/****************************************************************************** ** High Performance device driver for the Symbios 53C896 controller. ** ** Copyright (C) 1998-1999 Gerard Roudier ** ** This driver also supports all the Symbios 53C8XX controller family, ** except 53C810 revisions < 16, 53C825 revisions < 16 and all ** revisions of 53C815 controllers. ** ** This driver is based on the Linux port of the FreeBSD ncr driver. ** ** Copyright (C) 1994 Wolfgang Stanglmeier ** **----------------------------------------------------------------------------- ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** **----------------------------------------------------------------------------- ** ** The Linux port of the FreeBSD ncr driver has been achieved in ** november 1995 by: ** ** Gerard Roudier ** ** Being given that this driver originates from the FreeBSD version, and ** in order to keep synergy on both, any suggested enhancements and corrections ** received on Linux are automatically a potential candidate for the FreeBSD ** version. ** ** The original driver has been written for 386bsd and FreeBSD by ** Wolfgang Stanglmeier ** Stefan Esser ** **----------------------------------------------------------------------------- ** ** Major contributions: ** -------------------- ** ** NVRAM detection and reading. ** Copyright (C) 1997 Richard Waltham ** ******************************************************************************* */ /* ** Sep 10 1999, sym53c8xx 1.5e ** ** Supported SCSI features: ** Synchronous data transfers ** Wide16 SCSI BUS ** Disconnection/Reselection ** Tagged command queuing ** SCSI Parity checking ** ** Supported NCR/SYMBIOS chips: ** 53C810A (8 bits, Fast 10, no rom BIOS) ** 53C825A (Wide, Fast 10, on-board rom BIOS) ** 53C860 (8 bits, Fast 20, no rom BIOS) ** 53C875 (Wide, Fast 20, on-board rom BIOS) ** 53C876 (Wide, Fast 20 Dual, on-board rom BIOS) ** 53C895 (Wide, Fast 40, on-board rom BIOS) ** 53C895A (Wide, Fast 40, on-board rom BIOS) ** 53C896 (Wide, Fast 40 Dual, on-board rom BIOS) ** ** Other features: ** Memory mapped IO ** Module ** Shared IRQ */ /* ** Name and version of the driver */ #define SCSI_NCR_DRIVER_NAME "sym53c8xx - version 1.5e" /* #define DEBUG_896R1 */ #define SCSI_NCR_OPTIMIZE_896 /* #define SCSI_NCR_OPTIMIZE_896_1 */ #define SCSI_NCR_DEBUG_FLAGS (0) #define NAME53C "sym53c" #define NAME53C8XX "sym53c8xx" /*========================================================== ** ** Include files ** **========================================================== */ #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) #ifdef MODULE #include #endif #include #include #include #if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,17) #include #elif LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,35) #include #endif #ifndef __init #define __init #endif #ifndef __initdata #define __initdata #endif #if LINUX_VERSION_CODE <= LinuxVersionCode(2,1,92) #include #endif #include "scsi.h" #include "hosts.h" #include "constants.h" #include "sd.h" #include /* ** Define BITS_PER_LONG for earlier linux versions. */ #ifndef BITS_PER_LONG #if (~0UL) == 0xffffffffUL #define BITS_PER_LONG 32 #else #define BITS_PER_LONG 64 #endif #endif /* ** Define the BSD style u_int32 and u_int64 type. ** Are in fact u_int32_t and u_int64_t :-) */ typedef u32 u_int32; typedef u64 u_int64; #include "sym53c8xx.h" /*========================================================== ** ** A la VMS/CAM-3 queue management. ** Implemented from linux list management. ** **========================================================== */ typedef struct xpt_quehead { struct xpt_quehead *flink; /* Forward pointer */ struct xpt_quehead *blink; /* Backward pointer */ } XPT_QUEHEAD; #define xpt_que_init(ptr) do { \ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ } while (0) static inline void __xpt_que_add(struct xpt_quehead * new, struct xpt_quehead * blink, struct xpt_quehead * flink) { flink->blink = new; new->flink = flink; new->blink = blink; blink->flink = new; } static inline void __xpt_que_del(struct xpt_quehead * blink, struct xpt_quehead * flink) { flink->blink = blink; blink->flink = flink; } static inline int xpt_que_empty(struct xpt_quehead *head) { return head->flink == head; } static inline void xpt_que_splice(struct xpt_quehead *list, struct xpt_quehead *head) { struct xpt_quehead *first = list->flink; if (first != list) { struct xpt_quehead *last = list->blink; struct xpt_quehead *at = head->flink; first->blink = head; head->flink = first; last->flink = at; at->blink = last; } } #define xpt_que_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) #define xpt_insque(new, pos) __xpt_que_add(new, pos, (pos)->flink) #define xpt_remque(el) __xpt_que_del((el)->blink, (el)->flink) #define xpt_insque_head(new, head) __xpt_que_add(new, head, (head)->flink) static inline struct xpt_quehead *xpt_remque_head(struct xpt_quehead *head) { struct xpt_quehead *elem = head->flink; if (elem != head) __xpt_que_del(head, elem->flink); else elem = 0; return elem; } #define xpt_insque_tail(new, head) __xpt_que_add(new, (head)->blink, head) static inline struct xpt_quehead *xpt_remque_tail(struct xpt_quehead *head) { struct xpt_quehead *elem = head->blink; if (elem != head) __xpt_que_del(elem->blink, head); else elem = 0; return elem; } /*========================================================== ** ** On x86 architecture, write buffers management does ** not reorder writes to memory. So, using compiler ** optimization barriers is enough to guarantee some ** ordering when the CPU is writing data accessed by ** the NCR. ** On Alpha architecture, explicit memory barriers have ** to be used. ** Other architectures are defaulted to mb() macro if ** defined, otherwise use compiler barrier. ** **========================================================== */ #if defined(__i386__) #define MEMORY_BARRIER() barrier() #elif defined(__alpha__) #define MEMORY_BARRIER() mb() #else # ifdef mb # define MEMORY_BARRIER() mb() # else # define MEMORY_BARRIER() barrier() # endif #endif /*========================================================== ** ** Configuration and Debugging ** **========================================================== */ /* ** SCSI address of this device. ** The boot routines should have set it. ** If not, use this. */ #ifndef SCSI_NCR_MYADDR #define SCSI_NCR_MYADDR (7) #endif /* ** The maximum number of tags per logic unit. ** Used only for devices that support tags. */ #ifndef SCSI_NCR_MAX_TAGS #define SCSI_NCR_MAX_TAGS (8) #endif /* ** TAGS are actually unlimited (256 tags/lun). ** But Linux only supports 255. :) */ #if SCSI_NCR_MAX_TAGS > 255 #define MAX_TAGS 255 #else #define MAX_TAGS SCSI_NCR_MAX_TAGS #endif /* ** Since the ncr chips only have a 8 bit ALU, we try to be clever ** about offset calculation in the TASK TABLE per LUN that is an ** array of DWORDS = 4 bytes. */ #if MAX_TAGS > (512/4) #define MAX_TASKS (1024/4) #elif MAX_TAGS > (256/4) #define MAX_TASKS (512/4) #else #define MAX_TASKS (256/4) #endif /* ** This one means 'NO TAG for this job' */ #define NO_TAG (256) /* ** Number of targets supported by the driver. ** n permits target numbers 0..n-1. ** Default is 16, meaning targets #0..#15. ** #7 .. is myself. */ #ifdef SCSI_NCR_MAX_TARGET #define MAX_TARGET (SCSI_NCR_MAX_TARGET) #else #define MAX_TARGET (16) #endif /* ** Number of logic units supported by the driver. ** n enables logic unit numbers 0..n-1. ** The common SCSI devices require only ** one lun, so take 1 as the default. */ #ifdef SCSI_NCR_MAX_LUN #define MAX_LUN 64 #else #define MAX_LUN (1) #endif /* ** Asynchronous pre-scaler (ns). Shall be 40 for ** the SCSI timings to be compliant. */ #ifndef SCSI_NCR_MIN_ASYNC #define SCSI_NCR_MIN_ASYNC (40) #endif /* ** The maximum number of jobs scheduled for starting. ** We allocate 4 entries more than the value we announce ** to the SCSI upper layer. Guess why ! :-) */ #ifdef SCSI_NCR_CAN_QUEUE #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) #else #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) #endif /* ** We donnot want to allocate more than 1 PAGE for the ** the start queue and the done queue. We hard-code entry ** size to 8 in order to let cpp do the checking. ** Allows 512-4=508 pending IOs for i386 but Linux seems for ** now not able to provide the driver with this amount of IOs. */ #if MAX_START > PAGE_SIZE/8 #undef MAX_START #define MAX_START (PAGE_SIZE/8) #endif /* ** The maximum number of segments a transfer is split into. ** We support up to 127 segments for both read and write. */ #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) #define SCR_SG_SIZE (2) /* ** Io mapped or memory mapped. */ #if defined(SCSI_NCR_IOMAPPED) || defined(SCSI_NCR_PCI_MEM_NOT_SUPPORTED) #define NCR_IOMAPPED #endif /* ** other */ #define NCR_SNOOP_TIMEOUT (1000000) /*========================================================== ** ** Miscallaneous BSDish defines. ** **========================================================== */ #define u_char unsigned char #define u_short unsigned short #define u_int unsigned int #define u_long unsigned long #ifndef bcopy #define bcopy(s, d, n) memcpy((d), (s), (n)) #endif #ifndef bzero #define bzero(d, n) memset((d), 0, (n)) #endif #ifndef offsetof #define offsetof(t, m) ((size_t) (&((t *)0)->m)) #endif /*========================================================== ** ** Debugging tags ** **========================================================== */ #define DEBUG_ALLOC (0x0001) #define DEBUG_PHASE (0x0002) #define DEBUG_QUEUE (0x0008) #define DEBUG_RESULT (0x0010) #define DEBUG_POINTER (0x0020) #define DEBUG_SCRIPT (0x0040) #define DEBUG_TINY (0x0080) #define DEBUG_TIMING (0x0100) #define DEBUG_NEGO (0x0200) #define DEBUG_TAGS (0x0400) /* ** Enable/Disable debug messages. ** Can be changed at runtime too. */ #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; #define DEBUG_FLAGS ncr_debug #else #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS #endif /* ** SMP threading. ** ** Assuming that SMP systems are generally high end systems and may ** use several SCSI adapters, we are using one lock per controller ** instead of some global one. For the moment (linux-2.1.95), driver's ** entry points are called with the 'io_request_lock' lock held, so: ** - We are uselessly loosing a couple of micro-seconds to lock the ** controller data structure. ** - But the driver is not broken by design for SMP and so can be ** more resistant to bugs or bad changes in the IO sub-system code. ** - A small advantage could be that the interrupt code is grained as ** wished (e.g.: threaded by controller). */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) spinlock_t sym53c8xx_lock; #define NCR_LOCK_DRIVER(flags) spin_lock_irqsave(&sym53c8xx_lock, flags) #define NCR_UNLOCK_DRIVER(flags) spin_unlock_irqrestore(&sym53c8xx_lock,flags) #define NCR_INIT_LOCK_NCB(np) spin_lock_init(&np->smp_lock); #define NCR_LOCK_NCB(np, flags) spin_lock_irqsave(&np->smp_lock, flags) #define NCR_UNLOCK_NCB(np, flags) spin_unlock_irqrestore(&np->smp_lock, flags) # if LINUX_VERSION_CODE < LinuxVersionCode(2,3,99) # define NCR_LOCK_SCSI_DONE(np, flags) \ spin_lock_irqsave(&io_request_lock, flags) # define NCR_UNLOCK_SCSI_DONE(np, flags) \ spin_unlock_irqrestore(&io_request_lock, flags) # else # define NCR_LOCK_SCSI_DONE(np, flags) do {;} while (0) # define NCR_UNLOCK_SCSI_DONE(np, flags) do {;} while (0) # endif #else #define NCR_LOCK_DRIVER(flags) do { save_flags(flags); cli(); } while (0) #define NCR_UNLOCK_DRIVER(flags) do { restore_flags(flags); } while (0) #define NCR_INIT_LOCK_NCB(np) do { } while (0) #define NCR_LOCK_NCB(np, flags) do { save_flags(flags); cli(); } while (0) #define NCR_UNLOCK_NCB(np, flags) do { restore_flags(flags); } while (0) #define NCR_LOCK_SCSI_DONE(np, flags) do {;} while (0) #define NCR_UNLOCK_SCSI_DONE(np, flags) do {;} while (0) #endif /* ** Address translation ** ** The driver has to provide bus memory addresses to ** the script processor. Because some architectures use ** different physical addressing scheme from the PCI BUS, ** we use virt_to_bus() instead of virt_to_phys(). */ #define vtobus(p) virt_to_bus(p) /* ** Memory mapped IO ** ** Since linux-2.1, we must use ioremap() to map the io memory space. ** iounmap() to unmap it. That allows portability. ** Linux 1.3.X and 2.0.X allow to remap physical pages addresses greater ** than the highest physical memory address to kernel virtual pages with ** vremap() / vfree(). That was not portable but worked with i386 ** architecture. */ #if LINUX_VERSION_CODE < LinuxVersionCode(2,1,0) #define ioremap vremap #define iounmap vfree #endif #ifdef __sparc__ # define ioremap(base, size) ((u_long) __va(base)) # define iounmap(vaddr) # define pcivtobus(p) ((p) & pci_dvma_mask) # define memcpy_to_pci(a, b, c) memcpy_toio((u_long) (a), (b), (c)) #elif defined(__alpha__) # define pcivtobus(p) ((p) & 0xfffffffful) # define memcpy_to_pci(a, b, c) memcpy_toio((a), (b), (c)) #else /* others */ # define pcivtobus(p) (p) # define memcpy_to_pci(a, b, c) memcpy_toio((a), (b), (c)) #endif #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED static u_long __init remap_pci_mem(u_long base, u_long size) { u_long page_base = ((u_long) base) & PAGE_MASK; u_long page_offs = ((u_long) base) - page_base; u_long page_remapped = (u_long) ioremap(page_base, page_offs+size); return page_remapped? (page_remapped + page_offs) : 0UL; } static void __init unmap_pci_mem(u_long vaddr, u_long size) { if (vaddr) iounmap((void *) (vaddr & PAGE_MASK)); } #endif /* not def SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ /* ** Insert a delay in micro-seconds and milli-seconds. ** ------------------------------------------------- ** Under Linux, udelay() is restricted to delay < 1 milli-second. ** In fact, it generally works for up to 1 second delay. ** Since 2.1.105, the mdelay() function is provided for delays ** in milli-seconds. ** Under 2.0 kernels, udelay() is an inline function that is very ** inaccurate on Pentium processors. