/****************************************************************************** ** Device driver for the PCI-SCSI NCR538XX controller family. ** ** Copyright (C) 1994 Wolfgang Stanglmeier ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** **----------------------------------------------------------------------------- ** ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver ** and is currently maintained by ** ** Gerard Roudier ** ** Being given that this driver originates from the FreeBSD version, and ** in order to keep synergy on both, any suggested enhancements and corrections ** received on Linux are automatically a potential candidate for the FreeBSD ** version. ** ** The original driver has been written for 386bsd and FreeBSD by ** Wolfgang Stanglmeier ** Stefan Esser ** ** And has been ported to NetBSD by ** Charles M. Hannum ** **----------------------------------------------------------------------------- ** ** Brief history ** ** December 10 1995 by Gerard Roudier: ** Initial port to Linux. ** ** June 23 1996 by Gerard Roudier: ** Support for 64 bits architectures (Alpha). ** ** November 30 1996 by Gerard Roudier: ** Support for Fast-20 scsi. ** Support for large DMA fifo and 128 dwords bursting. ** ** February 27 1997 by Gerard Roudier: ** Support for Fast-40 scsi. ** Support for on-Board RAM. ** ** May 3 1997 by Gerard Roudier: ** Full support for scsi scripts instructions pre-fetching. ** ** May 19 1997 by Richard Waltham : ** Support for NvRAM detection and reading. ** ** August 18 1997 by Cort : ** Support for Power/PC (Big Endian). ** ** June 20 1998 by Gerard Roudier : ** Support for up to 64 tags per lun. ** O(1) everywhere (C and SCRIPTS) for normal cases. ** Low PCI traffic for command handling when on-chip RAM is present. ** Aggressive SCSI SCRIPTS optimizations. ** ******************************************************************************* */ /* ** January 8 2000, version 3.2e ** ** Supported SCSI-II features: ** Synchronous negotiation ** Wide negotiation (depends on the NCR Chip) ** Enable disconnection ** Tagged command queuing ** Parity checking ** Etc... ** ** Supported NCR/SYMBIOS chips: ** 53C810 (8 bits, Fast SCSI-2, no rom BIOS) ** 53C815 (8 bits, Fast SCSI-2, on board rom BIOS) ** 53C820 (Wide, Fast SCSI-2, no rom BIOS) ** 53C825 (Wide, Fast SCSI-2, on board rom BIOS) ** 53C860 (8 bits, Fast 20, no rom BIOS) ** 53C875 (Wide, Fast 20, on board rom BIOS) ** 53C895 (Wide, Fast 40, on board rom BIOS) ** 53C895A (Wide, Fast 40, on board rom BIOS) ** 53C896 (Wide, Fast 40, on board rom BIOS) ** 53C1510D (Wide, Fast 40, on board rom BIOS) ** ** Other features: ** Memory mapped IO (linux-1.3.X and above only) ** Module ** Shared IRQ (since linux-1.3.72) */ /* ** Name and version of the driver */ #define SCSI_NCR_DRIVER_NAME "ncr53c8xx - version 3.2e" #define SCSI_NCR_DEBUG_FLAGS (0) /*========================================================== ** ** Include files ** **========================================================== */ #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) #ifdef MODULE #include #endif #include #include #include #if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,17) #include #elif LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __mips__ #include #include #include #endif /* __mips__ */ #include #include #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,35) #include #endif #ifndef __init #define __init #endif #ifndef __initdata #define __initdata #endif #if LINUX_VERSION_CODE <= LinuxVersionCode(2,1,92) #include #endif #include "scsi.h" #include "hosts.h" #include "constants.h" #include "sd.h" #include /* ** Define BITS_PER_LONG for earlier linux versions. */ #ifndef BITS_PER_LONG #if (~0UL) == 0xffffffffUL #define BITS_PER_LONG 32 #else #define BITS_PER_LONG 64 #endif #endif /* ** Define the BSD style u_int32 and u_int64 type. ** Are in fact u_int32_t and u_int64_t :-) */ typedef u32 u_int32; typedef u64 u_int64; #include "ncr53c8xx.h" /*========================================================== ** ** A la VMS/CAM-3 queue management. ** Implemented from linux list management. ** **========================================================== */ typedef struct xpt_quehead { struct xpt_quehead *flink; /* Forward pointer */ struct xpt_quehead *blink; /* Backward pointer */ } XPT_QUEHEAD; #define xpt_que_init(ptr) do { \ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ } while (0) static inline void __xpt_que_add(struct xpt_quehead * new, struct xpt_quehead * blink, struct xpt_quehead * flink) { flink->blink = new; new->flink = flink; new->blink = blink; blink->flink = new; } static inline void __xpt_que_del(struct xpt_quehead * blink, struct xpt_quehead * flink) { flink->blink = blink; blink->flink = flink; } static inline int xpt_que_empty(struct xpt_quehead *head) { return head->flink == head; } static inline void xpt_que_splice(struct xpt_quehead *list, struct xpt_quehead *head) { struct xpt_quehead *first = list->flink; if (first != list) { struct xpt_quehead *last = list->blink; struct xpt_quehead *at = head->flink; first->blink = head; head->flink = first; last->flink = at; at->blink = last; } } #define xpt_que_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) #define xpt_insque(new, pos) __xpt_que_add(new, pos, (pos)->flink) #define xpt_remque(el) __xpt_que_del((el)->blink, (el)->flink) #define xpt_insque_head(new, head) __xpt_que_add(new, head, (head)->flink) static inline struct xpt_quehead *xpt_remque_head(struct xpt_quehead *head) { struct xpt_quehead *elem = head->flink; if (elem != head) __xpt_que_del(head, elem->flink); else elem = 0; return elem; } #define xpt_insque_tail(new, head) __xpt_que_add(new, (head)->blink, head) static inline struct xpt_quehead *xpt_remque_tail(struct xpt_quehead *head) { struct xpt_quehead *elem = head->blink; if (elem != head) __xpt_que_del(elem->blink, head); else elem = 0; return elem; } /*========================================================== ** ** The CCB done queue uses an array of CCB virtual ** addresses. Empty entries are flagged using the bogus ** virtual address 0xffffffff. ** ** Since PCI ensures that only aligned DWORDs are accessed ** atomically, 64 bit little-endian architecture requires ** to test the high order DWORD of the entry to determine ** if it is empty or valid. ** ** BTW, I will make things differently as soon as I will ** have a better idea, but this is simple and should work. ** **========================================================== */ #define SCSI_NCR_CCB_DONE_SUPPORT #ifdef SCSI_NCR_CCB_DONE_SUPPORT #define MAX_DONE 24 #define CCB_DONE_EMPTY 0xffffffffUL /* All 32 bit architectures */ #if BITS_PER_LONG == 32 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY) /* All > 32 bit (64 bit) architectures regardless endian-ness */ #else #define CCB_DONE_VALID(cp) \ ((((u_long) cp) & 0xffffffff00000000ul) && \ (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY) #endif #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ /*========================================================== ** ** On x86 architecture, write buffers management does ** not reorder writes to memory. So, using compiler ** optimization barriers is enough to guarantee some ** ordering when the CPU is writing data accessed by ** the NCR. ** On Alpha architecture, explicit memory barriers have ** to be used. ** Other architectures are defaulted to mb() macro if ** defined, otherwise use compiler barrier. ** **========================================================== */ #if defined(__i386__) #define MEMORY_BARRIER() barrier() #elif defined(__alpha__) #define MEMORY_BARRIER() mb() #else # ifdef mb # define MEMORY_BARRIER() mb() # else # define MEMORY_BARRIER() barrier() # endif #endif /*========================================================== ** ** Configuration and Debugging ** **========================================================== */ /* ** SCSI address of this device. ** The boot routines should have set it. ** If not, use this. */ #ifndef SCSI_NCR_MYADDR #define SCSI_NCR_MYADDR (7) #endif /* ** The maximum number of tags per logic unit. ** Used only for disk devices that support tags. */ #ifndef SCSI_NCR_MAX_TAGS #define SCSI_NCR_MAX_TAGS (8) #endif /* ** TAGS are actually limited to 64 tags/lun. ** We need to deal with power of 2, for alignment constraints. */ #if SCSI_NCR_MAX_TAGS > 64 #define MAX_TAGS (64) #else #define MAX_TAGS SCSI_NCR_MAX_TAGS #endif #define NO_TAG (255) /* ** Choose appropriate type for tag bitmap. */ #if MAX_TAGS > 32 typedef u_int64 tagmap_t; #else typedef u_int32 tagmap_t; #endif /* ** Number of targets supported by the driver. ** n permits target numbers 0..n-1. ** Default is 16, meaning targets #0..#15. ** #7 .. is myself. */ #ifdef SCSI_NCR_MAX_TARGET #define MAX_TARGET (SCSI_NCR_MAX_TARGET) #else #define MAX_TARGET (16) #endif /* ** Number of logic units supported by the driver. ** n enables logic unit numbers 0..n-1. ** The common SCSI devices require only ** one lun, so take 1 as the default. */ #ifdef SCSI_NCR_MAX_LUN #define MAX_LUN SCSI_NCR_MAX_LUN #else #define MAX_LUN (1) #endif /* ** Asynchronous pre-scaler (ns). Shall be 40 */ #ifndef SCSI_NCR_MIN_ASYNC #define SCSI_NCR_MIN_ASYNC (40) #endif /* ** The maximum number of jobs scheduled for starting. ** There should be one slot per target, and one slot ** for each tag of each target in use. ** The calculation below is actually quite silly ... */ #ifdef SCSI_NCR_CAN_QUEUE #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) #else #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) #endif /* ** We limit the max number of pending IO to 250. ** since we donnot want to allocate more than 1 ** PAGE for 'scripth'. */ #if MAX_START > 250 #undef MAX_START #define MAX_START 250 #endif /* ** The maximum number of segments a transfer is split into. ** We support up to 127 segments for both read and write. ** The data scripts are broken into 2 sub-scripts. ** 80 (MAX_SCATTERL) segments are moved from a sub-script ** in on-chip RAM. This makes data transfers shorter than ** 80k (assuming 1k fs) as fast as possible. */ #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) #if (MAX_SCATTER > 80) #define MAX_SCATTERL 80 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL) #else #define MAX_SCATTERL (MAX_SCATTER-1) #define MAX_SCATTERH 1 #endif /* ** Io mapped or memory mapped. */ #if defined(SCSI_NCR_IOMAPPED) #define NCR_IOMAPPED #endif /* ** other */ #define NCR_SNOOP_TIMEOUT (1000000) /*========================================================== ** ** Defines for Linux. ** ** Linux and Bsd kernel functions are quite different. ** These defines allow a minimum change of the original ** code. ** **========================================================== */ /* ** Obvious definitions */ #define u_char unsigned char #define u_short unsigned short #define u_int unsigned int #define u_long unsigned long typedef u_long vm_offset_t; typedef int vm_size_t; #ifndef bcopy #define bcopy(s, d, n) memcpy((d), (s), (n)) #endif #ifndef bzero #define bzero(d, n) memset((d), 0, (n)) #endif #ifndef offsetof #define offsetof(t, m) ((size_t) (&((t *)0)->m)) #endif /* ** Simple Wrapper to kernel PCI bus interface. ** ** This wrapper allows to get rid of old kernel PCI interface ** and still allows to preserve linux-2.0 compatibilty. ** In fact, it is mostly an incomplete emulation of the new ** PCI code for pre-2.2 kernels. When kernel-2.0 support ** will be dropped, we will just have to remove most of this ** code. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,2,0) typedef struct pci_dev *pcidev_t; #define PCIDEV_NULL (0) #define PciBusNumber(d) (d)->bus->number #define PciDeviceFn(d) (d)->devfn #define PciVendorId(d) (d)->vendor #define PciDeviceId(d) (d)->device #define PciIrqLine(d) (d)->irq #if LINUX_VERSION_CODE > LinuxVersionCode(2,3,12) static int __init pci_get_base_address(struct pci_dev *pdev, int index, u_long *base) { *base = pdev->resource[index].start; if ((pdev->resource[index].flags & 0x7) == 0x4) ++index; return ++index; } #else static int __init pci_get_base_address(struct pci_dev *pdev, int index, u_long *base) { *base = pdev->base_address[index++]; if ((*base & 0x7) == 0x4) { #if BITS_PER_LONG > 32 *base |= (((u_long)pdev->base_address[index]) << 32); #endif ++index; } return index; } #endif #else /* Incomplete emulation of current PCI code for pre-2.2 kernels */ typedef unsigned int pcidev_t; #define PCIDEV_NULL (~0u) #define PciBusNumber(d) ((d)>>8) #define PciDeviceFn(n) ((d)&0xff) #define __PciDev(busn, devfn) (((busn)<<8)+(devfn)) #define pci_present pcibios_present #define pci_read_config_byte(d, w, v) \ pcibios_read_config_byte(PciBusNumber(d), PciDeviceFn(d), w, v) #define pci_read_config_word(d, w, v) \ pcibios_read_config_word(PciBusNumber(d), PciDeviceFn(d), w, v) #define pci_read_config_dword(d, w, v) \ pcibios_read_config_dword(PciBusNumber(d), PciDeviceFn(d), w, v) #define pci_write_config_byte(d, w, v) \ pcibios_write_config_byte(PciBusNumber(d), PciDeviceFn(d), w, v) #define pci_write_config_word(d, w, v) \ pcibios_write_config_word(PciBusNumber(d), PciDeviceFn(d), w, v) #define pci_write_config_dword(d, w, v) \ pcibios_write_config_dword(PciBusNumber(d), PciDeviceFn(d), w, v) static pcidev_t __init pci_find_device(unsigned int vendor, unsigned int device, pcidev_t prev) { static unsigned short pci_index; int retv; unsigned char bus_number, device_fn; if (prev == PCIDEV_NULL) pci_index = 0; else ++pci_index; retv = pcibios_find_device (vendor, device, pci_index, &bus_number, &device_fn); return retv ? PCIDEV_NULL : __PciDev(bus_number, device_fn); } static u_short __init PciVendorId(pcidev_t dev) { u_short vendor_id; pcibios_read_config_word(dev, PCI_VENDOR_ID, &vendor_id); return vendor_id; } static u_short __init PciDeviceId(pcidev_t dev) { u_short device_id; pci_read_config_word(dev, PCI_DEVICE_ID, &device_id); return device_id; } static u_int __init PciIrqLine(pcidev_t dev) { u_short irq; pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq); return irq; } static int __init pci_get_base_address(pcidev_t dev, int offset, u_long *base) { u_int32 tmp; pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp); *base = tmp; offset += sizeof(u_int32); if ((tmp & 0x7) == 0x4) { #if BITS_PER_LONG > 32 pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp); *base |= (((u_long)tmp) << 32); #endif offset += sizeof(u_int32); } return offset; } #endif /* LINUX_VERSION_CODE >= LinuxVersionCode(2,2,0) */ /* ** SMP threading. ** ** Assuming that SMP systems are generally high end systems and may ** use several SCSI adapters, we are using one lock per controller ** instead of some global one. For the moment (linux-2.1.95), driver's ** entry points are called with the 'io_request_lock' lock held, so: ** - We are uselessly loosing a couple of micro-seconds to lock the ** controller data structure. ** - But the driver is not broken by design for SMP and so can be ** more resistant to bugs or bad changes in the IO sub-system code. ** - A small advantage could be that the interrupt code is grained as ** wished (e.g.: threaded by controller). */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) #if 0 /* not yet needed */ static spinlock_t driver_lock = SPIN_LOCK_UNLOCKED; #define NCR_LOCK_DRIVER(flags) spin_lock_irqsave(&driver_lock, flags) #define NCR_UNLOCK_DRIVER(flags) spin_unlock_irqrestore(&driver_lock, flags) #endif #define NCR_INIT_LOCK_NCB(np) spin_lock_init(&np->smp_lock); #define NCR_LOCK_NCB(np, flags) spin_lock_irqsave(&np->smp_lock, flags) #define NCR_UNLOCK_NCB(np, flags) spin_unlock_irqrestore(&np->smp_lock, flags) #define NCR_LOCK_SCSI_DONE(np, flags) \ spin_lock_irqsave(&io_request_lock, flags) #define NCR_UNLOCK_SCSI_DONE(np, flags) \ spin_unlock_irqrestore(&io_request_lock, flags) #else #if 0 /* not yet needed */ #define NCR_LOCK_DRIVER(flags) do {;} while (0) #define NCR_UNLOCK_DRIVER(flags) do {;} while (0) #endif #define NCR_INIT_LOCK_NCB(np) do { } while (0) #define NCR_LOCK_NCB(np, flags) do { save_flags(flags); cli(); } while (0) #define NCR_UNLOCK_NCB(np, flags) do { restore_flags(flags); } while (0) #define NCR_LOCK_SCSI_DONE(np, flags) do {;} while (0) #define NCR_UNLOCK_SCSI_DONE(np, flags) do {;} while (0) #endif /* ** Address translation ** ** The driver has to provide physical memory addresses to ** the script processor. Because some architectures use ** different physical addresses from the PCI BUS, we must ** use virt_to_bus instead of virt_to_phys. ** ** FIXME: Bus addresses are _not_ physical addresses. */ #define vtophys(p) virt_to_bus(p) /* ** Memory mapped IO ** ** Since linux-2.1, we must use ioremap() to map the io memory space. ** iounmap() to unmap it. That allows portability. ** Linux 1.3.X and 2.0.X allow to remap physical pages addresses greater ** than the highest physical memory address to kernel virtual pages with ** vremap() / vfree(). That was not portable but worked with i386 ** architecture. */ #if LINUX_VERSION_CODE < LinuxVersionCode(2,1,0) #define ioremap vremap #define iounmap vfree #endif #if defined (__sparc__) #include #elif defined (__alpha__) #define bus_dvma_to_mem(p) ((p) & 0xfffffffful) #else #define bus_dvma_to_mem(p) (p) #endif #if defined(__i386__) || !defined(NCR_IOMAPPED) static vm_offset_t __init remap_pci_mem(u_long base, u_long size) { u_long page_base = ((u_long) base) & PAGE_MASK; u_long page_offs = ((u_long) base) - page_base; u_long page_remapped = (u_long) ioremap(page_base, page_offs+size); return (vm_offset_t) (page_remapped? (page_remapped + page_offs) : 0UL); } static void __init unmap_pci_mem(vm_offset_t vaddr, u_long size) { if (vaddr) iounmap((void *) (vaddr & PAGE_MASK)); } #endif /* __i386__ || !NCR_IOMAPPED */ /* ** Insert a delay in micro-seconds and milli-seconds. ** ------------------------------------------------- ** Under Linux, udelay() is restricted to delay < 1 milli-second. ** In fact, it generally works for up to 1 second delay. ** Since 2.1.105, the mdelay() function is provided for delays ** in milli-seconds. ** Under 2.0 kernels, udelay() is an inline function that is very ** inaccurate on Pentium processors. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,105) #define UDELAY udelay #define MDELAY mdelay #else static void UDELAY(long us) { udelay(us); } static void MDELAY(long ms) { while (ms--) UDELAY(1000); } #endif /* ** Internal data structure allocation. ** ** Linux scsi memory poor pool is adjusted for the need of ** middle-level scsi driver. ** We allocate our control blocks in the kernel memory pool ** to avoid scsi pool shortage. ** ** kmalloc() only ensures 8 bytes boundary alignment. ** The NCR need better alignment for cache line bursting. ** The global header is moved between the NCB and CCBs and needs ** origin and destination addresses to have same lower four bits. ** ** We use 32 boundary alignment for NCB and CCBs and offset multiple ** of 32 for global header fields. That's too much but at least enough. */ #define ALIGN_SIZE(shift) (1UL << shift) #define ALIGN_MASK(shift) (~(ALIGN_SIZE(shift)-1)) #define CACHE_LINE_SHIFT 5 #define CACHE_LINE_SIZE ALIGN_SIZE(CACHE_LINE_SHIFT) #define CACHE_LINE_MASK ALIGN_MASK(CACHE_LINE_SHIFT) static void *m_alloc(int size, int a_shift) { u_long addr; void *ptr; u_long a_size, a_mask; if (a_shift < 3) a_shift = 3; a_size = ALIGN_SIZE(a_shift); a_mask = ALIGN_MASK(a_shift); ptr = (void *) kmalloc(size + a_size, GFP_UNCACHED | GFP_ATOMIC); if (ptr) { addr = (((u_long) ptr) + a_size) & a_mask; *((void **) (addr - sizeof(void *))) = ptr; ptr = (void *) addr; } return ptr; } #ifdef MODULE static void m_free(void *ptr, int size) { u_long addr; if (ptr) { addr = (u_long) ptr; ptr = *((void **) (addr - sizeof(void *))); kfree(ptr); } } #endif /* ** Transfer direction ** ** Low-level scsi drivers under Linux do not receive the expected ** data transfer direction from upper scsi drivers. ** The driver will only check actual data direction for common ** scsi opcodes. Other ones may cause problem, since they may ** depend on device type or be vendor specific. ** I would prefer to never trust the device for data direction, ** but that is not possible. ** ** The original driver requires the expected direction to be known. ** The Linux version of the driver has been enhanced in order to ** be able to transfer data in the direction choosen by the target. */ #define XFER_IN (1) #define XFER_OUT (2) /* ** Head of list of NCR boards ** ** For kernel version < 1.3.70, host is retrieved by its irq level. ** For later kernels, the internal host control block address ** (struct ncb) is used as device id parameter of the irq stuff. */ static struct Scsi_Host *first_host = NULL; static Scsi_Host_Template *the_template = NULL; /* ** /proc directory entry and proc_info function */ #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) static struct proc_dir_entry proc_scsi_ncr53c8xx = { PROC_SCSI_NCR53C8XX, 9, "ncr53c8xx", S_IFDIR | S_IRUGO | S_IXUGO, 2 }; #endif #ifdef SCSI_NCR_PROC_INFO_SUPPORT static int ncr53c8xx_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int func); #endif /* ** Driver setup. ** ** This structure is initialized from linux config options. ** It can be overridden at boot-up by the boot command line. */ static struct ncr_driver_setup driver_setup = SCSI_NCR_DRIVER_SETUP; #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT static struct ncr_driver_setup driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; # ifdef MODULE char *ncr53c8xx = 0; /* command line passed by insmod */ # if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,30) MODULE_PARM(ncr53c8xx, "s"); # endif # endif #endif /* ** Other Linux definitions */ #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f)) static void ncr53c8xx_select_queue_depths( struct Scsi_Host *host, struct scsi_device *devlist); static void ncr53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs); static void ncr53c8xx_timeout(unsigned long np); #define initverbose (driver_setup.verbose) #define bootverbose (driver_setup.verbose) #ifdef SCSI_NCR_NVRAM_SUPPORT static u_char Tekram_sync[16] __initdata = {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Structures used by ncr53c8xx_detect/ncr53c8xx_pci_init to ** transmit device configuration to the ncr_attach() function. */ typedef struct { int bus; u_char device_fn; u_long base; u_long base_2; u_long io_port; int irq; /* port and reg fields to use INB, OUTB macros */ u_long port; volatile struct ncr_reg *reg; } ncr_slot; typedef struct { int type; #define SCSI_NCR_SYMBIOS_NVRAM (1) #define SCSI_NCR_TEKRAM_NVRAM (2) #ifdef SCSI_NCR_NVRAM_SUPPORT union { Symbios_nvram Symbios; Tekram_nvram Tekram; } data; #endif } ncr_nvram; /* ** Structure used by ncr53c8xx_detect/ncr53c8xx_pci_init ** to save data on each detected board for ncr_attach(). */ typedef struct { ncr_slot slot; ncr_chip chip; ncr_nvram *nvram; u_char host_id; int attach_done; } ncr_device; /*========================================================== ** ** Debugging tags ** **========================================================== */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_SCATTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) /* ** Enable/Disable debug messages. ** Can be changed at runtime too. */ #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT #define DEBUG_FLAGS ncr_debug #else #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS #endif /*========================================================== ** ** assert () ** **========================================================== ** ** modified copy from 386bsd:/usr/include/sys/assert.h ** **---------------------------------------------------------- */ #define assert(expression) { \ if (!(expression)) { \ (void)printk(KERN_ERR \ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } /*========================================================== ** ** Big/Little endian support. ** **========================================================== */ /* ** If the NCR uses big endian addressing mode over the ** PCI, actual io register addresses for byte and word ** accesses must be changed according to lane routing. ** Btw, ncr_offb() and ncr_offw() macros only apply to ** constants and so donnot generate bloated code. */ #if defined(SCSI_NCR_BIG_ENDIAN) #define ncr_offb(o) (((o)&~3)+((~((o)&3))&3)) #define ncr_offw(o) (((o)&~3)+((~((o)&3))&2)) #else #define ncr_offb(o) (o) #define ncr_offw(o) (o) #endif /* ** If the CPU and the NCR use same endian-ness addressing, ** no byte reordering is needed for script patching. ** Macro cpu_to_scr() is to be used for script patching. ** Macro scr_to_cpu() is to be used for getting a DWORD ** from the script. */ #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define cpu_to_scr(dw) cpu_to_le32(dw) #define scr_to_cpu(dw) le32_to_cpu(dw) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define cpu_to_scr(dw) cpu_to_be32(dw) #define scr_to_cpu(dw) be32_to_cpu(dw) #else #define cpu_to_scr(dw) (dw) #define scr_to_cpu(dw) (dw) #endif /*========================================================== ** ** Access to the controller chip. ** ** If NCR_IOMAPPED is defined, the driver will use ** normal IOs instead of the MEMORY MAPPED IO method ** recommended by PCI specifications. ** If all PCI bridges, host brigdes and architectures ** would have been correctly designed for PCI, this ** option would be useless. ** **========================================================== */ /* ** If the CPU and the NCR use same endian-ness addressing, ** no byte reordering is needed for accessing chip io ** registers. Functions suffixed by '_raw' are assumed ** to access the chip over the PCI without doing byte ** reordering. Functions suffixed by '_l2b' are ** assumed to perform little-endian to big-endian byte ** reordering, those suffixed by '_b2l' blah, blah, ** blah, ... */ #if defined(NCR_IOMAPPED) /* ** IO mapped only input / ouput */ #define INB_OFF(o) inb (np->port + ncr_offb(o)) #define OUTB_OFF(o, val) outb ((val), np->port + ncr_offb(o)) #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) inw_l2b (np->port + ncr_offw(o)) #define INL_OFF(o) inl_l2b (np->port + (o)) #define OUTW_OFF(o, val) outw_b2l ((val), np->port + ncr_offw(o)) #define OUTL_OFF(o, val) outl_b2l ((val), np->port + (o)) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) inw_b2l (np->port + ncr_offw(o)) #define INL_OFF(o) inl_b2l (np->port + (o)) #define OUTW_OFF(o, val) outw_l2b ((val), np->port + ncr_offw(o)) #define OUTL_OFF(o, val) outl_l2b ((val), np->port + (o)) #else #define INW_OFF(o) inw_raw (np->port + ncr_offw(o)) #define INL_OFF(o) inl_raw (np->port + (o)) #define OUTW_OFF(o, val) outw_raw ((val), np->port + ncr_offw(o)) #define OUTL_OFF(o, val) outl_raw ((val), np->port + (o)) #endif /* ENDIANs */ #else /* defined NCR_IOMAPPED */ /* ** MEMORY mapped IO input / output */ #define INB_OFF(o) readb((char *)np->reg + ncr_offb(o)) #define OUTB_OFF(o, val) writeb((val), (char *)np->reg + ncr_offb(o)) #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) readw_l2b((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_l2b((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_b2l((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_b2l((val), (char *)np->reg + (o)) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) readw_b2l((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_b2l((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_l2b((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_l2b((val), (char *)np->reg + (o)) #else #define INW_OFF(o) readw_raw((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_raw((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_raw((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_raw((val), (char *)np->reg + (o)) #endif #endif /* defined NCR_IOMAPPED */ #define INB(r) INB_OFF (offsetof(struct ncr_reg,r)) #define INW(r) INW_OFF (offsetof(struct ncr_reg,r)) #define INL(r) INL_OFF (offsetof(struct ncr_reg,r)) #define OUTB(r, val) OUTB_OFF (offsetof(struct ncr_reg,r), (val)) #define OUTW(r, val) OUTW_OFF (offsetof(struct ncr_reg,r), (val)) #define OUTL(r, val) OUTL_OFF (offsetof(struct ncr_reg,r), (val)) /* ** Set bit field ON, OFF */ #define OUTONB(r, m) OUTB(r, INB(r) | (m)) #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) #define OUTONW(r, m) OUTW(r, INW(r) | (m)) #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) #define OUTONL(r, m) OUTL(r, INL(r) | (m)) #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) /*========================================================== ** ** Command control block states. ** **========================================================== */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ /* ** Invalid host status values used by the SCRIPTS processor ** when the nexus is not fully identified. ** Shall never appear in a CCB. */ #define HS_INVALMASK (0x40) #define HS_SELECTING (0|HS_INVALMASK) #define HS_IN_RESELECT (1|HS_INVALMASK) #define HS_STARTING (2|HS_INVALMASK) /* ** Flags set by the SCRIPT processor for commands ** that have been skipped. */ #define HS_SKIPMASK (0x20) /*========================================================== ** ** Software Interrupt Codes ** **========================================================== */ #define SIR_BAD_STATUS (1) #define SIR_XXXXXXXXXX (2) #define SIR_NEGO_SYNC (3) #define SIR_NEGO_WIDE (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_REJECT_RECEIVED (7) #define SIR_REJECT_SENT (8) #define SIR_IGN_RESIDUE (9) #define SIR_MISSING_SAVE (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_RESEL_BAD_TARGET (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_DONE_OVERFLOW (17) #define SIR_MAX (17) /*========================================================== ** ** Extended error codes. ** xerr_status field of struct ccb. ** **========================================================== */ #define XE_OK (0) #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ /*========================================================== ** ** Negotiation status. ** nego_status field of struct ccb. ** **========================================================== */ #define NS_SYNC (1) #define NS_WIDE (2) /*========================================================== ** ** "Special features" of targets. ** quirks field of struct tcb. ** actualquirks field of struct ccb. ** **========================================================== */ #define QUIRK_AUTOSAVE (0x01) #define QUIRK_NOMSG (0x02) #define QUIRK_NOSYNC (0x10) #define QUIRK_NOWIDE16 (0x20) /*========================================================== ** ** Capability bits in Inquire response byte 7. ** **========================================================== */ #define INQ7_QUEUE (0x02) #define INQ7_SYNC (0x10) #define