RETRIES 64 #define MAX_CMD_PER_LUN 2 #define MAX_TAGGED_CMD_PER_LUN (MAX_MAILBOXES - MAX_CMD_PER_LUN) #define SKIP ULONG_MAX #define FALSE 0 #define TRUE 1 #define FREE 0 #define IN_USE 1 #define LOCKED 2 #define IN_RESET 3 #define IGNORE 4 #define READY 5 #define ABORTING 6 #define NO_DMA 0xff #define MAXLOOP 10000 #define TAG_MIXED 0 #define TAG_SIMPLE 1 #define TAG_HEAD 2 #define TAG_ORDERED 3 #define REG_CMD 7 #define REG_STATUS 7 #define REG_AUX_STATUS 8 #define REG_DATA 0 #define REG_DATA2 1 #define REG_SEE 6 #define REG_LOW 2 #define REG_LM 3 #define REG_MID 4 #define REG_MSB 5 #define REGION_SIZE 9 #define MAX_ISA_ADDR 0x03ff #define MIN_EISA_ADDR 0x1c88 #define MAX_EISA_ADDR 0xfc88 #define BSY_ASSERTED 0x80 #define DRQ_ASSERTED 0x08 #define ABSY_ASSERTED 0x01 #define IRQ_ASSERTED 0x02 #define READ_CONFIG_PIO 0xf0 #define SET_CONFIG_PIO 0xf1 #define SEND_CP_PIO 0xf2 #define RECEIVE_SP_PIO 0xf3 #define TRUNCATE_XFR_PIO 0xf4 #define RESET_PIO 0xf9 #define READ_CONFIG_DMA 0xfd #define SET_CONFIG_DMA 0xfe #define SEND_CP_DMA 0xff #define ASOK 0x00 #define ASST 0x01 #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,18) #define ARRAY_SIZE(x) (sizeof (x) / sizeof((x)[0])) #endif #define YESNO(a) ((a) ? 'y' : 'n') #define TLDEV(type) ((type) == TYPE_DISK || (type) == TYPE_ROM) /* "EATA", in Big Endian format */ #define EATA_SIGNATURE 0x41544145 /* Number of valid bytes in the board config structure for EATA 2.0x */ #define EATA_2_0A_SIZE 28 #define EATA_2_0B_SIZE 30 #define EATA_2_0C_SIZE 34 /* Board info structure */ struct eata_info { u_int32_t data_len; /* Number of valid bytes after this field */ u_int32_t sign; /* ASCII "EATA" signature */ unchar :4, /* unused low nibble */ version:4; /* EATA version, should be 0x1 */ unchar ocsena:1, /* Overlap Command Support Enabled */ tarsup:1, /* Target Mode Supported */ trnxfr:1, /* Truncate Transfer Cmd NOT Necessary */ morsup:1, /* More Supported */ dmasup:1, /* DMA Supported */ drqvld:1, /* DRQ Index (DRQX) is valid */ ata:1, /* This is an ATA device */ haaval:1; /* Host Adapter Address Valid */ ushort cp_pad_len; /* Number of pad bytes after cp_len */ unchar host_addr[4]; /* Host Adapter SCSI ID for channels 3, 2, 1, 0 */ u_int32_t cp_len; /* Number of valid bytes in cp */ u_int32_t sp_len; /* Number of valid bytes in sp */ ushort queue_size; /* Max number of cp that can be queued */ ushort unused; ushort scatt_size; /* Max number of entries in scatter/gather table */ unchar irq:4, /* Interrupt Request assigned to this controller */ irq_tr:1, /* 0 for edge triggered, 1 for level triggered */ second:1, /* 1 if this is a secondary (not primary) controller */ drqx:2; /* DRQ Index (0=DMA0, 1=DMA7, 2=DMA6, 3=DMA5) */ unchar sync; /* 1 if scsi target id 7...0 is running sync scsi */ /* Structure extension defined in EATA 2.0B */ unchar isaena:1, /* ISA i/o addressing is disabled/enabled */ forcaddr:1, /* Port address has been forced */ large_sg:1, /* 1 if large SG lists are supported */ res1:1, :4; unchar max_id:5, /* Max SCSI target ID number */ max_chan:3; /* Max SCSI channel number on this board */ /* Structure extension defined in EATA 2.0C */ unchar max_lun; /* Max SCSI LUN number */ unchar :4, m1:1, /* This is a PCI with an M1 chip installed */ idquest:1, /* RAIDNUM returned is questionable */ pci:1, /* This board is PCI */ eisa:1; /* This board is EISA */ unchar raidnum; /* Uniquely identifies this HBA in a system */ unchar notused; ushort ipad[247]; }; /* Board config structure */ struct eata_config { ushort len; /* Number of bytes following this field */ unchar edis:1, /* Disable EATA interface after config command */ ocena:1, /* Overlapped Commands Enabled */ mdpena:1, /* Transfer all Modified Data Pointer Messages */ tarena:1, /* Target Mode Enabled for this controller */ :4; unchar cpad[511]; }; /* Returned status packet structure */ struct mssp { unchar adapter_status:7, /* State related to current command */ eoc:1; /* End Of Command (1 = command completed) */ unchar target_status; /* SCSI status received after data transfer */ unchar unused[2]; u_int32_t inv_res_len; /* Number of bytes not transferred */ u_int32_t cpp_index; /* Index of address set in cp */ char mess[12]; }; struct sg_list { unsigned int address; /* Segment Address */ unsigned int num_bytes; /* Segment Length */ }; /* MailBox SCSI Command Packet */ struct mscp { unchar sreset:1, /* SCSI Bus Reset Signal should be asserted */ init:1, /* Re-initialize controller and self test */ reqsen:1, /* Transfer Request Sense Data to addr using DMA */ sg:1, /* Use Scatter/Gather */ :1, interp:1, /* The controller interprets cp, not the target */ dout:1, /* Direction of Transfer is Out (Host to Target) */ din:1; /* Direction of Transfer is In (Target to Host) */ unchar sense_len; /* Request Sense Length */ unchar unused[3]; unchar fwnest:1, /* Send command to a component of an Array Group */ :7; unchar phsunit:1, /* Send to Target Physical Unit (bypass RAID) */ iat:1, /* Inhibit Address Translation */ hbaci:1, /* Inhibit HBA Caching for this command */ :5; unchar target:5, /* SCSI target ID */ channel:3; /* SCSI channel number */ unchar lun:5, /* SCSI logical unit number */ luntar:1, /* This cp is for Target (not LUN) */ dispri:1, /* Disconnect Privilege granted */ one:1; /* 1 */ unchar mess[3]; /* Massage to/from Target */ unchar cdb[12]; /* Command Descriptor Block */ u_int32_t data_len; /* If sg=0 Data Length, if sg=1 sglist length */ u_int32_t cpp_index; /* Index of address to be returned in sp */ u_int32_t data_address; /* If sg=0 Data Address, if sg=1 sglist address */ u_int32_t sp_addr; /* Address where sp is DMA'ed when cp completes */ u_int32_t sense_addr; /* Address where Sense Data is DMA'ed on error */ /* Additional fields begin here. */ Scsi_Cmnd *SCpnt; struct sg_list *sglist; }; struct hostdata { struct mscp cp[MAX_MAILBOXES]; /* Mailboxes for this board */ unsigned int cp_stat[MAX_MAILBOXES]; /* FREE, IN_USE, LOCKED, IN_RESET */ unsigned int last_cp_used; /* Index of last mailbox used */ unsigned int iocount; /* Total i/o done for this board */ int board_number; /* Number of this board */ char board_name[16]; /* Name of this board */ char board_id[256]; /* data from INQUIRY on this board */ int in_reset; /* True if board is doing a reset */ int target_to[MAX_TARGET][MAX_CHANNEL]; /* N. of timeout errors on target */ int target_redo[MAX_TARGET][MAX_CHANNEL]; /* If TRUE redo i/o on target */ unsigned int retries; /* Number of internal retries */ unsigned long last_retried_pid; /* Pid of last retried command */ unsigned char subversion; /* Bus type, either ISA or EISA/PCI */ unsigned char protocol_rev; /* EATA 2.0 rev., 'A' or 'B' or 'C' */ struct mssp sp[2]; /* Returned status for this board */ }; static struct Scsi_Host *sh[MAX_BOARDS + 1]; static const char *driver_name = "EATA"; static char sha[MAX_BOARDS]; /* Initialize num_boards so that ihdlr can work while detect is in progress */ static unsigned int num_boards = MAX_BOARDS; static unsigned long io_port[] = { /* Space for MAX_INT_PARAM ports usable while loading as a module */ SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, /* First ISA */ 0x1f0, /* Space for MAX_PCI ports possibly reported by PCI_BIOS */ SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, /* MAX_EISA ports */ 0x1c88, 0x2c88, 0x3c88, 0x4c88, 0x5c88, 0x6c88, 0x7c88, 0x8c88, 0x9c88, 0xac88, 0xbc88, 0xcc88, 0xdc88, 0xec88, 0xfc88, /* Other (MAX_ISA - 1) ports */ 0x170, 0x230, 0x330, /* End of list */ 0x0 }; #define HD(board) ((struct hostdata *) &sh[board]->hostdata) #define BN(board) (HD(board)->board_name) #define H2DEV(x) htonl(x) #define DEV2H(x) H2DEV(x) #define V2DEV(addr) ((addr) ? H2DEV(virt_to_bus((void *)addr)) : 0) #define DEV2V(addr) ((addr) ? DEV2H(bus_to_virt((unsigned long)addr)) : 0) static void do_interrupt_handler(int, void *, struct pt_regs *); static void flush_dev(Scsi_Device *, unsigned long, unsigned int, unsigned int); static int do_trace = FALSE; static int setup_done = FALSE; static int link_statistics; static int tag_mode = TAG_MIXED; static int ext_tran = FALSE; static int rev_scan = TRUE; static int use_new_eh_code = TRUE; static char *boot_options; #if defined(CONFIG_SCSI_EATA_TAGGED_QUEUE) static int tagged_comm = TRUE; #else static int tagged_comm = FALSE; #endif #if defined(CONFIG_SCSI_EATA_LINKED_COMMANDS) static int linked_comm = TRUE; #else static int linked_comm = FALSE; #endif #if defined(CONFIG_SCSI_EATA_MAX_TAGS) static int max_queue_depth = CONFIG_SCSI_EATA_MAX_TAGS; #else static int max_queue_depth = MAX_CMD_PER_LUN; #endif static void select_queue_depths(struct Scsi_Host *host, Scsi_Device *devlist) { Scsi_Device *dev; int j, ntag = 0, nuntag = 0, tqd, utqd; j = ((struct hostdata *) host->hostdata)->board_number; for(dev = devlist; dev; dev = dev->next) { if (dev->host != host) continue; if (TLDEV(dev->type) && (dev->tagged_supported || linked_comm)) ntag++; else nuntag++; } utqd = MAX_CMD_PER_LUN; tqd = (host->can_queue - utqd * nuntag) / (ntag ? ntag : 1); if (tqd > max_queue_depth) tqd = max_queue_depth; if (tqd < MAX_CMD_PER_LUN) tqd = MAX_CMD_PER_LUN; for(dev = devlist; dev; dev = dev->next) { char *tag_suffix = "", *link_suffix = ""; if (dev->host != host) continue; if (TLDEV(dev->type) && (dev->tagged_supported || linked_comm)) dev->queue_depth = tqd; else dev->queue_depth = utqd; if (TLDEV(dev->type)) { if (linked_comm && dev->queue_depth > 2) link_suffix = ", sorted"; else link_suffix = ", unsorted"; } if (tagged_comm && dev->tagged_supported && TLDEV(dev->type)) { dev->tagged_queue = 1; dev->current_tag = 1; } if (dev->tagged_supported && TLDEV(dev->type) && dev->tagged_queue) tag_suffix = ", tagged"; else if (dev->tagged_supported && TLDEV(dev->type)) tag_suffix = ", untagged"; printk("%s: scsi%d, channel %d, id %d, lun %d, cmds/lun %d%s%s.\n", BN(j), host->host_no, dev->channel, dev->id, dev->lun, dev->queue_depth, link_suffix, tag_suffix); } return; } static inline int wait_on_busy(unsigned long iobase, unsigned int loop) { while (inb(iobase + REG_AUX_STATUS) & ABSY_ASSERTED) { udelay(1L); if (--loop == 0) return TRUE; } return FALSE; } static inline int do_dma(unsigned long iobase, unsigned long addr, unchar cmd) { if (wait_on_busy(iobase, (addr ? MAXLOOP * 100 : MAXLOOP))) return TRUE; if ((addr = V2DEV(addr))) { outb((char) (addr >> 24), iobase + REG_LOW); outb((char) (addr >> 16), iobase + REG_LM); outb((char) (addr >> 8), iobase + REG_MID); outb((char) addr, iobase + REG_MSB); } outb(cmd, iobase + REG_CMD); return FALSE; } static inline int read_pio(unsigned long iobase, ushort *start, ushort *end) { unsigned int loop = MAXLOOP; ushort *p; for (p = start; p <= end; p++) { while (!(inb(iobase + REG_STATUS) & DRQ_ASSERTED)) { udelay(1L); if (--loop == 0) return TRUE; } loop = MAXLOOP; *p = inw(iobase); } return FALSE; } static inline void tune_pci_port(unsigned long port_base) { #if defined(CONFIG_PCI) unsigned int addr, k; struct pci_dev *dev = NULL; if (!pci_present()) return; for (k = 0; k < MAX_PCI; k++) { if (!(dev = pci_find_class(PCI_CLASS_STORAGE_SCSI << 8, dev))) break; addr = pci_resource_start (dev, 0); pci_enable_device (dev); /* XXX handle error */ #if defined(DEBUG_PCI_DETECT) printk("%s: tune_pci_port, bus %d, devfn 0x%x, addr 0x%x.\n", driver_name, dev->bus->number, dev->devfn, addr); #endif if ((addr & PCI_BASE_ADDRESS_IO_MASK) + PCI_BASE_ADDRESS_0 == port_base) { pci_set_master(dev); return; } } #endif /* end CONFIG_PCI */ return; } static inline int get_pci_irq(unsigned long port_base, unsigned char *apic_irq) { #if defined(CONFIG_PCI) unsigned int addr; struct pci_dev *dev = NULL; if (!pci_present()) return FALSE; while((dev = pci_find_class(PCI_CLASS_STORAGE_SCSI << 8, dev))) { if (pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &addr)) continue; #if defined(DEBUG_PCI_DETECT) printk("%s: get_pci_irq, bus %d, devfn 0x%x, addr 0x%x, apic_irq %u.