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,105) #define UDELAY udelay #define MDELAY mdelay #else static void UDELAY(long us) { udelay(us); } static void MDELAY(long ms) { while (ms--) UDELAY(1000); } #endif /* ** Simple power of two buddy-like allocator ** ---------------------------------------- ** This simple code is not intended to be fast, but to provide ** power of 2 aligned memory allocations. ** Since the SCRIPTS processor only supplies 8 bit arithmetic, ** this allocator allows simple and fast address calculations ** from the SCRIPTS code. In addition, cache line alignment ** is guaranteed for power of 2 cache line size. */ #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum (for now (ever?) */ typedef unsigned long addr; /* Enough bits to bit-hack addresses */ #define MEMO_FREE_UNUSED /* Free unused pages immediately */ struct m_link { struct m_link *next; /* Simple links are enough */ }; #ifndef GFP_DMA_32BIT #define GFP_DMA_32BIT 0 /* Will this flag ever exist */ #endif #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,0) #define get_pages(order) __get_free_pages(GFP_ATOMIC | GFP_DMA_32BIT, order) #else #define get_pages(order) __get_free_pages(GFP_ATOMIC | GFP_DMA_32BIT, order, 0) #endif /* ** Lists of available memory chunks. ** Starts with 16 bytes chunks until 1 PAGE chunks. */ static struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1]; /* ** Allocate a memory area aligned on the lowest power of 2 ** greater than the requested size. */ static void *__m_alloc(int size) { int i = 0; int s = (1 << MEMO_SHIFT); int j; addr a ; if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) return 0; while (size > s) { s <<= 1; ++i; } j = i; while (!h[j].next) { if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { h[j].next = (struct m_link *)get_pages(MEMO_PAGE_ORDER); if (h[j].next) h[j].next->next = 0; break; } ++j; s <<= 1; } a = (addr) h[j].next; if (a) { h[j].next = h[j].next->next; while (j > i) { j -= 1; s >>= 1; h[j].next = (struct m_link *) (a+s); h[j].next->next = 0; } } #ifdef DEBUG printk("m_alloc(%d) = %p\n", size, (void *) a); #endif return (void *) a; } /* ** Free a memory area allocated using m_alloc(). ** Coalesce buddies. ** Free pages that become unused if MEMO_FREE_UNUSED is defined. */ static void __m_free(void *ptr, int size) { int i = 0; int s = (1 << MEMO_SHIFT); struct m_link *q; addr a, b; #ifdef DEBUG printk("m_free(%p, %d)\n", ptr, size); #endif if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) return; while (size > s) { s <<= 1; ++i; } a = (addr) ptr; while (1) { #ifdef MEMO_FREE_UNUSED if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { free_pages(a, MEMO_PAGE_ORDER); break; } #endif b = a ^ s; q = &h[i]; while (q->next && q->next != (struct m_link *) b) { q = q->next; } if (!q->next) { ((struct m_link *) a)->next = h[i].next; h[i].next = (struct m_link *) a; break; } q->next = q->next->next; a = a & b; s <<= 1; ++i; } } #define MEMO_WARN 1 /* ** The memory pool is shared by all instances. ** We use a global SMP LOCK to be SMP safe. */ static void *m_calloc(int size, char *name, int uflags) { u_long flags; void *p; NCR_LOCK_DRIVER(flags); p = __m_alloc(size); NCR_UNLOCK_DRIVER(flags); if (DEBUG_FLAGS & DEBUG_ALLOC) printk ("new %-10s[%4d] @%p.\n", name, size, p); if (p) memset(p, 0, size); else if (uflags & MEMO_WARN) printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size); return p; } static void m_free(void *ptr, int size, char *name) { u_long flags; if (DEBUG_FLAGS & DEBUG_ALLOC) printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); NCR_LOCK_DRIVER(flags); __m_free(ptr, size); NCR_UNLOCK_DRIVER(flags); } static void ncr_print_hex(u_char *p, int n) { while (n-- > 0) printk (" %x", *p++); } static void ncr_printl_hex(char *label, u_char *p, int n) { printk("%s", label); ncr_print_hex(p, n); printk (".\n"); } /* ** Transfer direction ** ** Low-level scsi drivers under Linux do not receive the expected ** data transfer direction from upper scsi drivers. ** The driver will only check actual data direction for common ** scsi opcodes. Other ones may cause problem, since they may ** depend on device type or be vendor specific. ** I would prefer to never trust the device for data direction, ** but that is not possible. ** ** The original driver requires the expected direction to be known. ** The Linux version of the driver has been enhanced in order to ** be able to transfer data in the direction choosen by the target. */ #define XFER_IN (1) #define XFER_OUT (2) /* ** Head of list of NCR boards ** ** For kernel version < 1.3.70, host is retrieved by its irq level. ** For later kernels, the internal host control block address ** (struct ncb) is used as device id parameter of the irq stuff. */ static struct Scsi_Host *first_host = NULL; /* ** /proc directory entry and proc_info function */ static struct proc_dir_entry proc_scsi_sym53c8xx = { PROC_SCSI_SYM53C8XX, 9, NAME53C8XX, S_IFDIR | S_IRUGO | S_IXUGO, 2 }; #ifdef SCSI_NCR_PROC_INFO_SUPPORT static int sym53c8xx_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int func); #endif /* ** Driver setup. ** ** This structure is initialized from linux config options. ** It can be overridden at boot-up by the boot command line. */ static struct ncr_driver_setup driver_setup = SCSI_NCR_DRIVER_SETUP; #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT static struct ncr_driver_setup driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; # ifdef MODULE char *sym53c8xx = 0; /* command line passed by insmod */ # if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,30) MODULE_PARM(sym53c8xx, "s"); # endif # endif #endif /* ** Other Linux definitions */ #define SetScsiResult(cmd, h_sts, s_sts) \ cmd->result = (((h_sts) << 16) + ((s_sts) & 0x7f)) static void sym53c8xx_select_queue_depths( struct Scsi_Host *host, struct scsi_device *devlist); static void sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs); static void sym53c8xx_timeout(unsigned long np); #define initverbose (driver_setup.verbose) #define bootverbose (np->verbose) #ifdef SCSI_NCR_NVRAM_SUPPORT static u_char Tekram_sync[12] __initdata = {25,31,37,43,50,62,75,125,12,15,18,21}; #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Structures used by sym53c8xx_detect/sym53c8xx_pci_init to ** transmit device configuration to the ncr_attach() function. */ typedef struct { int bus; u_char device_fn; u_long base; u_long base_2; u_long io_port; int irq; /* port and reg fields to use INB, OUTB macros */ u_long base_io; volatile struct ncr_reg *reg; } ncr_slot; typedef struct { int type; #define SCSI_NCR_SYMBIOS_NVRAM (1) #define SCSI_NCR_TEKRAM_NVRAM (2) #ifdef SCSI_NCR_NVRAM_SUPPORT union { Symbios_nvram Symbios; Tekram_nvram Tekram; } data; #endif } ncr_nvram; /* ** Structure used by sym53c8xx_detect/sym53c8xx_pci_init ** to save data on each detected board for ncr_attach(). */ typedef struct { ncr_slot slot; ncr_chip chip; ncr_nvram *nvram; u_char host_id; #ifdef SCSI_NCR_PQS_PDS_SUPPORT u_char pqs_pds; #endif int attach_done; } ncr_device; /*========================================================== ** ** assert () ** **========================================================== ** ** modified copy from 386bsd:/usr/include/sys/assert.h ** **---------------------------------------------------------- */ #define assert(expression) { \ if (!(expression)) { \ (void)panic( \ "assertion \"%s\" failed: file \"%s\", line %d\n", \ #expression, \ __FILE__, __LINE__); \ } \ } /*========================================================== ** ** Big/Little endian support. ** **========================================================== */ /* ** If the NCR uses big endian addressing mode over the ** PCI, actual io register addresses for byte and word ** accesses must be changed according to lane routing. ** Btw, ncr_offb() and ncr_offw() macros only apply to ** constants and so donnot generate bloated code. */ #if defined(SCSI_NCR_BIG_ENDIAN) #define ncr_offb(o) (((o)&~3)+((~((o)&3))&3)) #define ncr_offw(o) (((o)&~3)+((~((o)&3))&2)) #else #define ncr_offb(o) (o) #define ncr_offw(o) (o) #endif /* ** If the CPU and the NCR use same endian-ness adressing, ** no byte reordering is needed for script patching. ** Macro cpu_to_scr() is to be used for script patching. ** Macro scr_to_cpu() is to be used for getting a DWORD ** from the script. */ #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define cpu_to_scr(dw) cpu_to_le32(dw) #define scr_to_cpu(dw) le32_to_cpu(dw) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define cpu_to_scr(dw) cpu_to_be32(dw) #define scr_to_cpu(dw) be32_to_cpu(dw) #else #define cpu_to_scr(dw) (dw) #define scr_to_cpu(dw) (dw) #endif /*========================================================== ** ** Access to the controller chip. ** ** If NCR_IOMAPPED is defined, the driver will use ** normal IOs instead of the MEMORY MAPPED IO method ** recommended by PCI specifications. ** If all PCI bridges, host brigdes and architectures ** would have been correctly designed for PCI, this ** option would be useless. ** **========================================================== */ /* ** If the CPU and the NCR use same endian-ness adressing, ** no byte reordering is needed for accessing chip io ** registers. Functions suffixed by '_raw' are assumed ** to access the chip over the PCI without doing byte ** reordering. Functions suffixed by '_l2b' are ** assumed to perform little-endian to big-endian byte ** reordering, those suffixed by '_b2l' blah, blah, ** blah, ... */ #if defined(NCR_IOMAPPED) /* ** IO mapped only input / ouput */ #define INB_OFF(o) inb (np->base_io + ncr_offb(o)) #define OUTB_OFF(o, val) outb ((val), np->base_io + ncr_offb(o)) #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) inw_l2b (np->base_io + ncr_offw(o)) #define INL_OFF(o) inl_l2b (np->base_io + (o)) #define OUTW_OFF(o, val) outw_b2l ((val), np->base_io + ncr_offw(o)) #define OUTL_OFF(o, val) outl_b2l ((val), np->base_io + (o)) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) inw_b2l (np->base_io + ncr_offw(o)) #define INL_OFF(o) inl_b2l (np->base_io + (o)) #define OUTW_OFF(o, val) outw_l2b ((val), np->base_io + ncr_offw(o)) #define OUTL_OFF(o, val) outl_l2b ((val), np->base_io + (o)) #else #define INW_OFF(o) inw_raw (np->base_io + ncr_offw(o)) #define INL_OFF(o) inl_raw (np->base_io + (o)) #define OUTW_OFF(o, val) outw_raw ((val), np->base_io + ncr_offw(o)) #define OUTL_OFF(o, val) outl_raw ((val), np->base_io + (o)) #endif /* ENDIANs */ #else /* defined NCR_IOMAPPED */ /* ** MEMORY mapped IO input / output */ #define INB_OFF(o) readb((char *)np->reg + ncr_offb(o)) #define OUTB_OFF(o, val) writeb((val), (char *)np->reg + ncr_offb(o)) #if defined(__BIG_ENDIAN) && !defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) readw_l2b((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_l2b((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_b2l((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_b2l((val), (char *)np->reg + (o)) #elif defined(__LITTLE_ENDIAN) && defined(SCSI_NCR_BIG_ENDIAN) #define INW_OFF(o) readw_b2l((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_b2l((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_l2b((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_l2b((val), (char *)np->reg + (o)) #else #define INW_OFF(o) readw_raw((char *)np->reg + ncr_offw(o)) #define INL_OFF(o) readl_raw((char *)np->reg + (o)) #define OUTW_OFF(o, val) writew_raw((val), (char *)np->reg + ncr_offw(o)) #define OUTL_OFF(o, val) writel_raw((val), (char *)np->reg + (o)) #endif #endif /* defined NCR_IOMAPPED */ #define INB(r) INB_OFF (offsetof(struct ncr_reg,r)) #define INW(r) INW_OFF (offsetof(struct ncr_reg,r)) #define INL(r) INL_OFF (offsetof(struct ncr_reg,r)) #define OUTB(r, val) OUTB_OFF (offsetof(struct ncr_reg,r), (val)) #define OUTW(r, val) OUTW_OFF (offsetof(struct ncr_reg,r), (val)) #define OUTL(r, val) OUTL_OFF (offsetof(struct ncr_reg,r), (val)) /* ** Set bit field ON, OFF */ #define OUTONB(r, m) OUTB(r, INB(r) | (m)) #define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m)) #define OUTONW(r, m) OUTW(r, INW(r) | (m)) #define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m)) #define OUTONL(r, m) OUTL(r, INL(r) | (m)) #define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m)) /*========================================================== ** ** Command control block states. ** **========================================================== */ #define HS_IDLE (0) #define HS_BUSY (1) #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ #define HS_DISCONNECT (3) /* Disconnected by target */ #define HS_DONEMASK (0x80) #define HS_COMPLETE (4|HS_DONEMASK) #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ #define DSA_INVALID 0xffffffff /*========================================================== ** ** Software Interrupt Codes ** **========================================================== */ #define SIR_BAD_STATUS (1) #define SIR_SEL_ATN_NO_MSG_OUT (2) #define SIR_MSG_RECEIVED (3) #define SIR_MSG_WEIRD (4) #define SIR_NEGO_FAILED (5) #define SIR_NEGO_PROTO (6) #define SIR_SCRIPT_STOPPED (7) #define SIR_REJECT_TO_SEND (8) #define SIR_SWIDE_OVERRUN (9) #define SIR_SODL_UNDERRUN (10) #define SIR_RESEL_NO_MSG_IN (11) #define SIR_RESEL_NO_IDENTIFY (12) #define SIR_RESEL_BAD_LUN (13) #define SIR_TARGET_SELECTED (14) #define SIR_RESEL_BAD_I_T_L (15) #define SIR_RESEL_BAD_I_T_L_Q (16) #define SIR_ABORT_SENT (17) #define SIR_RESEL_ABORTED (18) #define SIR_MSG_OUT_DONE (19) #define SIR_AUTO_SENSE_DONE (20) #define SIR_DUMMY_INTERRUPT (21) #define SIR_MAX (21) /*========================================================== ** ** Extended error bits. ** xerr_status field of struct ccb. ** **========================================================== */ #define XE_EXTRA_DATA (1) /* unexpected data phase */ #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ #define XE_PARITY_ERR (4) /* unrecovered SCSI parity error */ /*========================================================== ** ** Negotiation status. ** nego_status field of struct ccb. ** **========================================================== */ #define NS_SYNC (1) #define NS_WIDE (2) /*========================================================== ** ** "Special features" of targets. ** quirks field of struct tcb. ** actualquirks field of struct ccb. ** **========================================================== */ #define QUIRK_AUTOSAVE (0x01) /*========================================================== ** ** Capability bits in Inquire response byte 7. ** **========================================================== */ #define INQ7_QUEUE (0x02) #define INQ7_SYNC (0x10) #define INQ7_WIDE16 (0x20) /*========================================================== ** ** A CCB hashed table is used to retrieve CCB address ** from DSA value. ** **========================================================== */ #define CCB_HASH_SHIFT 8 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) #define CCB_HASH_MASK (CCB_HASH_SIZE-1) #define CCB_HASH_CODE(dsa) (((dsa) >> 11) & CCB_HASH_MASK) /*========================================================== ** ** Declaration of structs. ** **========================================================== */ struct tcb; struct lcb; struct ccb; struct ncb; struct script; typedef struct ncb * ncb_p; typedef struct tcb * tcb_p; typedef struct lcb * lcb_p; typedef struct ccb * ccb_p; struct link { ncrcmd l_cmd; ncrcmd l_paddr; }; struct usrcmd { u_long target; u_long lun; u_long data; u_long cmd; }; #define UC_SETSYNC 10 #define UC_SETTAGS 11 #define UC_SETDEBUG 12 #define UC_SETORDER 13 #define UC_SETWIDE 14 #define UC_SETFLAG 15 #define UC_CLEARPROF 16 #define UC_SETVERBOSE 17 #define UC_RESETDEV 18 #define UC_CLEARDEV 19 #define UF_TRACE (0x01) #define UF_NODISC (0x02) #define UF_NOSCAN (0x04) #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** profiling data (per host) */ struct profile { u_long num_trans; u_long num_disc; u_long num_disc0; u_long num_break; u_long num_int; u_long num_fly; u_long num_kbytes; #if 000 u_long num_br1k; u_long num_br2k; u_long num_br4k; u_long num_br8k; u_long num_brnk; #endif }; #endif /*======================================================================== ** ** Declaration of structs: target control block ** **======================================================================== */ struct tcb { /*---------------------------------------------------------------- ** LUN tables. ** An array of bus addresses is used on reselection by ** the SCRIPT. **---------------------------------------------------------------- */ u_int32 *luntbl; /* lcbs bus address table */ u_int32 b_luntbl; /* bus address of this table */ u_int32 b_lun0; /* bus address of lun0 */ lcb_p l0p; /* lcb of LUN #0 (normal case) */ #if MAX_LUN > 1 lcb_p *lmp; /* Other lcb's [1..MAX_LUN] */ #endif /*---------------------------------------------------------------- ** Target capabilities. **---------------------------------------------------------------- */ u_char inq_done; /* Target capabilities received */ u_char inq_byte7; /* Contains these capabilities */ /*---------------------------------------------------------------- ** Some flags. **---------------------------------------------------------------- */ u_char to_reset; /* This target is to be reset */ /*---------------------------------------------------------------- ** Pointer to the ccb used for negotiation. ** Prevent from starting a negotiation for all queued commands ** when tagged command queuing is enabled. **---------------------------------------------------------------- */ ccb_p nego_cp; /*---------------------------------------------------------------- ** statistical data **---------------------------------------------------------------- */ u_long transfers; u_long bytes; /*---------------------------------------------------------------- ** negotiation of wide and synch transfer and device quirks. ** sval and wval are read from SCRIPTS and so have alignment ** constraints. **---------------------------------------------------------------- */ /*0*/ u_char minsync; /*1*/ u_char sval; /*2*/ u_short period; /*0*/ u_char maxoffs; /*1*/ u_char quirks; /*2*/ u_char widedone; /*3*/ u_char wval; /*---------------------------------------------------------------- ** User settable limits and options. ** These limits are read from the NVRAM if present. **---------------------------------------------------------------- */ u_char usrsync; u_char usrwide; u_char usrflag; u_short usrtags; }; /*======================================================================== ** ** Declaration of structs: lun control block ** **======================================================================== */ struct lcb { /*---------------------------------------------------------------- ** On reselection, SCRIPTS use this value as a JUMP address ** after the IDENTIFY has been successfully received. ** This field is set to 'resel_tag' if TCQ is enabled and ** to 'resel_notag' if TCQ is disabled. ** (Must be at zero due to bad lun handling on reselection) **---------------------------------------------------------------- */ /*0*/ u_int32 resel_task; /*---------------------------------------------------------------- ** Task table used by the script processor to retrieve the ** task corresponding to a reselected nexus. The TAG is used ** as offset to determine the corresponding entry. ** Each entry contains the associated CCB bus address. **---------------------------------------------------------------- */ u_int32 tasktbl_0; /* Used if TCQ not enabled */ u_int32 *tasktbl; u_int32 b_tasktbl; /*---------------------------------------------------------------- ** CCB queue management. **---------------------------------------------------------------- */ XPT_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ XPT_QUEHEAD wait_ccbq; /* Queue of waiting for IO CCBs */ u_short busyccbs; /* CCBs busy for this lun */ u_short queuedccbs; /* CCBs queued to the controller*/ u_short queuedepth; /* Queue depth for this lun */ u_short scdev_depth; /* SCSI device queue depth */ u_short maxnxs; /* Max possible nexuses */ /*---------------------------------------------------------------- ** Control of tagged command queuing. ** Tags allocation is performed using a circular buffer. ** This avoids using a loop for tag allocation. **---------------------------------------------------------------- */ u_short ia_tag; /* Tag allocation index */ u_short if_tag; /* Tag release index */ u_char *cb_tags; /* Circular tags buffer */ u_char inq_byte7; /* Store unit CmdQ capability */ u_char usetags; /* Command queuing is active */ u_char to_clear; /* User wants to clear all tasks*/ u_short maxtags; /* Max NR of tags asked by user */ u_short numtags; /* Current number of tags */ /*---------------------------------------------------------------- ** QUEUE FULL and ORDERED tag control. **---------------------------------------------------------------- */ u_short num_good; /* Nr of GOOD since QUEUE FULL */ u_short tags_sum[2]; /* Tags sum counters */ u_char tags_si; /* Current index to tags sum */ u_long tags_stime; /* Last time we switch tags_sum */ }; /*======================================================================== ** ** Declaration of structs: actions for a task. ** **======================================================================== ** ** It is part of the CCB and is called by the scripts processor to ** start or restart the data structure (nexus). ** **------------------------------------------------------------------------ */ struct action { u_int32 start; u_int32 restart; }; /*======================================================================== ** ** Declaration of structs: Phase mismatch context. ** **======================================================================== ** ** It is part of the CCB and is used as parameters for the DATA ** pointer. We need two contexts to handle correctly the SAVED ** DATA POINTER. ** **------------------------------------------------------------------------ */ struct pm_ctx { struct scr_tblmove sg; /* Updated interrupted SG block */ u_int32 ret; /* SCRIPT return address */ }; /*======================================================================== ** ** Declaration of structs: global HEADER. ** **======================================================================== ** ** In earlier driver versions, this substructure was copied from the ** ccb to a global address after selection (or reselection) and copied ** back before disconnect. Since we are now using LOAD/STORE DSA ** RELATIVE instructions, the script is able to access directly these ** fields, and so, this header is no more copied. ** **------------------------------------------------------------------------ */ struct head { /*---------------------------------------------------------------- ** Start and restart SCRIPTS addresses (must be at 0). **---------------------------------------------------------------- */ struct action go; /*---------------------------------------------------------------- ** Saved data pointer. ** Points to the position in the script responsible for the ** actual transfer of data. ** It's written after reception of a SAVE_DATA_POINTER message. ** The goalpointer points after the last transfer command. **---------------------------------------------------------------- */ u_int32 savep; u_int32 lastp; u_int32 goalp; /*---------------------------------------------------------------- ** Alternate data pointer. ** They are copied back to savep/lastp/goalp by the SCRIPTS ** when the direction is unknown and the device claims data out. **---------------------------------------------------------------- */ u_int32 wlastp; u_int32 wgoalp; /*---------------------------------------------------------------- ** Status fields. **---------------------------------------------------------------- */ u_char scr_st[4]; /* script status */ u_char status[4]; /* host status */ }; /* ** LUN control block lookup. ** We use a direct pointer for LUN #0, and a table of pointers ** which is only allocated for devices that support LUN(s) > 0. */ #if MAX_LUN <= 1 #define ncr_lp(np, tp, lun) (!lun) ? (tp)->l0p : 0 #else #define ncr_lp(np, tp, lun) \ (!