INQ7_WIDE16 (0x20) /*========================================================== ** ** Misc. ** **========================================================== */ #define CCB_MAGIC (0xf2691ad2) /*========================================================== ** ** Declaration of structs. ** **========================================================== */ struct tcb; struct lcb; struct ccb; struct ncb; struct script; typedef struct ncb * ncb_p; typedef struct tcb * tcb_p; typedef struct lcb * lcb_p; typedef struct ccb * ccb_p; struct link { ncrcmd l_cmd; ncrcmd l_paddr; }; struct usrcmd { u_long target; u_long lun; u_long data; u_long cmd; }; #define UC_SETSYNC 10 #define UC_SETTAGS 11 #define UC_SETDEBUG 12 #define UC_SETORDER 13 #define UC_SETWIDE 14 #define UC_SETFLAG 15 #define UC_CLEARPROF 16 #define UC_SETVERBOSE 17 #define UF_TRACE (0x01) #define UF_NODISC (0x02) #define UF_NOSCAN (0x04) /*--------------------------------------- ** ** Timestamps for profiling ** **--------------------------------------- */ #ifdef SCSI_NCR_PROFILE_SUPPORT struct tstamp { u_long start; u_long end; u_long command; u_long status; u_long disconnect; u_long reselect; }; /* ** profiling data (per device) */ struct profile { u_long num_trans; u_long num_kbytes; u_long rest_bytes; u_long num_disc; u_long num_break; u_long num_int; u_long num_fly; u_long ms_setup; u_long ms_data; u_long ms_disc; u_long ms_post; }; #endif /*======================================================================== ** ** Declaration of structs: target control block ** **======================================================================== */ struct tcb { /*---------------------------------------------------------------- ** During reselection the ncr jumps to this point with SFBR ** set to the encoded target number with bit 7 set. ** if it's not this target, jump to the next. ** ** JUMP IF (SFBR != #target#), @(next tcb) **---------------------------------------------------------------- */ struct link jump_tcb; /*---------------------------------------------------------------- ** Load the actual values for the sxfer and the scntl3 ** register (sync/wide mode). ** ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register) ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register) **---------------------------------------------------------------- */ ncrcmd getscr[6]; /*---------------------------------------------------------------- ** Get the IDENTIFY message and load the LUN to SFBR. ** ** CALL, **---------------------------------------------------------------- */ struct link call_lun; /*---------------------------------------------------------------- ** Now look for the right lun. ** ** For i = 0 to 3 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i) ** ** Recent chips will prefetch the 4 JUMPS using only 1 burst. ** It is kind of hashcoding. **---------------------------------------------------------------- */ struct link jump_lcb[4]; /* JUMPs for reselection */ lcb_p lp[MAX_LUN]; /* The lcb's of this tcb */ u_char inq_done; /* Target capabilities received */ u_char inq_byte7; /* Contains these capabilities */ /*---------------------------------------------------------------- ** Pointer to the ccb used for negotiation. ** Prevent from starting a negotiation for all queued commands ** when tagged command queuing is enabled. **---------------------------------------------------------------- */ ccb_p nego_cp; /*---------------------------------------------------------------- ** statistical data **---------------------------------------------------------------- */ u_long transfers; u_long bytes; /*---------------------------------------------------------------- ** negotiation of wide and synch transfer and device quirks. **---------------------------------------------------------------- */ /*0*/ u_char minsync; /*1*/ u_char sval; /*2*/ u_short period; /*0*/ u_char maxoffs; /*1*/ u_char quirks; /*2*/ u_char widedone; /*3*/ u_char wval; /*---------------------------------------------------------------- ** User settable limits and options. ** These limits are read from the NVRAM if present. **---------------------------------------------------------------- */ u_char usrsync; u_char usrwide; u_char usrtags; u_char usrflag; }; /*======================================================================== ** ** Declaration of structs: lun control block ** **======================================================================== */ struct lcb { /*---------------------------------------------------------------- ** During reselection the ncr jumps to this point ** with SFBR set to the "Identify" message. ** if it's not this lun, jump to the next. ** ** JUMP IF (SFBR != #lun#), @(next lcb of this target) ** ** It is this lun. Load TEMP with the nexus jumps table ** address and jump to RESEL_TAG (or RESEL_NOTAG). ** ** SCR_COPY (4), p_jump_ccb, TEMP, ** SCR_JUMP, **---------------------------------------------------------------- */ struct link jump_lcb; ncrcmd load_jump_ccb[3]; struct link jump_tag; ncrcmd p_jump_ccb; /* Jump table bus address */ /*---------------------------------------------------------------- ** Jump table used by the script processor to directly jump ** to the CCB corresponding to the reselected nexus. ** Address is allocated on 256 bytes boundary in order to ** allow 8 bit calculation of the tag jump entry for up to ** 64 possible tags. **---------------------------------------------------------------- */ u_int32 jump_ccb_0; /* Default table if no tags */ u_int32 *jump_ccb; /* Virtual address */ /*---------------------------------------------------------------- ** CCB queue management. **---------------------------------------------------------------- */ XPT_QUEHEAD free_ccbq; /* Queue of available CCBs */ XPT_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ XPT_QUEHEAD wait_ccbq; /* Queue of waiting for IO CCBs */ XPT_QUEHEAD skip_ccbq; /* Queue of skipped CCBs */ u_char actccbs; /* Number of allocated CCBs */ u_char busyccbs; /* CCBs busy for this lun */ u_char queuedccbs; /* CCBs queued to the controller*/ u_char queuedepth; /* Queue depth for this lun */ u_char scdev_depth; /* SCSI device queue depth */ u_char maxnxs; /* Max possible nexuses */ /*---------------------------------------------------------------- ** Control of tagged command queuing. ** Tags allocation is performed using a circular buffer. ** This avoids using a loop for tag allocation. **---------------------------------------------------------------- */ u_char ia_tag; /* Allocation index */ u_char if_tag; /* Freeing index */ u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */ u_char usetags; /* Command queuing is active */ u_char maxtags; /* Max nr of tags asked by user */ u_char numtags; /* Current number of tags */ u_char inq_byte7; /* Store unit CmdQ capabitility */ /*---------------------------------------------------------------- ** QUEUE FULL control and ORDERED tag control. **---------------------------------------------------------------- */ /*---------------------------------------------------------------- ** QUEUE FULL and ORDERED tag control. **---------------------------------------------------------------- */ u_short num_good; /* Nr of GOOD since QUEUE FULL */ tagmap_t tags_umap; /* Used tags bitmap */ tagmap_t tags_smap; /* Tags in use at 'tag_stime' */ u_long tags_stime; /* Last time we set smap=umap */ ccb_p held_ccb; /* CCB held for QUEUE FULL */ }; /*======================================================================== ** ** Declaration of structs: the launch script. ** **======================================================================== ** ** It is part of the CCB and is called by the scripts processor to ** start or restart the data structure (nexus). ** This 6 DWORDs mini script makes use of prefetching. ** **------------------------------------------------------------------------ */ struct launch { /*---------------------------------------------------------------- ** SCR_COPY(4), @(p_phys), @(dsa register) ** SCR_JUMP, @(scheduler_point) **---------------------------------------------------------------- */ ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */ struct link schedule; /* Jump to scheduler point */ ncrcmd p_phys; /* 'phys' header bus address */ }; /*======================================================================== ** ** Declaration of structs: global HEADER. ** **======================================================================== ** ** This substructure is copied from the ccb to a global address after ** selection (or reselection) and copied back before disconnect. ** ** These fields are accessible to the script processor. ** **------------------------------------------------------------------------ */ struct head { /*---------------------------------------------------------------- ** Saved data pointer. ** Points to the position in the script responsible for the ** actual transfer transfer of data. ** It's written after reception of a SAVE_DATA_POINTER message. ** The goalpointer points after the last transfer command. **---------------------------------------------------------------- */ u_int32 savep; u_int32 lastp; u_int32 goalp; /*---------------------------------------------------------------- ** Alternate data pointer. ** They are copied back to savep/lastp/goalp by the SCRIPTS ** when the direction is unknown and the device claims data out. **---------------------------------------------------------------- */ u_int32 wlastp; u_int32 wgoalp; /*---------------------------------------------------------------- ** The virtual address of the ccb containing this header. **---------------------------------------------------------------- */ ccb_p cp; #ifdef SCSI_NCR_PROFILE_SUPPORT /*---------------------------------------------------------------- ** Space for some timestamps to gather profiling data. **---------------------------------------------------------------- */ struct tstamp stamp; #endif /*---------------------------------------------------------------- ** Status fields. **---------------------------------------------------------------- */ u_char scr_st[4]; /* script status */ u_char status[4]; /* host status. must be the */ /* last DWORD of the header. */ }; /* ** The status bytes are used by the host and the script processor. ** ** The byte corresponding to the host_status must be stored in the ** last DWORD of the CCB header since it is used for command ** completion (ncr_wakeup()). Doing so, we are sure that the header ** has been entirely copied back to the CCB when the host_status is ** seen complete by the CPU. ** ** The last four bytes (status[4]) are copied to the scratchb register ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, ** and copied back just after disconnecting. ** Inside the script the XX_REG are used. ** ** The first four bytes (scr_st[4]) are used inside the script by ** "COPY" commands. ** Because source and destination must have the same alignment ** in a DWORD, the fields HAVE to be at the choosen offsets. ** xerr_st 0 (0x34) scratcha ** sync_st 1 (0x05) sxfer ** wide_st 3 (0x03) scntl3 */ /* ** Last four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define PS_REG scr3 /* ** Last four bytes (host) */ #define actualquirks phys.header.status[0] #define host_status phys.header.status[1] #define scsi_status phys.header.status[2] #define parity_status phys.header.status[3] /* ** First four bytes (script) */ #define xerr_st header.scr_st[0] #define sync_st header.scr_st[1] #define nego_st header.scr_st[2] #define wide_st header.scr_st[3] /* ** First four bytes (host) */ #define xerr_status phys.xerr_st #define nego_status phys.nego_st #if 0 #define sync_status phys.sync_st #define wide_status phys.wide_st #endif /*========================================================== ** ** Declaration of structs: Data structure block ** **========================================================== ** ** During execution of a ccb by the script processor, ** the DSA (data structure address) register points ** to this substructure of the ccb. ** This substructure contains the header with ** the script-processor-changable data and ** data blocks for the indirect move commands. ** **---------------------------------------------------------- */ struct dsb { /* ** Header. */ struct head header; /* ** Table data for Script */ struct scr_tblsel select; struct scr_tblmove smsg ; struct scr_tblmove cmd ; struct scr_tblmove sense ; struct scr_tblmove data [MAX_SCATTER]; }; /*======================================================================== ** ** Declaration of structs: Command control block. ** **======================================================================== */ struct ccb { /*---------------------------------------------------------------- ** This is the data structure which is pointed by the DSA ** register when it is executed by the script processor. ** It must be the first entry because it contains the header ** as first entry that must be cache line aligned. **---------------------------------------------------------------- */ struct dsb phys; /*---------------------------------------------------------------- ** Mini-script used at CCB execution start-up. ** Load the DSA with the data structure address (phys) and ** jump to SELECT. Jump to CANCEL if CCB is to be canceled. **---------------------------------------------------------------- */ struct launch start; /*---------------------------------------------------------------- ** Mini-script used at CCB relection to restart the nexus. ** Load the DSA with the data structure address (phys) and ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted. **---------------------------------------------------------------- */ struct launch restart; /*---------------------------------------------------------------- ** If a data transfer phase is terminated too early ** (after reception of a message (i.e. DISCONNECT)), ** we have to prepare a mini script to transfer ** the rest of the data. **---------------------------------------------------------------- */ ncrcmd patch[8]; /*---------------------------------------------------------------- ** The general SCSI driver provides a ** pointer to a control block. **---------------------------------------------------------------- */ Scsi_Cmnd *cmd; /* SCSI command */ int data_len; /* Total data length */ /*---------------------------------------------------------------- ** Message areas. ** We prepare a message to be sent after selection. ** We may use a second one if the command is rescheduled ** due to GETCC or QFULL. ** Contents are IDENTIFY and SIMPLE_TAG. ** While negotiating sync or wide transfer, ** a SDTR or WDTR message is appended. **---------------------------------------------------------------- */ u_char scsi_smsg [8]; u_char scsi_smsg2[8]; /*---------------------------------------------------------------- ** Other fields. **---------------------------------------------------------------- */ u_long p_ccb; /* BUS address of this CCB */ u_char sensecmd[6]; /* Sense command */ u_char tag; /* Tag for this transfer */ /* 255 means no tag */ u_char target; u_char lun; u_char queued; u_char auto_sense; ccb_p link_ccb; /* Host adapter CCB chain */ XPT_QUEHEAD link_ccbq; /* Link to unit CCB queue */ u_int32 startp; /* Initial data pointer */ u_long magic; /* Free / busy CCB flag */ }; #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) /*======================================================================== ** ** Declaration of structs: NCR device descriptor ** **======================================================================== */ struct ncb { /*---------------------------------------------------------------- ** The global header. ** It is accessible to both the host and the script processor. ** Must be cache line size aligned (32 for x86) in order to ** allow cache line bursting when it is copied to/from CCB. **---------------------------------------------------------------- */ struct head header; /*---------------------------------------------------------------- ** CCBs management queues. **---------------------------------------------------------------- */ Scsi_Cmnd *waiting_list; /* Commands waiting for a CCB */ /* when lcb is not allocated. */ Scsi_Cmnd *done_list; /* Commands waiting for done() */ /* callback to be invoked. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) spinlock_t smp_lock; /* Lock for SMP threading */ #endif /*---------------------------------------------------------------- ** Chip and controller indentification. **---------------------------------------------------------------- */ int unit; /* Unit number */ char chip_name[8]; /* Chip name */ char inst_name[16]; /* ncb instance name */ /*---------------------------------------------------------------- ** Initial value of some IO register bits. ** These values are assumed to have been set by BIOS, and may ** be used for probing adapter implementation differences. **---------------------------------------------------------------- */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; /*---------------------------------------------------------------- ** Actual initial value of IO register bits used by the ** driver. They are loaded at initialisation according to ** features that are to be enabled. **---------------------------------------------------------------- */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2; /*---------------------------------------------------------------- ** Targets management. ** During reselection the ncr jumps to jump_tcb. ** The SFBR register is loaded with the encoded target id. ** For i = 0 to 3 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i) ** ** Recent chips will prefetch the 4 JUMPS using only 1 burst. ** It is kind of hashcoding. **---------------------------------------------------------------- */ struct link jump_tcb[4]; /* JUMPs for reselection */ struct tcb target[MAX_TARGET]; /* Target data */ /*---------------------------------------------------------------- ** Virtual and physical bus addresses of the chip. **---------------------------------------------------------------- */ vm_offset_t vaddr; /* Virtual and bus address of */ vm_offset_t paddr; /* chip's IO registers. */ vm_offset_t paddr2; /* On-chip RAM bus address. */ volatile /* Pointer to volatile for */ struct ncr_reg *reg; /* memory mapped IO. */ /*---------------------------------------------------------------- ** SCRIPTS virtual and physical bus addresses. ** 'script' is loaded in the on-chip RAM if present. ** 'scripth' stays in main memory. **---------------------------------------------------------------- */ struct script *script0; /* Copies of script and scripth */ struct scripth *scripth0; /* relocated for this ncb. */ struct scripth *scripth; /* Actual scripth virt. address */ u_long p_script; /* Actual script and scripth */ u_long p_scripth; /* bus addresses. */ /*---------------------------------------------------------------- ** General controller parameters and configuration. **---------------------------------------------------------------- */ u_short device_id; /* PCI device id */ u_char revision_id; /* PCI device revision id */ u_char bus; /* PCI BUS number */ u_char device_fn; /* PCI BUS device and function */ u_long port; /* IO space base address */ u_int irq; /* IRQ level */ u_int features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Minimum sync period factor */ u_char maxsync; /* Maximum sync period factor */ u_char maxoffs; /* Max scsi offset */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u_long clock_khz; /* SCSI clock frequency in KHz */ /*---------------------------------------------------------------- ** Start queue management. ** It is filled up by the host processor and accessed by the ** SCRIPTS processor in order to start SCSI commands. **---------------------------------------------------------------- */ u_short squeueput; /* Next free slot of the queue */ u_short actccbs; /* Number of allocated CCBs */ u_short queuedccbs; /* Number of CCBs in start queue*/ u_short queuedepth; /* Start queue depth */ /*---------------------------------------------------------------- ** Timeout handler. **---------------------------------------------------------------- */ struct timer_list timer; /* Timer handler link header */ u_long lasttime; u_long settle_time; /* Resetting the SCSI BUS */ /*---------------------------------------------------------------- ** Debugging and profiling. **---------------------------------------------------------------- */ struct ncr_reg regdump; /* Register dump */ u_long regtime; /* Time it has been done */ #ifdef SCSI_NCR_PROFILE_SUPPORT struct profile profile; /* Profiling data */ u_int disc_phys; /* Disconnection counters */ u_int disc_ref; #endif /*---------------------------------------------------------------- ** Miscellaneous buffers accessed by the scripts-processor. ** They shall be DWORD aligned, because they may be read or ** written with a SCR_COPY script command. **---------------------------------------------------------------- */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u_int32 lastmsg; /* Last SCSI message sent */ u_char scratch; /* Scratch for SCSI receive */ /*---------------------------------------------------------------- ** Miscellaneous configuration and status parameters. **---------------------------------------------------------------- */ u_char disc; /* Diconnection allowed */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char order; /* Tag order to use */ u_char verbose; /* Verbosity for this controller*/ int ncr_cache; /* Used for cache test at init. */ /*---------------------------------------------------------------- ** Command completion handling. **---------------------------------------------------------------- */ #ifdef SCSI_NCR_CCB_DONE_SUPPORT struct ccb *(ccb_done[MAX_DONE]); int ccb_done_ic; #endif /*---------------------------------------------------------------- ** Fields that should be removed or changed. **---------------------------------------------------------------- */ struct ccb *ccb; /* Global CCB */ struct usrcmd user; /* Command from user */ u_char release_stage; /* Synchronisation stage on release */ }; #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) /*========================================================== ** ** ** Script for NCR-Processor. ** ** Use ncr_script_fill() to create the variable parts. ** Use ncr_script_copy_and_bind() to make a copy and ** bind to physical addresses. ** ** **========================================================== ** ** We have to know the offsets of all labels before ** we reach them (for forward jumps). ** Therefore we declare a struct here. ** If you make changes inside the script, ** DONT FORGET TO CHANGE THE LENGTHS HERE! ** **---------------------------------------------------------- */ /* ** Script fragments which are loaded into the on-chip RAM ** of 825A, 875 and 895 chips. */ struct script { ncrcmd start [ 5]; ncrcmd startpos [ 1]; ncrcmd select [ 6]; ncrcmd select2 [ 9]; ncrcmd loadpos [ 4]; ncrcmd send_ident [ 9]; ncrcmd prepare [ 6]; ncrcmd prepare2 [ 7]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd command [ 9]; #else ncrcmd command [ 6]; #endif ncrcmd dispatch [ 32]; ncrcmd clrack [ 4]; ncrcmd no_data [ 17]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd status [ 11]; #else ncrcmd status [ 8]; #endif ncrcmd msg_in [ 2]; ncrcmd msg_in2 [ 16]; ncrcmd msg_bad [ 4]; ncrcmd setmsg [ 7]; ncrcmd cleanup [ 6]; ncrcmd complete [ 9]; ncrcmd cleanup_ok [ 8]; ncrcmd cleanup0 [ 1]; #ifndef SCSI_NCR_CCB_DONE_SUPPORT ncrcmd signal [ 12]; #else ncrcmd signal [ 9]; ncrcmd done_pos [ 1]; ncrcmd done_plug [ 2]; ncrcmd done_end [ 7]; #endif ncrcmd save_dp [ 7]; ncrcmd restore_dp [ 5]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd disconnect [ 28]; #else ncrcmd disconnect [ 17]; #endif ncrcmd msg_out [ 9]; ncrcmd msg_out_done [ 7]; ncrcmd idle [ 2]; ncrcmd reselect [ 8]; ncrcmd reselected [ 8]; ncrcmd resel_dsa [ 6]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd loadpos1 [ 7]; #else ncrcmd loadpos1 [ 4]; #endif ncrcmd resel_lun [ 6]; ncrcmd resel_tag [ 6]; ncrcmd jump_to_nexus [ 4]; ncrcmd nexus_indirect [ 4]; ncrcmd resel_notag [ 4]; ncrcmd data_in [MAX_SCATTERL * 4]; ncrcmd data_in2 [ 4]; ncrcmd data_out [MAX_SCATTERL * 4]; ncrcmd data_out2 [ 4]; }; /* ** Script fragments which stay in main memory for all chips. */ struct scripth { ncrcmd tryloop [MAX_START*2]; ncrcmd tryloop2 [ 2]; #ifdef SCSI_NCR_CCB_DONE_SUPPORT ncrcmd done_queue [MAX_DONE*5]; ncrcmd done_queue2 [ 2]; #endif ncrcmd select_no_atn [ 8]; ncrcmd cancel [ 4]; ncrcmd skip [ 9]; ncrcmd skip2 [ 19]; ncrcmd par_err_data_in [ 6]; ncrcmd par_err_other [ 4]; ncrcmd msg_reject [ 8]; ncrcmd msg_ign_residue [ 24]; ncrcmd msg_extended [ 10]; ncrcmd msg_ext_2 [ 10]; ncrcmd msg_wdtr [ 14]; ncrcmd send_wdtr [ 7]; ncrcmd msg_ext_3 [ 10]; ncrcmd msg_sdtr [ 14]; ncrcmd send_sdtr [ 7]; ncrcmd nego_bad_phase [ 4]; ncrcmd msg_out_abort [ 10]; ncrcmd hdata_in [MAX_SCATTERH * 4]; ncrcmd hdata_in2 [ 2]; ncrcmd hdata_out [MAX_SCATTERH * 4]; ncrcmd hdata_out2 [ 2]; ncrcmd reset [ 4]; ncrcmd aborttag [ 4]; ncrcmd abort [ 2]; ncrcmd abort_resel [ 20]; ncrcmd resend_ident [ 4]; ncrcmd clratn_go_on [ 3]; ncrcmd nxtdsp_go_on [ 1]; ncrcmd sdata_in [ 8]; ncrcmd data_io [ 18]; ncrcmd bad_identify [ 12]; ncrcmd bad_i_t_l [ 4]; ncrcmd bad_i_t_l_q [ 4]; ncrcmd bad_target [ 8]; ncrcmd bad_status [ 8]; ncrcmd start_ram [ 4]; ncrcmd start_ram0 [ 4]; ncrcmd sto_restart [ 5]; ncrcmd snooptest [ 9]; ncrcmd snoopend [ 2]; }; /*========================================================== ** ** ** Function headers. ** ** **========================================================== */ static void ncr_alloc_ccb (ncb_p np, u_char tn, u_char ln); static void ncr_complete (ncb_p np, ccb_p cp); static void ncr_exception (ncb_p np); static void ncr_free_ccb (ncb_p np, ccb_p cp); static void ncr_init_ccb (ncb_p np, ccb_p cp); static void ncr_init_tcb (ncb_p np, u_char tn); static lcb_p ncr_alloc_lcb (ncb_p np, u_char tn, u_char ln); static lcb_p ncr_setup_lcb (ncb_p np, u_char tn, u_char ln, u_char *inq_data); static void ncr_getclock (ncb_p np, int mult); static void ncr_selectclock (ncb_p np, u_char scntl3); static ccb_p ncr_get_ccb (ncb_p np, u_char tn, u_char ln); static void ncr_init (ncb_p np, int reset, char * msg, u_long code); static int ncr_int_sbmc (ncb_p np); static int ncr_int_par (ncb_p np); static void ncr_int_ma (ncb_p np); static void ncr_int_sir (ncb_p np); static void ncr_int_sto (ncb_p np); static u_long ncr_lookup (char* id); static void ncr_negotiate (struct ncb* np, struct tcb* tp); #ifdef SCSI_NCR_PROFILE_SUPPORT static void ncb_profile (ncb_p np, ccb_p cp); #endif static void ncr_script_copy_and_bind (ncb_p np, ncrcmd *src, ncrcmd *dst, int len); static void ncr_script_fill (struct script * scr, struct scripth * scripth); static int ncr_scatter (ccb_p cp, Scsi_Cmnd *cmd); static void ncr_getsync (ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p); static void ncr_setsync (ncb_p np, ccb_p cp, u_char scntl3, u_char sxfer); static void ncr_setup_tags (ncb_p np, u_char tn, u_char ln); static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack); static int ncr_show_msg (u_char * msg); static int ncr_snooptest (ncb_p np); static void ncr_timeout (ncb_p np); static void ncr_wakeup (ncb_p np, u_long code); static void ncr_wakeup_done (ncb_p np); static void ncr_start_next_ccb (ncb_p np, lcb_p lp, int maxn); static void ncr_put_start_queue(ncb_p np, ccb_p cp); static void ncr_start_reset (ncb_p np); static int ncr_reset_scsi_bus (ncb_p np, int enab_int, int settle_delay); #ifdef SCSI_NCR_USER_COMMAND_SUPPORT static void ncr_usercmd (ncb_p np); #endif static int ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device); static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd); static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd); static void process_waiting_list(ncb_p np, int sts); #define remove_from_waiting_list(np, cmd) \ retrieve_from_waiting_list(1, (np), (cmd)) #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) #ifdef SCSI_NCR_NVRAM_SUPPORT static void ncr_get_nvram (ncr_device *devp, ncr_nvram *nvp); static int ncr_get_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram); static int ncr_get_Tekram_nvram (ncr_slot *np, Tekram_nvram *nvram); #endif /*========================================================== ** ** ** Global static data. ** ** **========================================================== */ #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; #endif static inline char *ncr_name (ncb_p np) { return np->inst_name; } /*========================================================== ** ** ** Scripts for NCR-Processor. ** ** Use ncr_script_bind for binding to physical addresses. ** ** **========================================================== ** ** NADDR generates a reference to a field of the controller data. ** PADDR generates a reference to another part of the script. ** RADDR generates a reference to a script processor register. ** FADDR generates a reference to a script processor register ** with offset. ** **---------------------------------------------------------- */ #define RELOC_SOFTC 0x40000000 #define RELOC_LABEL 0x50000000 #define RELOC_REGISTER 0x60000000 #define RELOC_KVAR 0x70000000 #define RELOC_LABELH 0x80000000 #define RELOC_MASK 0xf0000000 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) #define RADDR(label) (RELOC_REGISTER | REG(label)) #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) #define KVAR(which) (RELOC_KVAR | (which)) #define SCRIPT_KVAR_JIFFIES (0) #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES /* * Kernel variables referenced in the scripts. * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. */ static void *script_kvars[] __initdata = { (void *)&jiffies }; static struct script script0 __initdata = { /*--------------------------< START >-----------------------*/ { /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** Clear SIGP. */ SCR_FROM_REG (ctest2), 0, /* ** Then jump to a certain point in tryloop. ** Due to the lack of indirect addressing the code ** is self modifying here. */ SCR_JUMP, }/*-------------------------< STARTPOS >--------------------*/,{ PADDRH(tryloop), }/*-------------------------< SELECT >----------------------*/,{ /* ** DSA contains the address of a scheduled ** data structure. ** ** SCRATCHA contains the address of the script, ** which starts the next entry. ** ** Set Initiator mode. ** ** (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_SELECTING), 0, /* ** And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR (reselect), }/*-------------------------< SELECT2 >----------------------*/,{ /* ** Now there are 4 possibilities: ** ** (1) The ncr looses arbitration. ** This is ok, because it will try again, ** when the bus becomes idle. ** (But beware of the timeout function!) ** ** (2) The ncr is reselected. ** Then the script processor takes the jump ** to the RESELECT label. ** ** (3) The ncr wins arbitration. ** Then it will execute SCRIPTS instruction until ** the next instruction that checks SCSI phase. ** Then will stop and wait for selection to be ** complete or selection time-out to occur. ** As a result the SCRIPTS instructions until ** LOADPOS + 2 should be executed in parallel with ** the SCSI core performing selection. */ /* ** The M_REJECT problem seems to be due to a selection ** timing problem. ** Wait immediately for the selection to complete. ** (2.5x behaves so) */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 0, /* ** Next time use the next slot. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDR (loadpos), /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< LOADPOS >---------------------*/,{ 0, NADDR (header), /* ** Wait for the next phase or the selection ** to complete or time-out. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDR (prepare), }/*-------------------------< SEND_IDENT >----------------------*/,{ /* ** Selection complete. ** Send the IDENTIFY and SIMPLE_TAG messages ** (and the M_X_SYNC_REQ message) */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg), SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (resend_ident), SCR_LOAD_REG (scratcha, 0x80), 0, SCR_COPY (1), RADDR (scratcha), NADDR (lastmsg), }/*-------------------------< PREPARE >----------------------*/,{ /* ** load the savep (saved pointer) into ** the TEMP register (actual pointer) */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), }/*-------------------------< PREPARE2 >---------------------*/,{ /* ** Initialize the msgout buffer with a NOOP message. */ SCR_LOAD_REG (scratcha, M_NOOP), 0, SCR_COPY (1), RADDR (scratcha), NADDR (msgout), #if 0 SCR_COPY (1), RADDR (scratcha), NADDR (msgin), #endif /* ** Anticipate the COMMAND phase. ** This is the normal case for initial selection. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), PADDR (dispatch), }/*-------------------------< COMMAND >--------------------*/,{ #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** ... set a timestamp ... */ SCR_COPY (sizeof (u_long)), KVAR(SCRIPT_KVAR_JIFFIES), NADDR (header.stamp.command), #endif /* ** ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, cmd), /* ** If status is still HS_NEGOTIATE, negotiation failed. ** We check this here, since we want to do that ** only once. */ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, }/*-----------------------< DISPATCH >----------------------*/,{ /* ** MSG_IN is the only phase that shall be ** entered at least once for each (re)selection. ** So we test it first. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)), 0, /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4. ** Possible data corruption during Memory Write and Invalidate. ** This work-around resets the addressing logic prior to the ** start of the first MOVE of a DATA IN phase. ** (See README.ncr53c8xx for more information) */ SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 20, SCR_COPY (4), RADDR (scratcha), RADDR (scratcha), SCR_RETURN, 0, SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR (status), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR (command), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDR (msg_out), /* ** Discard one illegal phase byte, if required. */ SCR_LOAD_REG (scratcha, XE_BAD_PHASE), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, NADDR (scratch), SCR_JUMP, PADDR (dispatch), }/*-------------------------< CLRACK >----------------------*/,{ /* ** Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< NO_DATA >--------------------*/,{ /* ** The target wants to tranfer too much data ** or in the wrong direction. ** Remember that in extended error. */ SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), 0, SCR_COPY (1), RADDR (scratcha), NADDR (xerr_st), /* ** Discard one data byte, if required. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), /* ** .. and repeat as required. */ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< STATUS >--------------------*/,{ #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** set the timestamp. */ SCR_COPY (sizeof (u_long)), KVAR(SCRIPT_KVAR_JIFFIES), NADDR (header.stamp.status), #endif /* ** get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), /* ** save status to scsi_status. ** mark as complete. */ SCR_TO_REG (SS_REG), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_IN >--------------------*/,{ /* ** Get the first byte of the message ** and save it to SCRATCHA. ** ** The script processor doesn't negate the ** ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[0]), }/*-------------------------< MSG_IN2 >--------------------*/,{ /* ** Handle this message. */ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), PADDR (complete), SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), PADDR (disconnect), SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), PADDR (save_dp), SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), PADDR (restore_dp), SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDRH (msg_extended), SCR_JUMP ^ IFTRUE (DATA (M_NOOP)), PADDR (clrack), SCR_JUMP ^ IFTRUE (DATA (M_REJECT)), PADDRH (msg_reject), SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)), PADDRH (msg_ign_residue), /* ** Rest of the messages left as ** an exercise ... ** ** Unimplemented messages: ** fall through to MSG_BAD. */ }/*-------------------------< MSG_BAD >------------------*/,{ /* ** unimplemented message - reject it. */ SCR_INT, SIR_REJECT_SENT, SCR_LOAD_REG (scratcha, M_REJECT), 0, }/*-------------------------< SETMSG >----------------------*/,{ SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (clrack), }/*-------------------------< CLEANUP >-------------------*/,{ /* ** dsa: Pointer to ccb ** or xxxxxxFF (no ccb) ** ** HS_REG: Host-Status (<>0!) */ SCR_FROM_REG (dsa), 0, SCR_JUMP ^ IFTRUE (DATA (0xff)), PADDR (start), /* ** dsa is valid. ** complete the cleanup. */ SCR_JUMP, PADDR (cleanup_ok), }/*-------------------------< COMPLETE >-----------------*/,{ /* ** Complete message. ** ** Copy TEMP register to LASTP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.lastp), /* ** When we terminate the cycle by clearing ACK, ** the target may disconnect immediately. ** ** We don't want to be told of an ** "unexpected disconnect", ** so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* ** Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< CLEANUP_OK >----------------*/,{ /* ** Save host status to header. */ SCR_COPY (4), RADDR (scr0), NADDR (header.status), /* ** and copy back the header to the ccb. */ SCR_COPY_F (4), RADDR (dsa), PADDR (cleanup0), SCR_COPY (sizeof (struct head)), NADDR (header), }/*-------------------------< CLEANUP0 >--------------------*/,{ 0, }/*-------------------------< SIGNAL >----------------------*/,{ /* ** if job not completed ... */ SCR_FROM_REG (HS_REG), 0, /* ** ... start the next command. */ SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))), PADDR(start), /* ** If command resulted in not GOOD status, ** call the C code if needed. */ SCR_FROM_REG (SS_REG), 0, SCR_CALL ^ IFFALSE (DATA (S_GOOD)), PADDRH (bad_status), #ifndef SCSI_NCR_CCB_DONE_SUPPORT /* ** ... signal completion to the host */ SCR_INT_FLY, 0, /* ** Auf zu neuen Schandtaten! */ SCR_JUMP, PADDR(start), #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */ /* ** ... signal completion to the host */ SCR_JUMP, }/*------------------------< DONE_POS >---------------------*/,{ PADDRH (done_queue), }/*------------------------< DONE_PLUG >--------------------*/,{ SCR_INT, SIR_DONE_OVERFLOW, }/*------------------------< DONE_END >---------------------*/,{ SCR_INT_FLY, 0, SCR_COPY (4), RADDR (temp), PADDR (done_pos), SCR_JUMP, PADDR (start), #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ }/*-------------------------< SAVE_DP >------------------*/,{ /* ** SAVE_DP message: ** Copy TEMP register to SAVEP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< RESTORE_DP >---------------*/,{ /* ** RESTORE_DP message: ** Copy SAVEP in header to TEMP register. */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), SCR_JUMP, PADDR (clrack), }/*-------------------------< DISCONNECT >---------------*/,{ /* ** DISCONNECTing ... ** ** disable the "unexpected disconnect" feature, ** and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** Wait for the disconnect. */ SCR_WAIT_DISC, 0, #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Profiling: ** Set a time stamp, ** and count the disconnects. */ SCR_COPY (sizeof (u_long)), KVAR(SCRIPT_KVAR_JIFFIES), NADDR (header.stamp.disconnect), SCR_COPY (4), NADDR (disc_phys), RADDR (scratcha), SCR_REG_REG (scratcha, SCR_ADD, 0x01), 0, SCR_COPY (4), RADDR (scratcha), NADDR (disc_phys), #endif /* ** Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, /* ** If QUIRK_AUTOSAVE is set, ** do an "save pointer" operation. */ SCR_FROM_REG (QU_REG), 0, SCR_JUMP ^ IFFALSE (MASK (QUIRK_AUTOSAVE, QUIRK_AUTOSAVE)), PADDR (cleanup_ok), /* ** like SAVE_DP message: ** Copy TEMP register to SAVEP in header. */ SCR_COPY (4), RADDR (temp), NADDR (header.savep), SCR_JUMP, PADDR (cleanup_ok), }/*-------------------------< MSG_OUT >-------------------*/,{ /* ** The target requests a message. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), /* ** If it was no ABORT message ... */ SCR_JUMP ^ IFTRUE (DATA (M_ABORT)), PADDRH (msg_out_abort), /* ** ... wait for the next phase ** if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDR (msg_out), }/*-------------------------< MSG_OUT_DONE >--------------*/,{ /* ** ... else clear the message ... */ SCR_LOAD_REG (scratcha, M_NOOP), 0, SCR_COPY (4), RADDR (scratcha), NADDR (msgout), /* ** ... and process the next phase */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< IDLE >------------------------*/,{ /* ** Nothing to do? ** Wait for reselect. ** This NOP will be patched with LED OFF ** SCR_REG_REG (gpreg, SCR_OR, 0x01) */ SCR_NO_OP, 0, }/*-------------------------< RESELECT >--------------------*/,{ /* ** make the DSA invalid. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_IN_RESELECT), 0, /* ** Sleep waiting for a reselection. ** If SIGP is set, special treatment. ** ** Zu allem bereit .. */ SCR_WAIT_RESEL, PADDR(start), }/*-------------------------< RESELECTED >------------------*/,{ /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** ... zu nichts zu gebrauchen ? ** ** load the target id into the SFBR ** and jump to the control block. ** ** Look at the declarations of ** - struct ncb ** - struct tcb ** - struct lcb ** - struct ccb ** to understand what's going on. */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, SCR_JUMP, NADDR (jump_tcb), }/*-------------------------< RESEL_DSA >-------------------*/,{ /* ** Ack the IDENTIFY or TAG previously received. */ SCR_CLR (SCR_ACK), 0, /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDR (loadpos1), /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< LOADPOS1 >-------------------*/,{ 0, NADDR (header), #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Set a time stamp for this reselection */ SCR_COPY (sizeof (u_long)), KVAR(SCRIPT_KVAR_JIFFIES), NADDR (header.stamp.reselect), #endif /* ** The DSA contains the data structure address. */ SCR_JUMP, PADDR (prepare), }/*-------------------------< RESEL_LUN >-------------------*/,{ /* ** come back to this point ** to get an IDENTIFY message ** Wait for a msg_in phase. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_RESEL_NO_MSG_IN, /* ** message phase. ** Read the data directly from the BUS DATA lines. ** This helps to support very old SCSI devices that ** may reselect without sending an IDENTIFY. */ SCR_FROM_REG (sbdl), 0, /* ** It should be an Identify message. */ SCR_RETURN, 0, }/*-------------------------< RESEL_TAG >-------------------*/,{ /* ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. ** Agressive optimization, is'nt it? ** No need to test the SIMPLE TAG message, since the ** driver only supports conformant devices for tags. ;-) */ SCR_MOVE_ABS (3) ^ SCR_MSG_IN, NADDR (msgin), /* ** Read the TAG from the SIDL. ** Still an aggressive optimization. ;-) ** Compute the CCB indirect jump address which ** is (#TAG*2 & 0xfc) due to tag numbering using ** 1,3,5..MAXTAGS*2+1 actual values. */ SCR_REG_SFBR (sidl, SCR_SHL, 0), 0, SCR_SFBR_REG (temp, SCR_AND, 0xfc), 0, }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{ SCR_COPY_F (4), RADDR (temp), PADDR (nexus_indirect), SCR_COPY (4), }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{ 0, RADDR (temp), SCR_RETURN, 0, }/*-------------------------< RESEL_NOTAG >-------------------*/,{ /* ** No tag expected. ** Read an throw away the IDENTIFY. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDR (jump_to_nexus), }/*-------------------------< DATA_IN >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERL parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_IN2 >-------------------*/,{ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< DATA_OUT >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERL parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_OUT2 >-------------------*/,{ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*--------------------------------------------------------*/ }; static struct scripth scripth0 __initdata = { /*-------------------------< TRYLOOP >---------------------*/{ /* ** Start the next entry. ** Called addresses point to the launch script in the CCB. ** They are patched by the main processor. ** ** Because the size depends on the ** #define MAX_START parameter, it is filled ** in at runtime. ** **----------------------------------------------------------- ** ** ##===========< I=0; i=========== ** || SCR_CALL, ** || PADDR (idle), ** ##========================================== ** **----------------------------------------------------------- */ 0 }/*------------------------< TRYLOOP2 >---------------------*/,{ SCR_JUMP, PADDRH(tryloop), #ifdef SCSI_NCR_CCB_DONE_SUPPORT }/*------------------------< DONE_QUEUE >-------------------*/,{ /* ** Copy the CCB address to the next done entry. ** Because the size depends on the ** #define MAX_DONE parameter, it is filled ** in at runtime. ** **----------------------------------------------------------- ** ** ##===========< I=0; i=========== ** || SCR_COPY (sizeof(ccb_p)), ** || NADDR (header.cp), ** || NADDR (ccb_done[i]), ** || SCR_CALL, ** || PADDR (done_end), ** ##========================================== ** **----------------------------------------------------------- */ 0 }/*------------------------< DONE_QUEUE2 >------------------*/,{ SCR_JUMP, PADDRH (done_queue), #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ }/*------------------------< SELECT_NO_ATN >-----------------*/,{ /* ** Set Initiator mode. ** And try to select this target without ATN. */ SCR_CLR (SCR_TRG), 0, SCR_LOAD_REG (HS_REG, HS_SELECTING), 0, SCR_SEL_TBL ^ offsetof (struct dsb, select), PADDR (reselect), SCR_JUMP, PADDR (select2), }/*-------------------------< CANCEL >------------------------*/,{ SCR_LOAD_REG (scratcha, HS_ABORTED), 0, SCR_JUMPR, 8, }/*-------------------------< SKIP >------------------------*/,{ SCR_LOAD_REG (scratcha, 0), 0, /* ** This entry has been canceled. ** Next time use the next slot. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), /* ** The ncr doesn't have an indirect load ** or store command. So we have to ** copy part of the control block to a ** fixed place, where we can access it. ** ** We patch the address part of a ** COPY command with the DSA-register. */ SCR_COPY_F (4), RADDR (dsa), PADDRH (skip2), /* ** then we do the actual copy. */ SCR_COPY (sizeof (struct head)), /* ** continued after the next label ... */ }/*-------------------------< SKIP2 >---------------------*/,{ 0, NADDR (header), /* ** Initialize the status registers */ SCR_COPY (4), NADDR (header.status), RADDR (scr0), /* ** Force host status. */ SCR_FROM_REG (scratcha), 0, SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), 16, SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK), 0, SCR_JUMPR, 8, SCR_TO_REG (HS_REG), 0, SCR_LOAD_REG (SS_REG, S_GOOD), 0, SCR_JUMP, PADDR (cleanup_ok), },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{ /* ** Ignore all data in byte, until next phase */ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDRH (par_err_other), SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), SCR_JUMPR, -24, },/*-------------------------< PAR_ERR_OTHER >------------------*/{ /* ** count it. */ SCR_REG_REG (PS_REG, SCR_ADD, 0x01), 0, /* ** jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_REJECT >---------------*/,{ /* ** If a negotiation was in progress, ** negotiation failed. ** Otherwise, let the C code print ** some message. */ SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), SIR_REJECT_RECEIVED, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get residue size. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* ** Size is 0 .. ignore message. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDR (clrack), /* ** Size is not 1 .. have to interrupt. */ SCR_JUMPR ^ IFFALSE (DATA (1)), 40, /* ** Check for residue byte in swide register */ SCR_FROM_REG (scntl2), 0, SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 16, /* ** There IS data in the swide register. ** Discard it. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, SCR_JUMP, PADDR (clrack), /* ** Load again the size to the sfbr register. */ SCR_FROM_REG (scratcha), 0, SCR_INT, SIR_IGN_RESIDUE, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_EXTENDED >-------------*/,{ /* ** Terminate cycle */ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get length. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* */ SCR_JUMP ^ IFTRUE (DATA (3)), PADDRH (msg_ext_3), SCR_JUMP ^ IFFALSE (DATA (2)), PADDR (msg_bad), }/*-------------------------< MSG_EXT_2 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), SCR_JUMP ^ IFTRUE (DATA (M_X_WIDE_REQ)), PADDRH (msg_wdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_WDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get data bus width */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[3]), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_WIDE, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_WDTR >----------------*/,{ /* ** Send the M_X_WIDE_REQ */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< MSG_EXT_3 >----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get extended message code. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[2]), SCR_JUMP ^ IFTRUE (DATA (M_X_SYNC_REQ)), PADDRH (msg_sdtr), /* ** unknown extended message */ SCR_JUMP, PADDR (msg_bad) }/*-------------------------< MSG_SDTR >-----------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), /* ** get period and offset */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (msgin[3]), /* ** let the host do the real work. */ SCR_INT, SIR_NEGO_SYNC, /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_SDTR >-------------*/,{ /* ** Send the M_X_SYNC_REQ */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_JUMP, PADDR (msg_out_done), }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ SCR_INT, SIR_NEGO_PROTO, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ /* ** After ABORT message, ** ** expect an immediate disconnect, ... */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* ** ... and set the status to "ABORTED" */ SCR_LOAD_REG (HS_REG, HS_ABORTED), 0, SCR_JUMP, PADDR (cleanup), }/*-------------------------< HDATA_IN >-------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERH parameter, ** it is filled in at runtime. ** ** ##==< i=MAX_SCATTERL; i== ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##=================================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< HDATA_IN2 >------------------*/,{ SCR_JUMP, PADDR (data_in), }/*-------------------------< HDATA_OUT >-------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTERH parameter, ** it is filled in at runtime. ** ** ##==< i=MAX_SCATTERL; i== ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), ** || PADDR (dispatch), ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##=================================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< HDATA_OUT2 >------------------*/,{ SCR_JUMP, PADDR (data_out), }/*-------------------------< RESET >----------------------*/,{ /* ** Send a M_RESET message if bad IDENTIFY ** received on reselection. */ SCR_LOAD_REG (scratcha, M_ABORT_TAG), 0, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< ABORTTAG >-------------------*/,{ /* ** Abort a wrong tag received on reselection. */ SCR_LOAD_REG (scratcha, M_ABORT_TAG), 0, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< ABORT >----------------------*/,{ /* ** Abort a reselection when no active CCB. */ SCR_LOAD_REG (scratcha, M_ABORT), 0, }/*-------------------------< ABORT_RESEL >----------------*/,{ SCR_COPY (1), RADDR (scratcha), NADDR (msgout), SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* ** and send it. ** we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_COPY (1), NADDR (msgout), NADDR (lastmsg), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_JUMP, PADDR (start), }/*-------------------------< RESEND_IDENT >-------------------*/,{ /* ** The target stays in MSG OUT phase after having acked ** Identify [+ Tag [+ Extended message ]]. Targets shall ** behave this way on parity error. ** We must send it again all the messages. */ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ SCR_JUMP, PADDR (send_ident), }/*-------------------------< CLRATN_GO_ON >-------------------*/,{ SCR_CLR (SCR_ATN), 0, SCR_JUMP, }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{ 0, }/*-------------------------< SDATA_IN >-------------------*/,{ SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDR (dispatch), SCR_MOVE_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDR (no_data), }/*-------------------------< DATA_IO >--------------------*/,{ /* ** We jump here if the data direction was unknown at the ** time we had to queue the command to the scripts processor. ** Pointers had been set as follow in this situation: ** savep --> DATA_IO ** lastp --> start pointer when DATA_IN ** goalp --> goal pointer when DATA_IN ** wlastp --> start pointer when DATA_OUT ** wgoalp --> goal pointer when DATA_OUT ** This script sets savep/lastp/goalp according to the ** direction chosen by the target. */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)), 32, /* ** Direction is DATA IN. ** Warning: we jump here, even when phase is DATA OUT. */ SCR_COPY (4), NADDR (header.lastp), NADDR (header.savep), /* ** Jump to the SCRIPTS according to actual direction. */ SCR_COPY (4), NADDR (header.savep), RADDR (temp), SCR_RETURN, 0, /* ** Direction is DATA OUT. */ SCR_COPY (4), NADDR (header.wlastp), NADDR (header.lastp), SCR_COPY (4), NADDR (header.wgoalp), NADDR (header.goalp), SCR_JUMPR, -64, }/*-------------------------< BAD_IDENTIFY >---------------*/,{ /* ** If message phase but not an IDENTIFY, ** get some help from the C code. ** Old SCSI device may behave so. */ SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), 16, SCR_INT, SIR_RESEL_NO_IDENTIFY, SCR_JUMP, PADDRH (reset), /* ** Message is an IDENTIFY, but lun is unknown. ** Read the message, since we got it directly ** from the SCSI BUS data lines. ** Signal problem to C code for logging the event. ** Send a M_ABORT to clear all pending tasks. */ SCR_INT, SIR_RESEL_BAD_LUN, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDRH (abort), }/*-------------------------< BAD_I_T_L >------------------*/,{ /* ** We donnot have a task for that I_T_L. ** Signal problem to C code for logging the event. ** Send a M_ABORT message. */ SCR_INT, SIR_RESEL_BAD_I_T_L, SCR_JUMP, PADDRH (abort), }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ /* ** We donnot have a task that matches the tag. ** Signal problem to C code for logging the event. ** Send a M_ABORTTAG message. */ SCR_INT, SIR_RESEL_BAD_I_T_L_Q, SCR_JUMP, PADDRH (aborttag), }/*-------------------------< BAD_TARGET >-----------------*/,{ /* ** We donnot know the target that reselected us. ** Grab the first message if any (IDENTIFY). ** Signal problem to C code for logging the event. ** M_RESET message. */ SCR_INT, SIR_RESEL_BAD_TARGET, SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDRH (reset), }/*-------------------------< BAD_STATUS >-----------------*/,{ /* ** If command resulted in either QUEUE FULL, ** CHECK CONDITION or COMMAND TERMINATED, ** call the C code. */ SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_TERMINATED)), SIR_BAD_STATUS, SCR_RETURN, 0, }/*-------------------------< START_RAM >-------------------*/,{ /* ** Load the script into on-chip RAM, ** and jump to start point. */ SCR_COPY_F (4), RADDR (scratcha), PADDRH (start_ram0), SCR_COPY (sizeof (struct script)), }/*-------------------------< START_RAM0 >--------------------*/,{ 0, PADDR (start), SCR_JUMP, PADDR (start), }/*-------------------------< STO_RESTART >-------------------*/,{ /* ** ** Repair start queue (e.g. next time use the next slot) ** and jump to start point. */ SCR_COPY (4), RADDR (temp), PADDR (startpos), SCR_JUMP, PADDR (start), }/*-------------------------< SNOOPTEST >-------------------*/,{ /* ** Read the variable. */ SCR_COPY (4), NADDR(ncr_cache), RADDR (scratcha), /* ** Write the variable. */ SCR_COPY (4), RADDR (temp), NADDR(ncr_cache), /* ** Read back the variable. */ SCR_COPY (4), NADDR(ncr_cache), RADDR (temp), }/*-------------------------< SNOOPEND >-------------------*/,{ /* ** And stop. */ SCR_INT, 99, }/*--------------------------------------------------------*/ }; /*========================================================== ** ** ** Fill in #define dependent parts of the script ** ** **========================================================== */ void __init ncr_script_fill (struct script * scr, struct scripth * scrh) { int i; ncrcmd *p; p = scrh->tryloop; for (i=0; itryloop + sizeof (scrh->tryloop)); #ifdef SCSI_NCR_CCB_DONE_SUPPORT p = scrh->done_queue; for (i = 0; idone_queue+sizeof(scrh->done_queue)); #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ p = scrh->hdata_in; for (i=0; ihdata_in + sizeof (scrh->hdata_in)); p = scr->data_in; for (i=MAX_SCATTERH; idata_in + sizeof (scr->data_in)); p = scrh->hdata_out; for (i=0; ihdata_out + sizeof (scrh->hdata_out)); p = scr->data_out; for (i=MAX_SCATTERH; idata_out + sizeof (scr->data_out)); flush_cache_all(); } /*========================================================== ** ** ** Copy and rebind a script. ** ** **========================================================== */ static void __init ncr_script_copy_and_bind (ncb_p np, ncrcmd *src, ncrcmd *dst, int len) { ncrcmd opcode, new, old, tmp1, tmp2; ncrcmd *start, *end; int relocs; int opchanged = 0; start = src; end = src + len/4; while (src < end) { opcode = *src++; *dst++ = cpu_to_scr(opcode); /* ** If we forget to change the length ** in struct script, a field will be ** padded with 0. This is an illegal ** command. */ if (opcode == 0) { printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); MDELAY (1000); }; if (DEBUG_FLAGS & DEBUG_SCRIPT) printk (KERN_DEBUG "%p: <%x>\n", (src-1), (unsigned)opcode); /* ** We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xc: /* ** COPY has TWO arguments. */ relocs = 2; tmp1 = src[0]; if ((tmp1 & RELOC_MASK) == RELOC_KVAR) tmp1 = 0; tmp2 = src[1]; if ((tmp2 & RELOC_MASK) == RELOC_KVAR) tmp2 = 0; if ((tmp1 ^ tmp2) & 3) { printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); MDELAY (1000); } /* ** If PREFETCH feature not enabled, remove ** the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); ++opchanged; } break; case 0x0: /* ** MOVE (absolute address) */ relocs = 1; break; case 0x8: /* ** JUMP / CALL ** dont't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; }; if (relocs) { while (relocs--) { old = *src++; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + bus_dvma_to_mem(np->paddr); break; case RELOC_LABEL: new = (old & ~RELOC_MASK) + np->p_script; break; case RELOC_LABELH: new = (old & ~RELOC_MASK) + np->p_scripth; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + vtophys(np); break; case RELOC_KVAR: if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) panic("ncr KVAR out of range"); new = vtophys(script_kvars[old & ~RELOC_MASK]); break; case 0: /* Don't relocate a 0 address. */ if (old == 0) { new = old; break; } /* fall through */ default: panic("ncr_script_copy_and_bind: weird relocation %x\n", old); break; } *dst++ = cpu_to_scr(new); } } else *dst++ = cpu_to_scr(*src++); }; flush_cache_all(); } /*========================================================== ** ** ** Auto configuration: attach and init a host adapter. ** ** **========================================================== */ /* ** Linux host data structure ** ** The script area is allocated in the host data structure ** because kmalloc() returns NULL during scsi initialisations ** with Linux 1.2.X */ struct host_data { struct ncb *ncb; char ncb_align[CACHE_LINE_SIZE-1]; /* Filler for alignment */ struct ncb _ncb_data; char ccb_align[CACHE_LINE_SIZE-1]; /* Filler for alignment */ struct ccb _ccb_data; char scr_align[CACHE_LINE_SIZE-1]; /* Filler for alignment */ struct script script_data; struct scripth scripth_data; }; /* ** Print something which allows to retrieve the controler type, unit, ** target, lun concerned by a kernel message. */ static void PRINT_TARGET(ncb_p np, int target) { printk(KERN_INFO "%s-<%d,*>: ", ncr_name(np), target); } static void PRINT_LUN(ncb_p np, int target, int lun) { printk(KERN_INFO "%s-<%d,%d>: ", ncr_name(np), target, lun); } static void PRINT_ADDR(Scsi_Cmnd *cmd) { struct host_data *host_data = (struct host_data *) cmd->host->hostdata; PRINT_LUN(host_data->ncb, cmd->target, cmd->lun); } /*========================================================== ** ** NCR chip clock divisor table. ** Divisors are multiplied by 10,000,000 in order to make ** calculations more simple. ** **========================================================== */ #define _5M 5000000 static u_long div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /*=============================================================== ** ** Prepare io register values used by ncr_init() according ** to selected and supported features. ** ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 ** transfers. 