\n", driver_name, dev->bus->number, dev->devfn, addr, dev->irq); #endif if ((addr & PCI_BASE_ADDRESS_IO_MASK) + PCI_BASE_ADDRESS_0 == port_base) { *apic_irq = dev->irq; return TRUE; } } #endif /* end CONFIG_PCI */ return FALSE; } static inline int port_detect \ (unsigned long port_base, unsigned int j, Scsi_Host_Template *tpnt) { unsigned char irq, dma_channel, subversion, i; unsigned char protocol_rev, apic_irq; struct eata_info info; char *bus_type, dma_name[16], tag_type; /* Allowed DMA channels for ISA (0 indicates reserved) */ unsigned char dma_channel_table[4] = { 5, 6, 7, 0 }; char name[16]; sprintf(name, "%s%d", driver_name, j); if(check_region(port_base, REGION_SIZE)) { #if defined(DEBUG_DETECT) printk("%s: address 0x%03lx in use, skipping probe.\n", name, port_base); #endif return FALSE; } if (do_dma(port_base, 0, READ_CONFIG_PIO)) return FALSE; /* Read the info structure */ if (read_pio(port_base, (ushort *)&info, (ushort *)&info.ipad[0])) return FALSE; /* Check the controller "EATA" signature */ if (info.sign != EATA_SIGNATURE) return FALSE; if (DEV2H(info.data_len) < EATA_2_0A_SIZE) { printk("%s: config structure size (%d bytes) too short, detaching.\n", name, DEV2H(info.data_len)); return FALSE; } else if (DEV2H(info.data_len) == EATA_2_0A_SIZE) protocol_rev = 'A'; else if (DEV2H(info.data_len) == EATA_2_0B_SIZE) protocol_rev = 'B'; else protocol_rev = 'C'; if (!setup_done && j > 0 && j <= MAX_PCI) { bus_type = "PCI"; subversion = ESA; } else if (port_base > MAX_EISA_ADDR || (protocol_rev == 'C' && info.pci)) { bus_type = "PCI"; subversion = ESA; } else if (port_base >= MIN_EISA_ADDR || (protocol_rev == 'C' && info.eisa)) { bus_type = "EISA"; subversion = ESA; } else if (protocol_rev == 'C' && !info.eisa && !info.pci) { bus_type = "ISA"; subversion = ISA; } else if (port_base > MAX_ISA_ADDR) { bus_type = "PCI"; subversion = ESA; } else { bus_type = "ISA"; subversion = ISA; } if (!info.haaval || info.ata) { printk("%s: address 0x%03lx, unusable %s board (%d%d), detaching.\n", name, port_base, bus_type, info.haaval, info.ata); return FALSE; } if (info.drqvld) { if (subversion == ESA) printk("%s: warning, weird %s board using DMA.\n", name, bus_type); subversion = ISA; dma_channel = dma_channel_table[3 - info.drqx]; } else { if (subversion == ISA) printk("%s: warning, weird %s board not using DMA.\n", name, bus_type); subversion = ESA; dma_channel = NO_DMA; } if (!info.dmasup) printk("%s: warning, DMA protocol support not asserted.\n", name); irq = info.irq; if (subversion == ESA && !info.irq_tr) printk("%s: warning, LEVEL triggering is suggested for IRQ %u.\n", name, irq); if (get_pci_irq(port_base, &apic_irq) && (irq != apic_irq)) { printk("%s: IRQ %u mapped to IO-APIC IRQ %u.\n", name, irq, apic_irq); irq = apic_irq; } /* Board detected, allocate its IRQ */ if (request_irq(irq, do_interrupt_handler, SA_INTERRUPT | ((subversion == ESA) ? SA_SHIRQ : 0), driver_name, (void *) &sha[j])) { printk("%s: unable to allocate IRQ %u, detaching.\n", name, irq); return FALSE; } if (subversion == ISA && request_dma(dma_channel, driver_name)) { printk("%s: unable to allocate DMA channel %u, detaching.\n", name, dma_channel); free_irq(irq, &sha[j]); return FALSE; } #if defined(FORCE_CONFIG) { struct eata_config config; /* Set board configuration */ memset((char *)&config, 0, sizeof(struct eata_config)); config.len = (ushort) htons((ushort)510); config.ocena = TRUE; if (do_dma(port_base, (unsigned long)&config, SET_CONFIG_DMA)) { printk("%s: busy timeout sending configuration, detaching.\n", name); return FALSE; } } #endif sh[j] = scsi_register(tpnt, sizeof(struct hostdata)); if (sh[j] == NULL) { printk("%s: unable to register host, detaching.\n", name); free_irq(irq, &sha[j]); if (subversion == ISA) free_dma(dma_channel); return FALSE; } sh[j]->io_port = port_base; sh[j]->unique_id = port_base; sh[j]->n_io_port = REGION_SIZE; sh[j]->dma_channel = dma_channel; sh[j]->irq = irq; sh[j]->sg_tablesize = (ushort) ntohs(info.scatt_size); sh[j]->this_id = (ushort) info.host_addr[3]; sh[j]->can_queue = (ushort) ntohs(info.queue_size); sh[j]->cmd_per_lun = MAX_CMD_PER_LUN; sh[j]->select_queue_depths = select_queue_depths; /* Register the I/O space that we use */ request_region(sh[j]->io_port, sh[j]->n_io_port, driver_name); memset(HD(j), 0, sizeof(struct hostdata)); HD(j)->subversion = subversion; HD(j)->protocol_rev = protocol_rev; HD(j)->board_number = j; if (HD(j)->subversion == ESA) sh[j]->unchecked_isa_dma = FALSE; else { unsigned long flags; scsi_register_blocked_host(sh[j]); sh[j]->unchecked_isa_dma = TRUE; flags=claim_dma_lock(); disable_dma(dma_channel); clear_dma_ff(dma_channel); set_dma_mode(dma_channel, DMA_MODE_CASCADE); enable_dma(dma_channel); release_dma_lock(flags); } strcpy(BN(j), name); /* DPT PM2012 does not allow to detect sg_tablesize correctly */ if (sh[j]->sg_tablesize > MAX_SGLIST || sh[j]->sg_tablesize < 2) { printk("%s: detect, wrong n. of SG lists %d, fixed.\n", BN(j), sh[j]->sg_tablesize); sh[j]->sg_tablesize = MAX_SGLIST; } /* DPT PM2012 does not allow to detect can_queue correctly */ if (sh[j]->can_queue > MAX_MAILBOXES || sh[j]->can_queue < 2) { printk("%s: detect, wrong n. of mbox %d, fixed.\n", BN(j), sh[j]->can_queue); sh[j]->can_queue = MAX_MAILBOXES; } if (protocol_rev != 'A') { if (info.max_chan > 0 && info.max_chan < MAX_CHANNEL) sh[j]->max_channel = info.max_chan; if (info.max_id > 7 && info.max_id < MAX_TARGET) sh[j]->max_id = info.max_id + 1; if (info.large_sg && sh[j]->sg_tablesize == MAX_SGLIST) sh[j]->sg_tablesize = MAX_LARGE_SGLIST; } if (protocol_rev == 'C') { if (info.max_lun > 7 && info.max_lun < MAX_LUN) sh[j]->max_lun = info.max_lun + 1; } if (dma_channel == NO_DMA) sprintf(dma_name, "%s", "BMST"); else sprintf(dma_name, "DMA %u", dma_channel); for (i = 0; i < sh[j]->can_queue; i++) if (! ((&HD(j)->cp[i])->sglist = kmalloc( sh[j]->sg_tablesize * sizeof(struct sg_list), (sh[j]->unchecked_isa_dma ? GFP_DMA : 0) | GFP_ATOMIC))) { printk("%s: kmalloc SGlist failed, mbox %d, detaching.\n", BN(j), i); eata2x_release(sh[j]); return FALSE; } if (max_queue_depth > MAX_TAGGED_CMD_PER_LUN) max_queue_depth = MAX_TAGGED_CMD_PER_LUN; if (max_queue_depth < MAX_CMD_PER_LUN) max_queue_depth = MAX_CMD_PER_LUN; if (tagged_comm) { if (tag_mode == TAG_SIMPLE) tag_type = '1'; else if (tag_mode == TAG_HEAD) tag_type = '2'; else if (tag_mode == TAG_ORDERED) tag_type = '3'; else tag_type = 'y'; } else tag_type = 'n'; sh[j]->hostt->use_new_eh_code = use_new_eh_code; if (j == 0) { printk("EATA/DMA 2.0x: Copyright (C) 1994-1999 Dario Ballabio.\n"); printk("%s config options -> tc:%c, lc:%c, mq:%d, eh:%c, rs:%c, et:%c.\n", driver_name, tag_type, YESNO(linked_comm), max_queue_depth, YESNO(use_new_eh_code), YESNO(rev_scan), YESNO(ext_tran)); } printk("%s: 2.0%c, %s 0x%03lx, IRQ %u, %s, SG %d, MB %d.\n", BN(j), HD(j)->protocol_rev, bus_type, (unsigned long)sh[j]->io_port, sh[j]->irq, dma_name, sh[j]->sg_tablesize, sh[j]->can_queue); if (sh[j]->max_id > 8 || sh[j]->max_lun > 8) printk("%s: wide SCSI support enabled, max_id %u, max_lun %u.\n", BN(j), sh[j]->max_id, sh[j]->max_lun); for (i = 0; i <= sh[j]->max_channel; i++) printk("%s: SCSI channel %u enabled, host target ID %d.\n", BN(j), i, info.host_addr[3 - i]); #if defined(DEBUG_DETECT) printk("%s: Vers. 0x%x, ocs %u, tar %u, trnxfr %u, more %u, SYNC 0x%x, "\ "sec. %u, infol %ld, cpl %ld spl %ld.\n", name, info.version, info.ocsena, info.tarsup, info.trnxfr, info.morsup, info.sync, info.second, DEV2H(info.data_len), DEV2H(info.cp_len), DEV2H(info.sp_len)); if (protocol_rev == 'B' || protocol_rev == 'C') printk("%s: isaena %u, forcaddr %u, max_id %u, max_chan %u, "\ "large_sg %u, res1 %u.\n", name, info.isaena, info.forcaddr, info.max_id, info.max_chan, info.large_sg, info.res1); if (protocol_rev == 'C') printk("%s: max_lun %u, m1 %u, idquest %u, pci %u, eisa %u, "\ "raidnum %u.\n", name, info.max_lun, info.m1, info.idquest, info.pci, info.eisa, info.raidnum); #endif tune_pci_port(sh[j]->io_port); return TRUE; } static void internal_setup(char *str, int *ints) { int i, argc = ints[0]; char *cur = str, *pc; if (argc > 0) { if (argc > MAX_INT_PARAM) argc = MAX_INT_PARAM; for (i = 0; i < argc; i++) io_port[i] = ints[i + 1]; io_port[i] = 0; setup_done = TRUE; } while (cur && (pc = strchr(cur, ':'))) { int val = 0, c = *++pc; if (c == 'n' || c == 'N') val = FALSE; else if (c == 'y' || c == 'Y') val = TRUE; else val = (int) simple_strtoul(pc, NULL, 0); if (!strncmp(cur, "lc:", 3)) linked_comm = val; else if (!strncmp(cur, "tc:", 3)) tagged_comm = val; else if (!strncmp(cur, "tm:", 3)) tag_mode = val; else if (!strncmp(cur, "mq:", 3)) max_queue_depth = val; else if (!strncmp(cur, "ls:", 3)) link_statistics = val; else if (!strncmp(cur, "eh:", 3)) use_new_eh_code = val; else if (!strncmp(cur, "et:", 3)) ext_tran = val; else if (!strncmp(cur, "rs:", 3)) rev_scan = val; if ((cur = strchr(cur, ','))) ++cur; } return; } static int option_setup(char *str) { int ints[MAX_INT_PARAM]; char *cur = str; int i = 1; while (cur && isdigit(*cur) && i <= MAX_INT_PARAM) { ints[i++] = simple_strtoul(cur, NULL, 0); if ((cur = strchr(cur, ',')) != NULL) cur++; } ints[0] = i - 1; internal_setup(cur, ints); return 1; } static void add_pci_ports(void) { #if defined(CONFIG_PCI) unsigned int addr, k; struct pci_dev *dev = NULL; if (!pci_present()) return; for (k = 0; k < MAX_PCI; k++) { if (!(dev = pci_find_class(PCI_CLASS_STORAGE_SCSI << 8, dev))) break; if (pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &addr)) continue; #if defined(DEBUG_PCI_DETECT) printk("%s: detect, seq. %d, bus %d, devfn 0x%x, addr 0x%x.\n", driver_name, k, dev->bus->number, dev->devfn, addr); #endif if ((addr & PCI_BASE_ADDRESS_SPACE) != PCI_BASE_ADDRESS_SPACE_IO) continue; /* Order addresses according to rev_scan value */ io_port[MAX_INT_PARAM + (rev_scan ? (MAX_PCI - k) : (1 + k))] = (addr & PCI_BASE_ADDRESS_IO_MASK) + PCI_BASE_ADDRESS_0; } #endif /* end CONFIG_PCI */ return; } int eata2x_detect(Scsi_Host_Template *tpnt) { unsigned int j = 0, k; tpnt->proc_name = "eata2x"; if(boot_options) option_setup(boot_options); #if defined(MODULE) /* io_port could have been modified when loading as a module */ if(io_port[0] != SKIP) { setup_done = TRUE; io_port[MAX_INT_PARAM] = 0; } #endif for (k = 0; k < MAX_BOARDS + 1; k++) sh[k] = NULL; if (!setup_done) add_pci_ports(); for (k = 0; io_port[k]; k++) { if (io_port[k] == SKIP) continue; if (j < MAX_BOARDS && port_detect(io_port[k], j, tpnt)) j++; } num_boards = j; return j; } static inline void build_sg_list(struct mscp *cpp, Scsi_Cmnd *SCpnt) { unsigned int k; struct scatterlist *sgpnt; sgpnt = (struct scatterlist *) SCpnt->request_buffer; for (k = 0; k < SCpnt->use_sg; k++) { cpp->sglist[k].address = V2DEV(sgpnt[k].address); cpp->sglist[k].num_bytes = H2DEV(sgpnt[k].length); } cpp->data_address = V2DEV(cpp->sglist); cpp->data_len = H2DEV((SCpnt->use_sg * sizeof(struct sg_list))); } static inline int do_qcomm(Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { unsigned int i, j, k; struct mscp *cpp; struct mssp *spp; static const unsigned char data_out_cmds[] = { 0x0a, 0x2a, 0x15, 0x55, 0x04, 0x07, 0x18, 0x1d, 0x24, 0x2e, 0x30, 0x31, 0x32, 0x38, 0x39, 0x3a, 0x3b, 0x3d, 0x3f, 0x40, 0x41, 0x4c, 0xaa, 0xae, 0xb0, 0xb1, 0xb2, 0xb6, 0xea, 0x1b }; static const unsigned char data_none_cmds[] = { 0x01, 0x0b, 0x10, 0x11, 0x13, 0x16, 0x17, 0x19, 0x2b, 0x1e, 0x2c, 0xac, 0x2f, 0xaf, 0x33, 0xb3, 0x35, 0x36, 0x45, 0x47, 0x48, 0x49, 0xa9, 0x4b, 0xa5, 0xa6, 0xb5 }; /* j is the board number */ j = ((struct hostdata *) SCpnt->host->hostdata)->board_number; if (SCpnt->host_scribble) panic("%s: qcomm, pid %ld, SCpnt %p already active.\n", BN(j), SCpnt->pid, SCpnt); /* i is the mailbox number, look for the first free mailbox starting from last_cp_used */ i = HD(j)->last_cp_used + 1; for (k = 0; k < sh[j]->can_queue; k++, i++) { if (i >= sh[j]->can_queue) i = 0; if (HD(j)->cp_stat[i] == FREE) { HD(j)->last_cp_used = i; break; } } if (k == sh[j]->can_queue) { printk("%s: qcomm, no free mailbox.\n", BN(j)); return 1; } /* Set pointer to control packet structure */ cpp = &HD(j)->cp[i]; memset(cpp, 0, sizeof(struct mscp) - sizeof(struct sg_list *)); /* Set pointer to status packet structure */ spp = &HD(j)->sp[0]; /* The EATA protocol uses Big Endian format */ cpp->sp_addr = V2DEV(spp); SCpnt->scsi_done = done; cpp->cpp_index = i; SCpnt->host_scribble = (unsigned char *) &cpp->cpp_index; if (do_trace) printk("%s: qcomm, mbox %d, target %d.