32,64,128 are only supported by 875 and 895 chips. ** We use log base 2 (burst length) as internal code, with ** value 0 meaning "burst disabled". ** **=============================================================== */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static inline void ncr_init_burst(ncb_p np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } #ifdef SCSI_NCR_NVRAM_SUPPORT /* ** Get target set-up from Symbios format NVRAM. */ static void __init ncr_Symbios_setup_target(ncb_p np, int target, Symbios_nvram *nvram) { tcb_p tp = &np->target[target]; Symbios_target *tn = &nvram->target[target]; tp->usrsync = tn->sync_period ? (tn->sync_period + 3) / 4 : 255; tp->usrwide = tn->bus_width == 0x10 ? 1 : 0; tp->usrtags = (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? MAX_TAGS : 0; if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) tp->usrflag |= UF_NODISC; if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) tp->usrflag |= UF_NOSCAN; } /* ** Get target set-up from Tekram format NVRAM. */ static void __init ncr_Tekram_setup_target(ncb_p np, int target, Tekram_nvram *nvram) { tcb_p tp = &np->target[target]; struct Tekram_target *tn = &nvram->target[target]; int i; if (tn->flags & TEKRAM_SYNC_NEGO) { i = tn->sync_index & 0xf; tp->usrsync = Tekram_sync[i]; } tp->usrwide = (tn->flags & TEKRAM_WIDE_NEGO) ? 1 : 0; if (tn->flags & TEKRAM_TAGGED_COMMANDS) { tp->usrtags = 2 << nvram->max_tags_index; } if (!(tn->flags & TEKRAM_DISCONNECT_ENABLE)) tp->usrflag = UF_NODISC; /* If any device does not support parity, we will not use this option */ if (!(tn->flags & TEKRAM_PARITY_CHECK)) np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ } #endif /* SCSI_NCR_NVRAM_SUPPORT */ static int __init ncr_prepare_setting(ncb_p np, ncr_nvram *nvram) { u_char burst_max; u_long period; int i; /* ** Save assumed BIOS setting */ np->sv_scntl0 = INB(nc_scntl0) & 0x0a; np->sv_scntl3 = INB(nc_scntl3) & 0x07; np->sv_dmode = INB(nc_dmode) & 0xce; np->sv_dcntl = INB(nc_dcntl) & 0xa8; np->sv_ctest3 = INB(nc_ctest3) & 0x01; np->sv_ctest4 = INB(nc_ctest4) & 0x80; np->sv_ctest5 = INB(nc_ctest5) & 0x24; np->sv_gpcntl = INB(nc_gpcntl); np->sv_stest2 = INB(nc_stest2) & 0x20; np->sv_stest4 = INB(nc_stest4); /* ** Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* ** Get the frequency of the chip's clock. ** Find the right value for scntl3. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; np->clock_khz *= np->multiplier; if (np->clock_khz != 40000) ncr_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & FE_ULTRA2)) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* ** Prepare initial value of other IO registers */ #if defined SCSI_NCR_TRUST_BIOS_SETTING np->rv_scntl0 = np->sv_scntl0; np->rv_dmode = np->sv_dmode; np->rv_dcntl = np->sv_dcntl; np->rv_ctest3 = np->sv_ctest3; np->rv_ctest4 = np->sv_ctest4; np->rv_ctest5 = np->sv_ctest5; burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); #else /* ** Select burst length (dwords) */ burst_max = driver_setup.burst_max; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* ** Select all supported special features */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ if (np->features & FE_PFEN) np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ /* ** Select some other */ if (driver_setup.master_parity) np->rv_ctest4 |= MPEE; /* Master parity checking */ if (driver_setup.scsi_parity) np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ #ifdef SCSI_NCR_NVRAM_SUPPORT /* ** Get parity checking, host ID and verbose mode from NVRAM **/ if (nvram) { switch(nvram->type) { case SCSI_NCR_TEKRAM_NVRAM: np->myaddr = nvram->data.Tekram.host_id & 0x0f; break; case SCSI_NCR_SYMBIOS_NVRAM: if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) np->rv_scntl0 &= ~0x0a; np->myaddr = nvram->data.Symbios.host_id & 0x0f; if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) np->verbose += 1; break; } } #endif /* ** Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SCSI_NCR_MYADDR; } #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ /* * Prepare initial io register bits for burst length */ ncr_init_burst(np, burst_max); /* ** Set SCSI BUS mode. ** ** - ULTRA2 chips (895/895A/896) report the current ** BUS mode through the STEST4 IO register. ** - For previous generation chips (825/825A/875), ** user has to tell us how to check against HVD, ** since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & FE_ULTRA2) np->scsi_mode = (np->sv_stest4 & SMODE); else if (np->features & FE_DIFF) { switch(driver_setup.diff_support) { case 4: /* Trust previous settings if present, then GPIO3 */ if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; } case 3: /* SYMBIOS controllers report HVD through GPIO3 */ if (nvram && nvram->type != SCSI_NCR_SYMBIOS_NVRAM) break; if (INB(nc_gpreg) & 0x08) break; case 2: /* Set HVD unconditionally */ np->scsi_mode = SMODE_HVD; case 1: /* Trust previous settings for HVD */ if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; default:/* Don't care about HVD */ break; } } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* ** Set LED support from SCRIPTS. ** Ignore this feature for boards known to use a ** specific GPIO wiring and for the 895A or 896 ** that drive the LED directly. ** Also probe initial setting of GPIO0 as output. */ if ((driver_setup.led_pin || (nvram && nvram->type == SCSI_NCR_SYMBIOS_NVRAM)) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* ** Set irq mode. */ switch(driver_setup.irqm & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* ** Configure targets according to driver setup. ** If NVRAM present get targets setup from NVRAM. ** Allow to override sync, wide and NOSCAN from ** boot command line. */ for (i = 0 ; i < MAX_TARGET ; i++) { tcb_p tp = &np->target[i]; tp->usrsync = 255; #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvram) { switch(nvram->type) { case SCSI_NCR_TEKRAM_NVRAM: ncr_Tekram_setup_target(np, i, &nvram->data.Tekram); break; case SCSI_NCR_SYMBIOS_NVRAM: ncr_Symbios_setup_target(np, i, &nvram->data.Symbios); break; } if (driver_setup.use_nvram & 0x2) tp->usrsync = driver_setup.default_sync; if (driver_setup.use_nvram & 0x4) tp->usrwide = driver_setup.max_wide; if (driver_setup.use_nvram & 0x8) tp->usrflag &= ~UF_NOSCAN; } else { #else if (1) { #endif tp->usrsync = driver_setup.default_sync; tp->usrwide = driver_setup.max_wide; tp->usrtags = MAX_TAGS; if (!driver_setup.disconnection) np->target[i].usrflag = UF_NODISC; } } /* ** Announce all that stuff to user. */ i = nvram ? nvram->type : 0; printk(KERN_INFO "%s: %sID %d, Fast-%d%s%s\n", ncr_name(np), i == SCSI_NCR_SYMBIOS_NVRAM ? "Symbios format NVRAM, " : (i == SCSI_NCR_TEKRAM_NVRAM ? "Tekram format NVRAM, " : ""), np->myaddr, np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", (np->rv_stest2 & 0x20) ? ", Differential" : ""); if (bootverbose > 1) { printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } if (bootverbose && np->paddr2) printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", ncr_name(np), np->paddr2); return 0; } #ifdef SCSI_NCR_DEBUG_NVRAM void __init ncr_display_Symbios_nvram(ncb_p np, Symbios_nvram *nvram) { int i; /* display Symbios nvram host data */ printk(KERN_DEBUG "%s: HOST ID=%d%s%s%s%s%s\n", ncr_name(np), nvram->host_id & 0x0f, (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); /* display Symbios nvram drive data */ for (i = 0 ; i < 15 ; i++) { struct Symbios_target *tn = &nvram->target[i]; printk(KERN_DEBUG "%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", ncr_name(np), i, (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", tn->bus_width, tn->sync_period / 4, tn->timeout); } } static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120}; void __init ncr_display_Tekram_nvram(ncb_p np, Tekram_nvram *nvram) { int i, tags, boot_delay; char *rem; /* display Tekram nvram host data */ tags = 2 << nvram->max_tags_index; boot_delay = 0; if (nvram->boot_delay_index < 6) boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { default: case 0: rem = ""; break; case 1: rem = " REMOVABLE=boot device"; break; case 2: rem = " REMOVABLE=all"; break; } printk(KERN_DEBUG "%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", ncr_name(np), nvram->host_id & 0x0f, (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", rem, boot_delay, tags); /* display Tekram nvram drive data */ for (i = 0; i <= 15; i++) { int sync, j; struct Tekram_target *tn = &nvram->target[i]; j = tn->sync_index & 0xf; sync = Tekram_sync[j]; printk(KERN_DEBUG "%s-%d:%s%s%s%s%s%s PERIOD=%d\n", ncr_name(np), i, (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & TEKRAM_START_CMD) ? " START" : "", (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", sync); } } #endif /* SCSI_NCR_DEBUG_NVRAM */ /* ** Host attach and initialisations. ** ** Allocate host data and ncb structure. ** Request IO region and remap MMIO region. ** Do chip initialization. ** If all is OK, install interrupt handling and ** start the timer daemon. */ static int __init ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device) { struct host_data *host_data; ncb_p np; struct Scsi_Host *instance = 0; u_long flags = 0; ncr_nvram *nvram = device->nvram; int i; printk(KERN_INFO "ncr53c%s-%d: rev 0x%x on pci bus %d device %d function %d " #ifdef __sparc__ "irq %s\n", #else "irq %d\n", #endif device->chip.name, unit, device->chip.revision_id, device->slot.bus, (device->slot.device_fn & 0xf8) >> 3, device->slot.device_fn & 7, #ifdef __sparc__ __irq_itoa(device->slot.irq)); #else device->slot.irq); #endif /* ** Allocate host_data structure */ if (!(instance = scsi_register(tpnt, sizeof(*host_data)))) goto attach_error; /* ** Initialize structure. */ host_data = (struct host_data *) instance->hostdata; bzero (host_data, sizeof(*host_data)); /* ** Align np and first ccb to 32 boundary for cache line ** bursting when copying the global header. */ np = (ncb_p) (((u_long) &host_data->_ncb_data) & CACHE_LINE_MASK); NCR_INIT_LOCK_NCB(np); host_data->ncb = np; np->ccb = (ccb_p) (((u_long) &host_data->_ccb_data) & CACHE_LINE_MASK); /* ** Store input informations in the host data structure. */ strncpy(np->chip_name, device->chip.name, sizeof(np->chip_name) - 1); np->unit = unit; np->verbose = driver_setup.verbose; sprintf(np->inst_name, "ncr53c%s-%d", np->chip_name, np->unit); np->device_id = device->chip.device_id; np->revision_id = device->chip.revision_id; np->bus = device->slot.bus; np->device_fn = device->slot.device_fn; np->features = device->chip.features; np->clock_divn = device->chip.nr_divisor; np->maxoffs = device->chip.offset_max; np->maxburst = device->chip.burst_max; np->myaddr = device->host_id; np->script0 = (struct script *) (((u_long) &host_data->script_data) & CACHE_LINE_MASK); np->scripth0 = &host_data->scripth_data; /* ** Initialize timer structure ** */ init_timer(&np->timer); np->timer.data = (unsigned long) np; np->timer.function = ncr53c8xx_timeout; /* ** Try to map the controller chip to ** virtual and physical memory. */ np->paddr = device->slot.base; np->paddr2 = (np->features & FE_RAM)? device->slot.base_2 : 0; #ifndef NCR_IOMAPPED np->vaddr = remap_pci_mem((u_long) np->paddr, (u_long) 128); if (!np->vaddr) { printk(KERN_ERR "%s: can't map memory mapped IO region\n",ncr_name(np)); goto attach_error; } else if (bootverbose > 1) printk(KERN_INFO "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr); /* ** Make the controller's registers available. ** Now the INB INW INL OUTB OUTW OUTL macros ** can be used safely. */ np->reg = virt_to_bus((struct ncr_reg*) np->vaddr); #endif /* !defined NCR_IOMAPPED */ /* ** Try to map the controller chip into iospace. */ request_region(device->slot.io_port, 128, "ncr53c8xx"); np->port = device->slot.io_port; #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvram) { switch(nvram->type) { case SCSI_NCR_SYMBIOS_NVRAM: #ifdef SCSI_NCR_DEBUG_NVRAM ncr_display_Symbios_nvram(np, &nvram->data.Symbios); #endif break; case SCSI_NCR_TEKRAM_NVRAM: #ifdef SCSI_NCR_DEBUG_NVRAM ncr_display_Tekram_nvram(np, &nvram->data.Tekram); #endif break; default: nvram = 0; #ifdef SCSI_NCR_DEBUG_NVRAM printk(KERN_DEBUG "%s: NVRAM: None or invalid data.\n", ncr_name(np)); #endif } } #endif /* ** Do chip dependent initialization. */ (void)ncr_prepare_setting(np, nvram); if (np->paddr2 && sizeof(struct script) > 4096) { np->paddr2 = 0; printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n", ncr_name(np)); } /* ** Fill Linux host instance structure */ instance->max_channel = 0; instance->this_id = np->myaddr; instance->max_id = np->maxwide ? 16 : 8; instance->max_lun = SCSI_NCR_MAX_LUN; #ifndef NCR_IOMAPPED #if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,29) instance->base = (unsigned long) np->reg; #else instance->base = (char *) np->reg; #endif #endif instance->irq = device->slot.irq; instance->unique_id = device->slot.io_port; instance->io_port = device->slot.io_port; instance->n_io_port = 128; instance->dma_channel = 0; instance->cmd_per_lun = MAX_TAGS; instance->can_queue = (MAX_START-4); instance->select_queue_depths = ncr53c8xx_select_queue_depths; /* ** Patch script to physical addresses */ ncr_script_fill (&script0, &scripth0); np->scripth = np->scripth0; np->p_scripth = vtophys(np->scripth); np->p_script = (np->paddr2) ? bus_dvma_to_mem(np->paddr2) : vtophys(np->script0); ncr_script_copy_and_bind (np, (ncrcmd *) &script0, (ncrcmd *) np->script0, sizeof(struct script)); ncr_script_copy_and_bind (np, (ncrcmd *) &scripth0, (ncrcmd *) np->scripth0, sizeof(struct scripth)); np->ccb->p_ccb = vtophys (np->ccb); /* ** Patch the script for LED support. */ if (np->features & FE_LED0) { np->script0->idle[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); np->script0->reselected[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); np->script0->start[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); } /* ** Look for the target control block of this nexus. ** For i = 0 to 3 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) */ for (i = 0 ; i < 4 ; i++) { np->jump_tcb[i].l_cmd = cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); np->jump_tcb[i].l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target)); } /* ** Reset chip. */ OUTB (nc_istat, SRST); UDELAY (100); OUTB (nc_istat, 0 ); /* ** Now check the cache handling of the pci chipset. */ if (ncr_snooptest (np)) { printk (KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); goto attach_error; }; /* ** Install the interrupt handler. */ if (request_irq(device->slot.irq, ncr53c8xx_intr, ((driver_setup.irqm & 0x10) ? 0 : SA_SHIRQ) | #if LINUX_VERSION_CODE < LinuxVersionCode(2,2,0) ((driver_setup.irqm & 0x20) ? 0 : SA_INTERRUPT), #else 0, #endif "ncr53c8xx", np)) { #ifdef __sparc__ printk(KERN_ERR "%s: request irq %s failure\n", ncr_name(np), __irq_itoa(device->slot.irq)); #else printk(KERN_ERR "%s: request irq %d failure\n", ncr_name(np), device->slot.irq); #endif goto attach_error; } np->irq = device->slot.irq; /* ** Initialize the fixed part of the default ccb. */ ncr_init_ccb(np, np->ccb); /* ** After SCSI devices have been opened, we cannot ** reset the bus safely, so we do it here. ** Interrupt handler does the real work. ** Process the reset exception, ** if interrupts are not enabled yet. ** Then enable disconnects. */ NCR_LOCK_NCB(np, flags); if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); NCR_UNLOCK_NCB(np, flags); goto attach_error; } ncr_exception (np); np->disc = 1; /* ** The middle-level SCSI driver does not ** wait for devices to settle. ** Wait synchronously if more than 2 seconds. */ if (driver_setup.settle_delay > 2) { printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", ncr_name(np), driver_setup.settle_delay); MDELAY (1000 * driver_setup.settle_delay); } /* ** Now let the generic SCSI driver ** look for the SCSI devices on the bus .. */ /* ** start the timeout daemon */ np->lasttime=0; ncr_timeout (np); /* ** use SIMPLE TAG messages by default */ #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG np->order = M_SIMPLE_TAG; #endif /* ** Done. */ if (!the_template) { the_template = instance->hostt; first_host = instance; } NCR_UNLOCK_NCB(np, flags); return 0; attach_error: if (!instance) return -1; printk(KERN_INFO "%s: detaching...\n", ncr_name(np)); #ifndef NCR_IOMAPPED if (np->vaddr) { #ifdef DEBUG_NCR53C8XX printk(KERN_DEBUG "%s: releasing memory mapped IO region %lx[%d]\n", ncr_name(np), (u_long) np->vaddr, 128); #endif unmap_pci_mem((vm_offset_t) np->vaddr, (u_long) 128); } #endif /* !NCR_IOMAPPED */ if (np->port) { #ifdef DEBUG_NCR53C8XX printk(KERN_DEBUG "%s: releasing IO region %x[%d]\n", ncr_name(np), np->port, 128); #endif release_region(np->port, 128); } if (np->irq) { #ifdef DEBUG_NCR53C8XX #ifdef __sparc__ printk(KERN_INFO "%s: freeing irq %s\n", ncr_name(np), __irq_itoa(np->irq)); #else printk(KERN_INFO "%s: freeing irq %d\n", ncr_name(np), np->irq); #endif #endif free_irq(np->irq, np); } scsi_unregister(instance); return -1; } /*========================================================== ** ** ** Done SCSI commands list management. ** ** We donnot enter the scsi_done() callback immediately ** after a command has been seen as completed but we ** insert it into a list which is flushed outside any kind ** of driver critical section. ** This allows to do minimal stuff under interrupt and ** inside critical sections and to also avoid locking up ** on recursive calls to driver entry points under SMP. ** In fact, the only kernel point which is entered by the ** driver with a driver lock set is kmalloc(GFP_ATOMIC) ** that shall not reenter the driver under any circumstances, ** AFAIK. ** **========================================================== */ static inline void ncr_queue_done_cmd(ncb_p np, Scsi_Cmnd *cmd) { cmd->host_scribble = (char *) np->done_list; np->done_list = cmd; } static inline void ncr_flush_done_cmds(Scsi_Cmnd *lcmd) { Scsi_Cmnd *cmd; while (lcmd) { cmd = lcmd; lcmd = (Scsi_Cmnd *) cmd->host_scribble; cmd->scsi_done(cmd); } } /*========================================================== ** ** ** Start execution of a SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_queue_command (ncb_p np, Scsi_Cmnd *cmd) { /* Scsi_Device *device = cmd->device; */ tcb_p tp = &np->target[cmd->target]; lcb_p lp = tp->lp[cmd->lun]; ccb_p cp; int segments; u_char nego, idmsg, *msgptr; u_int msglen; int direction; u_int32 lastp, goalp; /*--------------------------------------------- ** ** Some shortcuts ... ** **--------------------------------------------- */ if ((cmd->target == np->myaddr ) || (cmd->target >= MAX_TARGET) || (cmd->lun >= MAX_LUN )) { return(DID_BAD_TARGET); } /*--------------------------------------------- ** ** Complete the 1st TEST UNIT READY command ** with error condition if the device is ** flagged NOSCAN, in order to speed up ** the boot. ** **--------------------------------------------- */ if (cmd->cmnd[0] == 0 && (tp->usrflag & UF_NOSCAN)) { tp->usrflag &= ~UF_NOSCAN; return DID_BAD_TARGET; } if (DEBUG_FLAGS & DEBUG_TINY) { PRINT_ADDR(cmd); printk ("CMD=%x ", cmd->cmnd[0]); } /*--------------------------------------------------- ** ** Assign a ccb / bind cmd. ** If resetting, shorten settle_time if necessary ** in order to avoid spurious timeouts. ** If resetting or no free ccb, ** insert cmd into the waiting list. ** **---------------------------------------------------- */ if (np->settle_time && cmd->timeout_per_command >= HZ) { u_long tlimit = ktime_get(cmd->timeout_per_command - HZ); if (ktime_dif(np->settle_time, tlimit) > 0) np->settle_time = tlimit; } if (np->settle_time || !(cp=ncr_get_ccb (np, cmd->target, cmd->lun))) { insert_into_waiting_list(np, cmd); return(DID_OK); } cp->cmd = cmd; /*--------------------------------------------------- ** ** Enable tagged queue if asked by scsi ioctl ** **---------------------------------------------------- */ #if 0 /* This stuff was only usefull for linux-1.2.13 */ if (lp && !lp->numtags && cmd->device && cmd->device->tagged_queue) { lp->numtags = tp->usrtags; ncr_setup_tags (np, cmd->target, cmd->lun); } #endif /*--------------------------------------------------- ** ** timestamp ** **---------------------------------------------------- */ #ifdef SCSI_NCR_PROFILE_SUPPORT bzero (&cp->phys.header.stamp, sizeof (struct tstamp)); cp->phys.header.stamp.start = jiffies; #endif /*--------------------------------------------------- ** ** negotiation required? ** **--------------------------------------------------- */ nego = 0; if ((!tp->widedone || !tp->period) && !tp->nego_cp && tp->inq_done && lp) { /* ** negotiate wide transfers ? */ if (!tp->widedone) { if (tp->inq_byte7 & INQ7_WIDE16) { nego = NS_WIDE; } else tp->widedone=1; }; /* ** negotiate synchronous transfers? */ if (!nego && !tp->period) { if (tp->inq_byte7 & INQ7_SYNC) { nego = NS_SYNC; } else { tp->period =0xffff; PRINT_TARGET(np, cmd->target); printk ("device did not report SYNC.\n"); }; }; /* ** remember nego is pending for the target. ** Avoid to start a nego for all queued commands ** when tagged command queuing is enabled. */ if (nego) tp->nego_cp = cp; }; /*---------------------------------------------------- ** ** Build the identify / tag / sdtr message ** **---------------------------------------------------- */ idmsg = M_IDENTIFY | cmd->lun; if (cp ->tag != NO_TAG || (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC))) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; if (cp->tag != NO_TAG) { char order = np->order; /* ** Force ordered tag if necessary to avoid timeouts ** and to preserve interactivity. */ if (lp && ktime_exp(lp->tags_stime)) { if (lp->tags_smap) { order = M_ORDERED_TAG; if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ PRINT_ADDR(cmd); printk("ordered tag forced.\n"); } } lp->tags_stime = ktime_get(3*HZ); lp->tags_smap = lp->tags_umap; } if (order == 0) { /* ** Ordered write ops, unordered read ops. */ switch (cmd->cmnd[0]) { case 0x08: /* READ_SMALL (6) */ case 0x28: /* READ_BIG (10) */ case 0xa8: /* READ_HUGE (12) */ order = M_SIMPLE_TAG; break; default: order = M_ORDERED_TAG; } } msgptr[msglen++] = order; /* ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1, ** since we may have to deal with devices that have ** problems with #TAG 0 or too great #TAG numbers. */ msgptr[msglen++] = (cp->tag << 1) + 1; } switch (nego) { case NS_SYNC: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 3; msgptr[msglen++] = M_X_SYNC_REQ; msgptr[msglen++] = tp->maxoffs ? tp->minsync : 0; msgptr[msglen++] = tp->maxoffs; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("sync msgout: "); ncr_show_msg (&cp->scsi_smsg [msglen-5]); printk (".\n"); }; break; case NS_WIDE: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 2; msgptr[msglen++] = M_X_WIDE_REQ; msgptr[msglen++] = tp->usrwide; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("wide msgout: "); ncr_show_msg (&cp->scsi_smsg [msglen-4]); printk (".\n"); }; break; }; /*---------------------------------------------------- ** ** Build the data descriptors ** **---------------------------------------------------- */ segments = ncr_scatter (cp, cp->cmd); if (segments < 0) { ncr_free_ccb(np, cp); return(DID_ERROR); } /*---------------------------------------------------- ** ** Guess xfer direction. ** Spare some CPU by testing here frequently opcode. ** **---------------------------------------------------- */ if (!cp->data_len) direction = 0; else { switch((int) cmd->cmnd[0]) { case 0x08: /* READ(6) 08 */ case 0x28: /* READ(10) 28 */ case 0xA8: /* READ(12) A8 */ direction = XFER_IN; break; case 0x0A: /* WRITE(6) 0A */ case 0x2A: /* WRITE(10) 2A */ case 0xAA: /* WRITE(12) AA */ direction = XFER_OUT; break; default: direction = (XFER_IN|XFER_OUT); break; } } /*---------------------------------------------------- ** ** Set the SAVED_POINTER. ** **---------------------------------------------------- */ /* ** Default to no data transfer. */ lastp = goalp = NCB_SCRIPT_PHYS (np, no_data); /* ** Compute data out pointers, if needed. */ if (direction & XFER_OUT) { goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; if (segments <= MAX_SCATTERL) lastp = goalp - 8 - (segments * 16); else { lastp = NCB_SCRIPTH_PHYS (np, hdata_out2); lastp -= (segments - MAX_SCATTERL) * 16; } /* ** If actual data direction is unknown, save pointers ** in header. The SCRIPTS will swap them to current ** if target decision will be data out. */ if (direction & XFER_IN) { cp->phys.header.wgoalp = cpu_to_scr(goalp); cp->phys.header.wlastp = cpu_to_scr(lastp); } } /* ** Compute data in pointers, if needed. */ if (direction & XFER_IN) { goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; if (segments <= MAX_SCATTERL) lastp = goalp - 8 - (segments * 16); else { lastp = NCB_SCRIPTH_PHYS (np, hdata_in2); lastp -= (segments - MAX_SCATTERL) * 16; } } /* ** Set all pointers values needed by SCRIPTS. ** If direction is unknown, start at data_io. */ cp->phys.header.lastp = cpu_to_scr(lastp); cp->phys.header.goalp = cpu_to_scr(goalp); if ((direction & (XFER_IN|XFER_OUT)) == (XFER_IN|XFER_OUT)) cp->phys.header.savep = cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); else cp->phys.header.savep= cpu_to_scr(lastp); /* ** Save the initial data pointer in order to be able ** to redo the command. */ cp->startp = cp->phys.header.savep; /*---------------------------------------------------- ** ** fill in ccb ** **---------------------------------------------------- ** ** ** physical -> virtual backlink ** Generic SCSI command */ /* ** Startqueue */ cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa)); /* ** select */ cp->phys.select.sel_id = cmd->target; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; /* ** message */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); cp->phys.smsg.size = cpu_to_scr(msglen); flush_cache_all(); /* ** command */ cp->phys.cmd.addr = cpu_to_scr(vtophys (&cmd->cmnd[0])); cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); dma_cache_wback_inv((unsigned long)cmd->cmnd, cmd->cmd_len); /* ** status */ cp->actualquirks = tp->quirks; cp->host_status = nego ? HS_NEGOTIATE : HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->parity_status = 0; cp->xerr_status = XE_OK; cp->nego_status = nego; #if 0 cp->sync_status = tp->sval; cp->wide_status = tp->wval; #endif /*---------------------------------------------------- ** ** Critical region: start this job. ** **---------------------------------------------------- */ /* ** activate this job. */ cp->magic = CCB_MAGIC; //printk("cp == %08lx\n", cp); dma_cache_wback_inv((unsigned long)cp, sizeof(*cp)); flush_cache_all(); /* ** insert next CCBs into start queue. ** 2 max at a time is enough to flush the CCB wait queue. */ cp->auto_sense = 0; if (lp) ncr_start_next_ccb(np, lp, 2); else ncr_put_start_queue(np, cp); /* ** Command is successfully queued. */ return(DID_OK); } /*========================================================== ** ** ** Insert a CCB into the start queue and wake up the ** SCRIPTS processor. ** ** **========================================================== */ static void ncr_start_next_ccb(ncb_p np, lcb_p lp, int maxn) { XPT_QUEHEAD *qp; ccb_p cp; if (lp->held_ccb) return; while (maxn-- && lp->queuedccbs < lp->queuedepth) { qp = xpt_remque_head(&lp->wait_ccbq); if (!qp) break; ++lp->queuedccbs; cp = xpt_que_entry(qp, struct ccb, link_ccbq); xpt_insque_tail(qp, &lp->busy_ccbq); lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] = cpu_to_scr(CCB_PHYS (cp, restart)); ncr_put_start_queue(np, cp); } } static void ncr_put_start_queue(ncb_p np, ccb_p cp) { u_short qidx; /* ** insert into start queue. */ if (!np->squeueput) np->squeueput = 1; qidx = np->squeueput + 2; if (qidx >= MAX_START + MAX_START) qidx = 1; np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); MEMORY_BARRIER(); np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start)); np->squeueput = qidx; ++np->queuedccbs; cp->queued = 1; if (DEBUG_FLAGS & DEBUG_QUEUE) printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); dma_cache_wback_inv((unsigned long)np, sizeof(*np)); /* ** Script processor may be waiting for reselect. ** Wake it up. */ MEMORY_BARRIER(); OUTB (nc_istat, SIGP); } /*========================================================== ** ** ** Start reset process. ** If reset in progress do nothing. ** The interrupt handler will reinitialize the chip. ** The timeout handler will wait for settle_time before ** clearing it and so resuming command processing. ** ** **========================================================== */ static void ncr_start_reset(ncb_p np) { if (!np->settle_time) { (void) ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); } } static int ncr_reset_scsi_bus(ncb_p np, int enab_int, int settle_delay) { u_int32 term; int retv = 0; np->settle_time = ktime_get(settle_delay * HZ); if (bootverbose > 1) printk("%s: resetting, " "command processing suspended for %d seconds\n", ncr_name(np), settle_delay); OUTB (nc_istat, SRST); UDELAY (100); OUTB (nc_istat, 0); UDELAY (2000); /* The 895 needs time for the bus mode to settle */ if (enab_int) OUTW (nc_sien, RST); /* ** Enable Tolerant, reset IRQD if present and ** properly set IRQ mode, prior to resetting the bus. */ OUTB (nc_stest3, TE); OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); OUTB (nc_scntl1, CRST); UDELAY (200); if (!driver_setup.bus_check) goto out; /* ** Check for no terminators or SCSI bus shorts to ground. ** Read SCSI data bus, data parity bits and control signals. ** We are expecting RESET to be TRUE and other signals to be ** FALSE. */ term = INB(nc_sstat0); term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ if (!(np->features & FE_WIDE)) term &= 0x3ffff; if (term != (2<<7)) { printk("%s: suspicious SCSI data while resetting the BUS.\n", ncr_name(np)); printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", ncr_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (driver_setup.bus_check == 1) retv = 1; } out: OUTB (nc_scntl1, 0); return retv; } /*========================================================== ** ** ** Reset the SCSI BUS. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_reset_bus (ncb_p np, Scsi_Cmnd *cmd, int sync_reset) { /* Scsi_Device *device = cmd->device; */ ccb_p cp; int found; /* * Return immediately if reset is in progress. */ if (np->settle_time) { return SCSI_RESET_PUNT; } /* * Start the reset process. * The script processor is then assumed to be stopped. * Commands will now be queued in the waiting list until a settle * delay of 2 seconds will be completed. */ ncr_start_reset(np); /* * First, look in the wakeup list */ for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) { found = 1; break; } } /* * Then, look in the waiting list */ if (!found && retrieve_from_waiting_list(0, np, cmd)) found = 1; /* * Wake-up all awaiting commands with DID_RESET. */ reset_waiting_list(np); /* * Wake-up all pending commands with HS_RESET -> DID_RESET. */ ncr_wakeup(np, HS_RESET); /* * If the involved command was not in a driver queue, and the * scsi driver told us reset is synchronous, and the command is not * currently in the waiting list, complete it with DID_RESET status, * in order to keep it alive. */ if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { cmd->result = ScsiResult(DID_RESET, 0); ncr_queue_done_cmd(np, cmd); } return SCSI_RESET_SUCCESS; } /*========================================================== ** ** ** Abort an SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_abort_command (ncb_p np, Scsi_Cmnd *cmd) { /* Scsi_Device *device = cmd->device; */ ccb_p cp; int found; int retv; /* * First, look for the scsi command in the waiting list */ if (remove_from_waiting_list(np, cmd)) { cmd->result = ScsiResult(DID_ABORT, 0); ncr_queue_done_cmd(np, cmd); return SCSI_ABORT_SUCCESS; } /* * Then, look in the wakeup list */ for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) { found = 1; break; } } if (!found) { return SCSI_ABORT_NOT_RUNNING; } if (np->settle_time) { return SCSI_ABORT_SNOOZE; } /* ** If the CCB is active, patch schedule jumps for the ** script to abort the command. */ switch(cp->host_status) { case HS_BUSY: case HS_NEGOTIATE: printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp); cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel)); retv = SCSI_ABORT_PENDING; break; case HS_DISCONNECT: cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); retv = SCSI_ABORT_PENDING; break; default: retv = SCSI_ABORT_NOT_RUNNING; break; } /* ** If there are no requests, the script ** processor will sleep on SEL_WAIT_RESEL. ** Let's wake it up, since it may have to work. */ OUTB (nc_istat, SIGP); return retv; } /*========================================================== ** ** Linux release module stuff. ** ** Called before unloading the module ** Detach the host. ** We have to free resources and halt the NCR chip ** **========================================================== */ #ifdef MODULE static int ncr_detach(ncb_p np) { ccb_p cp; tcb_p tp; lcb_p lp; int target, lun; int i; printk("%s: releasing host resources\n", ncr_name(np)); /* ** Stop the ncr_timeout process ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. */ #ifdef DEBUG_NCR53C8XX printk("%s: stopping the timer\n", ncr_name(np)); #endif np->release_stage = 1; for (i = 50 ; i && np->release_stage != 2 ; i--) MDELAY (100); if (np->release_stage != 2) printk("%s: the timer seems to be already stopped\n", ncr_name(np)); else np->release_stage = 2; /* ** Disable chip interrupts */ #ifdef DEBUG_NCR53C8XX printk("%s: disabling chip interrupts\n", ncr_name(np)); #endif OUTW (nc_sien , 0); OUTB (nc_dien , 0); /* ** Free irq */ #ifdef DEBUG_NCR53C8XX #ifdef __sparc__ printk("%s: freeing irq %s\n", ncr_name(np), __irq_itoa(np->irq)); #else printk("%s: freeing irq %d\n", ncr_name(np), np->irq); #endif #endif free_irq(np->irq, np); /* ** Reset NCR chip ** Restore bios setting for automatic clock detection. */ printk("%s: resetting chip\n", ncr_name(np)); OUTB (nc_istat, SRST); UDELAY (100); OUTB (nc_istat, 0 ); OUTB(nc_dmode, np->sv_dmode); OUTB(nc_dcntl, np->sv_dcntl); OUTB(nc_ctest3, np->sv_ctest3); OUTB(nc_ctest4, np->sv_ctest4); OUTB(nc_ctest5, np->sv_ctest5); OUTB(nc_gpcntl, np->sv_gpcntl); OUTB(nc_stest2, np->sv_stest2); ncr_selectclock(np, np->sv_scntl3); /* ** Release Memory mapped IO region and IO mapped region */ #ifndef NCR_IOMAPPED #ifdef DEBUG_NCR53C8XX printk("%s: releasing memory mapped IO region %lx[%d]\n", ncr_name(np), (u_long) np->vaddr, 128); #endif unmap_pci_mem((vm_offset_t) np->vaddr, (u_long) 128); #endif /* !NCR_IOMAPPED */ #ifdef DEBUG_NCR53C8XX printk("%s: releasing IO region %x[%d]\n", ncr_name(np), np->port, 128); #endif release_region(np->port, 128); /* ** Free allocated ccb(s) */ while ((cp=np->ccb->link_ccb) != NULL) { np->ccb->link_ccb = cp->link_ccb; if (cp->host_status) { printk("%s: shall free an active ccb (host_status=%d)\n", ncr_name(np), cp->host_status); } #ifdef DEBUG_NCR53C8XX printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp); #endif m_free(cp, sizeof(*cp)); } /* ** Free allocated tp(s) */ for (target = 0; target < MAX_TARGET ; target++) { tp=&np->target[target]; for (lun = 0 ; lun < MAX_LUN ; lun++) { lp = tp->lp[lun]; if (lp) { #ifdef DEBUG_NCR53C8XX printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp); #endif if (lp->jump_ccb != &lp->jump_ccb_0) m_free(lp->jump_ccb, 256); m_free(lp, sizeof(*lp)); } } } printk("%s: host resources successfully released\n", ncr_name(np)); return 1; } #endif /*========================================================== ** ** ** Complete execution of a SCSI command. ** Signal completion to the generic SCSI driver. ** ** **========================================================== */ void ncr_complete (ncb_p np, ccb_p cp) { Scsi_Cmnd *cmd; tcb_p tp; lcb_p lp; /* ** Sanity check */ if (!cp || cp->magic != CCB_MAGIC || !cp->cmd) return; /* ** timestamp ** Optional, spare some CPU time */ #ifdef SCSI_NCR_PROFILE_SUPPORT ncb_profile (np, cp); #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, cp->host_status,cp->scsi_status); /* ** Get command, target and lun pointers. */ cmd = cp->cmd; cp->cmd = NULL; tp = &np->target[cmd->target]; lp = tp->lp[cmd->lun]; /* ** We donnot queue more than 1 ccb per target ** with negotiation at any time. If this ccb was ** used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = 0; /* ** If auto-sense performed, change scsi status. */ if (cp->auto_sense) { cp->scsi_status = cp->auto_sense; } /* ** If we were recovering from queue full or performing ** auto-sense, requeue skipped CCBs to the wait queue. */ if (lp && lp->held_ccb) { if (cp == lp->held_ccb) { xpt_que_splice(&lp->skip_ccbq, &lp->wait_ccbq); xpt_que_init(&lp->skip_ccbq); lp->held_ccb = 0; } } /* ** Check for parity errors. */ if (cp->parity_status > 1) { PRINT_ADDR(cmd); printk ("%d parity error(s).\n",cp->parity_status); } /* ** Check for extended errors. */ if (cp->xerr_status != XE_OK) { PRINT_ADDR(cmd); switch (cp->xerr_status) { case XE_EXTRA_DATA: printk ("extraneous data discarded.\n"); break; case XE_BAD_PHASE: printk ("illegal scsi phase (4/5).\n"); break; default: printk ("extended error %d.\n", cp->xerr_status); break; } if (cp->host_status==HS_COMPLETE) cp->host_status = HS_FAIL; } /* ** Print out any error for debugging purpose. */ if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) { PRINT_ADDR(cmd); printk ("ERROR: cmd=%x host_status=%x scsi_status=%x\n", cmd->cmnd[0], cp->host_status, cp->scsi_status); } } /* ** Check the status. */ if ( (cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_GOOD || cp->scsi_status == S_COND_MET)) { /* ** All went well (GOOD status). ** CONDITION MET status is returned on ** `Pre-Fetch' or `Search data' success. */ cmd->result = ScsiResult(DID_OK, cp->scsi_status); /* ** @RESID@ ** Could dig out the correct value for resid, ** but it would be quite complicated. */ /* if (cp->phys.header.lastp != cp->phys.header.goalp) */ /* ** Allocate the lcb if not yet. */ if (!lp) ncr_alloc_lcb (np, cmd->target, cmd->lun); /* ** On standard INQUIRY response (EVPD and CmDt ** not set), setup logical unit according to ** announced capabilities (we need the 1rst 7 bytes). */ if (cmd->cmnd[0] == 0x12 && !(cmd->cmnd[1] & 0x3) && cmd->cmnd[4] >= 7 && !cmd->use_sg) { ncr_setup_lcb (np, cmd->target, cmd->lun, (char *) cmd->request_buffer); } tp->bytes += cp->data_len; tp->transfers ++; /* ** If tags was reduced due to queue full, ** increase tags if 1000 good status received. */ if (lp && lp->usetags && lp->numtags < lp->maxtags) { ++lp->num_good; if (lp->num_good >= 1000) { lp->num_good = 0; ++lp->numtags; ncr_setup_tags (np, cmd->target, cmd->lun); } } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_CHECK_COND)) { /* ** Check condition code */ cmd->result = ScsiResult(DID_OK, S_CHECK_COND); if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { u_char * p = (u_char*) & cmd->sense_buffer; int i; PRINT_ADDR(cmd); printk ("sense data:"); for (i=0; i<14; i++) printk (" %x", *p++); printk (".\n"); } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_BUSY || cp->scsi_status == S_QUEUE_FULL)) { /* ** Target is busy. */ cmd->result = ScsiResult(DID_OK, cp->scsi_status); } else if ((cp->host_status == HS_SEL_TIMEOUT) || (cp->host_status == HS_TIMEOUT)) { /* ** No response */ cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status); } else if (cp->host_status == HS_RESET) { /* ** SCSI bus reset */ cmd->result = ScsiResult(DID_RESET, cp->scsi_status); } else if (cp->host_status == HS_ABORTED) { /* ** Transfer aborted */ cmd->result = ScsiResult(DID_ABORT, cp->scsi_status); } else { /* ** Other protocol messes */ PRINT_ADDR(cmd); printk ("COMMAND FAILED (%x %x) @%p.\n", cp->host_status, cp->scsi_status, cp); cmd->result = ScsiResult(DID_ERROR, cp->scsi_status); } /* ** trace output */ if (tp->usrflag & UF_TRACE) { u_char * p; int i; PRINT_ADDR(cmd); printk (" CMD:"); p = (u_char*) &cmd->cmnd[0]; for (i=0; icmd_len; i++) printk (" %x", *p++); if (cp->host_status==HS_COMPLETE) { switch (cp->scsi_status) { case S_GOOD: printk (" GOOD"); break; case S_CHECK_COND: printk (" SENSE:"); p = (u_char*) &cmd->sense_buffer; for (i=0; i<14; i++) printk (" %x", *p++); break; default: printk (" STAT: %x\n", cp->scsi_status); break; } } else printk (" HOSTERROR: %x", cp->host_status); printk ("\n"); } /* ** Free this ccb */ ncr_free_ccb (np, cp); /* ** requeue awaiting scsi commands for this lun. */ if (lp && lp->queuedccbs < lp->queuedepth && !xpt_que_empty(&lp->wait_ccbq)) ncr_start_next_ccb(np, lp, 2); /* ** requeue awaiting scsi commands for this controller. */ if (np->waiting_list) requeue_waiting_list(np); /* ** signal completion to generic driver. */ ncr_queue_done_cmd(np, cmd); } /*========================================================== ** ** ** Signal all (or one) control block done. ** ** **========================================================== */ /* ** This CCB has been skipped by the NCR. ** Queue it in the correponding unit queue. */ static void ncr_ccb_skipped(ncb_p np, ccb_p cp) { tcb_p tp = &np->target[cp->target]; lcb_p lp = tp->lp[cp->lun]; if (lp && cp != np->ccb) { cp->host_status &= ~HS_SKIPMASK; cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); xpt_remque(&cp->link_ccbq); xpt_insque_tail(&cp->link_ccbq, &lp->skip_ccbq); if (cp->queued) { --lp->queuedccbs; } } if (cp->queued) { --np->queuedccbs; cp->queued = 0; } } /* ** The NCR has completed CCBs. ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs */ void ncr_wakeup_done (ncb_p np) { ccb_p cp; #ifdef SCSI_NCR_CCB_DONE_SUPPORT int i, j; i = np->ccb_done_ic; while (1) { j = i+1; if (j >= MAX_DONE) j = 0; cp = np->ccb_done[j]; if (!CCB_DONE_VALID(cp)) break; np->ccb_done[j] = (ccb_p) CCB_DONE_EMPTY; np->scripth->done_queue[5*j + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); MEMORY_BARRIER(); np->scripth->done_queue[5*i + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); if (cp->host_status & HS_DONEMASK) ncr_complete (np, cp); else if (cp->host_status & HS_SKIPMASK) ncr_ccb_skipped (np, cp); i = j; } np->ccb_done_ic = i; #else cp = np->ccb; while (cp) { if (cp->host_status & HS_DONEMASK) ncr_complete (np, cp); else if (cp->host_status & HS_SKIPMASK) ncr_ccb_skipped (np, cp); cp = cp->link_ccb; } #endif } /* ** Complete all active CCBs. */ void ncr_wakeup (ncb_p np, u_long code) { ccb_p cp = np->ccb; while (cp) { if (cp->host_status != HS_IDLE) { cp->host_status = code; ncr_complete (np, cp); } cp = cp->link_ccb; } } /*========================================================== ** ** ** Start NCR chip. ** ** **========================================================== */ void ncr_init (ncb_p np, int reset, char * msg, u_long code) { int i; /* ** Reset chip if asked, otherwise just clear fifos. */ if (reset) { OUTB (nc_istat, SRST); UDELAY (100); } else { OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); } /* ** Message. */ if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); /* ** Clear Start Queue */ np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ for (i = 1; i < MAX_START + MAX_START; i += 2) np->scripth0->tryloop[i] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); /* ** Start at first entry. */ np->squeueput = 0; np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop)); /* ** Clear Done Queue */ for (i = 0; i < MAX_DONE; i++) { np->ccb_done[i] = (ccb_p) CCB_DONE_EMPTY; np->scripth0->done_queue[5*i + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); } /* ** Start at first entry. */ np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue)); np->ccb_done_ic = MAX_DONE-1; np->scripth0->done_queue[5*(MAX_DONE-1) + 4] = cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); /* ** Wakeup all pending jobs. */ ncr_wakeup (np, code); /* ** Init chip. */ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ UDELAY (2000); /* The 895 needs time for the bus mode to settle */ OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ OUTB (nc_stest3, TE); /* TolerANT enable */ OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */ /* ** Disable disconnects. */ np->disc = 0; /* ** Enable GPIO0 pin for writing if LED support. */ if (np->features & FE_LED0) { OUTOFFB (nc_gpcntl, 0x01); } /* ** enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); /* ** For 895/6 enable SBMC interrupt and save current SCSI bus mode. */ if (np->features & FE_ULTRA2) { OUTONW (nc_sien, SBMC); np->scsi_mode = INB (nc_stest4) & SMODE; } /* ** DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. ** Disable overlapped arbitration. ** All 896 chips are also affected by this errata. */ if (np->device_id == PCI_DEVICE_ID_NCR_53C875) OUTB (nc_ctest0, (1<<5)); else if (np->device_id == PCI_DEVICE_ID_NCR_53C896) OUTB (nc_ccntl0, DPR); /* ** Fill in target structure. ** Reinitialize usrsync. ** Reinitialize usrwide. ** Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->sval = 0; tp->wval = np->rv_scntl3; if (tp->usrsync != 255) { if (tp->usrsync <= np->maxsync) { if (tp->usrsync < np->minsync) { tp->usrsync = np->minsync; } } else tp->usrsync = 255; }; if (tp->usrwide > np->maxwide) tp->usrwide = np->maxwide; dma_cache_wback_inv((unsigned long) tp, sizeof(*tp)); ncr_negotiate (np, tp); } dma_cache_wback_inv((unsigned long) np, sizeof(*np)); /* ** Start script processor. */ MEMORY_BARRIER(); if (np->paddr2) { if (bootverbose) printk ("%s: Downloading SCSI SCRIPTS.\n", ncr_name(np)); OUTL (nc_scratcha, vtophys(np->script0)); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, start_ram)); } else OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); } /*========================================================== ** ** Prepare the negotiation values for wide and ** synchronous transfers. ** **========================================================== */ static void ncr_negotiate (struct ncb* np, struct tcb* tp) { /* ** minsync unit is 4ns ! */ u_long minsync = tp->usrsync; /* ** SCSI bus mode limit */ if (np->scsi_mode && np->scsi_mode == SMODE_SE) { if (minsync < 12) minsync = 12; } /* ** our limit .. */ if (minsync < np->minsync) minsync = np->minsync; /* ** divider limit */ if (minsync > np->maxsync) minsync = 255; tp->minsync = minsync; tp->maxoffs = (minsync<255 ? np->maxoffs : 0); /* ** period=0: has to negotiate sync transfer */ tp->period=0; /* ** widedone=0: has to negotiate wide transfer */ tp->widedone=0; } /*========================================================== ** ** Get clock factor and sync divisor for a given ** synchronous factor period. ** Returns the clock factor (in sxfer) and scntl3 ** synchronous divisor field. ** **========================================================== */ static void ncr_getsync(ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p) { u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u_long fak; /* Sync factor in sxfer */ u_long per; /* Period in tenths of ns */ u_long kpc; /* (per * clk) */ /* ** Compute the synchronous period in tenths of nano-seconds */ if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; /* ** Look for the greatest clock divisor that allows an ** input speed faster than the period. */ kpc = per * clk; while (--div >= 0) if (kpc >= (div_10M[div] << 2)) break; /* ** Calculate the lowest clock factor that allows an output ** speed not faster than the period. */ fak = (kpc - 1) / div_10M[div] + 1; #if 0 /* This optimization does not seem very usefull */ per = (fak * div_10M[div]) / clk; /* ** Why not to try the immediate lower divisor and to choose ** the one that allows the fastest output speed ? ** We dont want input speed too much greater than output speed. */ if (div >= 1 && fak < 8) { u_long fak2, per2; fak2 = (kpc - 1) / div_10M[div-1] + 1; per2 = (fak2 * div_10M[div-1]) / clk; if (per2 < per && fak2 <= 8) { fak = fak2; per = per2; --div; } } #endif if (fak < 4) fak = 4; /* Should never happen, too bad ... */ /* ** Compute and return sync parameters for the ncr */ *fakp = fak - 4; *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); } /*========================================================== ** ** Set actual values, sync status and patch all ccbs of ** a target according to new sync/wide agreement. ** **========================================================== */ static void ncr_set_sync_wide_status (ncb_p np, u_char target) { ccb_p cp; tcb_p tp = &np->target[target]; /* ** set actual value and sync_status */ OUTB (nc_sxfer, tp->sval); np->sync_st = tp->sval; OUTB (nc_scntl3, tp->wval); np->wide_st = tp->wval; /* ** patch ALL ccbs of this target. */ for (cp = np->ccb; cp; cp = cp->link_ccb) { if (!cp->cmd) continue; if (cp->cmd->target != target) continue; #if 0 cp->sync_status = tp->sval; cp->wide_status = tp->wval; #endif cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; }; } /*========================================================== ** ** Switch sync mode for current job and it's target ** **========================================================== */ static void ncr_setsync (ncb_p np, ccb_p cp, u_char scntl3, u_char sxfer) { Scsi_Cmnd *cmd; tcb_p tp; u_char target = INB (nc_sdid) & 0x0f; u_char idiv; assert (cp && cp->cmd); if (!cp) return; cmd = cp->cmd; if (!cmd) return; assert (target == (cmd->target & 0xf)); tp = &np->target[target]; if (!scntl3 || !(sxfer & 0x1f)) scntl3 = np->rv_scntl3; scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); /* ** Deduce the value of controller sync period from scntl3. ** period is in tenths of nano-seconds. */ idiv = ((scntl3 >> 4) & 0x7); if ((sxfer & 0x1f) && idiv) tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; else tp->period = 0xffff; /* ** Stop there if sync parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ PRINT_TARGET(np, target); if (sxfer & 0x01f) { unsigned f10 = 100000 << (tp->widedone ? tp->widedone -1 : 0); unsigned mb10 = (f10 + tp->period/2) / tp->period; char *scsi; /* ** Disable extended Sreq/Sack filtering */ if (tp->period <= 2000) OUTOFFB (nc_stest2, EXT); /* ** Bells and whistles ;-) */ if (tp->period < 500) scsi = "FAST-40"; else if (tp->period < 1000) scsi = "FAST-20"; else if (tp->period < 2000) scsi = "FAST-10"; else scsi = "FAST-5"; printk ("%s %sSCSI %d.%d MB/s (%d ns, offset %d)\n", scsi, tp->widedone > 1 ? "WIDE " : "", mb10 / 10, mb10 % 10, tp->period / 10, sxfer & 0x1f); } else printk ("%sasynchronous.\n", tp->widedone > 1 ? "wide " : ""); /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch wide mode for current job and it's target ** SCSI specs say: a SCSI device that accepts a WDTR ** message shall reset the synchronous agreement to ** asynchronous mode. ** **========================================================== */ static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack) { Scsi_Cmnd *cmd; u_short target = INB (nc_sdid) & 0x0f; tcb_p tp; u_char scntl3; u_char sxfer; assert (cp && cp->cmd); if (!cp) return; cmd = cp->cmd; if (!cmd) return; assert (target == (cmd->target & 0xf)); tp = &np->target[target]; tp->widedone = wide+1; scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); sxfer = ack ? 0 : tp->sval; /* ** Stop there if sync/wide parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ if (bootverbose >= 2) { PRINT_TARGET(np, target); if (scntl3 & EWS) printk ("WIDE SCSI (16 bit) enabled.\n"); else printk ("WIDE SCSI disabled.\n"); } /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch tagged mode for a target. ** **========================================================== */ static void ncr_setup_tags (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = tp->lp[ln]; u_char reqtags, maxdepth; /* ** Just in case ... */ if ((!tp) || (!lp)) return; /* ** If SCSI device queue depth is not yet set, leave here. */ if (!lp->scdev_depth) return; /* ** Donnot allow more tags than the SCSI driver can queue ** for this device. ** Donnot allow more tags than we can handle. */ maxdepth = lp->scdev_depth; if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; if (lp->numtags > maxdepth) lp->numtags = maxdepth; /* ** only devices conformant to ANSI Version >= 2 ** only devices capable of tagged commands ** only if enabled by user .. */ if ((lp->inq_byte7 & INQ7_QUEUE) && lp->numtags > 1) { reqtags = lp->numtags; } else { reqtags = 1; }; /* ** Update max number of tags */ lp->numtags = reqtags; if (lp->numtags > lp->maxtags) lp->maxtags = lp->numtags; /* ** If we want to switch tag mode, we must wait ** for no CCB to be active. */ if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ if (lp->queuedepth == reqtags) /* Already announced */ return; lp->queuedepth = reqtags; } else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ lp->queuedepth = reqtags; return; } else { /* Want to switch tag mode */ if (lp->busyccbs) /* If not yet safe, return */ return; lp->queuedepth = reqtags; lp->usetags = reqtags > 1 ? 1 : 0; } /* ** Patch the lun mini-script, according to tag mode. */ lp->jump_tag.l_paddr = lp->usetags? cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); flush_cache_all(); /* ** Announce change to user. */ if (bootverbose) { PRINT_LUN(np, tn, ln); if (lp->usetags) { printk("tagged command queue depth set to %d\n", reqtags); } else { printk("tagged command queueing disabled\n"); } } } /*---------------------------------------------------- ** ** handle user commands ** **---------------------------------------------------- */ #ifdef SCSI_NCR_USER_COMMAND_SUPPORT static void ncr_usercmd (ncb_p np) { u_char t; tcb_p tp; switch (np->user.cmd) { case 0: return; case UC_SETSYNC: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; tp->usrsync = np->user.data; ncr_negotiate (np, tp); }; break; case UC_SETTAGS: for (t=0; tuser.target>>t)&1)) continue; np->target[t].usrtags = np->user.data; for (ln = 0; ln < MAX_LUN; ln++) { lcb_p lp = np->target[t].lp[ln]; if (!lp) continue; lp->maxtags = lp->numtags = np->user.data; ncr_setup_tags (np, t, ln); } }; break; case UC_SETDEBUG: #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT ncr_debug = np->user.data; #endif break; case UC_SETORDER: np->order = np->user.data; break; case UC_SETVERBOSE: np->verbose = np->user.data; break; case UC_SETWIDE: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; size = np->user.data; if (size > np->maxwide) size=np->maxwide; tp->usrwide = size; ncr_negotiate (np, tp); }; break; case UC_SETFLAG: for (t=0; tuser.target>>t)&1)) continue; tp = &np->target[t]; tp->usrflag = np->user.data; }; break; #ifdef SCSI_NCR_PROFILE_SUPPORT case UC_CLEARPROF: bzero(&np->profile, sizeof(np->profile)); break; #endif } np->user.cmd=0; } #endif /*========================================================== ** ** ** ncr timeout handler. ** ** **========================================================== ** ** Misused to keep the driver running when ** interrupts are not configured correctly. ** **---------------------------------------------------------- */ static void ncr_timeout (ncb_p np) { u_long thistime = ktime_get(0); /* ** If release process in progress, let's go ** Set the release stage from 1 to 2 to synchronize ** with the release process. */ if (np->release_stage) { if (np->release_stage == 1) np->release_stage = 2; return; } np->timer.expires = ktime_get(SCSI_NCR_TIMER_INTERVAL); add_timer(&np->timer); /* ** If we are resetting the ncr, wait for settle_time before ** clearing it. Then command processing will be resumed. */ if (np->settle_time) { if (np->settle_time <= thistime) { if (bootverbose > 1) printk("%s: command processing resumed\n", ncr_name(np)); np->settle_time = 0; np->disc = 1; requeue_waiting_list(np); } return; } /* ** Since the generic scsi driver only allows us 0.5 second ** to perform abort of a command, we must look at ccbs about ** every 0.25 second. */ if (np->lasttime + 4*HZ < thistime) { /* ** block ncr interrupts */ np->lasttime = thistime; #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Reset profile data to avoid ugly overflow ** (Limited to 1024 GB for 32 bit architecture) */ if (np->profile.num_kbytes > (~0UL >> 2)) bzero(&np->profile, sizeof(np->profile)); #endif } #ifdef SCSI_NCR_BROKEN_INTR if (INB(nc_istat) & (INTF|SIP|DIP)) { /* ** Process pending interrupts. */ if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); ncr_exception (np); if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); } #endif /* SCSI_NCR_BROKEN_INTR */ } /*========================================================== ** ** log message for real hard errors ** ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." ** ** exception register: ** ds: dstat ** si: sist ** ** SCSI bus lines: ** so: control lines as driver by NCR. ** si: control lines as seen by NCR. ** sd: scsi data lines as seen by NCR. ** ** wide/fastmode: ** sxfer: (see the manual) ** scntl3: (see the manual) ** ** current script command: ** dsp: script address (relative to start of script). ** dbc: first word of script command. ** ** First 16 register of the chip: ** r0..rf ** **========================================================== */ static void ncr_log_hard_error(ncb_p np, u_short sist, u_char dstat) { u_int32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { script_ofs = dsp - np->p_script; script_size = sizeof(struct script); script_base = (u_char *) np->script0; script_name = "script"; } else if (np->p_scripth < dsp && dsp <= np->p_scripth + sizeof(struct scripth)) { script_ofs = dsp - np->p_scripth; script_size = sizeof(struct scripth); script_base = (u_char *) np->scripth0; script_name = "scripth"; } else { script_ofs = dsp; script_size = 0; script_base = 0; script_name = "mem"; } printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printk ("%s: script cmd = %08x\n", ncr_name(np), scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); } printk ("%s: regdump:", ncr_name(np)); for (i=0; i<16;i++) printk (" %02x", (unsigned)INB_OFF(i)); printk (".\n"); } /*============================================================ ** ** ncr chip exception handler. ** **============================================================ ** ** In normal cases, interrupt conditions occur one at a ** time. The ncr is able to stack in some extra registers ** other interrupts that will occurs after the first one. ** But severall interrupts may occur at the same time. ** ** We probably should only try to deal with the normal ** case, but it seems that multiple interrupts occur in ** some cases that are not abnormal at all. ** ** The most frequent interrupt condition is Phase Mismatch. ** We should want to service this interrupt quickly. ** A SCSI parity error may be delivered at the same time. ** The SIR interrupt is not very frequent in this driver, ** since the INTFLY is likely used for command completion ** signaling. ** The Selection Timeout interrupt may be triggered with ** IID and/or UDC. ** The SBMC interrupt (SCSI Bus Mode Change) may probably ** occur at any time. ** ** This handler try to deal as cleverly as possible with all ** the above. ** **============================================================ */ void ncr_exception (ncb_p np) { u_char istat, dstat; u_short sist; int i; flush_cache_all(); /* ** interrupt on the fly ? ** Since the global header may be copied back to a CCB ** using a posted PCI memory write, the last operation on ** the istat register is a READ in order to flush posted ** PCI write commands. */ istat = INB (nc_istat); if (istat & INTF) { OUTB (nc_istat, (istat & SIGP) | INTF); istat = INB (nc_istat); if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); #ifdef SCSI_NCR_PROFILE_SUPPORT np->profile.num_fly++; #endif ncr_wakeup_done (np); }; if (!(istat & (SIP|DIP))) return; #ifdef SCSI_NCR_PROFILE_SUPPORT np->profile.num_int++; #endif if (istat & CABRT) OUTB (nc_istat, CABRT); /* ** Steinbach's Guideline for Systems Programming: ** Never test for an error condition you don't know how to handle. */ sist = (istat & SIP) ? INW (nc_sist) : 0; dstat = (istat & DIP) ? INB (nc_dstat) : 0; if (DEBUG_FLAGS & DEBUG_TINY) printk ("<%d|%x:%x|%x:%x>", (int)INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); /*======================================================== ** First, interrupts we want to service cleanly. ** ** Phase mismatch is the most frequent interrupt, and ** so we have to service it as quickly and as cleanly ** as possible. ** Programmed interrupts are rarely used in this driver, ** but we must handle them cleanly anyway. ** We try to deal with PAR and SBMC combined with ** some other interrupt(s). **========================================================= */ if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if ((sist & SBMC) && ncr_int_sbmc (np)) return; if ((sist & PAR) && ncr_int_par (np)) return; if (sist & MA) { ncr_int_ma (np); return; } if (dstat & SIR) { ncr_int_sir (np); return; } /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2. */ if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) { printk( "%s: unknown interrupt(s) ignored, " "ISTAT=%x DSTAT=%x SIST=%x\n", ncr_name(np), istat, dstat, sist); return; } OUTONB (nc_dcntl, (STD|NOCOM)); return; }; /*======================================================== ** Now, interrupts that need some fixing up. ** Order and multiple interrupts is so less important. ** ** If SRST has been asserted, we just reset the chip. ** ** Selection is intirely handled by the chip. If the ** chip says STO, we trust it. Seems some other ** interrupts may occur at the same time (UDC, IID), so ** we ignore them. In any case we do enough fix-up ** in the service routine. ** We just exclude some fatal dma errors. **========================================================= */ if (sist & RST) { ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); return; }; if ((sist & STO) && !(dstat & (MDPE|BF|ABRT))) { /* ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1. */ OUTONB (nc_ctest3, CLF); ncr_int_sto (np); return; }; /*========================================================= ** Now, interrupts we are not able to recover cleanly. ** (At least for the moment). ** ** Do the register dump. ** Log message for real hard errors. ** Clear all fifos. ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the ** BUS and the chip. ** We are more soft for UDC. **========================================================= */ if (ktime_exp(np->regtime)) { np->regtime = ktime_get(10*HZ); for (i = 0; iregdump); i++) ((char*)&np->regdump)[i] = INB_OFF(i); np->regdump.nc_dstat = dstat; np->regdump.nc_sist = sist; }; ncr_log_hard_error(np, sist, dstat); printk ("%s: have to clear fifos.\n", ncr_name (np)); OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); if ((sist & (SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { ncr_start_reset(np); return; }; if (sist & HTH) { printk ("%s: handshake timeout\n", ncr_name(np)); ncr_start_reset(np); return; }; if (sist & UDC) { printk ("%s: unexpected disconnect\n", ncr_name(np)); OUTB (HS_PRT, HS_UNEXPECTED); //flush_cache_all(); // ??? OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, cleanup)); return; }; /*========================================================= ** We just miss the cause of the interrupt. :( ** Print a message. The timeout will do the real work. **========================================================= */ printk ("%s: unknown interrupt\n", ncr_name(np)); } /*========================================================== ** ** ncr chip exception handler for selection timeout ** **========================================================== ** ** There seems to be a bug in the 53c810. ** Although a STO-Interrupt is pending, ** it continues executing script commands. ** But it will fail and interrupt (IID) on ** the next instruction where it's looking ** for a valid phase. ** **---------------------------------------------------------- */ void ncr_int_sto (ncb_p np) { u_long dsa; ccb_p cp; if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); /* ** look for ccb and set the status. */ dsa = INL (nc_dsa); cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; if (cp) { cp-> host_status = HS_SEL_TIMEOUT; ncr_complete (np, cp); }; /* ** repair start queue and jump to start point. */ flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, sto_restart)); return; } /*========================================================== ** ** ncr chip exception handler for SCSI bus mode change ** **========================================================== ** ** spi2-r12 11.2.3 says a transceiver mode change must ** generate a reset event and a device that detects a reset ** event shall initiate a hard reset. It says also that a ** device that detects a mode change shall set data transfer ** mode to eight bit asynchronous, etc... ** So, just resetting should be enough. ** ** **---------------------------------------------------------- */ static int ncr_int_sbmc (ncb_p np) { u_char scsi_mode = INB (nc_stest4) & SMODE; if (scsi_mode != np->scsi_mode) { printk("%s: SCSI bus mode change from %x to %x.\n", ncr_name(np), np->scsi_mode, scsi_mode); np->scsi_mode = scsi_mode; /* ** Suspend command processing for 1 second and ** reinitialize all except the chip. */ np->settle_time = ktime_get(1*HZ); ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); return 1; } return 0; } /*========================================================== ** ** ncr chip exception handler for SCSI parity error. ** **========================================================== ** ** **---------------------------------------------------------- */ static int ncr_int_par (ncb_p np) { u_char hsts = INB (HS_PRT); u_int32 dbc = INL (nc_dbc); u_char sstat1 = INB (nc_sstat1); int phase = -1; int msg = -1; u_int32 jmp; printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n", ncr_name(np), hsts, dbc, sstat1); /* * Ignore the interrupt if the NCR is not connected * to the SCSI bus, since the right work should have * been done on unexpected disconnection handling. */ if (!(INB (nc_scntl1) & ISCON)) return 0; /* * If the nexus is not clearly identified, reset the bus. * We will try to do better later. */ if (hsts & HS_INVALMASK) goto reset_all; /* * If the SCSI parity error occurs in MSG IN phase, prepare a * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED * ERROR message and let the device decide to retry the command * or to terminate with check condition. If we were in MSG IN * phase waiting for the response of a negotiation, we will * get SIR_NEGO_FAILED at dispatch. */ if (!(dbc & 0xc0000000)) phase = (dbc >> 24) & 7; if (phase == 7) msg = M_PARITY; else msg = M_ID_ERROR; /* * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a * script that will ignore all data in bytes until phase * change, since we are not sure the chip will wait the phase * change prior to delivering the interrupt. */ if (phase == 1) jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in); else jmp = NCB_SCRIPTH_PHYS (np, par_err_other); OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ np->msgout[0] = msg; OUTL (nc_dsp, jmp); return 1; reset_all: ncr_start_reset(np); return 1; } /*========================================================== ** ** ** ncr chip exception handler for phase errors. ** ** **========================================================== ** ** We have to construct a new transfer descriptor, ** to transfer the rest of the current block. ** **---------------------------------------------------------- */ static void ncr_int_ma (ncb_p np) { u_int32 dbc; u_int32 rest; u_int32 dsp; u_int32 dsa; u_int32 nxtdsp; u_int32 *vdsp; u_int32 oadr, olen; u_int32 *tblp; ncrcmd *newcmd; u_char cmd, sbcl; ccb_p cp; dsp = INL (nc_dsp); dbc = INL (nc_dbc); sbcl = INB (nc_sbcl); cmd = dbc >> 24; rest = dbc & 0xffffff; /* ** Take into account dma fifo and various buffers and latches, ** only if the interrupted phase is an OUTPUT phase. */ if ((cmd & 1) == 0) { u_char ctest5, ss0, ss2; u_short delta; ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; if (ctest5 & DFS) delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; else delta=(INB (nc_dfifo) - rest) & 0x7f; /* ** The data in the dma fifo has not been transfered to ** the target -> add the amount to the rest ** and clear the data. ** Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB (nc_sstat0); if (ss0 & OLF) rest++; if (ss0 & ORF) rest++; if (INB(nc_scntl3) & EWS) { ss2 = INB (nc_sstat2); if (ss2 & OLF1) rest++; if (ss2 & ORF1) rest++; }; if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7, (unsigned) rest, (unsigned) delta, ss0); } else { if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest); } /* ** Clear fifos. */ OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ /* ** locate matching cp. ** if the interrupted phase is DATA IN or DATA OUT, ** trust the global header. */ dsa = INL (nc_dsa); if (!(cmd & 6)) { cp = np->header.cp; if (CCB_PHYS(cp, phys) != dsa) cp = 0; } else { cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; } /* ** try to find the interrupted script command, ** and the address at which to continue. */ vdsp = 0; nxtdsp = 0; if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { vdsp = (u_int32 *)((char*)np->script0 + (dsp-np->p_script-8)); nxtdsp = dsp; } else if (dsp > np->p_scripth && dsp <= np->p_scripth + sizeof(struct scripth)) { vdsp = (u_int32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); nxtdsp = dsp; } else if (cp) { if (dsp == vtophys (&cp->patch[2])) { vdsp = &cp->patch[0]; nxtdsp = scr_to_cpu(vdsp[3]); } else if (dsp == vtophys (&cp->patch[6])) { vdsp = &cp->patch[4]; nxtdsp = scr_to_cpu(vdsp[3]); } } /* ** log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, np->header.cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); }; /* ** cp=0 means that the DSA does not point to a valid control ** block. This should not happen since we donnot use multi-byte ** move while we are being reselected ot after command complete. ** We are not able to recover from such a phase error. */ if (!cp) { printk ("%s: SCSI phase error fixup: " "CCB already dequeued (0x%08lx)\n", ncr_name (np), (u_long) np->header.cp); goto reset_all; } /* ** get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u_int32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u_int32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; }; if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); }; /* ** check cmd against assumed interrupted script command. */ if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { PRINT_ADDR(cp->cmd); printk ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); goto reset_all; } /* ** cp != np->header.cp means that the header of the CCB ** currently being processed has not yet been copied to ** the global header area. That may happen if the device did ** not accept all our messages after having been selected. */ if (cp != np->header.cp) { printk ("%s: SCSI phase error fixup: " "CCB address mismatch (0x%08lx != 0x%08lx)\n", ncr_name (np), (u_long) cp, (u_long) np->header.cp); } /* ** if old phase not dataphase, leave here. */ if (cmd & 0x06) { PRINT_ADDR(cp->cmd); printk ("phase change %x-%x %d@%08x resid=%d.\n", cmd&7, sbcl&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; }; /* ** choose the correct patch area. ** if savep points to one, choose the other. */ newcmd = cp->patch; if (cp->phys.header.savep == cpu_to_scr(vtophys (newcmd))) newcmd+=4; /* ** fillin the commands */ newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest); newcmd[1] = cpu_to_scr(oadr + olen - rest); newcmd[2] = cpu_to_scr(SCR_JUMP); newcmd[3] = cpu_to_scr(nxtdsp); if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp->cmd); printk ("newcmd[%d] %x %x %x %x.\n", (int) (newcmd - cp->patch), (unsigned)scr_to_cpu(newcmd[0]), (unsigned)scr_to_cpu(newcmd[1]), (unsigned)scr_to_cpu(newcmd[2]), (unsigned)scr_to_cpu(newcmd[3])); } /* ** fake the return address (to the patch). ** and restart script processor at dispatcher. */ #ifdef SCSI_NCR_PROFILE_SUPPORT np->profile.num_break++; #endif OUTL (nc_temp, vtophys (newcmd)); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, dispatch)); return; /* ** Unexpected phase changes that occurs when the current phase ** is not a DATA IN or DATA OUT phase are due to error conditions. ** Such event may only happen when the SCRIPTS is using a ** multibyte SCSI MOVE. ** ** Phase change Some possible cause ** ** COMMAND --> MSG IN SCSI parity error detected by target. ** COMMAND --> STATUS Bad command or refused by target. ** MSG OUT --> MSG IN Message rejected by target. ** MSG OUT --> COMMAND Bogus target that discards extended ** negotiation messages. ** ** The code below does not care of the new phase and so ** trusts the target. Why to annoy it ? ** If the interrupted phase is COMMAND phase, we restart at ** dispatcher. ** If a target does not get all the messages after selection, ** the code assumes blindly that the target discards extended ** messages and clears the negotiation status. ** If the target does not want all our response to negotiation, ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids ** bloat for such a should_not_happen situation). ** In all other situation, we reset the BUS. ** Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #endif case 6: /* MSG OUT phase */ np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8); if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { cp->host_status = HS_BUSY; nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on); } else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = NCB_SCRIPT_PHYS (np, clrack); break; #endif } if (nxtdsp) { OUTL (nc_dsp, nxtdsp); return; } reset_all: ncr_start_reset(np); } static void ncr_sir_to_redo(ncb_p np, int num, ccb_p cp) { Scsi_Cmnd *cmd = cp->cmd; tcb_p tp = &np->target[cmd->target]; lcb_p lp = tp->lp[cmd->lun]; XPT_QUEHEAD *qp; ccb_p cp2; int disc_cnt = 0; int busy_cnt = 0; u_int32 startp; u_char s_status = INB (SS_PRT); /* ** Let the SCRIPTS processor skip all not yet started CCBs, ** and count disconnected CCBs. Since the busy queue is in ** the same order as the chip start queue, disconnected CCBs ** are before cp and busy ones after. */ if (lp) { qp = lp->busy_ccbq.blink; while (qp != &lp->busy_ccbq) { cp2 = xpt_que_entry(qp, struct ccb, link_ccbq); qp = qp->blink; ++busy_cnt; if (cp2 == cp) break; cp2->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip)); } lp->held_ccb = cp; /* Requeue when this one completes */ disc_cnt = lp->queuedccbs - busy_cnt; } switch(s_status) { default: /* Just for safety, should never happen */ case S_QUEUE_FULL: /* ** Decrease number of tags to the number of ** disconnected commands. */ if (!lp) goto out; if (bootverbose >= 1) { PRINT_ADDR(cmd); printk ("QUEUE FULL! %d busy, %d disconnected CCBs\n", busy_cnt, disc_cnt); } if (disc_cnt < lp->numtags) { lp->numtags = disc_cnt > 2 ? disc_cnt : 2; lp->num_good = 0; ncr_setup_tags (np, cmd->target, cmd->lun); } /* ** Requeue the command to the start queue. ** If any disconnected commands, ** Clear SIGP. ** Jump to reselect. */ cp->phys.header.savep = cp->startp; cp->host_status = HS_BUSY; cp->scsi_status = S_ILLEGAL; ncr_put_start_queue(np, cp); if (disc_cnt) INB (nc_ctest2); /* Clear SIGP */ OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, reselect)); return; case S_TERMINATED: case S_CHECK_COND: /* ** If we were requesting sense, give up. */ if (cp->auto_sense) goto out; /* ** Device returned CHECK CONDITION status. ** Prepare all needed data strutures for getting ** sense data. ** ** identify message */ cp->scsi_smsg2[0] = M_IDENTIFY | cmd->lun; cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); cp->phys.smsg.size = cpu_to_scr(1); /* ** sense command */ cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); cp->phys.cmd.size = cpu_to_scr(6); /* ** patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = cmd->lun << 5; cp->sensecmd[4] = sizeof(cmd->sense_buffer); dma_cache_wback_inv((unsigned long)cmd->sense_buffer, sizeof(cmd->sense_buffer)); /* ** sense data */ cp->phys.sense.addr = cpu_to_scr(vtophys (&cmd->sense_buffer[0])); cp->phys.sense.size = cpu_to_scr(sizeof(cmd->sense_buffer)); dma_cache_wback_inv((unsigned long)cmd->sense_buffer, sizeof(cmd->sense_buffer)); /* ** requeue the command. */ startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in)); cp->phys.header.savep = startp; cp->phys.header.goalp = startp + 24; cp->phys.header.lastp = startp; cp->phys.header.wgoalp = startp + 24; cp->phys.header.wlastp = startp; cp->host_status = HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->auto_sense = s_status; cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); /* ** Select without ATN for quirky devices. */ if (tp->quirks & QUIRK_NOMSG) cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn)); ncr_put_start_queue(np, cp); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); return; } out: flush_cache_all(); // ??? //dma_cache_wback_inv((unsigned long)cmd->cmnd, cmd->cmd_len); OUTONB (nc_dcntl, (STD|NOCOM)); return; } /*========================================================== ** ** ** ncr chip exception handler for programmed interrupts. ** ** **========================================================== */ static int ncr_show_msg (u_char * msg) { u_char i; printk ("%x",*msg); if (*msg==M_EXTENDED) { for (i=1;i<8;i++) { if (i-1>msg[1]) break; printk ("-%x",msg[i]); }; return (i+1); } else if ((*msg & 0xf0) == 0x20) { printk ("-%x",msg[1]); return (2); }; return (1); } void ncr_int_sir (ncb_p np) { u_char scntl3; u_char chg, ofs, per, fak, wide; u_char num = INB (nc_dsps); ccb_p cp=0; u_long dsa = INL (nc_dsa); u_char target = INB (nc_sdid) & 0x0f; tcb_p tp = &np->target[target]; if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); switch (num) { case SIR_RESEL_NO_MSG_IN: case SIR_RESEL_NO_IDENTIFY: /* ** If devices reselecting without sending an IDENTIFY ** message still exist, this should help. ** We just assume lun=0, 1 CCB, no tag. */ if (tp->lp[0]) { OUTL (nc_dsp, scr_to_cpu(tp->lp[0]->jump_ccb[0])); return; } case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */ case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */ case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */ case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */ printk ("%s:%d: SIR %d, " "incorrect nexus identification on reselection\n", ncr_name (np), target, num); goto out; case SIR_DONE_OVERFLOW: printk ("%s:%d: SIR %d, " "CCB done queue overflow\n", ncr_name (np), target, num); goto out; case SIR_BAD_STATUS: cp = np->header.cp; if (!cp || CCB_PHYS (cp, phys) != dsa) goto out; ncr_sir_to_redo(np, num, cp); return; default: /* ** lookup the ccb */ cp = np->ccb; while (cp && (CCB_PHYS (cp, phys) != dsa)) cp = cp->link_ccb; assert (cp && cp == np->header.cp); if (!cp || cp != np->header.cp) goto out; } switch (num) { flush_cache_all(); // ??? /*----------------------------------------------------------------------------- ** ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... ** ** We try to negotiate sync and wide transfer only after ** a successfull inquire command. We look at byte 7 of the ** inquire data to determine the capabilities of the target. ** ** When we try to negotiate, we append the negotiation message ** to the identify and (maybe) simple tag message. ** The host status field is set to HS_NEGOTIATE to mark this ** situation. ** ** If the target doesn't answer this message immidiately ** (as required by the standard), the SIR_NEGO_FAIL interrupt ** will be raised eventually. ** The handler removes the HS_NEGOTIATE status, and sets the ** negotiated value to the default (async / nowide). ** ** If we receive a matching answer immediately, we check it ** for validity, and set the values. ** ** If we receive a Reject message immediately, we assume the ** negotiation has failed, and fall back to standard values. ** ** If we receive a negotiation message while not in HS_NEGOTIATE ** state, it's a target initiated negotiation. We prepare a ** (hopefully) valid answer, set our parameters, and send back ** this answer to the target. ** ** If the target doesn't fetch the answer (no message out phase), ** we assume the negotiation has failed, and fall back to default ** settings. ** ** When we set the values, we adjust them in all ccbs belonging ** to this target, in the controller's register, and in the "phys" ** field of the controller's struct ncb. ** ** Possible cases: hs sir msg_in value send goto ** We try to negotiate: ** -> target doesnt't msgin NEG FAIL noop defa. - dispatch ** -> target rejected our msg NEG FAIL reject defa. - dispatch ** -> target answered (ok) NEG SYNC sdtr set - clrack ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad ** -> target answered (ok) NEG WIDE wdtr set - clrack ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad ** -> any other msgin NEG FAIL noop defa. - dispatch ** ** Target tries to negotiate: ** -> incoming message --- SYNC sdtr set SDTR - ** -> incoming message --- WIDE wdtr set WDTR - ** We sent our answer: ** -> target doesn't msgout --- PROTO ? defa. - dispatch ** **----------------------------------------------------------------------------- */ case SIR_NEGO_FAILED: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't send an answer message, ** or target rejected our message. ** ** Remove negotiation request. ** **------------------------------------------------------- */ OUTB (HS_PRT, HS_BUSY); /* fall through */ case SIR_NEGO_PROTO: /*------------------------------------------------------- ** ** Negotiation failed. ** Target doesn't fetch the answer message. ** **------------------------------------------------------- */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("negotiation failed sir=%x status=%x.\n", num, cp->nego_status); }; /* ** any error in negotiation: ** fall back to default mode. */ switch (cp->nego_status) { case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; flush_cache_all(); break; case SIR_NEGO_SYNC: /* ** Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("sync msgin: "); (void) ncr_show_msg (np->msgin); printk (".\n"); }; /* ** get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; if (ofs==0) per=255; /* ** if target sends SDTR message, ** it CAN transfer synch. */ if (ofs) tp->inq_byte7 |= INQ7_SYNC; /* ** check values against driver limits. */ if (per < np->minsync) {chg = 1; per = np->minsync;} if (per < tp->minsync) {chg = 1; per = tp->minsync;} if (ofs > tp->maxoffs) {chg = 1; ofs = tp->maxoffs;} /* ** Check against controller limits. */ fak = 7; scntl3 = 0; if (ofs != 0) { ncr_getsync(np, per, &fak, &scntl3); if (fak > 7) { chg = 1; ofs = 0; } } if (ofs == 0) { fak = 7; per = 0; scntl3 = 0; tp->minsync = 0; } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("sync: per=%d scntl3=0x%x ofs=%d fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_SYNC: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setsync (np, cp, 0, 0xe0); flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setsync (np, cp, scntl3, (fak<<5)|ofs); flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; }; /* ** It was a request. Set value and ** prepare an answer message */ ncr_setsync (np, cp, scntl3, (fak<<5)|ofs); np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("sync msgout: "); (void) ncr_show_msg (np->msgout); printk (".\n"); } if (!ofs) { flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); return; } np->msgin [0] = M_NOOP; break; case SIR_NEGO_WIDE: /* ** Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("wide msgin: "); (void) ncr_show_msg (np->msgin); printk (".\n"); }; /* ** get requested values. */ chg = 0; wide = np->msgin[3]; /* ** if target sends WDTR message, ** it CAN transfer wide. */ if (wide) tp->inq_byte7 |= INQ7_WIDE16; /* ** check values against driver limits. */ if (wide > tp->usrwide) {chg = 1; wide = tp->usrwide;} if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("wide: wide=%d chg=%d.\n", wide, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_WIDE: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setwide (np, cp, 0, 1); flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setwide (np, cp, wide, 1); flush_cache_all(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; }; }; /* ** It was a request, set value and ** prepare an answer message */ ncr_setwide (np, cp, wide, 1); np->msgout[0] = M_EXTENDED; np->msgout[1] = 2; np->msgout[2] = M_X_WIDE_REQ; np->msgout[3] = wide; np->msgin [0] = M_NOOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("wide msgout: "); (void) ncr_show_msg (np->msgin); printk (".\n"); } break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_REJECT_RECEIVED: /*----------------------------------------------- ** ** We received a M_REJECT message. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd); printk ("M_REJECT received (%x:%x).\n", (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]); break; case SIR_REJECT_SENT: /*----------------------------------------------- ** ** We received an unknown message ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd); printk ("M_REJECT sent for "); (void) ncr_show_msg (np->msgin); printk (".\n"); break; /*-------------------------------------------------------------------- ** ** Processing of special messages ** **-------------------------------------------------------------------- */ case SIR_IGN_RESIDUE: /*----------------------------------------------- ** ** We received an IGNORE RESIDUE message, ** which couldn't be handled by the script. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd); printk ("M_IGN_RESIDUE received, but not yet implemented.\n"); break; #if 0 case SIR_MISSING_SAVE: /*----------------------------------------------- ** ** We received an DISCONNECT message, ** but the datapointer wasn't saved before. ** **----------------------------------------------- */ PRINT_ADDR(cp->cmd); printk ("M_DISCONNECT received, but datapointer not saved: " "data=%x save=%x goal=%x.\n", (unsigned) INL (nc_temp), (unsigned) scr_to_cpu(np->header.savep), (unsigned) scr_to_cpu(np->header.goalp)); break; #endif }; out: OUTONB (nc_dcntl, (STD|NOCOM)); } /*========================================================== ** ** ** Aquire a control block ** ** **========================================================== */ static ccb_p ncr_get_ccb (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = tp->lp[ln]; u_char tag = NO_TAG; ccb_p cp = (ccb_p) 0; /* ** Lun structure available ? */ if (lp) { XPT_QUEHEAD *qp; /* ** Keep from using more tags than we can handle. */ if (lp->usetags && lp->busyccbs >= lp->maxnxs) return (ccb_p) 0; /* ** Allocate a new CCB if needed. */ if (xpt_que_empty(&lp->free_ccbq)) ncr_alloc_ccb(np, tn, ln); /* ** Tune tag mode if asked by user. */ if (lp->queuedepth != lp->numtags) { ncr_setup_tags(np, tn, ln); } /* ** Look for free CCB */ qp = xpt_remque_head(&lp->free_ccbq); if (qp) { cp = xpt_que_entry(qp, struct ccb, link_ccbq); if (cp->magic) { PRINT_LUN(np, tn, ln); printk ("ccb free list corrupted (@%p)\n", cp); cp = 0; } else { xpt_insque_tail(qp, &lp->wait_ccbq); ++lp->busyccbs; } } /* ** If a CCB is available, ** Get a tag for this nexus if required. */ if (cp) { if (lp->usetags) tag = lp->cb_tags[lp->ia_tag]; } else if (lp->actccbs > 0) return (ccb_p) 0; } /* ** if nothing available, take the default. */ if (!cp) cp = np->ccb; /* ** Wait until available. */ #if 0 while (cp->magic) { if (flags & SCSI_NOSLEEP) break; if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) break; }; #endif if (cp->magic) return ((ccb_p) 0); cp->magic = 1; /* ** Move to next available tag if tag used. */ if (lp) { if (tag != NO_TAG) { ++lp->ia_tag; if (lp->ia_tag == MAX_TAGS) lp->ia_tag = 0; lp->tags_umap |= (((tagmap_t) 1) << tag); } } /* ** Remember all informations needed to free this CCB. */ cp->tag = tag; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, tn, ln); printk ("ccb @%p using tag %d.\n", cp, tag); } return cp; } /*========================================================== ** ** ** Release one control block ** ** **========================================================== */ static void ncr_free_ccb (ncb_p np, ccb_p cp) { tcb_p tp = &np->target[cp->target]; lcb_p lp = tp->lp[cp->lun]; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, cp->target, cp->lun); printk ("ccb @%p freeing tag %d.\n", cp, cp->tag); } /* ** If lun control block available, ** decrement active commands and increment credit, ** free the tag if any and remove the JUMP for reselect. */ if (lp) { if (cp->tag != NO_TAG) { lp->cb_tags[lp->if_tag++] = cp->tag; if (lp->if_tag == MAX_TAGS) lp->if_tag = 0; lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag); lp->tags_smap &= lp->tags_umap; lp->jump_ccb[cp->tag] = cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q)); } else { lp->jump_ccb[0] = cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l)); } } /* ** Make this CCB available. */ if (lp) { if (cp != np->ccb) { xpt_remque(&cp->link_ccbq); xpt_insque_head(&cp->link_ccbq, &lp->free_ccbq); } --lp->busyccbs; if (cp->queued) { --lp->queuedccbs; } } cp -> host_status = HS_IDLE; cp -> magic = 0; if (cp->queued) { --np->queuedccbs; cp->queued = 0; } #if 0 if (cp == np->ccb) wakeup ((caddr_t) cp); #endif } #define ncr_reg_bus_addr(r) \ (bus_dvma_to_mem(np->paddr) + offsetof (struct ncr_reg, r)) /*------------------------------------------------------------------------ ** Initialize the fixed part of a CCB structure. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static void ncr_init_ccb(ncb_p np, ccb_p cp) { ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); /* ** Remember virtual and bus address of this ccb. */ cp->p_ccb = vtophys(cp); cp->phys.header.cp = cp; /* ** This allows xpt_remque to work for the default ccb. */ xpt_que_init(&cp->link_ccbq); /* ** Initialyze the start and restart launch script. ** ** COPY(4) @(...p_phys), @(dsa) ** JUMP @(sched_point) */ cp->start.setup_dsa[0] = cpu_to_scr(copy_4); cp->start.setup_dsa[1] = cpu_to_scr(vtophys(&cp->start.p_phys)); cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa)); cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP); cp->start.p_phys = cpu_to_scr(vtophys(&cp->phys)); bcopy(&cp->start, &cp->restart, sizeof(cp->restart)); cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); } /*------------------------------------------------------------------------ ** Allocate a CCB and initialize its fixed part. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static void ncr_alloc_ccb(ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = tp->lp[ln]; ccb_p cp = 0; /* ** Allocate memory for this CCB. */ cp = m_alloc(sizeof(struct ccb), 5); if (!cp) return; if (DEBUG_FLAGS & DEBUG_ALLOC) { PRINT_LUN(np, tn, ln); printk ("new ccb @%p.