%d:%d, pid %ld.\n", BN(j), i, SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid); for (k = 0; k < ARRAY_SIZE(data_out_cmds); k++) if (SCpnt->cmnd[0] == data_out_cmds[k]) { cpp->dout = TRUE; break; } if ((cpp->din = !cpp->dout)) for (k = 0; k < ARRAY_SIZE(data_none_cmds); k++) if (SCpnt->cmnd[0] == data_none_cmds[k]) { cpp->din = FALSE; break; } cpp->reqsen = TRUE; cpp->dispri = TRUE; #if 0 if (SCpnt->device->type == TYPE_TAPE) cpp->hbaci = TRUE; #endif cpp->one = TRUE; cpp->channel = SCpnt->channel; cpp->target = SCpnt->target; cpp->lun = SCpnt->lun; cpp->SCpnt = SCpnt; cpp->sense_addr = V2DEV(SCpnt->sense_buffer); cpp->sense_len = sizeof SCpnt->sense_buffer; if (SCpnt->device->tagged_queue) { if (HD(j)->target_redo[SCpnt->target][SCpnt->channel] || HD(j)->target_to[SCpnt->target][SCpnt->channel]) cpp->mess[0] = ORDERED_QUEUE_TAG; else if (tag_mode == TAG_SIMPLE) cpp->mess[0] = SIMPLE_QUEUE_TAG; else if (tag_mode == TAG_HEAD) cpp->mess[0] = HEAD_OF_QUEUE_TAG; else if (tag_mode == TAG_ORDERED) cpp->mess[0] = ORDERED_QUEUE_TAG; else if (SCpnt->device->current_tag == 0) cpp->mess[0] = ORDERED_QUEUE_TAG; else if (SCpnt->device->current_tag == 1) cpp->mess[0] = HEAD_OF_QUEUE_TAG; else cpp->mess[0] = SIMPLE_QUEUE_TAG; cpp->mess[1] = SCpnt->device->current_tag++; } if (SCpnt->use_sg) { cpp->sg = TRUE; build_sg_list(cpp, SCpnt); } else { cpp->data_address = V2DEV(SCpnt->request_buffer); cpp->data_len = H2DEV(SCpnt->request_bufflen); } memcpy(cpp->cdb, SCpnt->cmnd, SCpnt->cmd_len); if (linked_comm && SCpnt->device->queue_depth > 2 && TLDEV(SCpnt->device->type)) { HD(j)->cp_stat[i] = READY; flush_dev(SCpnt->device, SCpnt->request.sector, j, FALSE); return 0; } /* Send control packet to the board */ if (do_dma(sh[j]->io_port, (unsigned long) cpp, SEND_CP_DMA)) { SCpnt->host_scribble = NULL; printk("%s: qcomm, target %d.%d:%d, pid %ld, adapter busy.\n", BN(j), SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid); return 1; } HD(j)->cp_stat[i] = IN_USE; return 0; } int eata2x_queuecommand(Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { int rtn; rtn = do_qcomm(SCpnt, done); return rtn; } static inline int do_old_abort(Scsi_Cmnd *SCarg) { unsigned int i, j; j = ((struct hostdata *) SCarg->host->hostdata)->board_number; if (SCarg->host_scribble == NULL || (SCarg->serial_number_at_timeout && (SCarg->serial_number != SCarg->serial_number_at_timeout))) { printk("%s: abort, target %d.%d:%d, pid %ld inactive.\n", BN(j), SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); return SCSI_ABORT_NOT_RUNNING; } i = *(unsigned int *)SCarg->host_scribble; printk("%s: abort, mbox %d, target %d.%d:%d, pid %ld.\n", BN(j), i, SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); if (i >= sh[j]->can_queue) panic("%s: abort, invalid SCarg->host_scribble.\n", BN(j)); if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: abort, timeout error.\n", BN(j)); return SCSI_ABORT_ERROR; } if (HD(j)->cp_stat[i] == FREE) { printk("%s: abort, mbox %d is free.\n", BN(j), i); return SCSI_ABORT_NOT_RUNNING; } if (HD(j)->cp_stat[i] == IN_USE) { printk("%s: abort, mbox %d is in use.\n", BN(j), i); if (SCarg != HD(j)->cp[i].SCpnt) panic("%s: abort, mbox %d, SCarg %p, cp SCpnt %p.\n", BN(j), i, SCarg, HD(j)->cp[i].SCpnt); if (inb(sh[j]->io_port + REG_AUX_STATUS) & IRQ_ASSERTED) printk("%s: abort, mbox %d, interrupt pending.\n", BN(j), i); return SCSI_ABORT_SNOOZE; } if (HD(j)->cp_stat[i] == IN_RESET) { printk("%s: abort, mbox %d is in reset.\n", BN(j), i); return SCSI_ABORT_ERROR; } if (HD(j)->cp_stat[i] == LOCKED) { printk("%s: abort, mbox %d is locked.\n", BN(j), i); return SCSI_ABORT_NOT_RUNNING; } if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { SCarg->result = DID_ABORT << 16; SCarg->host_scribble = NULL; HD(j)->cp_stat[i] = FREE; printk("%s, abort, mbox %d ready, DID_ABORT, pid %ld done.\n", BN(j), i, SCarg->pid); SCarg->scsi_done(SCarg); return SCSI_ABORT_SUCCESS; } panic("%s: abort, mbox %d, invalid cp_stat.\n", BN(j), i); } int eata2x_old_abort(Scsi_Cmnd *SCarg) { int rtn; rtn = do_old_abort(SCarg); return rtn; } static inline int do_abort(Scsi_Cmnd *SCarg) { unsigned int i, j; j = ((struct hostdata *) SCarg->host->hostdata)->board_number; if (SCarg->host_scribble == NULL) { printk("%s: abort, target %d.%d:%d, pid %ld inactive.\n", BN(j), SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); return SUCCESS; } i = *(unsigned int *)SCarg->host_scribble; printk("%s: abort, mbox %d, target %d.%d:%d, pid %ld.\n", BN(j), i, SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); if (i >= sh[j]->can_queue) panic("%s: abort, invalid SCarg->host_scribble.\n", BN(j)); if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: abort, timeout error.\n", BN(j)); return FAILED; } if (HD(j)->cp_stat[i] == FREE) { printk("%s: abort, mbox %d is free.\n", BN(j), i); return SUCCESS; } if (HD(j)->cp_stat[i] == IN_USE) { printk("%s: abort, mbox %d is in use.\n", BN(j), i); if (SCarg != HD(j)->cp[i].SCpnt) panic("%s: abort, mbox %d, SCarg %p, cp SCpnt %p.\n", BN(j), i, SCarg, HD(j)->cp[i].SCpnt); if (inb(sh[j]->io_port + REG_AUX_STATUS) & IRQ_ASSERTED) printk("%s: abort, mbox %d, interrupt pending.\n", BN(j), i); if (SCarg->eh_state == SCSI_STATE_TIMEOUT) { SCarg->host_scribble = NULL; HD(j)->cp_stat[i] = FREE; printk("%s, abort, mbox %d, eh_state timeout, pid %ld.\n", BN(j), i, SCarg->pid); return SUCCESS; } return FAILED; } if (HD(j)->cp_stat[i] == IN_RESET) { printk("%s: abort, mbox %d is in reset.\n", BN(j), i); return FAILED; } if (HD(j)->cp_stat[i] == LOCKED) { printk("%s: abort, mbox %d is locked.\n", BN(j), i); return SUCCESS; } if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { SCarg->result = DID_ABORT << 16; SCarg->host_scribble = NULL; HD(j)->cp_stat[i] = FREE; printk("%s, abort, mbox %d ready, DID_ABORT, pid %ld done.\n", BN(j), i, SCarg->pid); SCarg->scsi_done(SCarg); return SUCCESS; } panic("%s: abort, mbox %d, invalid cp_stat.\n", BN(j), i); } int eata2x_abort(Scsi_Cmnd *SCarg) { return do_abort(SCarg); } static inline int do_old_reset(Scsi_Cmnd *SCarg) { unsigned int i, j, time, k, c, limit = 0; int arg_done = FALSE; Scsi_Cmnd *SCpnt; j = ((struct hostdata *) SCarg->host->hostdata)->board_number; printk("%s: reset, enter, target %d.%d:%d, pid %ld.\n", BN(j), SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); if (SCarg->host_scribble == NULL) printk("%s: reset, pid %ld inactive.\n", BN(j), SCarg->pid); if (SCarg->serial_number_at_timeout && (SCarg->serial_number != SCarg->serial_number_at_timeout)) { printk("%s: reset, pid %ld, reset not running.\n", BN(j), SCarg->pid); return SCSI_RESET_NOT_RUNNING; } if (HD(j)->in_reset) { printk("%s: reset, exit, already in reset.\n", BN(j)); return SCSI_RESET_ERROR; } if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: reset, exit, timeout error.\n", BN(j)); return SCSI_RESET_ERROR; } HD(j)->retries = 0; for (c = 0; c <= sh[j]->max_channel; c++) for (k = 0; k < sh[j]->max_id; k++) { HD(j)->target_redo[k][c] = TRUE; HD(j)->target_to[k][c] = 0; } for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == FREE) continue; if (HD(j)->cp_stat[i] == LOCKED) { HD(j)->cp_stat[i] = FREE; printk("%s: reset, locked mbox %d forced free.\n", BN(j), i); continue; } if (!(SCpnt = HD(j)->cp[i].SCpnt)) panic("%s: reset, mbox %d, SCpnt == NULL.\n", BN(j), i); if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { HD(j)->cp_stat[i] = ABORTING; printk("%s: reset, mbox %d aborting, pid %ld.\n", BN(j), i, SCpnt->pid); } else { HD(j)->cp_stat[i] = IN_RESET; printk("%s: reset, mbox %d in reset, pid %ld.\n", BN(j), i, SCpnt->pid); } if (SCpnt->host_scribble == NULL) panic("%s: reset, mbox %d, garbled SCpnt.\n", BN(j), i); if (*(unsigned int *)SCpnt->host_scribble != i) panic("%s: reset, mbox %d, index mismatch.\n", BN(j), i); if (SCpnt->scsi_done == NULL) panic("%s: reset, mbox %d, SCpnt->scsi_done == NULL.\n", BN(j), i); if (SCpnt == SCarg) arg_done = TRUE; } if (do_dma(sh[j]->io_port, 0, RESET_PIO)) { printk("%s: reset, cannot reset, timeout error.\n", BN(j)); return SCSI_RESET_ERROR; } printk("%s: reset, board reset done, enabling interrupts.\n", BN(j)); #if defined(DEBUG_RESET) do_trace = TRUE; #endif HD(j)->in_reset = TRUE; SPIN_UNLOCK time = jiffies; while ((jiffies - time) < (10 * HZ) && limit++ < 200000) udelay(100L); SPIN_LOCK printk("%s: reset, interrupts disabled, loops %d.\n", BN(j), limit); for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == IN_RESET) { SCpnt = HD(j)->cp[i].SCpnt; SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox is still waiting for its interrupt */ HD(j)->cp_stat[i] = LOCKED; printk("%s, reset, mbox %d locked, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else if (HD(j)->cp_stat[i] == ABORTING) { SCpnt = HD(j)->cp[i].SCpnt; SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox was never queued to the adapter */ HD(j)->cp_stat[i] = FREE; printk("%s, reset, mbox %d aborting, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else /* Any other mailbox has already been set free by interrupt */ continue; SCpnt->scsi_done(SCpnt); } HD(j)->in_reset = FALSE; do_trace = FALSE; if (arg_done) { printk("%s: reset, exit, success.\n", BN(j)); return SCSI_RESET_SUCCESS; } else { printk("%s: reset, exit, wakeup.\n", BN(j)); return SCSI_RESET_PUNT; } } int eata2x_old_reset(Scsi_Cmnd *SCarg, unsigned int reset_flags) { int rtn; rtn = do_old_reset(SCarg); return rtn; } static inline int do_reset(Scsi_Cmnd *SCarg) { unsigned int i, j, time, k, c, limit = 0; int arg_done = FALSE; Scsi_Cmnd *SCpnt; j = ((struct hostdata *) SCarg->host->hostdata)->board_number; printk("%s: reset, enter, target %d.%d:%d, pid %ld.\n", BN(j), SCarg->channel, SCarg->target, SCarg->lun, SCarg->pid); if (SCarg->host_scribble == NULL) printk("%s: reset, pid %ld inactive.\n", BN(j), SCarg->pid); if (HD(j)->in_reset) { printk("%s: reset, exit, already in reset.\n", BN(j)); return FAILED; } if (wait_on_busy(sh[j]->io_port, MAXLOOP)) { printk("%s: reset, exit, timeout error.\n", BN(j)); return FAILED; } HD(j)->retries = 0; for (c = 0; c <= sh[j]->max_channel; c++) for (k = 0; k < sh[j]->max_id; k++) { HD(j)->target_redo[k][c] = TRUE; HD(j)->target_to[k][c] = 0; } for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == FREE) continue; if (HD(j)->cp_stat[i] == LOCKED) { HD(j)->cp_stat[i] = FREE; printk("%s: reset, locked mbox %d forced free.\n", BN(j), i); continue; } if (!(SCpnt = HD(j)->cp[i].SCpnt)) panic("%s: reset, mbox %d, SCpnt == NULL.\n", BN(j), i); if (HD(j)->cp_stat[i] == READY || HD(j)->cp_stat[i] == ABORTING) { HD(j)->cp_stat[i] = ABORTING; printk("%s: reset, mbox %d aborting, pid %ld.\n", BN(j), i, SCpnt->pid); } else { HD(j)->cp_stat[i] = IN_RESET; printk("%s: reset, mbox %d in reset, pid %ld.\n", BN(j), i, SCpnt->pid); } if (SCpnt->host_scribble == NULL) panic("%s: reset, mbox %d, garbled SCpnt.\n", BN(j), i); if (*(unsigned int *)SCpnt->host_scribble != i) panic("%s: reset, mbox %d, index mismatch.\n", BN(j), i); if (SCpnt->scsi_done == NULL) panic("%s: reset, mbox %d, SCpnt->scsi_done == NULL.\n", BN(j), i); if (SCpnt == SCarg) arg_done = TRUE; } if (do_dma(sh[j]->io_port, 0, RESET_PIO)) { printk("%s: reset, cannot reset, timeout error.\n", BN(j)); return FAILED; } printk("%s: reset, board reset done, enabling interrupts.\n", BN(j)); #if defined(DEBUG_RESET) do_trace = TRUE; #endif HD(j)->in_reset = TRUE; SPIN_UNLOCK time = jiffies; while ((jiffies - time) < (10 * HZ) && limit++ < 200000) udelay(100L); SPIN_LOCK printk("%s: reset, interrupts disabled, loops %d.\n", BN(j), limit); for (i = 0; i < sh[j]->can_queue; i++) { if (HD(j)->cp_stat[i] == IN_RESET) { SCpnt = HD(j)->cp[i].SCpnt; SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox is still waiting for its interrupt */ HD(j)->cp_stat[i] = LOCKED; printk("%s, reset, mbox %d locked, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else if (HD(j)->cp_stat[i] == ABORTING) { SCpnt = HD(j)->cp[i].SCpnt; SCpnt->result = DID_RESET << 16; SCpnt->host_scribble = NULL; /* This mailbox was never queued to the adapter */ HD(j)->cp_stat[i] = FREE; printk("%s, reset, mbox %d aborting, DID_RESET, pid %ld done.