\n", cp); } /* ** Count it and initialyze it. */ lp->actccbs++; np->actccbs++; bzero (cp, sizeof (*cp)); ncr_init_ccb(np, cp); /* ** Chain into wakeup list and free ccb queue and take it ** into account for tagged commands. */ cp->link_ccb = np->ccb->link_ccb; np->ccb->link_ccb = cp; xpt_insque_head(&cp->link_ccbq, &lp->free_ccbq); ncr_setup_tags (np, tn, ln); flush_cache_all(); } /*========================================================== ** ** ** Allocation of resources for Targets/Luns/Tags. ** ** **========================================================== */ /*------------------------------------------------------------------------ ** Target control block initialisation. **------------------------------------------------------------------------ ** This data structure is fully initialized after a SCSI command ** has been successfully completed for this target. ** It contains a SCRIPT that is called on target reselection. **------------------------------------------------------------------------ */ static void ncr_init_tcb (ncb_p np, u_char tn) { tcb_p tp = &np->target[tn]; ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1); int th = tn & 3; int i; /* ** Jump to next tcb if SFBR does not match this target. ** JUMP IF (SFBR != #target#), @(next tcb) */ tp->jump_tcb.l_cmd = cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn)))); tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr; /* ** Load the synchronous transfer register. ** COPY @(tp->sval), @(sxfer) */ tp->getscr[0] = cpu_to_scr(copy_1); tp->getscr[1] = cpu_to_scr(vtophys (&tp->sval)); tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer)); /* ** Load the timing register. ** COPY @(tp->wval), @(scntl3) */ tp->getscr[3] = cpu_to_scr(copy_1); tp->getscr[4] = cpu_to_scr(vtophys (&tp->wval)); tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3)); /* ** Get the IDENTIFY message and the lun. ** CALL @script(resel_lun) */ tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL); tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun)); /* ** Look for the lun control block of this nexus. ** For i = 0 to 3 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) */ for (i = 0 ; i < 4 ; i++) { tp->jump_lcb[i].l_cmd = cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); tp->jump_lcb[i].l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify)); } /* ** Link this target control block to the JUMP chain. */ np->jump_tcb[th].l_paddr = cpu_to_scr(vtophys (&tp->jump_tcb)); /* ** These assert's should be moved at driver initialisations. */ assert (( (offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) == 0); assert (( (offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) == 0); } /*------------------------------------------------------------------------ ** Lun control block allocation and initialization. **------------------------------------------------------------------------ ** This data structure is allocated and initialized after a SCSI ** command has been successfully completed for this target/lun. **------------------------------------------------------------------------ */ static lcb_p ncr_alloc_lcb (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = tp->lp[ln]; ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); int lh = ln & 3; /* ** Already done, return. */ if (lp) return lp; /* ** Allocate the lcb. */ lp = m_alloc(sizeof(struct lcb), 3); if (!lp) goto fail; bzero(lp, sizeof(*lp)); tp->lp[ln] = lp; if (DEBUG_FLAGS & DEBUG_ALLOC) { PRINT_LUN(np, tn, ln); printk ("new lcb @%p.\n", lp); } /* ** Initialize the target control block if not yet. */ if (!tp->jump_tcb.l_cmd) ncr_init_tcb(np, tn); /* ** Initialize the CCB queue headers. */ xpt_que_init(&lp->free_ccbq); xpt_que_init(&lp->busy_ccbq); xpt_que_init(&lp->wait_ccbq); xpt_que_init(&lp->skip_ccbq); /* ** Set max CCBs to 1 and use the default 1 entry ** jump table by default. */ lp->maxnxs = 1; lp->jump_ccb = &lp->jump_ccb_0; lp->p_jump_ccb = cpu_to_scr(vtophys(lp->jump_ccb)); /* ** Initilialyze the reselect script: ** ** Jump to next lcb if SFBR does not match this lun. ** Load TEMP with the CCB direct jump table bus address. ** Get the SIMPLE TAG message and the tag. ** ** JUMP IF (SFBR != #lun#), @(next lcb) ** COPY @(lp->p_jump_ccb), @(temp) ** JUMP @script(resel_notag) */ lp->jump_lcb.l_cmd = cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff)))); lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr; lp->load_jump_ccb[0] = cpu_to_scr(copy_4); lp->load_jump_ccb[1] = cpu_to_scr(vtophys (&lp->p_jump_ccb)); lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp)); lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP); lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag)); /* ** Link this lun control block to the JUMP chain. */ tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtophys (&lp->jump_lcb)); /* ** Initialize command queuing control. */ lp->busyccbs = 1; lp->queuedccbs = 1; lp->queuedepth = 1; fail: return lp; } /*------------------------------------------------------------------------ ** Lun control block setup on INQUIRY data received. **------------------------------------------------------------------------ ** We only support WIDE, SYNC for targets and CMDQ for logical units. ** This setup is done on each INQUIRY since we are expecting user ** will play with CHANGE DEFINITION commands. :-) **------------------------------------------------------------------------ */ static lcb_p ncr_setup_lcb (ncb_p np, u_char tn, u_char ln, u_char *inq_data) { tcb_p tp = &np->target[tn]; lcb_p lp = tp->lp[ln]; u_char inq_byte7; /* ** If no lcb, try to allocate it. */ if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) goto fail; /* ** Get device quirks from a speciality table. */ tp->quirks = ncr_lookup (inq_data); if (tp->quirks && bootverbose) { PRINT_LUN(np, tn, ln); printk ("quirks=%x.\n", tp->quirks); } /* ** Evaluate trustable target/unit capabilities. ** We only believe device version >= SCSI-2 that ** use appropriate response data format (2). ** But it seems that some CCS devices also ** support SYNC and I donnot want to frustrate ** anybody. ;-) */ inq_byte7 = 0; if ((inq_data[2] & 0x7) >= 2 && (inq_data[3] & 0xf) == 2) inq_byte7 = inq_data[7]; else if ((inq_data[2] & 0x7) == 1 && (inq_data[3] & 0xf) == 1) inq_byte7 = INQ7_SYNC; /* ** Throw away announced LUN capabilities if we are told ** that there is no real device supported by the logical unit. */ if ((inq_data[0] & 0xe0) > 0x20 || (inq_data[0] & 0x1f) == 0x1f) inq_byte7 &= (INQ7_SYNC | INQ7_WIDE16); /* ** If user is wanting SYNC, force this feature. */ if (driver_setup.force_sync_nego) inq_byte7 |= INQ7_SYNC; /* ** Prepare negotiation if SIP capabilities have changed. */ tp->inq_done = 1; if ((inq_byte7 ^ tp->inq_byte7) & (INQ7_SYNC | INQ7_WIDE16)) { tp->inq_byte7 = inq_byte7; ncr_negotiate(np, tp); } /* ** If unit supports tagged commands, allocate the ** CCB JUMP table if not yet. */ if ((inq_byte7 & INQ7_QUEUE) && lp->jump_ccb == &lp->jump_ccb_0) { int i; lp->jump_ccb = m_alloc(256, 8); if (!lp->jump_ccb) { lp->jump_ccb = &lp->jump_ccb_0; goto fail; } lp->p_jump_ccb = cpu_to_scr(vtophys(lp->jump_ccb)); for (i = 0 ; i < 64 ; i++) lp->jump_ccb[i] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q)); for (i = 0 ; i < MAX_TAGS ; i++) lp->cb_tags[i] = i; lp->maxnxs = MAX_TAGS; lp->tags_stime = ktime_get(3*HZ); } /* ** Adjust tagged queueing status if needed. */ if ((inq_byte7 ^ lp->inq_byte7) & INQ7_QUEUE) { lp->inq_byte7 = inq_byte7; lp->numtags = lp->maxtags; ncr_setup_tags (np, tn, ln); } fail: return lp; } /*========================================================== ** ** ** Build Scatter Gather Block ** ** **========================================================== ** ** The transfer area may be scattered among ** several non adjacent physical pages. ** ** We may use MAX_SCATTER blocks. ** **---------------------------------------------------------- */ /* ** We try to reduce the number of interrupts caused ** by unexpected phase changes due to disconnects. ** A typical harddisk may disconnect before ANY block. ** If we wanted to avoid unexpected phase changes at all ** we had to use a break point every 512 bytes. ** Of course the number of scatter/gather blocks is ** limited. ** Under Linux, the scatter/gatter blocks are provided by ** the generic driver. We just have to copy addresses and ** sizes to the data segment array. */ static int ncr_scatter(ccb_p cp, Scsi_Cmnd *cmd) { struct scr_tblmove *data; int segment = 0; int use_sg = (int) cmd->use_sg; data = cp->phys.data; cp->data_len = 0; if (!use_sg) { if (cmd->request_bufflen) { unsigned long addr, len; addr = cmd->request_buffer; len = cmd->request_bufflen; data = &data[MAX_SCATTER - 1]; data[0].addr = cpu_to_scr(vtophys(addr)); data[0].size = cpu_to_scr(len); if (addr) dma_cache_wback_inv(addr, len); cp->data_len = len; segment = 1; } } else if (use_sg <= MAX_SCATTER) { struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; data = &data[MAX_SCATTER - use_sg]; while (segment < use_sg) { unsigned long addr, len; addr = scatter[segment].address; len = scatter[segment].length; data[segment].addr = cpu_to_scr(vtophys(addr)); data[segment].size = cpu_to_scr(len); dma_cache_wback_inv(addr, len); cp->data_len += len; ++segment; } } else { return -1; } dma_cache_wback_inv(data, sizeof(*data) * segment); return segment; } /*========================================================== ** ** ** Test the pci bus snoop logic :-( ** ** Has to be called with interrupts disabled. ** ** **========================================================== */ #ifndef NCR_IOMAPPED static int __init ncr_regtest (struct ncb* np) { register volatile u_int32 data; /* ** ncr registers may NOT be cached. ** write 0xffffffff to a read only register area, ** and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); }; return (0); } #endif static int __init ncr_snooptest (struct ncb* np) { u_int32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; int i, err=0; #ifndef NCR_IOMAPPED if (np->reg) { err |= ncr_regtest (np); if (err) return (err); } #endif /* ** init */ pc = NCB_SCRIPTH_PHYS (np, snooptest); host_wr = 1; ncr_wr = 2; /* ** Set memory and register. */ np->ncr_cache = cpu_to_scr(host_wr); dma_cache_wback_inv((unsigned long)np, sizeof(*np)); OUTL (nc_temp, ncr_wr); /* ** Start script (exchange values) */ OUTL (nc_dsp, pc); /* ** Wait 'til done (with timeout) */ for (i=0; incr_cache); ncr_rd = INL (nc_scratcha); ncr_bk = INL (nc_temp); /* ** Reset ncr chip */ OUTB (nc_istat, SRST); UDELAY (100); OUTB (nc_istat, 0 ); /* ** check for timeout */ if (i>=NCR_SNOOP_TIMEOUT) { printk ("CACHE TEST FAILED: timeout.\n"); return (0x20); }; /* ** Check termination position. */ if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { printk ("CACHE TEST FAILED: script execution failed.\n"); printk ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); return (0x40); }; /* ** Show results. */ if (host_wr != ncr_rd) { printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", (int) host_wr, (int) ncr_rd); err |= 1; }; if (host_rd != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", (int) ncr_wr, (int) host_rd); err |= 2; }; if (ncr_bk != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", (int) ncr_wr, (int) ncr_bk); err |= 4; }; return (err); } /*========================================================== ** ** ** Profiling the drivers and targets performance. ** ** **========================================================== */ #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Compute the difference in jiffies ticks. */ #define ncr_delta(from, to) \ ( ((to) && (from))? (to) - (from) : -1 ) #define PROFILE cp->phys.header.stamp static void ncb_profile (ncb_p np, ccb_p cp) { long co, st, en, di, re, post, work, disc; u_int diff; PROFILE.end = jiffies; st = ncr_delta (PROFILE.start,PROFILE.status); if (st<0) return; /* status not reached */ co = ncr_delta (PROFILE.start,PROFILE.command); if (co<0) return; /* command not executed */ en = ncr_delta (PROFILE.start,PROFILE.end), di = ncr_delta (PROFILE.start,PROFILE.disconnect), re = ncr_delta (PROFILE.start,PROFILE.reselect); post = en - st; /* ** @PROFILE@ Disconnect time invalid if multiple disconnects */ if (di>=0) disc = re - di; else disc = 0; work = (st - co) - disc; diff = (scr_to_cpu(np->disc_phys) - np->disc_ref) & 0xff; np->disc_ref += diff; np->profile.num_trans += 1; if (cp->cmd) { np->profile.num_kbytes += (cp->cmd->request_bufflen >> 10); np->profile.rest_bytes += (cp->cmd->request_bufflen & (0x400-1)); if (np->profile.rest_bytes >= 0x400) { ++np->profile.num_kbytes; np->profile.rest_bytes -= 0x400; } } np->profile.num_disc += diff; np->profile.ms_setup += co; np->profile.ms_data += work; np->profile.ms_disc += disc; np->profile.ms_post += post; } #undef PROFILE #endif /* SCSI_NCR_PROFILE_SUPPORT */ /*========================================================== ** ** ** Device lookup. ** ** @GENSCSI@ should be integrated to scsiconf.c ** ** **========================================================== */ struct table_entry { char * manufacturer; char * model; char * version; u_long info; }; static struct table_entry device_tab[] = { #if 0 {"", "", "", QUIRK_NOMSG}, #endif {"SONY", "SDT-5000", "3.17", QUIRK_NOMSG}, {"WangDAT", "Model 2600", "01.7", QUIRK_NOMSG}, {"WangDAT", "Model 3200", "02.2", QUIRK_NOMSG}, {"WangDAT", "Model 1300", "02.4", QUIRK_NOMSG}, {"", "", "", 0} /* catch all: must be last entry. */ }; static u_long ncr_lookup(char * id) { struct table_entry * p = device_tab; char *d, *r, c; for (;;p++) { d = id+8; r = p->manufacturer; while ((c=*r++)) if (c!=*d++) break; if (c) continue; d = id+16; r = p->model; while ((c=*r++)) if (c!=*d++) break; if (c) continue; d = id+32; r = p->version; while ((c=*r++)) if (c!=*d++) break; if (c) continue; return (p->info); } } /*========================================================== ** ** Determine the ncr's clock frequency. ** This is essential for the negotiation ** of the synchronous transfer rate. ** **========================================================== ** ** Note: we have to return the correct value. ** THERE IS NO SAVE DEFAULT VALUE. ** ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. ** 53C860 and 53C875 rev. 1 support fast20 transfers but ** do not have a clock doubler and so are provided with a ** 80 MHz clock. All other fast20 boards incorporate a doubler ** and so should be delivered with a 40 MHz clock. ** The future fast40 chips (895/895) use a 40 Mhz base clock ** and provide a clock quadrupler (160 Mhz). The code below ** tries to deal as cleverly as possible with all this stuff. ** **---------------------------------------------------------- */ /* * Select NCR SCSI clock frequency */ static void ncr_selectclock(ncb_p np, u_char scntl3) { if (np->multiplier < 2) { OUTB(nc_scntl3, scntl3); return; } if (bootverbose >= 2) printk ("%s: enabling clock multiplier\n", ncr_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) UDELAY (20); if (!i) printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); } else /* Wait 20 micro-seconds for doubler */ UDELAY (20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate NCR SCSI clock frequency (in KHz) */ static unsigned __init ncrgetfreq (ncb_p np, int gen) { unsigned ms = 0; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms); /* * adjust for prescaler, and convert into KHz */ return ms ? ((1 << gen) * 4340) / ms : 0; } /* * Get/probe NCR SCSI clock frequency */ static void __init ncr_getclock (ncb_p np, int mult) { unsigned char scntl3 = INB(nc_scntl3); unsigned char stest1 = INB(nc_stest1); unsigned f1; np->multiplier = 1; f1 = 40000; /* ** True with 875 or 895 with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (bootverbose >= 2) printk ("%s: clock multiplier found\n", ncr_name(np)); np->multiplier = mult; } /* ** If multiplier not found or scntl3 not 7,5,3, ** reset chip and get frequency from general purpose timer. ** Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { unsigned f2; OUTB(nc_istat, SRST); UDELAY (5); OUTB(nc_istat, 0); (void) ncrgetfreq (np, 11); /* throw away first result */ f1 = ncrgetfreq (np, 11); f2 = ncrgetfreq (np, 11); if (bootverbose) printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2); if (f1 > f2) f1 = f2; /* trust lower result */ if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (bootverbose >= 2) printk ("%s: clock multiplier assumed\n", ncr_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* ** Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /*===================== LINUX ENTRY POINTS SECTION ==========================*/ #ifndef uchar #define uchar unsigned char #endif #ifndef ushort #define ushort unsigned short #endif #ifndef ulong #define ulong unsigned long #endif /* --------------------------------------------------------------------- ** ** Driver setup from the boot command line ** ** --------------------------------------------------------------------- */ #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif int __init ncr53c8xx_setup(char *str) { #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT char *cur = str; char *pc, *pv; int val; int base; int c; int xi = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { char *pe; val = 0; pv = pc; c = *++pv; if (c == 'n') val = 0; else if (c == 'y') val = 1; else { base = 0; val = (int) simple_strtoul(pv, &pe, base); } if (!strncmp(cur, "tags:", 5)) { int i; driver_setup.default_tags = val; if (pe && *pe == '/') { i = 0; while (*pe && *pe != ARG_SEP && i < sizeof(driver_setup.tag_ctrl)-1) { driver_setup.tag_ctrl[i++] = *pe++; } driver_setup.tag_ctrl[i] = '\0'; } } else if (!strncmp(cur, "mpar:", 5)) driver_setup.master_parity = val; else if (!strncmp(cur, "spar:", 5)) driver_setup.scsi_parity = val; else if (!strncmp(cur, "disc:", 5)) driver_setup.disconnection = val; else if (!strncmp(cur, "specf:", 6)) driver_setup.special_features = val; else if (!strncmp(cur, "ultra:", 6)) driver_setup.ultra_scsi = val; else if (!strncmp(cur, "fsn:", 4)) driver_setup.force_sync_nego = val; else if (!strncmp(cur, "revprob:", 8)) driver_setup.reverse_probe = val; else if (!strncmp(cur, "sync:", 5)) driver_setup.default_sync = val; else if (!strncmp(cur, "verb:", 5)) driver_setup.verbose = val; else if (!strncmp(cur, "debug:", 6)) driver_setup.debug = val; else if (!strncmp(cur, "burst:", 6)) driver_setup.burst_max = val; else if (!strncmp(cur, "led:", 4)) driver_setup.led_pin = val; else if (!strncmp(cur, "wide:", 5)) driver_setup.max_wide = val? 1:0; else if (!strncmp(cur, "settle:", 7)) driver_setup.settle_delay= val; else if (!strncmp(cur, "diff:", 5)) driver_setup.diff_support= val; else if (!strncmp(cur, "irqm:", 5)) driver_setup.irqm = val; else if (!strncmp(cur, "pcifix:", 7)) driver_setup.pci_fix_up = val; else if (!strncmp(cur, "buschk:", 7)) driver_setup.bus_check = val; #ifdef SCSI_NCR_NVRAM_SUPPORT else if (!strncmp(cur, "nvram:", 6)) driver_setup.use_nvram = val; #endif else if (!strncmp(cur, "safe:", 5) && val) memcpy(&driver_setup, &driver_safe_setup, sizeof(driver_setup)); else if (!strncmp(cur, "excl:", 5)) { if (xi < SCSI_NCR_MAX_EXCLUDES) driver_setup.excludes[xi++] = val; } else if (!strncmp(cur, "hostid:", 7)) driver_setup.host_id = val; else printk("ncr53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); if ((cur = strchr(cur, ARG_SEP)) != NULL) ++cur; } #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ return 0; } #if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,13) #ifndef MODULE __setup("ncr53c8xx=", ncr53c8xx_setup); #endif #endif static int ncr53c8xx_pci_init(Scsi_Host_Template *tpnt, pcidev_t pdev, ncr_device *device); /* ** Linux entry point for NCR53C8XX devices detection routine. ** ** Called by the middle-level scsi drivers at initialization time, ** or at module installation. ** ** Read the PCI configuration and try to attach each ** detected NCR board. ** ** If NVRAM is present, try to attach boards according to ** the used defined boot order. ** ** Returns the number of boards successfully attached. */ static void __init ncr_print_driver_setup(void) { #define YesNo(y) y ? 'y' : 'n' printk ("ncr53c8xx: setup=disc:%c,specf:%d,ultra:%d,tags:%d,sync:%d," "burst:%d,wide:%c,diff:%d,revprob:%c,buschk:0x%x\n", YesNo(driver_setup.disconnection), driver_setup.special_features, driver_setup.ultra_scsi, driver_setup.default_tags, driver_setup.default_sync, driver_setup.burst_max, YesNo(driver_setup.max_wide), driver_setup.diff_support, YesNo(driver_setup.reverse_probe), driver_setup.bus_check); printk ("ncr53c8xx: setup=mpar:%c,spar:%c,fsn=%c,verb:%d,debug:0x%x," "led:%c,settle:%d,irqm:%d,nvram:0x%x,pcifix:0x%x\n", YesNo(driver_setup.master_parity), YesNo(driver_setup.scsi_parity), YesNo(driver_setup.force_sync_nego), driver_setup.verbose, driver_setup.debug, YesNo(driver_setup.led_pin), driver_setup.settle_delay, driver_setup.irqm, driver_setup.use_nvram, driver_setup.pci_fix_up); #undef YesNo } /* ** NCR53C8XX devices description table and chip ids list. */ static ncr_chip ncr_chip_table[] __initdata = SCSI_NCR_CHIP_TABLE; static ushort ncr_chip_ids[] __initdata = SCSI_NCR_CHIP_IDS; /*=================================================================== ** Detect all 53c8xx hosts and then attach them. ** ** If we are using NVRAM, once all hosts are detected, we need to ** check any NVRAM for boot order in case detect and boot order ** differ and attach them using the order in the NVRAM. ** ** If no NVRAM is found or data appears invalid attach boards in ** the the order they are detected. **=================================================================== */ int __init ncr53c8xx_detect(Scsi_Host_Template *tpnt) { pcidev_t pcidev; int i, j, chips, hosts, count; int attach_count = 0; ncr_device *devtbl, *devp; #ifdef SCSI_NCR_NVRAM_SUPPORT ncr_nvram nvram0, nvram, *nvp; #endif /* ** PCI is required. */ if (!pci_present()) return 0; /* ** Initialize driver general stuff. */ #ifdef SCSI_NCR_PROC_INFO_SUPPORT #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) tpnt->proc_dir = &proc_scsi_ncr53c8xx; #else tpnt->proc_name = "ncr53c8xx"; #endif tpnt->proc_info = ncr53c8xx_proc_info; #endif #if defined(SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT) && defined(MODULE) if (ncr53c8xx) ncr53c8xx_setup(ncr53c8xx); #endif #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT ncr_debug = driver_setup.debug; #endif if (initverbose >= 2) ncr_print_driver_setup(); /* ** Allocate the device table since we donnot want to ** overflow the kernel stack. ** 1 x 4K PAGE is enough for more than 40 devices for i386. */ devtbl = kmalloc(4000, GFP_ATOMIC); if (!devtbl) return 0; /* ** Detect all 53c8xx hosts. ** Save the first Symbios NVRAM content if any ** for the boot order. */ chips = sizeof(ncr_chip_ids) / sizeof(ncr_chip_ids[0]); hosts = 4000 / sizeof(*devtbl); #ifdef SCSI_NCR_NVRAM_SUPPORT nvp = (driver_setup.use_nvram & 0x1) ? &nvram0 : 0; #endif j = 0; count = 0; pcidev = PCIDEV_NULL; while (1) { char *msg = ""; if (count >= hosts) break; if (j >= chips) break; i = driver_setup.reverse_probe ? chips - 1 - j : j; pcidev = pci_find_device(PCI_VENDOR_ID_NCR, ncr_chip_ids[i], pcidev); if (pcidev == PCIDEV_NULL) { ++j; continue; } /* Some HW as the HP LH4 may report twice PCI devices */ for (i = 0; i < count ; i++) { if (devtbl[i].slot.bus == PciBusNumber(pcidev) && devtbl[i].slot.device_fn == PciDeviceFn(pcidev)) break; } if (i != count) /* Ignore this device if we already have it */ continue; devp = &devtbl[count]; devp->host_id = driver_setup.host_id; devp->attach_done = 0; if (ncr53c8xx_pci_init(tpnt, pcidev, devp)) { continue; } ++count; #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvp) { ncr_get_nvram(devp, nvp); switch(nvp->type) { case SCSI_NCR_SYMBIOS_NVRAM: /* * Switch to the other nvram buffer, so that * nvram0 will contain the first Symbios * format NVRAM content with boot order. */ nvp = &nvram; msg = "with Symbios NVRAM"; break; case SCSI_NCR_TEKRAM_NVRAM: msg = "with Tekram NVRAM"; break; } } #endif printk(KERN_INFO "ncr53c8xx: 53c%s detected %s\n", devp->chip.name, msg); } /* ** If we have found a SYMBIOS NVRAM, use first the NVRAM boot ** sequence as device boot order. ** check devices in the boot record against devices detected. ** attach devices if we find a match. boot table records that ** do not match any detected devices will be ignored. ** devices that do not match any boot table will not be attached ** here but will attempt to be attached during the device table ** rescan. */ #ifdef SCSI_NCR_NVRAM_SUPPORT if (!nvp || nvram0.type != SCSI_NCR_SYMBIOS_NVRAM) goto next; for (i = 0; i < 4; i++) { Symbios_host *h = &nvram0.data.Symbios.host[i]; for (j = 0 ; j < count ; j++) { devp = &devtbl[j]; if (h->device_fn != devp->slot.device_fn || h->bus_nr != devp->slot.bus || h->device_id != devp->chip.device_id) continue; if (devp->attach_done) continue; ncr_get_nvram(devp, nvp); if (!ncr_attach (tpnt, attach_count, devp)) attach_count++; devp->attach_done = 1; break; } } next: #endif /* ** Rescan device list to make sure all boards attached. ** Devices without boot records will not be attached yet ** so try to attach them here. */ for (i= 0; i < count; i++) { devp = &devtbl[i]; if (!devp->attach_done) { #ifdef SCSI_NCR_NVRAM_SUPPORT ncr_get_nvram(devp, nvp); #endif if (!ncr_attach (tpnt, attach_count, devp)) attach_count++; } } kfree(devtbl); return attach_count; } /*=================================================================== ** Detect and try to read SYMBIOS and TEKRAM NVRAM. ** ** Data can be used to order booting of boards. ** ** Data is saved in ncr_device structure if NVRAM found. This ** is then used to find drive boot order for ncr_attach(). ** ** NVRAM data is passed to Scsi_Host_Template later during ** ncr_attach() for any device set up. *=================================================================== */ #ifdef SCSI_NCR_NVRAM_SUPPORT static void __init ncr_get_nvram(ncr_device *devp, ncr_nvram *nvp) { devp->nvram = nvp; if (!nvp) return; /* ** Get access to chip IO registers */ #ifdef NCR_IOMAPPED request_region(devp->slot.io_port, 128, "ncr53c8xx"); devp->slot.port = devp->slot.io_port; #else devp->slot.reg = (struct ncr_reg *) remap_pci_mem(devp->slot.base, 128); if (!devp->slot.reg) return; #endif /* ** Try to read SYMBIOS nvram. ** Try to read TEKRAM nvram if Symbios nvram not found. */ if (!ncr_get_Symbios_nvram(&devp->slot, &nvp->data.Symbios)) nvp->type = SCSI_NCR_SYMBIOS_NVRAM; else if (!ncr_get_Tekram_nvram(&devp->slot, &nvp->data.Tekram)) nvp->type = SCSI_NCR_TEKRAM_NVRAM; else { nvp->type = 0; devp->nvram = 0; } /* ** Release access to chip IO registers */ #ifdef NCR_IOMAPPED release_region(devp->slot.port, 128); #else unmap_pci_mem((u_long) devp->slot.reg, 128ul); #endif } #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Read and check the PCI configuration for any detected NCR ** boards and save data for attaching after all boards have ** been detected. */ static int __init ncr53c8xx_pci_init(Scsi_Host_Template *tpnt, pcidev_t pdev, ncr_device *device) { ushort vendor_id, device_id, command; uchar cache_line_size, latency_timer; uchar revision; uint irq; ulong base, base_2, io_port; int i; ncr_chip *chip; /* ** Read info from the PCI config space. ** pci_read_config_xxx() functions are assumed to be used for ** successfully detected PCI devices. */ vendor_id = PciVendorId(pdev); device_id = PciDeviceId(pdev); irq = PciIrqLine(pdev); i = 0; i = pci_get_base_address(pdev, i, &io_port); i = pci_get_base_address(pdev, i, &base); (void) pci_get_base_address(pdev, i, &base_2); pci_read_config_word(pdev, PCI_COMMAND, &command); pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size); pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer); /* ** If user excludes this chip, donnot initialize it. */ for (i = 0 ; i < SCSI_NCR_MAX_EXCLUDES ; i++) { if (driver_setup.excludes[i] == (io_port & PCI_BASE_ADDRESS_IO_MASK)) return -1; } /* * Check if the chip is supported */ chip = 0; for (i = 0; i < sizeof(ncr_chip_table)/sizeof(ncr_chip_table[0]); i++) { if (device_id != ncr_chip_table[i].device_id) continue; if (revision > ncr_chip_table[i].revision_id) continue; chip = &device->chip; memcpy(chip, &ncr_chip_table[i], sizeof(*chip)); chip->revision_id = revision; break; } #if defined(__i386__) /* * Ignore Symbios chips controlled by SISL RAID controller. */ if (chip && (base_2 & PCI_BASE_ADDRESS_MEM_MASK)) { unsigned int ScriptsSize, MagicValue; vm_offset_t ScriptsRAM; if (chip->features & FE_RAM8K) ScriptsSize = 8192; else ScriptsSize = 4096; ScriptsRAM = remap_pci_mem(base_2 & PCI_BASE_ADDRESS_MEM_MASK, ScriptsSize); if (ScriptsRAM) { MagicValue = readl(ScriptsRAM + ScriptsSize - 16); unmap_pci_mem(ScriptsRAM, ScriptsSize); if (MagicValue == 0x52414944) return -1; } } #endif printk(KERN_INFO "ncr53c8xx: at PCI bus %d, device %d, function %d\n", PciBusNumber(pdev), (int) (PciDeviceFn(pdev) & 0xf8) >> 3, (int) (PciDeviceFn(pdev) & 0x7)); if (!chip) { printk("ncr53c8xx: not initializing, device not supported\n"); return -1; } #ifdef __powerpc__ /* * Several fix-up for power/pc. * Should not be performed by the driver. */ if (!(command & PCI_COMMAND_MASTER)) { printk("ncr53c8xx: attempting to force PCI_COMMAND_MASTER..."); command |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, command); pci_read_config_word(pdev, PCI_COMMAND, &command); if (!(command & PCI_COMMAND_MASTER)) { printk("failed!\n"); } else { printk("succeeded.\n"); } } if (!(command & PCI_COMMAND_IO)) { printk("ncr53c8xx: attempting to force PCI_COMMAND_IO..."); command |= PCI_COMMAND_IO; pci_write_config_word(pdev, PCI_COMMAND, command); pci_read_config_word(pdev, PCI_COMMAND, &command); if (!(command & PCI_COMMAND_IO)) { printk("failed!\n"); } else { printk("succeeded.\n"); } } if (!(command & PCI_COMMAND_MEMORY)) { printk("ncr53c8xx: attempting to force PCI_COMMAND_MEMORY..."); command |= PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, command); pci_read_config_word(pdev, PCI_COMMAND, &command); if (!(command & PCI_COMMAND_MEMORY)) { printk("failed!\n"); } else { printk("succeeded.\n"); } } #if LINUX_VERSION_CODE < LinuxVersionCode(2,1,140) if ( is_prep ) { if (io_port >= 0x10000000) { printk("ncr53c8xx: reallocating io_port (Wacky IBM)"); io_port = (io_port & 0x00FFFFFF) | 0x01000000; pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, io_port); } if (base >= 0x10000000) { printk("ncr53c8xx: reallocating base (Wacky IBM)"); base = (base & 0x00FFFFFF) | 0x01000000; pci_write_config_dword(pdev, PCI_BASE_ADDRESS_1, base); } if (base_2 >= 0x10000000) { printk("ncr53c8xx: reallocating base2 (Wacky IBM)"); base_2 = (base_2 & 0x00FFFFFF) | 0x01000000; pci_write_config_dword(pdev, PCI_BASE_ADDRESS_2, base_2); } } #endif #endif /* __powerpc__ */ #ifdef __sparc__ /* * Severall fix-ups for sparc. * * Should not be performed by the driver, but how can OBP know * each and every PCI card, if they don't use Fcode? */ base = __pa(base); base_2 = __pa(base_2); if (!(command & PCI_COMMAND_MASTER)) { if (initverbose >= 2) printk("ncr53c8xx: setting PCI_COMMAND_MASTER bit (fixup)\n"); command |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, command); pci_read_config_word(pdev, PCI_COMMAND, &command); } if ((chip->features & FE_WRIE) && !(command & PCI_COMMAND_INVALIDATE)) { if (initverbose >= 2) printk("ncr53c8xx: setting PCI_COMMAND_INVALIDATE bit (fixup)\n"); command |= PCI_COMMAND_INVALIDATE; pci_write_config_word(pdev, PCI_COMMAND, command); pci_read_config_word(pdev, PCI_COMMAND, &command); } if ((chip->features & FE_CLSE) && !cache_line_size) { /* PCI_CACHE_LINE_SIZE value is in 32-bit words. */ cache_line_size = 64 / sizeof(u_int32); if (initverbose >= 2) printk("ncr53c8xx: setting PCI_CACHE_LINE_SIZE to %d (fixup)\n", cache_line_size); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, cache_line_size); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size); } if (!latency_timer) { latency_timer = 128; if (initverbose >= 2) printk("ncr53c8xx: setting PCI_LATENCY_TIMER to %d bus clocks (fixup)\n", latency_timer); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, latency_timer); pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer); } #endif /* __sparc__ */ /* * Check availability of IO space, memory space and master capability. */ if (command & PCI_COMMAND_IO) io_port &= PCI_BASE_ADDRESS_IO_MASK; else io_port = 0; if (command & PCI_COMMAND_MEMORY) base &= PCI_BASE_ADDRESS_MEM_MASK; else base = 0; if (!io_port && !base) { printk("ncr53c8xx: not initializing, both I/O and memory mappings disabled\n"); return -1; } base_2 &= PCI_BASE_ADDRESS_MEM_MASK; if (io_port && check_region (io_port, 128)) { #ifdef __sparc__ printk("ncr53c8xx: IO region 0x%lx to 0x%lx is in use\n", io_port, (io_port + 127)); #else printk("ncr53c8xx: IO region 0x%x to 0x%x is in use\n", (int) io_port, (int) (io_port + 127)); #endif return -1; } if (!