\n", BN(j), i, SCpnt->pid); } else /* Any other mailbox has already been set free by interrupt */ continue; SCpnt->scsi_done(SCpnt); } HD(j)->in_reset = FALSE; do_trace = FALSE; if (arg_done) printk("%s: reset, exit, pid %ld done.\n", BN(j), SCarg->pid); else printk("%s: reset, exit.\n", BN(j)); return SUCCESS; } int eata2x_reset(Scsi_Cmnd *SCarg) { return do_reset(SCarg); } int eata2x_biosparam(Disk *disk, kdev_t dev, int *dkinfo) { int size = disk->capacity; if (ext_tran || (scsicam_bios_param(disk, dev, dkinfo) < 0)) { dkinfo[0] = 255; dkinfo[1] = 63; dkinfo[2] = size / (dkinfo[0] * dkinfo[1]); } #if defined (DEBUG_GEOMETRY) printk ("%s: biosparam, head=%d, sec=%d, cyl=%d.\n", driver_name, dkinfo[0], dkinfo[1], dkinfo[2]); #endif return FALSE; } static void sort(unsigned long sk[], unsigned int da[], unsigned int n, unsigned int rev) { unsigned int i, j, k, y; unsigned long x; for (i = 0; i < n - 1; i++) { k = i; for (j = k + 1; j < n; j++) if (rev) { if (sk[j] > sk[k]) k = j; } else { if (sk[j] < sk[k]) k = j; } if (k != i) { x = sk[k]; sk[k] = sk[i]; sk[i] = x; y = da[k]; da[k] = da[i]; da[i] = y; } } return; } static inline int reorder(unsigned int j, unsigned long cursec, unsigned int ihdlr, unsigned int il[], unsigned int n_ready) { Scsi_Cmnd *SCpnt; struct mscp *cpp; unsigned int k, n; unsigned int rev = FALSE, s = TRUE, r = TRUE; unsigned int input_only = TRUE, overlap = FALSE; unsigned long sl[n_ready], pl[n_ready], ll[n_ready]; unsigned long maxsec = 0, minsec = ULONG_MAX, seek = 0, iseek = 0; unsigned long ioseek = 0; static unsigned int flushcount = 0, batchcount = 0, sortcount = 0; static unsigned int readycount = 0, ovlcount = 0, inputcount = 0; static unsigned int readysorted = 0, revcount = 0; static unsigned long seeksorted = 0, seeknosort = 0; if (link_statistics && !(++flushcount % link_statistics)) printk("fc %d bc %d ic %d oc %d rc %d rs %d sc %d re %d"\ " av %ldK as %ldK.\n", flushcount, batchcount, inputcount, ovlcount, readycount, readysorted, sortcount, revcount, seeknosort / (readycount + 1), seeksorted / (readycount + 1)); if (n_ready <= 1) return FALSE; for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (!cpp->din) input_only = FALSE; if (SCpnt->request.sector < minsec) minsec = SCpnt->request.sector; if (SCpnt->request.sector > maxsec) maxsec = SCpnt->request.sector; sl[n] = SCpnt->request.sector; ioseek += SCpnt->request.nr_sectors; if (!n) continue; if (sl[n] < sl[n - 1]) s = FALSE; if (sl[n] > sl[n - 1]) r = FALSE; if (link_statistics) { if (sl[n] > sl[n - 1]) seek += sl[n] - sl[n - 1]; else seek += sl[n - 1] - sl[n]; } } if (link_statistics) { if (cursec > sl[0]) seek += cursec - sl[0]; else seek += sl[0] - cursec; } if (cursec > ((maxsec + minsec) / 2)) rev = TRUE; if (ioseek > ((maxsec - minsec) / 2)) rev = FALSE; if (!((rev && r) || (!rev && s))) sort(sl, il, n_ready, rev); if (!input_only) for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; ll[n] = SCpnt->request.nr_sectors; pl[n] = SCpnt->pid; if (!n) continue; if ((sl[n] == sl[n - 1]) || (!rev && ((sl[n - 1] + ll[n - 1]) > sl[n])) || (rev && ((sl[n] + ll[n]) > sl[n - 1]))) overlap = TRUE; } if (overlap) sort(pl, il, n_ready, FALSE); if (link_statistics) { if (cursec > sl[0]) iseek = cursec - sl[0]; else iseek = sl[0] - cursec; batchcount++; readycount += n_ready, seeknosort += seek / 1024; if (input_only) inputcount++; if (overlap) { ovlcount++; seeksorted += iseek / 1024; } else seeksorted += (iseek + maxsec - minsec) / 1024; if (rev && !r) { revcount++; readysorted += n_ready; } if (!rev && !s) { sortcount++; readysorted += n_ready; } } #if defined(DEBUG_LINKED_COMMANDS) if (link_statistics && (overlap || !(flushcount % link_statistics))) for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; printk("%s %d.%d:%d pid %ld mb %d fc %d nr %d sec %ld ns %ld"\ " cur %ld s:%c r:%c rev:%c in:%c ov:%c xd %d.\n", (ihdlr ? "ihdlr" : "qcomm"), SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid, k, flushcount, n_ready, SCpnt->request.sector, SCpnt->request.nr_sectors, cursec, YESNO(s), YESNO(r), YESNO(rev), YESNO(input_only), YESNO(overlap), cpp->din); } #endif return overlap; } static void flush_dev(Scsi_Device *dev, unsigned long cursec, unsigned int j, unsigned int ihdlr) { Scsi_Cmnd *SCpnt; struct mscp *cpp; unsigned int k, n, n_ready = 0, il[MAX_MAILBOXES]; for (k = 0; k < sh[j]->can_queue; k++) { if (HD(j)->cp_stat[k] != READY && HD(j)->cp_stat[k] != IN_USE) continue; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (SCpnt->device != dev) continue; if (HD(j)->cp_stat[k] == IN_USE) return; il[n_ready++] = k; } if (reorder(j, cursec, ihdlr, il, n_ready)) n_ready = 1; for (n = 0; n < n_ready; n++) { k = il[n]; cpp = &HD(j)->cp[k]; SCpnt = cpp->SCpnt; if (do_dma(sh[j]->io_port, (unsigned long) cpp, SEND_CP_DMA)) { printk("%s: %s, target %d.%d:%d, pid %ld, mbox %d, adapter"\ " busy, will abort.\n", BN(j), (ihdlr ? "ihdlr" : "qcomm"), SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid, k); HD(j)->cp_stat[k] = ABORTING; continue; } HD(j)->cp_stat[k] = IN_USE; } } static inline void ihdlr(int irq, unsigned int j) { Scsi_Cmnd *SCpnt; unsigned int i, k, c, status, tstatus, reg; struct mssp *dspp, *spp; struct mscp *cpp; if (sh[j]->irq != irq) panic("%s: ihdlr, irq %d, sh[j]->irq %d.\n", BN(j), irq, sh[j]->irq); /* Check if this board need to be serviced */ if (!(inb(sh[j]->io_port + REG_AUX_STATUS) & IRQ_ASSERTED)) return; HD(j)->iocount++; if (do_trace) printk("%s: ihdlr, enter, irq %d, count %d.\n", BN(j), irq, HD(j)->iocount); /* Check if this board is still busy */ if (wait_on_busy(sh[j]->io_port, 20 * MAXLOOP)) { reg = inb(sh[j]->io_port + REG_STATUS); printk("%s: ihdlr, busy timeout error, irq %d, reg 0x%x, count %d.\n", BN(j), irq, reg, HD(j)->iocount); return; } dspp = &HD(j)->sp[0]; spp = &HD(j)->sp[1]; /* Make a local copy just before clearing the interrupt indication */ memcpy(spp, dspp, sizeof(struct mssp)); /* Clear the completion flag and cp pointer on the dynamic copy of sp */ memset(dspp, 0, sizeof(struct mssp)); /* Read the status register to clear the interrupt indication */ reg = inb(sh[j]->io_port + REG_STATUS); /* Reject any sp with supspect data */ if (spp->eoc == FALSE) printk("%s: ihdlr, spp->eoc == FALSE, irq %d, reg 0x%x, count %d.\n", BN(j), irq, reg, HD(j)->iocount); if (spp->cpp_index < 0 || spp->cpp_index >= sh[j]->can_queue) printk("%s: ihdlr, bad spp->cpp_index %d, irq %d, reg 0x%x, count %d.\n", BN(j), spp->cpp_index, irq, reg, HD(j)->iocount); if (spp->eoc == FALSE || spp->cpp_index < 0 || spp->cpp_index >= sh[j]->can_queue) return; /* Find the mailbox to be serviced on this board */ i = spp->cpp_index; cpp = &(HD(j)->cp[i]); #if defined(DEBUG_GENERATE_ABORTS) if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 500) < 3)) return; #endif if (HD(j)->cp_stat[i] == IGNORE) { HD(j)->cp_stat[i] = FREE; return; } else if (HD(j)->cp_stat[i] == LOCKED) { HD(j)->cp_stat[i] = FREE; printk("%s: ihdlr, mbox %d unlocked, count %d.\n", BN(j), i, HD(j)->iocount); return; } else if (HD(j)->cp_stat[i] == FREE) { printk("%s: ihdlr, mbox %d is free, count %d.\n", BN(j), i, HD(j)->iocount); return; } else if (HD(j)->cp_stat[i] == IN_RESET) printk("%s: ihdlr, mbox %d is in reset.\n", BN(j), i); else if (HD(j)->cp_stat[i] != IN_USE) panic("%s: ihdlr, mbox %d, invalid cp_stat: %d.\n", BN(j), i, HD(j)->cp_stat[i]); HD(j)->cp_stat[i] = FREE; SCpnt = cpp->SCpnt; if (SCpnt == NULL) panic("%s: ihdlr, mbox %d, SCpnt == NULL.\n", BN(j), i); if (SCpnt->host_scribble == NULL) panic("%s: ihdlr, mbox %d, pid %ld, SCpnt %p garbled.\n", BN(j), i, SCpnt->pid, SCpnt); if (*(unsigned int *)SCpnt->host_scribble != i) panic("%s: ihdlr, mbox %d, pid %ld, index mismatch %d.\n", BN(j), i, SCpnt->pid, *(unsigned int *)SCpnt->host_scribble); if (linked_comm && SCpnt->device->queue_depth > 2 && TLDEV(SCpnt->device->type)) flush_dev(SCpnt->device, SCpnt->request.sector, j, TRUE); tstatus = status_byte(spp->target_status); #if defined(DEBUG_GENERATE_ERRORS) if ((HD(j)->iocount > 500) && ((HD(j)->iocount % 200) < 2)) spp->adapter_status = 0x01; #endif switch (spp->adapter_status) { case ASOK: /* status OK */ /* Forces a reset if a disk drive keeps returning BUSY */ if (tstatus == BUSY && SCpnt->device->type != TYPE_TAPE) status = DID_ERROR << 16; /* If there was a bus reset, redo operation on each target */ else if (tstatus != GOOD && SCpnt->device->type == TYPE_DISK && HD(j)->target_redo[SCpnt->target][SCpnt->channel]) status = DID_BUS_BUSY << 16; /* Works around a flaw in scsi.c */ else if (tstatus == CHECK_CONDITION && SCpnt->device->type == TYPE_DISK && (SCpnt->sense_buffer[2] & 0xf) == RECOVERED_ERROR) status = DID_BUS_BUSY << 16; else status = DID_OK << 16; if (tstatus == GOOD) HD(j)->target_redo[SCpnt->target][SCpnt->channel] = FALSE; if (spp->target_status && SCpnt->device->type == TYPE_DISK) printk("%s: ihdlr, target %d.%d:%d, pid %ld, "\ "target_status 0x%x, sense key 0x%x.\n", BN(j), SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid, spp->target_status, SCpnt->sense_buffer[2]); HD(j)->target_to[SCpnt->target][SCpnt->channel] = 0; if (HD(j)->last_retried_pid == SCpnt->pid) HD(j)->retries = 0; break; case ASST: /* Selection Time Out */ case 0x02: /* Command Time Out */ if (HD(j)->target_to[SCpnt->target][SCpnt->channel] > 1) status = DID_ERROR << 16; else { status = DID_TIME_OUT << 16; HD(j)->target_to[SCpnt->target][SCpnt->channel]++; } break; /* Perform a limited number of internal retries */ case 0x03: /* SCSI Bus Reset Received */ case 0x04: /* Initial Controller Power-up */ for (c = 0; c <= sh[j]->max_channel; c++) for (k = 0; k < sh[j]->max_id; k++) HD(j)->target_redo[k][c] = TRUE; if (SCpnt->device->type != TYPE_TAPE && HD(j)->retries < MAX_INTERNAL_RETRIES) { #if defined(DID_SOFT_ERROR) status = DID_SOFT_ERROR << 16; #else status = DID_BUS_BUSY << 16; #endif HD(j)->retries++; HD(j)->last_retried_pid = SCpnt->pid; } else status = DID_ERROR << 16; break; case 0x05: /* Unexpected Bus Phase */ case 0x06: /* Unexpected Bus Free */ case 0x07: /* Bus Parity Error */ case 0x08: /* SCSI Hung */ case 0x09: /* Unexpected Message Reject */ case 0x0a: /* SCSI Bus Reset Stuck */ case 0x0b: /* Auto Request-Sense Failed */ case 0x0c: /* Controller Ram Parity Error */ default: status = DID_ERROR << 16; break; } SCpnt->result = status | spp->target_status; #if defined(DEBUG_INTERRUPT) if (SCpnt->result || do_trace) #else if ((spp->adapter_status != ASOK && HD(j)->iocount > 1000) || (spp->adapter_status != ASOK && spp->adapter_status != ASST && HD(j)->iocount <= 1000) || do_trace || msg_byte(spp->target_status)) #endif printk("%s: ihdlr, mbox %2d, err 0x%x:%x,"\ " target %d.%d:%d, pid %ld, reg 0x%x, count %d.\n", BN(j), i, spp->adapter_status, spp->target_status, SCpnt->channel, SCpnt->target, SCpnt->lun, SCpnt->pid, reg, HD(j)->iocount); /* Set the command state to inactive */ SCpnt->host_scribble = NULL; SCpnt->scsi_done(SCpnt); if (do_trace) printk("%s: ihdlr, exit, irq %d, count %d.\n", BN(j), irq, HD(j)->iocount); return; } static void do_interrupt_handler(int irq, void *shap, struct pt_regs *regs) { unsigned int j; SPIN_FLAGS /* Check if the interrupt must be processed by this handler */ if ((j = (unsigned int)((char *)shap - sha)) >= num_boards) return; SPIN_LOCK_SAVE ihdlr(irq, j); SPIN_UNLOCK_RESTORE } int eata2x_release(struct Scsi_Host *shpnt) { unsigned int i, j; for (j = 0; sh[j] != NULL && sh[j] != shpnt; j++); if (sh[j] == NULL) panic("%s: release, invalid Scsi_Host pointer.\n", driver_name); if( sh[j]->unchecked_isa_dma ) { scsi_deregister_blocked_host(sh[j]); } for (i = 0; i < sh[j]->can_queue; i++) if ((&HD(j)->cp[i])->sglist) kfree((&HD(j)->cp[i])->sglist); free_irq(sh[j]->irq, &sha[j]); if (sh[j]->dma_channel != NO_DMA) free_dma(sh[j]->dma_channel); release_region(sh[j]->io_port, sh[j]->n_io_port); scsi_unregister(sh[j]); return FALSE; } static Scsi_Host_Template driver_template = EATA; #include "scsi_module.c" #ifndef MODULE #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,18) void eata2x_setup(char *str, int *ints) { internal_setup(str, ints); } #else __setup("eata=", option_setup); #endif #endif /* end MODULE */