(command & PCI_COMMAND_MASTER)) { printk("ncr53c8xx: not initializing, BUS MASTERING was disabled\n"); return -1; } /* * Fix some features according to driver setup. */ if (!(driver_setup.special_features & 1)) chip->features &= ~FE_SPECIAL_SET; else { if (driver_setup.special_features & 2) chip->features &= ~FE_WRIE; } if (driver_setup.ultra_scsi < 2 && (chip->features & FE_ULTRA2)) { chip->features |= FE_ULTRA; chip->features &= ~FE_ULTRA2; } if (driver_setup.ultra_scsi < 1) chip->features &= ~FE_ULTRA; if (!driver_setup.max_wide) chip->features &= ~FE_WIDE; #ifdef SCSI_NCR_PCI_FIX_UP_SUPPORT /* * Try to fix up PCI config according to wished features. */ #if defined(__i386__) && !defined(MODULE) if ((driver_setup.pci_fix_up & 1) && (chip->features & FE_CLSE) && cache_line_size == 0) { #if LINUX_VERSION_CODE < LinuxVersionCode(2,1,75) extern char x86; switch(x86) { #else switch(boot_cpu_data.x86) { #endif case 4: cache_line_size = 4; break; case 6: case 5: cache_line_size = 8; break; } if (cache_line_size) (void) pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, cache_line_size); if (initverbose) printk("ncr53c8xx: setting PCI_CACHE_LINE_SIZE to %d (fix-up).\n", cache_line_size); } if ((driver_setup.pci_fix_up & 2) && cache_line_size && (chip->features & FE_WRIE) && !(command & PCI_COMMAND_INVALIDATE)) { command |= PCI_COMMAND_INVALIDATE; (void) pci_write_config_word(pdev, PCI_COMMAND, command); if (initverbose) printk("ncr53c8xx: setting PCI_COMMAND_INVALIDATE bit (fix-up).\n"); } #endif /* * Fix up for old chips that support READ LINE but not CACHE LINE SIZE. * - If CACHE LINE SIZE is unknown, set burst max to 32 bytes = 8 dwords * and donnot enable READ LINE. * - Otherwise set it to the CACHE LINE SIZE (power of 2 assumed). */ if (!(chip->features & FE_CLSE)) { int burst_max = chip->burst_max; if (cache_line_size == 0) { chip->features &= ~FE_ERL; if (burst_max > 3) burst_max = 3; } else { while (cache_line_size < (1 << burst_max)) --burst_max; } chip->burst_max = burst_max; } /* * Tune PCI LATENCY TIMER according to burst max length transfer. * (latency timer >= burst length + 6, we add 10 to be quite sure) * If current value is zero, the device has probably been configured * for no bursting due to some broken hardware. */ if (latency_timer == 0 && chip->burst_max) printk("ncr53c8xx: PCI_LATENCY_TIMER=0, bursting should'nt be allowed.\n"); if ((driver_setup.pci_fix_up & 4) && chip->burst_max) { uchar lt = (1 << chip->burst_max) + 6 + 10; if (latency_timer < lt) { latency_timer = lt; if (initverbose) printk("ncr53c8xx: setting PCI_LATENCY_TIMER to %d bus clocks (fix-up).\n", latency_timer); (void) pci_write_config_byte(pdev, PCI_LATENCY_TIMER, latency_timer); } } /* * Fix up for recent chips that support CACHE LINE SIZE. * If PCI config space is not OK, remove features that shall not be * used by the chip. No need to trigger possible chip bugs. */ if ((chip->features & FE_CLSE) && cache_line_size == 0) { chip->features &= ~FE_CACHE_SET; printk("ncr53c8xx: PCI_CACHE_LINE_SIZE not set, features based on CACHE LINE SIZE not used.\n"); } if ((chip->features & FE_WRIE) && !(command & PCI_COMMAND_INVALIDATE)) { chip->features &= ~FE_WRIE; printk("ncr53c8xx: PCI_COMMAND_INVALIDATE not set, WRITE AND INVALIDATE not used\n"); } #endif /* SCSI_NCR_PCI_FIX_UP_SUPPORT */ /* initialise ncr_device structure with items required by ncr_attach */ device->slot.bus = PciBusNumber(pdev); device->slot.device_fn = PciDeviceFn(pdev); device->slot.base = base; device->slot.base_2 = base_2; device->slot.io_port = io_port; device->slot.irq = irq; device->attach_done = 0; return 0; } /* ** Linux select queue depths function */ #define DEF_DEPTH (driver_setup.default_tags) #define ALL_TARGETS -2 #define NO_TARGET -1 #define ALL_LUNS -2 #define NO_LUN -1 static int device_queue_depth(ncb_p np, int target, int lun) { int c, h, t, u, v; char *p = driver_setup.tag_ctrl; char *ep; h = -1; t = NO_TARGET; u = NO_LUN; while ((c = *p++) != 0) { v = simple_strtoul(p, &ep, 0); switch(c) { case '/': ++h; t = ALL_TARGETS; u = ALL_LUNS; break; case 't': if (t != target) t = (target == v) ? v : NO_TARGET; u = ALL_LUNS; break; case 'u': if (u != lun) u = (lun == v) ? v : NO_LUN; break; case 'q': if (h == np->unit && (t == ALL_TARGETS || t == target) && (u == ALL_LUNS || u == lun)) return v; break; case '-': t = ALL_TARGETS; u = ALL_LUNS; break; default: break; } p = ep; } return DEF_DEPTH; } static void ncr53c8xx_select_queue_depths(struct Scsi_Host *host, struct scsi_device *devlist) { struct scsi_device *device; for (device = devlist; device; device = device->next) { ncb_p np; tcb_p tp; lcb_p lp; int numtags; if (device->host != host) continue; np = ((struct host_data *) host->hostdata)->ncb; tp = &np->target[device->id]; lp = tp->lp[device->lun]; /* ** Select queue depth from driver setup. ** Donnot use more than configured by user. ** Use at least 2. ** Donnot use more than our maximum. */ numtags = device_queue_depth(np, device->id, device->lun); if (numtags > tp->usrtags) numtags = tp->usrtags; if (!device->tagged_supported) numtags = 1; device->queue_depth = numtags; if (device->queue_depth < 2) device->queue_depth = 2; if (device->queue_depth > MAX_TAGS) device->queue_depth = MAX_TAGS; /* ** Since the queue depth is not tunable under Linux, ** we need to know this value in order not to ** announce stupid things to user. */ if (lp) { lp->numtags = lp->maxtags = numtags; lp->scdev_depth = device->queue_depth; } ncr_setup_tags (np, device->id, device->lun); #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", np->unit, device->id, device->lun, device->queue_depth); #endif } } /* ** Linux entry point for info() function */ const char *ncr53c8xx_info (struct Scsi_Host *host) { return SCSI_NCR_DRIVER_NAME; } /* ** Linux entry point of queuecommand() function */ int ncr53c8xx_queue_command (Scsi_Cmnd *cmd, void (* done)(Scsi_Cmnd *)) { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; unsigned long flags; int sts; #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx_queue_command\n"); #endif cmd->scsi_done = done; cmd->host_scribble = NULL; NCR_LOCK_NCB(np, flags); if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { cmd->result = ScsiResult(sts, 0); #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx : command not queued - result=%d\n", sts); #endif } #ifdef DEBUG_NCR53C8XX else printk("ncr53c8xx : command successfully queued\n"); #endif NCR_UNLOCK_NCB(np, flags); if (sts != DID_OK) done(cmd); return sts; } /* ** Linux entry point of the interrupt handler. ** Since linux versions > 1.3.70, we trust the kernel for ** passing the internal host descriptor as 'dev_id'. ** Otherwise, we scan the host list and call the interrupt ** routine for each host that uses this IRQ. ** ** Exported for certain MIPS machines with a dedicated NCR interrupt. */ void ncr53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) { unsigned long flags; ncb_p np = (ncb_p) dev_id; Scsi_Cmnd *done_list; #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx : interrupt received\n"); #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); NCR_LOCK_NCB(np, flags); ncr_exception(np); done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); if (done_list) { NCR_LOCK_SCSI_DONE(np, flags); ncr_flush_done_cmds(done_list); NCR_UNLOCK_SCSI_DONE(np, flags); } } /* ** Linux entry point of the timer handler */ static void ncr53c8xx_timeout(unsigned long npref) { ncb_p np = (ncb_p) npref; unsigned long flags; Scsi_Cmnd *done_list; NCR_LOCK_NCB(np, flags); ncr_timeout((ncb_p) np); done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); if (done_list) { NCR_LOCK_SCSI_DONE(np, flags); ncr_flush_done_cmds(done_list); NCR_UNLOCK_SCSI_DONE(np, flags); } } /* ** Linux entry point of reset() function */ #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS int ncr53c8xx_reset(Scsi_Cmnd *cmd, unsigned int reset_flags) #else int ncr53c8xx_reset(Scsi_Cmnd *cmd) #endif { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; int sts; unsigned long flags; Scsi_Cmnd *done_list; #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS printk("ncr53c8xx_reset: pid=%lu reset_flags=%x serial_number=%ld serial_number_at_timeout=%ld\n", cmd->pid, reset_flags, cmd->serial_number, cmd->serial_number_at_timeout); #else printk("ncr53c8xx_reset: command pid %lu\n", cmd->pid); #endif NCR_LOCK_NCB(np, flags); /* * We have to just ignore reset requests in some situations. */ #if defined SCSI_RESET_NOT_RUNNING if (cmd->serial_number != cmd->serial_number_at_timeout) { sts = SCSI_RESET_NOT_RUNNING; goto out; } #endif /* * If the mid-level driver told us reset is synchronous, it seems * that we must call the done() callback for the involved command, * even if this command was not queued to the low-level driver, * before returning SCSI_RESET_SUCCESS. */ #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS sts = ncr_reset_bus(np, cmd, (reset_flags & (SCSI_RESET_SYNCHRONOUS | SCSI_RESET_ASYNCHRONOUS)) == SCSI_RESET_SYNCHRONOUS); #else sts = ncr_reset_bus(np, cmd, 0); #endif /* * Since we always reset the controller, when we return success, * we add this information to the return code. */ #if defined SCSI_RESET_HOST_RESET if (sts == SCSI_RESET_SUCCESS) sts |= SCSI_RESET_HOST_RESET; #endif out: done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); ncr_flush_done_cmds(done_list); return sts; } /* ** Linux entry point of abort() function */ int ncr53c8xx_abort(Scsi_Cmnd *cmd) { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; int sts; unsigned long flags; Scsi_Cmnd *done_list; #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS printk("ncr53c8xx_abort: pid=%lu serial_number=%ld serial_number_at_timeout=%ld\n", cmd->pid, cmd->serial_number, cmd->serial_number_at_timeout); #else printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid); #endif NCR_LOCK_NCB(np, flags); #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS /* * We have to just ignore abort requests in some situations. */ if (cmd->serial_number != cmd->serial_number_at_timeout) { sts = SCSI_ABORT_NOT_RUNNING; goto out; } #endif sts = ncr_abort_command(np, cmd); out: done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); ncr_flush_done_cmds(done_list); return sts; } #ifdef MODULE int ncr53c8xx_release(struct Scsi_Host *host) { #ifdef DEBUG_NCR53C8XX printk("ncr53c8xx : release\n"); #endif ncr_detach(((struct host_data *) host->hostdata)->ncb); return 1; } #endif /* ** Scsi command waiting list management. ** ** It may happen that we cannot insert a scsi command into the start queue, ** in the following circumstances. ** Too few preallocated ccb(s), ** maxtags < cmd_per_lun of the Linux host control block, ** etc... ** Such scsi commands are inserted into a waiting list. ** When a scsi command complete, we try to requeue the commands of the ** waiting list. */ #define next_wcmd host_scribble static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd) { Scsi_Cmnd *wcmd; #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); #endif cmd->next_wcmd = 0; if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; else { while ((wcmd->next_wcmd) != 0) wcmd = (Scsi_Cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = (char *) cmd; } } static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd) { Scsi_Cmnd **pcmd = &np->waiting_list; while (*pcmd) { if (cmd == *pcmd) { if (to_remove) { *pcmd = (Scsi_Cmnd *) cmd->next_wcmd; cmd->next_wcmd = 0; } #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd); #endif return cmd; } pcmd = (Scsi_Cmnd **) &(*pcmd)->next_wcmd; } return 0; } static void process_waiting_list(ncb_p np, int sts) { Scsi_Cmnd *waiting_list, *wcmd; waiting_list = np->waiting_list; np->waiting_list = 0; #ifdef DEBUG_WAITING_LIST if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); #endif while ((wcmd = waiting_list) != 0) { waiting_list = (Scsi_Cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = 0; if (sts == DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); #endif sts = ncr_queue_command(np, wcmd); } if (sts != DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); #endif wcmd->result = ScsiResult(sts, 0); //flush_cache_all(); ncr_queue_done_cmd(np, wcmd); } } } #undef next_wcmd #ifdef SCSI_NCR_PROC_INFO_SUPPORT /*========================================================================= ** Proc file system stuff ** ** A read operation returns profile information. ** A write operation is a control command. ** The string is parsed in the driver code and the command is passed ** to the ncr_usercmd() function. **========================================================================= */ #ifdef SCSI_NCR_USER_COMMAND_SUPPORT #define is_digit(c) ((c) >= '0' && (c) <= '9') #define digit_to_bin(c) ((c) - '0') #define is_space(c) ((c) == ' ' || (c) == '\t') static int skip_spaces(char *ptr, int len) { int cnt, c; for (cnt = len; cnt > 0 && (c = *ptr++) && is_space(c); cnt--); return (len - cnt); } static int get_int_arg(char *ptr, int len, u_long *pv) { int cnt, c; u_long v; for (v = 0, cnt = len; cnt > 0 && (c = *ptr++) && is_digit(c); cnt--) { v = (v * 10) + digit_to_bin(c); } if (pv) *pv = v; return (len - cnt); } static int is_keyword(char *ptr, int len, char *verb) { int verb_len = strlen(verb); if (len >= strlen(verb) && !memcmp(verb, ptr, verb_len)) return verb_len; else return 0; } #define SKIP_SPACES(min_spaces) \ if ((arg_len = skip_spaces(ptr, len)) < (min_spaces)) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; #define GET_INT_ARG(v) \ if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; /* ** Parse a control command */ static int ncr_user_command(ncb_p np, char *buffer, int length) { char *ptr = buffer; int len = length; struct usrcmd *uc = &np->user; int arg_len; u_long target; bzero(uc, sizeof(*uc)); if (len > 0 && ptr[len-1] == '\n') --len; if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) uc->cmd = UC_SETSYNC; else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) uc->cmd = UC_SETTAGS; else if ((arg_len = is_keyword(ptr, len, "setorder")) != 0) uc->cmd = UC_SETORDER; else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) uc->cmd = UC_SETVERBOSE; else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) uc->cmd = UC_SETWIDE; else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) uc->cmd = UC_SETDEBUG; else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) uc->cmd = UC_SETFLAG; else if ((arg_len = is_keyword(ptr, len, "clearprof")) != 0) uc->cmd = UC_CLEARPROF; else arg_len = 0; #ifdef DEBUG_PROC_INFO printk("ncr_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); #endif if (!arg_len) return -EINVAL; ptr += arg_len; len -= arg_len; switch(uc->cmd) { case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: case UC_SETFLAG: SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "all")) != 0) { ptr += arg_len; len -= arg_len; uc->target = ~0; } else { GET_INT_ARG(target); uc->target = (1<cmd) { case UC_SETVERBOSE: case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: SKIP_SPACES(1); GET_INT_ARG(uc->data); #ifdef DEBUG_PROC_INFO printk("ncr_user_command: data=%ld\n", uc->data); #endif break; case UC_SETORDER: SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "simple"))) uc->data = M_SIMPLE_TAG; else if ((arg_len = is_keyword(ptr, len, "ordered"))) uc->data = M_ORDERED_TAG; else if ((arg_len = is_keyword(ptr, len, "default"))) uc->data = 0; else return -EINVAL; break; case UC_SETDEBUG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "alloc"))) uc->data |= DEBUG_ALLOC; else if ((arg_len = is_keyword(ptr, len, "phase"))) uc->data |= DEBUG_PHASE; else if ((arg_len = is_keyword(ptr, len, "queue"))) uc->data |= DEBUG_QUEUE; else if ((arg_len = is_keyword(ptr, len, "result"))) uc->data |= DEBUG_RESULT; else if ((arg_len = is_keyword(ptr, len, "scatter"))) uc->data |= DEBUG_SCATTER; else if ((arg_len = is_keyword(ptr, len, "script"))) uc->data |= DEBUG_SCRIPT; else if ((arg_len = is_keyword(ptr, len, "tiny"))) uc->data |= DEBUG_TINY; else if ((arg_len = is_keyword(ptr, len, "timing"))) uc->data |= DEBUG_TIMING; else if ((arg_len = is_keyword(ptr, len, "nego"))) uc->data |= DEBUG_NEGO; else if ((arg_len = is_keyword(ptr, len, "tags"))) uc->data |= DEBUG_TAGS; else return -EINVAL; ptr += arg_len; len -= arg_len; } #ifdef DEBUG_PROC_INFO printk("ncr_user_command: data=%ld\n", uc->data); #endif break; case UC_SETFLAG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "trace"))) uc->data |= UF_TRACE; else if ((arg_len = is_keyword(ptr, len, "no_disc"))) uc->data |= UF_NODISC; else return -EINVAL; ptr += arg_len; len -= arg_len; } break; default: break; } if (len) return -EINVAL; else { long flags; NCR_LOCK_NCB(np, flags); ncr_usercmd (np); NCR_UNLOCK_NCB(np, flags); } return length; } #endif /* SCSI_NCR_USER_COMMAND_SUPPORT */ #ifdef SCSI_NCR_USER_INFO_SUPPORT struct info_str { char *buffer; int length; int offset; int pos; }; static void copy_mem_info(struct info_str *info, char *data, int len) { if (info->pos + len > info->length) len = info->length - info->pos; if (info->pos + len < info->offset) { info->pos += len; return; } if (info->pos < info->offset) { data += (info->offset - info->pos); len -= (info->offset - info->pos); } if (len > 0) { memcpy(info->buffer + info->pos, data, len); info->pos += len; } } static int copy_info(struct info_str *info, char *fmt, ...) { va_list args; char buf[81]; int len; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); copy_mem_info(info, buf, len); return len; } /* ** Copy formatted profile information into the input buffer. */ #define to_ms(t) ((t) * 1000 / HZ) static int ncr_host_info(ncb_p np, char *ptr, off_t offset, int len) { struct info_str info; info.buffer = ptr; info.length = len; info.offset = offset; info.pos = 0; copy_info(&info, " Chip NCR53C%s, device id 0x%x, " "revision id 0x%x\n", np->chip_name, np->device_id, np->revision_id); copy_info(&info, " On PCI bus %d, device %d, function %d, " #ifdef __sparc__ "IRQ %s\n", #else "IRQ %d\n", #endif np->bus, (np->device_fn & 0xf8) >> 3, np->device_fn & 7, #ifdef __sparc__ __irq_itoa(np->irq)); #else (int) np->irq); #endif copy_info(&info, " Synchronous period factor %d, " "max commands per lun %d\n", (int) np->minsync, MAX_TAGS); if (driver_setup.debug || driver_setup.verbose > 1) { copy_info(&info, " Debug flags 0x%x, verbosity level %d\n", driver_setup.debug, driver_setup.verbose); } #ifdef SCSI_NCR_PROFILE_SUPPORT copy_info(&info, "Profiling information:\n"); copy_info(&info, " %-12s = %lu\n", "num_trans",np->profile.num_trans); copy_info(&info, " %-12s = %lu\n", "num_kbytes",np->profile.num_kbytes); copy_info(&info, " %-12s = %lu\n", "num_disc", np->profile.num_disc); copy_info(&info, " %-12s = %lu\n", "num_break",np->profile.num_break); copy_info(&info, " %-12s = %lu\n", "num_int", np->profile.num_int); copy_info(&info, " %-12s = %lu\n", "num_fly", np->profile.num_fly); copy_info(&info, " %-12s = %lu\n", "ms_setup", to_ms(np->profile.ms_setup)); copy_info(&info, " %-12s = %lu\n", "ms_data", to_ms(np->profile.ms_data)); copy_info(&info, " %-12s = %lu\n", "ms_disc", to_ms(np->profile.ms_disc)); copy_info(&info, " %-12s = %lu\n", "ms_post", to_ms(np->profile.ms_post)); #endif return info.pos > info.offset? info.pos - info.offset : 0; } #endif /* SCSI_NCR_USER_INFO_SUPPORT */ /* ** Entry point of the scsi proc fs of the driver. ** - func = 0 means read (returns profile data) ** - func = 1 means write (parse user control command) */ static int ncr53c8xx_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int func) { struct Scsi_Host *host; struct host_data *host_data; ncb_p ncb = 0; int retv; #ifdef DEBUG_PROC_INFO printk("ncr53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func); #endif for (host = first_host; host; host = host->next) { if (host->hostt == the_template && host->host_no == hostno) { host_data = (struct host_data *) host->hostdata; ncb = host_data->ncb; break; } } if (!ncb) return -EINVAL; if (func) { #ifdef SCSI_NCR_USER_COMMAND_SUPPORT retv = ncr_user_command(ncb, buffer, length); #else retv = -EINVAL; #endif } else { if (start) *start = buffer; #ifdef SCSI_NCR_USER_INFO_SUPPORT retv = ncr_host_info(ncb, buffer, offset, length); #else retv = -EINVAL; #endif } return retv; } /*========================================================================= ** End of proc file system stuff **========================================================================= */ #endif #ifdef SCSI_NCR_NVRAM_SUPPORT /* --------------------------------------------------------------------- ** ** Try reading Symbios format nvram ** ** --------------------------------------------------------------------- ** ** GPOI0 - data in/data out ** GPIO1 - clock ** ** return 0 if NVRAM data OK, 1 if NVRAM data not OK ** --------------------------------------------------------------------- */ #define SET_BIT 0 #define CLR_BIT 1 #define SET_CLK 2 #define CLR_CLK 3 static u_short nvram_read_data(ncr_slot *np, u_char *data, int len, u_char *gpreg, u_char *gpcntl); static void nvram_start(ncr_slot *np, u_char *gpreg); static void nvram_write_byte(ncr_slot *np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl); static void nvram_read_byte(ncr_slot *np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl); static void nvram_readAck(ncr_slot *np, u_char *read_bit, u_char *gpreg, u_char *gpcntl); static void nvram_writeAck(ncr_slot *np, u_char write_bit, u_char *gpreg, u_char *gpcntl); static void nvram_doBit(ncr_slot *np, u_char *read_bit, u_char write_bit, u_char *gpreg); static void nvram_stop(ncr_slot *np, u_char *gpreg); static void nvram_setBit(ncr_slot *np, u_char write_bit, u_char *gpreg, int bit_mode); static int __init ncr_get_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram) { static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_short csum; u_char ack_data; int retv = 1; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); gpcntl = old_gpcntl & 0xfc; /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ OUTB (nc_gpreg, old_gpreg); OUTB (nc_gpcntl, gpcntl); /* this is to set NVRAM into a known state with GPIO0/1 both low */ gpreg = old_gpreg; nvram_setBit(np, 0, &gpreg, CLR_CLK); nvram_setBit(np, 0, &gpreg, CLR_BIT); /* now set NVRAM inactive with GPIO0/1 both high */ nvram_stop(np, &gpreg); /* activate NVRAM */ nvram_start(np, &gpreg); /* write device code and random address MSB */ nvram_write_byte(np, &ack_data, 0xa0 | ((SYMBIOS_NVRAM_ADDRESS >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* write random address LSB */ nvram_write_byte(np, &ack_data, (SYMBIOS_NVRAM_ADDRESS & 0x7f) << 1, &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* regenerate START state to set up for reading */ nvram_start(np, &gpreg); /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ nvram_write_byte(np, &ack_data, 0xa1 | ((SYMBIOS_NVRAM_ADDRESS >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* now set up GPIO0 for inputting data */ gpcntl |= 0x01; OUTB (nc_gpcntl, gpcntl); /* input all active data - only part of total NVRAM */ csum = nvram_read_data(np, (u_char *) nvram, sizeof(*nvram), &gpreg, &gpcntl); /* finally put NVRAM back in inactive mode */ gpcntl &= 0xfe; OUTB (nc_gpcntl, gpcntl); nvram_stop(np, &gpreg); #ifdef SCSI_NCR_DEBUG_NVRAM printk("ncr53c8xx: NvRAM type=%x trailer=%x %x %x %x %x %x byte_count=%d/%d checksum=%x/%x\n", nvram->type, nvram->trailer[0], nvram->trailer[1], nvram->trailer[2], nvram->trailer[3], nvram->trailer[4], nvram->trailer[5], nvram->byte_count, sizeof(*nvram) - 12, nvram->checksum, csum); #endif /* check valid NVRAM signature, verify byte count and checksum */ if (nvram->type == 0 && !memcmp(nvram->trailer, Symbios_trailer, 6) && nvram->byte_count == sizeof(*nvram) - 12 && csum == nvram->checksum) retv = 0; out: /* return GPIO0/1 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } /* * Read Symbios NvRAM data and compute checksum. */ static u_short __init nvram_read_data(ncr_slot *np, u_char *data, int len, u_char *gpreg, u_char *gpcntl) { int x; u_short csum; for (x = 0; x < len; x++) nvram_read_byte(np, &data[x], (x == (len - 1)), gpreg, gpcntl); for (x = 6, csum = 0; x < len - 6; x++) csum += data[x]; return csum; } /* * Send START condition to NVRAM to wake it up. */ static void __init nvram_start(ncr_slot *np, u_char *gpreg) { nvram_setBit(np, 1, gpreg, SET_BIT); nvram_setBit(np, 0, gpreg, SET_CLK); nvram_setBit(np, 0, gpreg, CLR_BIT); nvram_setBit(np, 0, gpreg, CLR_CLK); } /* * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, * GPIO0 must already be set as an output */ static void __init nvram_write_byte(ncr_slot *np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl) { int x; for (x = 0; x < 8; x++) nvram_doBit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); nvram_readAck(np, ack_data, gpreg, gpcntl); } /* * READ a byte from the NVRAM and then send an ACK to say we have got it, * GPIO0 must already be set as an input */ static void __init nvram_read_byte(ncr_slot *np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl) { int x; u_char read_bit; *read_data = 0; for (x = 0; x < 8; x++) { nvram_doBit(np, &read_bit, 1, gpreg); *read_data |= ((read_bit & 0x01) << (7 - x)); } nvram_writeAck(np, ack_data, gpreg, gpcntl); } /* * Output an ACK to the NVRAM after reading, * change GPIO0 to output and when done back to an input */ static void __init nvram_writeAck(ncr_slot *np, u_char write_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl & 0xfe); nvram_doBit(np, 0, write_bit, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Input an ACK from NVRAM after writing, * change GPIO0 to input and when done back to an output */ static void __init nvram_readAck(ncr_slot *np, u_char *read_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl | 0x01); nvram_doBit(np, read_bit, 1, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Read or write a bit to the NVRAM, * read if GPIO0 input else write if GPIO0 output */ static void __init nvram_doBit(ncr_slot *np, u_char *read_bit, u_char write_bit, u_char *gpreg) { nvram_setBit(np, write_bit, gpreg, SET_BIT); nvram_setBit(np, 0, gpreg, SET_CLK); if (read_bit) *read_bit = INB (nc_gpreg); nvram_setBit(np, 0, gpreg, CLR_CLK); nvram_setBit(np, 0, gpreg, CLR_BIT); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! */ static void __init nvram_stop(ncr_slot *np, u_char *gpreg) { nvram_setBit(np, 0, gpreg, SET_CLK); nvram_setBit(np, 1, gpreg, SET_BIT); } /* * Set/clear data/clock bit in GPIO0 */ static void __init nvram_setBit(ncr_slot *np, u_char write_bit, u_char *gpreg, int bit_mode) { UDELAY (5); switch (bit_mode){ case SET_BIT: *gpreg |= write_bit; break; case CLR_BIT: *gpreg &= 0xfe; break; case SET_CLK: *gpreg |= 0x02; break; case CLR_CLK: *gpreg &= 0xfd; break; } OUTB (nc_gpreg, *gpreg); UDELAY (5); } #undef SET_BIT 0 #undef CLR_BIT 1 #undef SET_CLK 2 #undef CLR_CLK 3 /* --------------------------------------------------------------------- ** ** Try reading Tekram format nvram ** ** --------------------------------------------------------------------- ** ** GPOI0 - data in ** GPIO1 - data out ** GPIO2 - clock ** GPIO4 - chip select ** ** return 0 if NVRAM data OK, 1 if NVRAM data not OK ** --------------------------------------------------------------------- */ static u_short Tnvram_read_data(ncr_slot *np, u_short *data, int len, u_char *gpreg); static void Tnvram_Send_Command(ncr_slot *np, u_short write_data, u_char *read_bit, u_char *gpreg); static void Tnvram_Read_Word(ncr_slot *np, u_short *nvram_data, u_char *gpreg); static void Tnvram_Read_Bit(ncr_slot *np, u_char *read_bit, u_char *gpreg); static void Tnvram_Write_Bit(ncr_slot *np, u_char write_bit, u_char *gpreg); static void Tnvram_Stop(ncr_slot *np, u_char *gpreg); static void Tnvram_Clk(ncr_slot *np, u_char *gpreg); static int __init ncr_get_Tekram_nvram (ncr_slot *np, Tekram_nvram *nvram) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_short csum; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 1/2/4 out */ gpreg = old_gpreg & 0xe9; OUTB (nc_gpreg, gpreg); gpcntl = (old_gpcntl & 0xe9) | 0x09; OUTB (nc_gpcntl, gpcntl); /* input all of NVRAM, 64 words */ csum = Tnvram_read_data(np, (u_short *) nvram, sizeof(*nvram) / sizeof(short), &gpreg); /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); /* check data valid */ if (csum != 0x1234) return 1; return 0; } /* * Read Tekram NvRAM data and compute checksum. */ static u_short __init Tnvram_read_data(ncr_slot *np, u_short *data, int len, u_char *gpreg) { u_char read_bit; u_short csum; int x; for (x = 0, csum = 0; x < len; x++) { /* output read command and address */ Tnvram_Send_Command(np, 0x180 | x, &read_bit, gpreg); if (read_bit & 0x01) return 0; /* Force bad checksum */ Tnvram_Read_Word(np, &data[x], gpreg); csum += data[x]; Tnvram_Stop(np, gpreg); } return csum; } /* * Send read command and address to NVRAM */ static void __init Tnvram_Send_Command(ncr_slot *np, u_short write_data, u_char *read_bit, u_char *gpreg) { int x; /* send 9 bits, start bit (1), command (2), address (6) */ for (x = 0; x < 9; x++) Tnvram_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); *read_bit = INB (nc_gpreg); } /* * READ a byte from the NVRAM */ static void __init Tnvram_Read_Word(ncr_slot *np, u_short *nvram_data, u_char *gpreg) { int x; u_char read_bit; *nvram_data = 0; for (x = 0; x < 16; x++) { Tnvram_Read_Bit(np, &read_bit, gpreg); if (read_bit & 0x01) *nvram_data |= (0x01 << (15 - x)); else *nvram_data &= ~(0x01 << (15 - x)); } } /* * Read bit from NVRAM */ static void __init Tnvram_Read_Bit(ncr_slot *np, u_char *read_bit, u_char *gpreg) { UDELAY (2); Tnvram_Clk(np, gpreg); *read_bit = INB (nc_gpreg); } /* * Write bit to GPIO0 */ static void __init Tnvram_Write_Bit(ncr_slot *np, u_char write_bit, u_char *gpreg) { if (write_bit & 0x01) *gpreg |= 0x02; else *gpreg &= 0xfd; *gpreg |= 0x10; OUTB (nc_gpreg, *gpreg); UDELAY (2); Tnvram_Clk(np, gpreg); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! */ static void __init Tnvram_Stop(ncr_slot *np, u_char *gpreg) { *gpreg &= 0xef; OUTB (nc_gpreg, *gpreg); UDELAY (2); Tnvram_Clk(np, gpreg); } /* * Pulse clock bit in GPIO0 */ static void __init Tnvram_Clk(ncr_slot *np, u_char *gpreg) { OUTB (nc_gpreg, *gpreg | 0x04); UDELAY (2); OUTB (nc_gpreg, *gpreg); } #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Module stuff */ #ifdef MODULE Scsi_Host_Template driver_template = NCR53C8XX; #include "scsi_module.c" #endif