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0 #endif /* ** The status bytes are used by the host and the script processor. ** ** The last four bytes (status[4]) are copied to the scratchb register ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, ** and copied back just after disconnecting. ** Inside the script the XX_REG are used. ** ** The first four bytes (scr_st[4]) are used inside the script by ** "LOAD/STORE" commands. ** Because source and destination must have the same alignment ** in a DWORD, the fields HAVE to be at the choosen offsets. ** xerr_st 0 (0x34) scratcha ** sync_st 1 (0x05) sxfer ** wide_st 3 (0x03) scntl3 */ /* ** Last four bytes (script) */ #define QU_REG scr0 #define HS_REG scr1 #define HS_PRT nc_scr1 #define SS_REG scr2 #define SS_PRT nc_scr2 #define HF_REG scr3 #define HF_PRT nc_scr3 /* ** Last four bytes (host) */ #define actualquirks phys.header.status[0] #define host_status phys.header.status[1] #define scsi_status phys.header.status[2] #define host_flags phys.header.status[3] /* ** Host flags */ #define HF_IN_PM0 1u #define HF_IN_PM1 (1u<<1) #define HF_ACT_PM (1u<<2) #define HF_DP_SAVED (1u<<3) #define HF_AUTO_SENSE (1u<<4) #define HF_DATA_ST (1u<<5) #define HF_PM_TO_C (1u<<6) #ifdef SCSI_NCR_IARB_SUPPORT #define HF_HINT_IARB (1u<<7) #endif /* ** First four bytes (script) */ #define xerr_st header.scr_st[0] #define sync_st header.scr_st[1] #define nego_st header.scr_st[2] #define wide_st header.scr_st[3] /* ** First four bytes (host) */ #define xerr_status phys.xerr_st #define nego_status phys.nego_st /*========================================================== ** ** Declaration of structs: Data structure block ** **========================================================== ** ** During execution of a ccb by the script processor, ** the DSA (data structure address) register points ** to this substructure of the ccb. ** This substructure contains the header with ** the script-processor-changable data and ** data blocks for the indirect move commands. ** **---------------------------------------------------------- */ struct dsb { /* ** Header. */ struct head header; /* ** Table data for Script */ struct scr_tblsel select; struct scr_tblmove smsg ; struct scr_tblmove smsg_ext ; struct scr_tblmove cmd ; struct scr_tblmove sense ; struct scr_tblmove data [MAX_SCATTER]; /* ** Phase mismatch contexts. ** We need two to handle correctly the ** SAVED DATA POINTER. */ struct pm_ctx pm0; struct pm_ctx pm1; /* ** Extra bytes count transferred ** in case of data overrun. */ u_int32 extra_bytes; #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Disconnection counter */ u_int32 num_disc; #endif }; /*======================================================================== ** ** Declaration of structs: Command control block. ** **======================================================================== */ struct ccb { /*---------------------------------------------------------------- ** This is the data structure which is pointed by the DSA ** register when it is executed by the script processor. ** It must be the first entry. **---------------------------------------------------------------- */ struct dsb phys; /*---------------------------------------------------------------- ** The general SCSI driver provides a ** pointer to a control block. **---------------------------------------------------------------- */ Scsi_Cmnd *cmd; /* SCSI command */ int data_len; /* Total data length */ int segments; /* Number of SG segments */ /*---------------------------------------------------------------- ** Message areas. ** We prepare a message to be sent after selection. ** We may use a second one if the command is rescheduled ** due to CHECK_CONDITION or QUEUE FULL status. ** Contents are IDENTIFY and SIMPLE_TAG. ** While negotiating sync or wide transfer, ** a SDTR or WDTR message is appended. **---------------------------------------------------------------- */ u_char scsi_smsg [8]; u_char scsi_smsg2[8]; /*---------------------------------------------------------------- ** Saved info for auto-sense **---------------------------------------------------------------- */ u_char sv_scsi_status; u_char sv_xerr_status; /*---------------------------------------------------------------- ** Other fields. **---------------------------------------------------------------- */ u_long p_ccb; /* BUS address of this CCB */ u_char sensecmd[6]; /* Sense command */ u_char to_abort; /* This CCB is to be aborted */ u_short tag; /* Tag for this transfer */ /* NO_TAG means no tag */ u_char tags_si; /* Lun tags sum index (0,1) */ u_char target; u_char lun; u_short queued; ccb_p link_ccb; /* Host adapter CCB chain */ ccb_p link_ccbh; /* Host adapter CCB hash chain */ XPT_QUEHEAD link_ccbq; /* Link to unit CCB queue */ u_int32 startp; /* Initial data pointer */ u_int32 lastp0; /* Initial 'lastp' */ int ext_sg; /* Extreme data pointer, used */ int ext_ofs; /* to calculate the residual. */ int resid; }; #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) /*======================================================================== ** ** Declaration of structs: NCR device descriptor ** **======================================================================== */ struct ncb { /*---------------------------------------------------------------- ** Idle task and invalid task actions and their bus ** addresses. **---------------------------------------------------------------- */ struct action idletask; struct action notask; struct action bad_i_t_l; struct action bad_i_t_l_q; u_long p_idletask; u_long p_notask; u_long p_bad_i_t_l; u_long p_bad_i_t_l_q; /*---------------------------------------------------------------- ** Dummy lun table to protect us against target returning bad ** lun number on reselection. **---------------------------------------------------------------- */ u_int32 *badluntbl; /* Table physical address */ u_int32 resel_badlun; /* SCRIPT handler BUS address */ /*---------------------------------------------------------------- ** Bit 32-63 of the on-chip RAM bus address in LE format. ** The START_RAM64 script loads the MMRS and MMWS from this ** field. **---------------------------------------------------------------- */ u_int32 scr_ram_seg; /*---------------------------------------------------------------- ** CCBs management queues. **---------------------------------------------------------------- */ Scsi_Cmnd *waiting_list; /* Commands waiting for a CCB */ /* when lcb is not allocated. */ Scsi_Cmnd *done_list; /* Commands waiting for done() */ /* callback to be invoked. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,93) spinlock_t smp_lock; /* Lock for SMP threading */ #endif /*---------------------------------------------------------------- ** Chip and controller indentification. **---------------------------------------------------------------- */ int unit; /* Unit number */ char chip_name[8]; /* Chip name */ char inst_name[16]; /* ncb instance name */ /*---------------------------------------------------------------- ** Initial value of some IO register bits. ** These values are assumed to have been set by BIOS, and may ** be used for probing adapter implementation differences. **---------------------------------------------------------------- */ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; /*---------------------------------------------------------------- ** Actual initial value of IO register bits used by the ** driver. They are loaded at initialisation according to ** features that are to be enabled. **---------------------------------------------------------------- */ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1; /*---------------------------------------------------------------- ** Target data. ** Target control block bus address array used by the SCRIPT ** on reselection. **---------------------------------------------------------------- */ struct tcb target[MAX_TARGET]; u_int32 *targtbl; /*---------------------------------------------------------------- ** Virtual and physical bus addresses of the chip. **---------------------------------------------------------------- */ #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED u_long base_va; /* MMIO base virtual address */ u_long base2_va; /* On-chip RAM virtual address */ #endif u_long base_ba; /* MMIO base bus address */ u_long base_io; /* IO space base address */ u_long base_ws; /* (MM)IO window size */ u_long base2_ba; /* On-chip RAM bus address */ u_long base2_ws; /* On-chip RAM window size */ u_int irq; /* IRQ number */ volatile /* Pointer to volatile for */ struct ncr_reg *reg; /* memory mapped IO. */ /*---------------------------------------------------------------- ** SCRIPTS virtual and physical bus addresses. ** 'script' is loaded in the on-chip RAM if present. ** 'scripth' stays in main memory for all chips except the ** 53C895A and 53C896 that provide 8K on-chip RAM. **---------------------------------------------------------------- */ struct script *script0; /* Copies of script and scripth */ struct scripth *scripth0; /* relocated for this ncb. */ u_long p_script; /* Actual script and scripth */ u_long p_scripth; /* bus addresses. */ u_long p_scripth0; /*---------------------------------------------------------------- ** General controller parameters and configuration. **---------------------------------------------------------------- */ u_short device_id; /* PCI device id */ u_char revision_id; /* PCI device revision id */ u_int features; /* Chip features map */ u_char myaddr; /* SCSI id of the adapter */ u_char maxburst; /* log base 2 of dwords burst */ u_char maxwide; /* Maximum transfer width */ u_char minsync; /* Minimum sync period factor */ u_char maxsync; /* Maximum sync period factor */ u_char maxoffs; /* Max scsi offset */ u_char multiplier; /* Clock multiplier (1,2,4) */ u_char clock_divn; /* Number of clock divisors */ u_long clock_khz; /* SCSI clock frequency in KHz */ /*---------------------------------------------------------------- ** Start queue management. ** It is filled up by the host processor and accessed by the ** SCRIPTS processor in order to start SCSI commands. **---------------------------------------------------------------- */ u_int32 *squeue; /* Start queue */ u_short squeueput; /* Next free slot of the queue */ u_short actccbs; /* Number of allocated CCBs */ u_short queuedepth; /* Start queue depth */ /*---------------------------------------------------------------- ** Command completion queue. ** It is the same size as the start queue to avoid overflow. **---------------------------------------------------------------- */ u_short dqueueget; /* Next position to scan */ u_int32 *dqueue; /* Completion (done) queue */ /*---------------------------------------------------------------- ** Timeout handler. **---------------------------------------------------------------- */ struct timer_list timer; /* Timer handler link header */ u_long lasttime; u_long settle_time; /* Resetting the SCSI BUS */ /*---------------------------------------------------------------- ** Debugging and profiling. **---------------------------------------------------------------- */ struct ncr_reg regdump; /* Register dump */ u_long regtime; /* Time it has been done */ #ifdef SCSI_NCR_PROFILE_SUPPORT struct profile profile; /* Profiling data */ #endif /*---------------------------------------------------------------- ** Miscellaneous buffers accessed by the scripts-processor. ** They shall be DWORD aligned, because they may be read or ** written with a script command. **---------------------------------------------------------------- */ u_char msgout[8]; /* Buffer for MESSAGE OUT */ u_char msgin [8]; /* Buffer for MESSAGE IN */ u_int32 lastmsg; /* Last SCSI message sent */ u_char scratch; /* Scratch for SCSI receive */ /*---------------------------------------------------------------- ** Miscellaneous configuration and status parameters. **---------------------------------------------------------------- */ u_char scsi_mode; /* Current SCSI BUS mode */ u_char order; /* Tag order to use */ u_char verbose; /* Verbosity for this controller*/ u_int32 ncr_cache; /* Used for cache test at init. */ /*---------------------------------------------------------------- ** CCB lists and queue. **---------------------------------------------------------------- */ ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */ struct ccb *ccbc; /* CCB chain */ XPT_QUEHEAD free_ccbq; /* Queue of available CCBs */ /*---------------------------------------------------------------- ** IMMEDIATE ARBITRATION (IARB) control. ** We keep track in 'last_cp' of the last CCB that has been ** queued to the SCRIPTS processor and clear 'last_cp' when ** this CCB completes. If last_cp is not zero at the moment ** we queue a new CCB, we set a flag in 'last_cp' that is ** used by the SCRIPTS as a hint for setting IARB. ** We donnot set more than 'iarb_max' consecutive hints for ** IARB in order to leave devices a chance to reselect. ** By the way, any non zero value of 'iarb_max' is unfair. :) **---------------------------------------------------------------- */ #ifdef SCSI_NCR_IARB_SUPPORT struct ccb *last_cp; /* Last queud CCB used for IARB */ u_short iarb_max; /* Max. # consecutive IARB hints*/ u_short iarb_count; /* Actual # of these hints */ #endif /*---------------------------------------------------------------- ** We need the LCB in order to handle disconnections and ** to count active CCBs for task management. So, we use ** a unique CCB for LUNs we donnot have the LCB yet. ** This queue normally should have at most 1 element. **---------------------------------------------------------------- */ XPT_QUEHEAD b0_ccbq; /*---------------------------------------------------------------- ** We use a different scatter function for 896 rev 1. **---------------------------------------------------------------- */ int (*scatter) (ccb_p, Scsi_Cmnd *); /*---------------------------------------------------------------- ** Command abort handling. ** We need to synchronize tightly with the SCRIPTS ** processor in order to handle things correctly. **---------------------------------------------------------------- */ u_char abrt_msg[4]; /* Message to send buffer */ struct scr_tblmove abrt_tbl; /* Table for the MOV of it */ struct scr_tblsel abrt_sel; /* Sync params for selection */ u_char istat_sem; /* Tells the chip to stop (SEM) */ /*---------------------------------------------------------------- ** Fields that should be removed or changed. **---------------------------------------------------------------- */ struct usrcmd user; /* Command from user */ u_char release_stage; /* Synchronisation stage on release */ }; #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) #define NCB_SCRIPTH0_PHYS(np,lbl) (np->p_scripth0+offsetof (struct scripth,lbl)) /*========================================================== ** ** ** Script for NCR-Processor. ** ** Use ncr_script_fill() to create the variable parts. ** Use ncr_script_copy_and_bind() to make a copy and ** bind to physical addresses. ** ** **========================================================== ** ** We have to know the offsets of all labels before ** we reach them (for forward jumps). ** Therefore we declare a struct here. ** If you make changes inside the script, ** DONT FORGET TO CHANGE THE LENGTHS HERE! ** **---------------------------------------------------------- */ /* ** Script fragments which are loaded into the on-chip RAM ** of 825A, 875, 876, 895, 895A and 896 chips. */ struct script { ncrcmd start [ 18]; ncrcmd getjob_begin [ 4]; ncrcmd getjob_end [ 4]; ncrcmd select [ 8]; ncrcmd wf_sel_done [ 2]; ncrcmd send_ident [ 2]; #ifdef SCSI_NCR_IARB_SUPPORT ncrcmd select2 [ 8]; #else ncrcmd select2 [ 2]; #endif ncrcmd command [ 2]; ncrcmd dispatch [ 28]; ncrcmd sel_no_cmd [ 10]; ncrcmd init [ 6]; ncrcmd clrack [ 4]; ncrcmd disp_msg_in [ 2]; ncrcmd disp_status [ 4]; ncrcmd datai_done [ 16]; ncrcmd datao_done [ 10]; ncrcmd ign_i_w_r_msg [ 4]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd dataphase [ 4]; #else ncrcmd dataphase [ 2]; #endif ncrcmd msg_in [ 2]; ncrcmd msg_in2 [ 10]; #ifdef SCSI_NCR_IARB_SUPPORT ncrcmd status [ 14]; #else ncrcmd status [ 10]; #endif ncrcmd complete [ 8]; #ifdef SCSI_NCR_PCIQ_MAY_REORDER_WRITES ncrcmd complete2 [ 12]; #else ncrcmd complete2 [ 10]; #endif #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR ncrcmd done [ 18]; #else ncrcmd done [ 14]; #endif ncrcmd done_end [ 2]; ncrcmd save_dp [ 8]; ncrcmd restore_dp [ 4]; #ifdef SCSI_NCR_PROFILE_SUPPORT ncrcmd disconnect [ 32]; #else ncrcmd disconnect [ 20]; #endif #ifdef SCSI_NCR_IARB_SUPPORT ncrcmd idle [ 4]; #else ncrcmd idle [ 2]; #endif #ifdef SCSI_NCR_IARB_SUPPORT ncrcmd ungetjob [ 6]; #else ncrcmd ungetjob [ 4]; #endif ncrcmd reselect [ 4]; ncrcmd reselected [ 48]; #if MAX_TASKS*4 > 512 ncrcmd resel_tag [ 16]; #elif MAX_TASKS*4 > 256 ncrcmd resel_tag [ 10]; #else ncrcmd resel_tag [ 6]; #endif ncrcmd resel_go [ 6]; ncrcmd resel_notag [ 4]; ncrcmd resel_dsa [ 8]; ncrcmd data_in [MAX_SCATTER * SCR_SG_SIZE]; ncrcmd data_in2 [ 4]; ncrcmd data_out [MAX_SCATTER * SCR_SG_SIZE]; ncrcmd data_out2 [ 4]; ncrcmd pm0_data [ 16]; ncrcmd pm1_data [ 16]; }; /* ** Script fragments which stay in main memory for all chips ** except for the 895A and 896 that support 8K on-chip RAM. */ struct scripth { ncrcmd start64 [ 2]; ncrcmd sel_for_abort [ 18]; ncrcmd sel_for_abort_1 [ 2]; ncrcmd select_no_atn [ 8]; ncrcmd wf_sel_done_no_atn [ 4]; ncrcmd msg_in_etc [ 14]; ncrcmd msg_received [ 4]; ncrcmd msg_weird_seen [ 4]; ncrcmd msg_extended [ 20]; ncrcmd msg_bad [ 6]; ncrcmd msg_weird [ 4]; ncrcmd msg_weird1 [ 8]; ncrcmd wdtr_resp [ 6]; ncrcmd send_wdtr [ 4]; ncrcmd sdtr_resp [ 6]; ncrcmd send_sdtr [ 4]; ncrcmd nego_bad_phase [ 4]; ncrcmd msg_out_abort [ 12]; ncrcmd msg_out [ 6]; ncrcmd msg_out_done [ 4]; ncrcmd no_data [ 28]; ncrcmd abort_resel [ 16]; ncrcmd resend_ident [ 4]; ncrcmd ident_break [ 4]; ncrcmd ident_break_atn [ 4]; ncrcmd sdata_in [ 6]; ncrcmd data_io [ 2]; ncrcmd data_io_com [ 8]; ncrcmd data_io_out [ 10]; ncrcmd bad_identify [ 12]; ncrcmd bad_i_t_l [ 4]; ncrcmd bad_i_t_l_q [ 4]; ncrcmd bad_status [ 10]; ncrcmd tweak_pmj [ 12]; ncrcmd pm_handle [ 20]; ncrcmd pm_handle1 [ 4]; ncrcmd pm_save [ 4]; ncrcmd pm0_save [ 14]; ncrcmd pm1_save [ 14]; /* SWIDE handling */ ncrcmd swide_ma_32 [ 4]; ncrcmd swide_ma_64 [ 6]; ncrcmd swide_scr_64 [ 26]; ncrcmd swide_scr_64_1 [ 12]; ncrcmd swide_com_64 [ 6]; ncrcmd swide_common [ 10]; ncrcmd swide_fin_32 [ 24]; /* Data area */ ncrcmd zero [ 1]; ncrcmd scratch [ 1]; ncrcmd scratch1 [ 1]; ncrcmd pm0_data_addr [ 1]; ncrcmd pm1_data_addr [ 1]; ncrcmd saved_dsa [ 1]; ncrcmd saved_drs [ 1]; ncrcmd done_pos [ 1]; ncrcmd startpos [ 1]; ncrcmd targtbl [ 1]; /* End of data area */ #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED ncrcmd start_ram [ 1]; ncrcmd script0_ba [ 4]; ncrcmd start_ram64 [ 3]; ncrcmd script0_ba64 [ 3]; ncrcmd scripth0_ba64 [ 6]; ncrcmd ram_seg64 [ 1]; #endif ncrcmd snooptest [ 6]; ncrcmd snoopend [ 2]; }; /*========================================================== ** ** ** Function headers. ** ** **========================================================== */ static ccb_p ncr_alloc_ccb (ncb_p np); static void ncr_complete (ncb_p np, ccb_p cp); static void ncr_exception (ncb_p np); static void ncr_free_ccb (ncb_p np, ccb_p cp); static ccb_p ncr_ccb_from_dsa(ncb_p np, u_long dsa); static void ncr_init_tcb (ncb_p np, u_char tn); static lcb_p ncr_alloc_lcb (ncb_p np, u_char tn, u_char ln); static lcb_p ncr_setup_lcb (ncb_p np, u_char tn, u_char ln, u_char *inq_data); static void ncr_getclock (ncb_p np, int mult); static u_int ncr_getpciclock (ncb_p np); static void ncr_selectclock (ncb_p np, u_char scntl3); static ccb_p ncr_get_ccb (ncb_p np, u_char tn, u_char ln); static void ncr_init (ncb_p np, int reset, char * msg, u_long code); static void ncr_int_sbmc (ncb_p np); static void ncr_int_par (ncb_p np, u_short sist); static void ncr_int_ma (ncb_p np); static void ncr_int_sir (ncb_p np); static void ncr_int_sto (ncb_p np); static void ncr_int_udc (ncb_p np); static void ncr_negotiate (ncb_p np, tcb_p tp); static int ncr_prepare_nego(ncb_p np, ccb_p cp, u_char *msgptr); #ifdef SCSI_NCR_PROFILE_SUPPORT static void ncb_profile (ncb_p np, ccb_p cp); #endif static void ncr_script_copy_and_bind (ncb_p np, ncrcmd *src, ncrcmd *dst, int len); static void ncr_script_fill (struct script * scr, struct scripth * scripth); static int ncr_scatter_896R1 (ccb_p cp, Scsi_Cmnd *cmd); static int ncr_scatter (ccb_p cp, Scsi_Cmnd *cmd); static void ncr_getsync (ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p); static void ncr_setsync (ncb_p np, ccb_p cp, u_char scntl3, u_char sxfer); static void ncr_setup_tags (ncb_p np, u_char tn, u_char ln); static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack); static int ncr_show_msg (u_char * msg); static void ncr_print_msg (ccb_p cp, char *label, u_char * msg); static int ncr_snooptest (ncb_p np); static void ncr_timeout (ncb_p np); static void ncr_wakeup (ncb_p np, u_long code); static int ncr_wakeup_done (ncb_p np); static void ncr_start_next_ccb (ncb_p np, lcb_p lp, int maxn); static void ncr_put_start_queue(ncb_p np, ccb_p cp); static void ncr_soft_reset (ncb_p np); static void ncr_start_reset (ncb_p np); static int ncr_reset_scsi_bus (ncb_p np, int enab_int, int settle_delay); static int ncr_compute_residual (ncb_p np, ccb_p cp); #ifdef SCSI_NCR_USER_COMMAND_SUPPORT static void ncr_usercmd (ncb_p np); #endif static int ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device); static void ncr_free_resources(ncb_p np); static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd); static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd); static void process_waiting_list(ncb_p np, int sts); #define remove_from_waiting_list(np, cmd) \ retrieve_from_waiting_list(1, (np), (cmd)) #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) #ifdef SCSI_NCR_NVRAM_SUPPORT static void ncr_get_nvram (ncr_device *devp, ncr_nvram *nvp); static int ncr_get_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram); static int ncr_get_Tekram_nvram (ncr_slot *np, Tekram_nvram *nvram); #endif /*========================================================== ** ** ** Global static data. ** ** **========================================================== */ static inline char *ncr_name (ncb_p np) { return np->inst_name; } /*========================================================== ** ** ** Scripts for NCR-Processor. ** ** Use ncr_script_bind for binding to physical addresses. ** ** **========================================================== ** ** NADDR generates a reference to a field of the controller data. ** PADDR generates a reference to another part of the script. ** RADDR generates a reference to a script processor register. ** FADDR generates a reference to a script processor register ** with offset. ** **---------------------------------------------------------- */ #define RELOC_SOFTC 0x40000000 #define RELOC_LABEL 0x50000000 #define RELOC_REGISTER 0x60000000 #if 0 #define RELOC_KVAR 0x70000000 #endif #define RELOC_LABELH 0x80000000 #define RELOC_MASK 0xf0000000 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) #define RADDR(label) (RELOC_REGISTER | REG(label)) #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) #define KVAR(which) (RELOC_KVAR | (which)) #define SCR_DATA_ZERO 0xf00ff00f #ifdef RELOC_KVAR #define SCRIPT_KVAR_JIFFIES (0) #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES /* * Kernel variables referenced in the scripts. * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. */ static void *script_kvars[] __initdata = { (void *)&jiffies }; #endif static struct script script0 __initdata = { /*--------------------------< START >-----------------------*/ { /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** Clear SIGP. */ SCR_FROM_REG (ctest2), 0, /* ** Stop here if the C code wants to perform ** some error recovery procedure manually. ** (Indicate this by setting SEM in ISTAT) */ SCR_FROM_REG (istat), 0, SCR_JUMPR ^ IFFALSE (MASK (SEM, SEM)), 16, /* ** Report to the C code the next position in ** the start queue the SCRIPTS will schedule. */ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_INT, SIR_SCRIPT_STOPPED, /* ** Start the next job. ** ** @DSA = start point for this job. ** SCRATCHA = address of this job in the start queue. ** ** We will restore startpos with SCRATCHA if we fails the ** arbitration or if it is the idle job. ** ** The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS ** is a critical path. If it is partially executed, it then ** may happen that the job address is not yet in the DSA ** and the the next queue position points to the next JOB. */ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_LOAD_ABS (dsa, 4), PADDRH (startpos), SCR_LOAD_REL (temp, 4), 4, }/*-------------------------< GETJOB_BEGIN >------------------*/,{ SCR_STORE_ABS (temp, 4), PADDRH (startpos), SCR_LOAD_REL (dsa, 4), 0, }/*-------------------------< GETJOB_END >--------------------*/,{ SCR_LOAD_REL (temp, 4), 0, SCR_RETURN, 0, }/*-------------------------< SELECT >----------------------*/,{ /* ** DSA contains the address of a scheduled ** data structure. ** ** SCRATCHA contains the address of the start queue ** entry which points to the next job. ** ** Set Initiator mode. ** ** (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, /* ** And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), PADDR (ungetjob), /* ** Now there are 4 possibilities: ** ** (1) The ncr looses arbitration. ** This is ok, because it will try again, ** when the bus becomes idle. ** (But beware of the timeout function!) ** ** (2) The ncr is reselected. ** Then the script processor takes the jump ** to the RESELECT label. ** ** (3) The ncr wins arbitration. ** Then it will execute SCRIPTS instruction until ** the next instruction that checks SCSI phase. ** Then will stop and wait for selection to be ** complete or selection time-out to occur. ** ** After having won arbitration, the ncr SCRIPTS ** processor is able to execute instructions while ** the SCSI core is performing SCSI selection. But ** some script instruction that is not waiting for ** a valid phase (or selection timeout) to occur ** breaks the selection procedure, by probably ** affecting timing requirements. ** So we have to wait immediately for the next phase ** or the selection to complete or time-out. */ /* ** load the savep (saved pointer) into ** the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.header.savep), /* ** Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct ccb, phys.header.status), }/*-------------------------< WF_SEL_DONE >----------------------*/,{ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), SIR_SEL_ATN_NO_MSG_OUT, }/*-------------------------< SEND_IDENT >----------------------*/,{ /* ** Selection complete. ** Send the IDENTIFY and SIMPLE_TAG messages ** (and the M_X_SYNC_REQ / M_X_WIDE_REQ message) */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct dsb, smsg), }/*-------------------------< SELECT2 >----------------------*/,{ #ifdef SCSI_NCR_IARB_SUPPORT /* ** Set IMMEDIATE ARBITRATION if we have been given ** a hint to do so. (Some job to do after this one). */ SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), 8, SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* ** Anticipate the COMMAND phase. ** This is the PHASE we expect at this point. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), PADDR (sel_no_cmd), }/*-------------------------< COMMAND >--------------------*/,{ /* ** ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct dsb, cmd), }/*-----------------------< DISPATCH >----------------------*/,{ /* ** MSG_IN is the only phase that shall be ** entered at least once for each (re)selection. ** So we test it first. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), PADDR (dataphase), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), PADDR (dataphase), SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR (status), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR (command), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDRH (msg_out), /* ** Discard one illegal phase byte, if required. */ SCR_LOAD_REL (scratcha, 1), offsetof (struct ccb, xerr_status), SCR_REG_REG (scratcha, SCR_OR, XE_BAD_PHASE), 0, SCR_STORE_REL (scratcha, 1), offsetof (struct ccb, xerr_status), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, NADDR (scratch), SCR_JUMP, PADDR (dispatch), }/*---------------------< SEL_NO_CMD >----------------------*/,{ /* ** The target does not switch to command ** phase after IDENTIFY has been sent. ** ** If it stays in MSG OUT phase send it ** the IDENTIFY again. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (resend_ident), /* ** If target does not switch to MSG IN phase ** and we sent a negotiation, assert the ** failure immediately. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (dispatch), SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, /* ** Jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< INIT >------------------------*/,{ /* ** Wait for the SCSI RESET signal to be ** inactive before restarting operations, ** since the chip may hang on SEL_ATN ** if SCSI RESET is active. */ SCR_FROM_REG (sstat0), 0, SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), -16, SCR_JUMP, PADDR (start), }/*-------------------------< CLRACK >----------------------*/,{ /* ** Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR (dispatch), }/*-------------------------< DISP_MSG_IN >----------------------*/,{ /* ** Anticipate MSG_IN phase then STATUS phase. ** ** May spare 2 SCRIPTS instructions when we have ** completed the OUTPUT of the data and the device ** goes directly to STATUS phase. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), }/*-------------------------< DISP_STATUS >----------------------*/,{ /* ** Anticipate STATUS phase. ** ** Does spare 3 SCRIPTS instructions when we have ** completed the INPUT of the data. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), PADDR (status), SCR_JUMP, PADDR (dispatch), }/*-------------------------< DATAI_DONE >-------------------*/,{ /* ** If the SWIDE is not full, jump to dispatcher. ** We anticipate a STATUS phase. ** If we get later an IGNORE WIDE RESIDUE, we ** will alias it as a MODIFY DP (-1). */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)), PADDR (disp_status), /* ** The SWIDE is full. ** Clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, /* ** Since the device is required to send any ** IGNORE WIDE RESIDUE message prior to any ** other information, we just snoop the SCSI ** BUS to check for such a message. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (disp_status), SCR_FROM_REG (sbdl), 0, SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), PADDR (disp_status), /* ** We have been ODD at the end of the transfer, ** but the device hasn't be so. ** Signal a DATA OVERRUN condition to the C code. */ SCR_INT, SIR_SWIDE_OVERRUN, SCR_JUMP, PADDR (dispatch), }/*-------------------------< DATAO_DONE >-------------------*/,{ /* ** If the SODL is not full jump to dispatcher. ** We anticipate a MSG IN phase or a STATUS phase. */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)), PADDR (disp_msg_in), /* ** The SODL is full, clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSS), 0, /* ** And signal a DATA UNDERRUN condition ** to the C code. */ SCR_INT, SIR_SODL_UNDERRUN, SCR_JUMP, PADDR (dispatch), }/*-------------------------< IGN_I_W_R_MSG >--------------*/,{ /* ** We jump here from the phase mismatch interrupt, ** When we have a SWIDE and the device has presented ** a IGNORE WIDE RESIDUE message on the BUS. ** We just have to throw away this message and then ** to jump to dispatcher. */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (scratch), /* ** Clear ACK and jump to dispatcher. */ SCR_JUMP, PADDR (clrack), }/*-------------------------< DATAPHASE >------------------*/,{ #ifdef SCSI_NCR_PROFILE_SUPPORT SCR_REG_REG (HF_REG, SCR_OR, HF_DATA_ST), 0, #endif SCR_RETURN, 0, }/*-------------------------< MSG_IN >--------------------*/,{ /* ** Get the first byte of the message. ** ** The script processor doesn't negate the ** ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[0]), }/*-------------------------< MSG_IN2 >--------------------*/,{ /* ** Check first against 1 byte messages ** that we handle from SCRIPTS. */ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), PADDR (complete), SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), PADDR (disconnect), SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), PADDR (save_dp), SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), PADDR (restore_dp), /* ** We handle all other messages from the ** C code, so no need to waste on-chip RAM ** for those ones. */ SCR_JUMP, PADDRH (msg_in_etc), }/*-------------------------< STATUS >--------------------*/,{ /* ** get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, NADDR (scratch), #ifdef SCSI_NCR_IARB_SUPPORT /* ** If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, ** since we may have to tamper the start queue from ** the C code. */ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), 8, SCR_REG_REG (scntl1, SCR_AND, ~IARB), 0, #endif /* ** save status to scsi_status. ** mark as complete. */ SCR_TO_REG (SS_REG), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, /* ** Anticipate the MESSAGE PHASE for ** the TASK COMPLETE message. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR (msg_in), SCR_JUMP, PADDR (dispatch), }/*-------------------------< COMPLETE >-----------------*/,{ /* ** Complete message. ** ** Copy the data pointer to LASTP in header. */ SCR_STORE_REL (temp, 4), offsetof (struct ccb, phys.header.lastp), /* ** When we terminate the cycle by clearing ACK, ** the target may disconnect immediately. ** ** We don't want to be told of an ** "unexpected disconnect", ** so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* ** Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< COMPLETE2 >-----------------*/,{ /* ** Save host status to header. */ SCR_STORE_REL (scr0, 4), offsetof (struct ccb, phys.header.status), #ifdef SCSI_NCR_PCIQ_MAY_REORDER_WRITES /* ** Some bridges may reorder DMA writes to memory. ** We donnot want the CPU to deal with completions ** without all the posted write having been flushed ** to memory. This DUMMY READ should flush posted ** buffers prior to the CPU having to deal with ** completions. */ SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ offsetof (struct ccb, phys.header.status), #endif /* ** If command resulted in not GOOD status, ** call the C code if needed. */ SCR_FROM_REG (SS_REG), 0, SCR_CALL ^ IFFALSE (DATA (S_GOOD)), PADDRH (bad_status), /* ** If we performed an auto-sense, call ** the C code to synchronyze task aborts ** with UNIT ATTENTION conditions. */ SCR_FROM_REG (HF_REG), 0, SCR_INT ^ IFTRUE (MASK (HF_AUTO_SENSE, HF_AUTO_SENSE)), SIR_AUTO_SENSE_DONE, }/*------------------------< DONE >-----------------*/,{ #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR /* ** It seems that some bridges flush everything ** when the INTR line is raised. For these ones, ** we can just ensure that the INTR line will be ** raised before each completion. So, if it happens ** that we have been faster that the CPU, we just ** have to synchronize with it. A dummy programmed ** interrupt will do the trick. ** Note that we overlap at most 1 IO with the CPU ** in this situation and that the IRQ line must not ** be shared. */ SCR_FROM_REG (istat), 0, SCR_INT ^ IFTRUE (MASK (INTF, INTF)), SIR_DUMMY_INTERRUPT, #endif /* ** Copy the DSA to the DONE QUEUE and ** signal completion to the host. ** If we are interrupted between DONE ** and DONE_END, we must reset, otherwise ** the completed CCB will be lost. */ SCR_STORE_ABS (dsa, 4), PADDRH (saved_dsa), SCR_LOAD_ABS (dsa, 4), PADDRH (done_pos), SCR_LOAD_ABS (scratcha, 4), PADDRH (saved_dsa), SCR_STORE_REL (scratcha, 4), 0, /* ** The instruction below reads the DONE QUEUE next ** free position from memory. ** In addition it ensures that all PCI posted writes ** are flushed and so the DSA value of the done ** CCB is visible by the CPU before INTFLY is raised. */ SCR_LOAD_REL (temp, 4), 4, SCR_INT_FLY, 0, SCR_STORE_ABS (temp, 4), PADDRH (done_pos), }/*------------------------< DONE_END >-----------------*/,{ SCR_JUMP, PADDR (start), }/*-------------------------< SAVE_DP >------------------*/,{ /* ** Clear ACK immediately. ** No need to delay it. */ SCR_CLR (SCR_ACK), 0, /* ** Keep track we received a SAVE DP, so ** we will switch to the other PM context ** on the next PM since the DP may point ** to the current PM context. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, /* ** SAVE_DP message: ** Copy the data pointer to SAVEP in header. */ SCR_STORE_REL (temp, 4), offsetof (struct ccb, phys.header.savep), SCR_JUMP, PADDR (dispatch), }/*-------------------------< RESTORE_DP >---------------*/,{ /* ** RESTORE_DP message: ** Copy SAVEP in header to actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.header.savep), SCR_JUMP, PADDR (clrack), }/*-------------------------< DISCONNECT >---------------*/,{ /* ** DISCONNECTing ... ** ** disable the "unexpected disconnect" feature, ** and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* ** Wait for the disconnect. */ SCR_WAIT_DISC, 0, #ifdef SCSI_NCR_PROFILE_SUPPORT /* ** Count the disconnects. ** Disconnect without DATA PHASE having been ** entered are counted in bits 8..15. */ SCR_LOAD_REL (scratcha, 4), offsetof (struct ccb, phys.num_disc), SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFTRUE (MASK (HF_DATA_ST, HF_DATA_ST)), 8, SCR_REG_REG (scratcha1, SCR_ADD, 0x01), 0, SCR_REG_REG (scratcha, SCR_ADD, 0x01), 0, SCR_STORE_REL (scratcha, 4), offsetof (struct ccb, phys.num_disc), #endif /* ** Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, /* ** Save host status to header. */ SCR_STORE_REL (scr0, 4), offsetof (struct ccb, phys.header.status), /* ** If QUIRK_AUTOSAVE is set, ** do an "save pointer" operation. */ SCR_FROM_REG (QU_REG), 0, SCR_JUMP ^ IFFALSE (MASK (QUIRK_AUTOSAVE, QUIRK_AUTOSAVE)), PADDR (start), /* ** like SAVE_DP message: ** Remember we saved the data pointer. ** Copy data pointer to SAVEP in header. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, SCR_STORE_REL (temp, 4), offsetof (struct ccb, phys.header.savep), SCR_JUMP, PADDR (start), }/*-------------------------< IDLE >------------------------*/,{ /* ** Nothing to do? ** Wait for reselect. ** This NOP will be patched with LED OFF ** SCR_REG_REG (gpreg, SCR_OR, 0x01) */ SCR_NO_OP, 0, #ifdef SCSI_NCR_IARB_SUPPORT SCR_JUMPR, 8, #endif }/*-------------------------< UNGETJOB >-----------------*/,{ #ifdef SCSI_NCR_IARB_SUPPORT /* ** Set IMMEDIATE ARBITRATION, for the next time. ** This will give us better chance to win arbitration ** for the job we just wanted to do. */ SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* ** We are not able to restart the SCRIPTS if we are ** interrupted and these instruction haven't been ** all executed. BTW, this is very unlikely to ** happen, but we check that from the C code. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_STORE_ABS (scratcha, 4), PADDRH (startpos), }/*-------------------------< RESELECT >--------------------*/,{ /* ** make the host status invalid. */ SCR_CLR (SCR_TRG), 0, /* ** Sleep waiting for a reselection. ** If SIGP is set, special treatment. ** ** Zu allem bereit .. */ SCR_WAIT_RESEL, PADDR(start), }/*-------------------------< RESELECTED >------------------*/,{ /* ** This NOP will be patched with LED ON ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) */ SCR_NO_OP, 0, /* ** load the target id into the sdid */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, /* ** load the target control block address */ SCR_LOAD_ABS (dsa, 4), PADDRH (targtbl), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0x3c), 0, SCR_LOAD_REL (dsa, 4), 0, /* ** Load the synchronous transfer registers. */ SCR_LOAD_REL (scntl3, 1), offsetof(struct tcb, wval), SCR_LOAD_REL (sxfer, 1), offsetof(struct tcb, sval), /* ** If MESSAGE IN phase as expected, ** read the data directly from the BUS DATA lines. ** This helps to support very old SCSI devices that ** may reselect without sending an IDENTIFY. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_RESEL_NO_MSG_IN, SCR_FROM_REG (sbdl), 0, /* ** If message phase but not an IDENTIFY, ** get some help from the C code. ** Old SCSI device may behave so. */ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), SIR_RESEL_NO_IDENTIFY, /* ** It is an IDENTIFY message, ** Load the LUN control block address. ** If LUN 0, avoid a PCI BUS ownership by loading ** directly 'b_lun0' from the TCB. */ SCR_JUMPR ^ IFTRUE (MASK (0x0, 0x3f)), 48, SCR_LOAD_REL (dsa, 4), offsetof(struct tcb, b_luntbl), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0xfc), 0, SCR_LOAD_REL (dsa, 4), 0, SCR_JUMPR, 8, /* ** LUN 0 special case (but usual one :)) */ SCR_LOAD_REL (dsa, 4), offsetof(struct tcb, b_lun0), /* ** Load the reselect task action for this LUN. ** Load the tasks DSA array for this LUN. ** Call the action. */ SCR_LOAD_REL (temp, 4), offsetof(struct lcb, resel_task), SCR_LOAD_REL (dsa, 4), offsetof(struct lcb, b_tasktbl), SCR_RETURN, 0, }/*-------------------------< RESEL_TAG >-------------------*/,{ /* ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. ** Agressive optimization, is'nt it? ** No need to test the SIMPLE TAG message, since the ** driver only supports conformant devices for tags. ;-) */ SCR_MOVE_ABS (3) ^ SCR_MSG_IN, NADDR (msgin), /* ** Read the TAG from the SIDL. ** Still an aggressive optimization. ;-) ** Compute the CCB indirect jump address which ** is (#TAG*2 & 0xfc) due to tag numbering using ** 1,3,5..MAXTAGS*2+1 actual values. */ SCR_REG_SFBR (sidl, SCR_SHL, 0), 0, #if MAX_TASKS*4 > 512 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 2), 0, SCR_REG_REG (sfbr, SCR_SHL, 0), 0, SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #elif MAX_TASKS*4 > 256 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #endif /* ** Retrieve the DSA of this task. ** JUMP indirectly to the restart point of the CCB. */ SCR_SFBR_REG (dsa, SCR_AND, 0xfc), 0, }/*-------------------------< RESEL_GO >-------------------*/,{ SCR_LOAD_REL (dsa, 4), 0, SCR_LOAD_REL (temp, 4), offsetof(struct ccb, phys.header.go.restart), SCR_RETURN, 0, }/*-------------------------< RESEL_NOTAG >-------------------*/,{ /* ** No tag expected. ** Read an throw away the IDENTIFY. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), /* ** JUMP indirectly to the restart point of the CCB. */ SCR_JUMP, PADDR (resel_go), }/*-------------------------< RESEL_DSA >-------------------*/,{ /* ** Ack the IDENTIFY or TAG previously received. */ SCR_CLR (SCR_ACK), 0, /* ** load the savep (saved pointer) into ** the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.header.savep), /* ** Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct ccb, phys.header.status), /* ** Jump to dispatcher. */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< DATA_IN >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTER parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CHMOV_TBL ^ SCR_DATA_IN, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_IN2 >-------------------*/,{ SCR_CALL, PADDR (datai_done), SCR_JUMP, PADDRH (no_data), }/*-------------------------< DATA_OUT >--------------------*/,{ /* ** Because the size depends on the ** #define MAX_SCATTER parameter, ** it is filled in at runtime. ** ** ##===========< i=0; i========= ** || SCR_CHMOV_TBL ^ SCR_DATA_OUT, ** || offsetof (struct dsb, data[ i]), ** ##========================================== ** **--------------------------------------------------------- */ 0 }/*-------------------------< DATA_OUT2 >-------------------*/,{ SCR_CALL, PADDR (datao_done), SCR_JUMP, PADDRH (no_data), }/*-------------------------< PM0_DATA >--------------------*/,{ /* ** Keep track we are executing the PM0 DATA ** mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), 0, /* ** MOVE the data according to the actual ** DATA direction. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct ccb, phys.pm0.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct ccb, phys.pm0.sg), /* ** Clear the flag that told we were in ** the PM0 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), 0, /* ** Return to the previous DATA script which ** is guaranteed by design (if no bug) to be ** the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.pm0.ret), SCR_RETURN, 0, }/*-------------------------< PM1_DATA >--------------------*/,{ /* ** Keep track we are executing the PM1 DATA ** mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), 0, /* ** MOVE the data according to the actual ** DATA direction. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 16, SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct ccb, phys.pm1.sg), SCR_JUMPR, 8, SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct ccb, phys.pm1.sg), /* ** Clear the flag that told we were in ** the PM1 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), 0, /* ** Return to the previous DATA script which ** is guaranteed by design (if no bug) to be ** the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.pm1.ret), SCR_RETURN, 0, }/*---------------------------------------------------------*/ }; static struct scripth scripth0 __initdata = { /*------------------------< START64 >-----------------------*/{ /* ** SCRIPT entry point for the 895A and the 896. ** For now, there is no specific stuff for that ** chip at this point, but this may come. */ SCR_JUMP, PADDR (init), }/*-----------------------< SEL_FOR_ABORT >------------------*/,{ /* ** We are jumped here by the C code, if we have ** some target to reset or some disconnected ** job to abort. Since error recovery is a serious ** busyness, we will really reset the SCSI BUS, if ** case of a SCSI interrupt occuring in this path. */ /* ** Set initiator mode. */ SCR_CLR (SCR_TRG), 0, /* ** And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct ncb, abrt_sel), PADDR (reselect), /* ** Wait for the selection to complete or ** the selection to time out. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), -8, /* ** Call the C code. */ SCR_INT, SIR_TARGET_SELECTED, /* ** The C code should let us continue here. ** Send the 'kiss of death' message. ** We expect an immediate disconnect once ** the target has eaten the message. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct ncb, abrt_tbl), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* ** Tell the C code that we are done. */ SCR_INT, SIR_ABORT_SENT, }/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{ /* ** Jump at scheduler. */ SCR_JUMP, PADDR (start), }/*------------------------< SELECT_NO_ATN >-----------------*/,{ /* ** Set Initiator mode. ** And try to select this target without ATN. */ SCR_CLR (SCR_TRG), 0, SCR_SEL_TBL ^ offsetof (struct dsb, select), PADDR (ungetjob), /* ** load the savep (saved pointer) into ** the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.header.savep), /* ** Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct ccb, phys.header.status), }/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{ /* ** Wait immediately for the next phase or ** the selection to complete or time-out. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< MSG_IN_ETC >--------------------*/,{ /* ** If it is an EXTENDED (variable size message) ** Handle it. */ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDRH (msg_extended), /* ** Let the C code handle any other ** 1 byte message. */ SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)), PADDRH (msg_received), SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)), PADDRH (msg_received), /* ** We donnot handle 2 bytes messages from SCRIPTS. ** So, let the C code deal with these ones too. */ SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)), PADDRH (msg_weird_seen), SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), SCR_JUMP, PADDRH (msg_received), }/*-------------------------< MSG_RECEIVED >--------------------*/,{ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_RECEIVED, }/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{ SCR_LOAD_REL (scratcha1, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_WEIRD, }/*-------------------------< MSG_EXTENDED >--------------------*/,{ /* ** Clear ACK and get the next byte ** assumed to be the message length. */ SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin[1]), /* ** Try to catch some unlikely situations as 0 length ** or too large the length. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDRH (msg_weird_seen), SCR_TO_REG (scratcha), 0, SCR_REG_REG (sfbr, SCR_ADD, (256-8)), 0, SCR_JUMP ^ IFTRUE (CARRYSET), PADDRH (msg_weird_seen), /* ** We donnot handle extended messages from SCRIPTS. ** Read the amount of data correponding to the ** message length and call the C code. */ SCR_STORE_REL (scratcha, 1), offsetof (struct dsb, smsg_ext.size), SCR_CLR (SCR_ACK), 0, SCR_MOVE_TBL ^ SCR_MSG_IN, offsetof (struct dsb, smsg_ext), SCR_JUMP, PADDRH (msg_received), }/*-------------------------< MSG_BAD >------------------*/,{ /* ** unimplemented message - reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (clrack), }/*-------------------------< MSG_WEIRD >--------------------*/,{ /* ** weird message received ** ignore all MSG IN phases and reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, }/*-------------------------< MSG_WEIRD1 >--------------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR (dispatch), SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (scratch), SCR_JUMP, PADDRH (msg_weird1), }/*-------------------------< WDTR_RESP >----------------*/,{ /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_WDTR >----------------*/,{ /* ** Send the M_X_WIDE_REQ */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, NADDR (msgout), SCR_JUMP, PADDRH (msg_out_done), }/*-------------------------< SDTR_RESP >-------------*/,{ /* ** let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDRH (nego_bad_phase), }/*-------------------------< SEND_SDTR >-------------*/,{ /* ** Send the M_X_SYNC_REQ */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, NADDR (msgout), SCR_JUMP, PADDRH (msg_out_done), }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ SCR_INT, SIR_NEGO_PROTO, SCR_JUMP, PADDR (dispatch), }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ /* ** After ABORT message, ** ** expect an immediate disconnect, ... */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_INT, SIR_MSG_OUT_DONE, /* ** ... and set the status to "ABORTED" */ SCR_LOAD_REG (HS_REG, HS_ABORTED), 0, SCR_JUMP, PADDR (complete2), }/*-------------------------< MSG_OUT >-------------------*/,{ /* ** The target requests a message. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), /* ** If it was no ABORT message ... */ SCR_JUMP ^ IFTRUE (DATA (M_ABORT)), PADDRH (msg_out_abort), /* ** ... wait for the next phase ** if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDRH (msg_out), }/*-------------------------< MSG_OUT_DONE >--------------*/,{ /* ** ... else clear the message ... */ SCR_INT, SIR_MSG_OUT_DONE, /* ** ... and process the next phase */ SCR_JUMP, PADDR (dispatch), }/*-------------------------< NO_DATA >--------------------*/,{ /* ** The target wants to tranfer too much data ** or in the wrong direction. ** Remember that in extended error. */ SCR_LOAD_REL (scratcha, 1), offsetof (struct ccb, xerr_status), SCR_REG_REG (scratcha, SCR_OR, XE_EXTRA_DATA), 0, SCR_STORE_REL (scratcha, 1), offsetof (struct ccb, xerr_status), /* ** Discard one data byte, if required. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, NADDR (scratch), SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 8, SCR_MOVE_ABS (1) ^ SCR_DATA_IN, NADDR (scratch), /* ** Count this byte. ** This will allow to return a positive ** residual to user. */ SCR_LOAD_REL (scratcha, 4), offsetof (struct ccb, phys.extra_bytes), SCR_REG_REG (scratcha, SCR_ADD, 0x01), 0, SCR_REG_REG (scratcha1, SCR_ADDC, 0), 0, SCR_REG_REG (scratcha2, SCR_ADDC, 0), 0, SCR_STORE_REL (scratcha, 4), offsetof (struct ccb, phys.extra_bytes), /* ** .. and repeat as required. */ SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDRH (no_data), }/*-------------------------< ABORT_RESEL >----------------*/,{ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* ** send the abort/abortag/reset message ** we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, NADDR (msgout), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_INT, SIR_RESEL_ABORTED, SCR_JUMP, PADDR (start), }/*-------------------------< RESEND_IDENT >-------------------*/,{ /* ** The target stays in MSG OUT phase after having acked ** Identify [+ Tag [+ Extended message ]]. Targets shall ** behave this way on parity error. ** We must send it again all the messages. */ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ SCR_JUMP, PADDR (send_ident), }/*-------------------------< IDENT_BREAK >-------------------*/,{ SCR_CLR (SCR_ATN), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< IDENT_BREAK_ATN >----------------*/,{ SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR (select2), }/*-------------------------< SDATA_IN >-------------------*/,{ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct dsb, sense), SCR_CALL, PADDR (dispatch), SCR_JUMP, PADDRH (no_data), }/*-------------------------< DATA_IO >--------------------*/,{ /* ** We jump here if the data direction was unknown at the ** time we had to queue the command to the scripts processor. ** Pointers had been set as follow in this situation: ** savep --> DATA_IO ** lastp --> start pointer when DATA_IN ** goalp --> goal pointer when DATA_IN ** wlastp --> start pointer when DATA_OUT ** wgoalp --> goal pointer when DATA_OUT ** This script sets savep/lastp/goalp according to the ** direction chosen by the target. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)), PADDRH(data_io_out), }/*-------------------------< DATA_IO_COM >-----------------*/,{ /* ** Direction is DATA IN. ** Warning: we jump here, even when phase is DATA OUT. */ SCR_LOAD_REL (scratcha, 4), offsetof (struct ccb, phys.header.lastp), SCR_STORE_REL (scratcha, 4), offsetof (struct ccb, phys.header.savep), /* ** Jump to the SCRIPTS according to actual direction. */ SCR_LOAD_REL (temp, 4), offsetof (struct ccb, phys.header.savep), SCR_RETURN, 0, }/*-------------------------< DATA_IO_OUT >-----------------*/,{ /* ** Direction is DATA OUT. */ SCR_LOAD_REL (scratcha, 4), offsetof (struct ccb, phys.header.wlastp), SCR_STORE_REL (scratcha, 4), offsetof (struct ccb, phys.header.lastp), SCR_LOAD_REL (scratcha, 4), offsetof (struct ccb, phys.header.wgoalp), SCR_STORE_REL (scratcha, 4), offsetof (struct ccb, phys.header.goalp), SCR_JUMP, PADDRH(data_io_com), }/*-------------------------< BAD_IDENTIFY >---------------*/,{ /* ** If message phase but not an IDENTIFY, ** get some help from the C code. ** Old SCSI device may behave so. */ SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), 16, SCR_INT, SIR_RESEL_NO_IDENTIFY, SCR_JUMP, PADDRH (abort_resel), /* ** Message is an IDENTIFY, but lun is unknown. ** Read the message, since we got it directly ** from the SCSI BUS data lines. ** Signal problem to C code for logging the event. ** Send a M_ABORT to clear all pending tasks. */ SCR_INT, SIR_RESEL_BAD_LUN, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, NADDR (msgin), SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_I_T_L >------------------*/,{ /* ** We donnot have a task for that I_T_L. ** Signal problem to C code for logging the event. ** Send a M_ABORT message. */ SCR_INT, SIR_RESEL_BAD_I_T_L, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ /* ** We donnot have a task that matches the tag. ** Signal problem to C code for logging the event. ** Send a M_ABORTTAG message. */ SCR_INT, SIR_RESEL_BAD_I_T_L_Q, SCR_JUMP, PADDRH (abort_resel), }/*-------------------------< BAD_STATUS >-----------------*/,{ /* ** If command resulted in either QUEUE FULL, ** CHECK CONDITION or COMMAND TERMINATED, ** call the C code. */ SCR_LOAD_ABS (scratcha, 4), PADDRH (startpos), SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)), SIR_BAD_STATUS, SCR_INT ^ IFTRUE (DATA (S_TERMINATED)), SIR_BAD_STATUS, SCR_RETURN, 0, }/*-------------------------< TWEAK_PMJ >------------------*/,{ /* ** Disable PM handling from SCRIPTS for the data phase ** and so force PM to be handled from C code if HF_PM_TO_C ** flag is set. */ SCR_FROM_REG(HF_REG), 0, SCR_JUMPR ^ IFTRUE (MASK (HF_PM_TO_C, HF_PM_TO_C)), 16, SCR_REG_REG (ccntl0, SCR_OR, ENPMJ), 0, SCR_RETURN, 0, SCR_REG_REG (ccntl0, SCR_AND, (~ENPMJ)), 0, SCR_RETURN, 0, }/*-------------------------< PM_HANDLE >------------------*/,{ /* ** Phase mismatch handling. ** ** Since we have to deal with 2 SCSI data pointers ** (current and saved), we need at least 2 contexts. ** Each context (pm0 and pm1) has a saved area, a ** SAVE mini-script and a DATA phase mini-script. */ /* ** Get the PM handling flags. */ SCR_FROM_REG (HF_REG), 0, /* ** If no flags (1rst PM for example), avoid ** all the below heavy flags testing. ** This makes the normal case a bit faster. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), PADDRH (pm_handle1), /* ** If we received a SAVE DP, switch to the ** other PM context since the savep may point ** to the current PM context. */ SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), 8, SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), 0, /* ** If we have been interrupt in a PM DATA mini-script, ** we take the return address from the corresponding ** saved area. ** This ensure the return address always points to the ** main DATA script for this transfer. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), PADDRH (pm_handle1), SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), 16, SCR_LOAD_REL (ia, 4), offsetof(struct ccb, phys.pm0.ret), SCR_JUMP, PADDRH (pm_save), SCR_LOAD_REL (ia, 4), offsetof(struct ccb, phys.pm1.ret), SCR_JUMP, PADDRH (pm_save), }/*-------------------------< PM_HANDLE1 >-----------------*/,{ /* ** Normal case. ** Update the return address so that it ** will point after the interrupted MOVE. */ SCR_REG_REG (ia, SCR_ADD, 8), 0, SCR_REG_REG (ia1, SCR_ADDC, 0), 0, }/*-------------------------< PM_SAVE >--------------------*/,{ /* ** Clear all the flags that told us if we were ** interrupted in a PM DATA mini-script and/or ** we received a SAVE DP. */ SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), 0, /* ** Choose the current PM context. */ SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), PADDRH (pm1_save), }/*-------------------------< PM0_SAVE >-------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct ccb, phys.pm0.ret), /* ** If WSR bit is set, either UA and RBC may ** have to be changed whatever the device wants ** to ignore this residue ot not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDRH (swide_scr_64), /* ** Save the remaining byte count, the updated ** address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct ccb, phys.pm0.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct ccb, phys.pm0.sg.addr), /* ** Set the current pointer at the PM0 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDRH (pm0_data_addr), SCR_JUMP, PADDR (dispatch), }/*-------------------------< PM1_SAVE >-------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct ccb, phys.pm1.ret), /* ** If WSR bit is set, either UA and RBC may ** have been changed whatever the device wants ** to ignore this residue or not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDRH (swide_scr_64), /* ** Save the remaining byte count, the updated ** address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct ccb, phys.pm1.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct ccb, phys.pm1.sg.addr), /* ** Set the current pointer at the PM1 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDRH (pm1_data_addr), SCR_JUMP, PADDR (dispatch), }/*--------------------------< SWIDE_MA_32 >-----------------------*/,{ /* ** Handling of the SWIDE for 32 bit chips. ** ** We jump here from the C code with SCRATCHA ** containing the address to write the SWIDE. ** - Save 32 bit address in . */ SCR_STORE_ABS (scratcha, 4), PADDRH (scratch), SCR_JUMP, PADDRH (swide_common), }/*--------------------------< SWIDE_MA_64 >-----------------------*/,{ /* ** Handling of the SWIDE for 64 bit chips when the ** hardware handling of phase mismatch is disabled. ** ** We jump here from the C code with SCRATCHA ** containing the address to write the SWIDE and ** SBR containing bit 32..39 of this address. ** - Save 32 bit address in . ** - Move address bit 32..39 to SFBR. */ SCR_STORE_ABS (scratcha, 4), PADDRH (scratch), SCR_FROM_REG (sbr), 0, SCR_JUMP, PADDRH (swide_com_64), }/*--------------------------< SWIDE_SCR_64 >-----------------------*/,{ /* ** Handling of the SWIDE for 64 bit chips when ** hardware phase mismatch is enabled. ** We are entered with a SCR_CALL from PMO_SAVE ** and PM1_SAVE sub-scripts. ** ** Snoop the SCSI BUS in case of the device ** willing to ignore this residue. ** If it does, we must only increment the RBC, ** since this register does reflect all bytes ** received from the SCSI BUS including the SWIDE. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDRH (swide_scr_64_1), SCR_FROM_REG (sbdl), 0, SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), PADDRH (swide_scr_64_1), SCR_REG_REG (rbc, SCR_ADD, 1), 0, SCR_REG_REG (rbc1, SCR_ADDC, 0), 0, SCR_REG_REG (rbc2, SCR_ADDC, 0), 0, /* ** Save UA and RBC, since the PM0/1_SAVE ** sub-scripts haven't moved them to the ** context yet and the below MOV may just ** change their value. */ SCR_STORE_ABS (ua, 4), PADDRH (scratch), SCR_STORE_ABS (rbc, 4), PADDRH (scratch1), /* ** Throw away the IGNORE WIDE RESIDUE message. ** since we just did take care of it. */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, NADDR (scratch), SCR_CLR (SCR_ACK), 0, /* ** Restore UA and RBC registers and return. */ SCR_LOAD_ABS (ua, 4), PADDRH (scratch), SCR_LOAD_ABS (rbc, 4), PADDRH (scratch1), SCR_RETURN, 0, }/*--------------------------< SWIDE_SCR_64_1 >---------------------*/,{ /* ** We must grab the SWIDE and move it to ** memory. ** ** - Save UA (32 bit address) in . ** - Move address bit 32..39 to SFBR. ** - Increment UA (updated address). */ SCR_STORE_ABS (ua, 4), PADDRH (scratch), SCR_FROM_REG (rbc3), 0, SCR_REG_REG (ua, SCR_ADD, 1), 0, SCR_REG_REG (ua1, SCR_ADDC, 0), 0, SCR_REG_REG (ua2, SCR_ADDC, 0), 0, SCR_REG_REG (ua3, SCR_ADDC, 0), 0, }/*--------------------------< SWIDE_COM_64 >-----------------------*/,{ /* ** - Save DRS. ** - Load DRS with address bit 32..39 of the ** location to write the SWIDE. ** SFBR has been loaded with these bits. ** (Look above). */ SCR_STORE_ABS (drs, 4), PADDRH (saved_drs), SCR_LOAD_ABS (drs, 4), PADDRH (zero), SCR_TO_REG (drs), 0, }/*--------------------------< SWIDE_COMMON >-----------------------*/,{ /* ** - Save current DSA ** - Load DSA with bit 0..31 of the memory ** location to write the SWIDE. */ SCR_STORE_ABS (dsa, 4), PADDRH (saved_dsa), SCR_LOAD_ABS (dsa, 4), PADDRH (scratch), /* ** Move the SWIDE to memory. ** Clear the WSR bit. */ SCR_STORE_REL (swide, 1), 0, SCR_REG_REG (scntl2, SCR_OR, WSR), 0, /* ** Restore the original DSA. */ SCR_LOAD_ABS (dsa, 4), PADDRH (saved_dsa), }/*--------------------------< SWIDE_FIN_32 >-----------------------*/,{ /* ** For 32 bit chip, the following SCRIPTS ** instruction is patched with a JUMP to dispatcher. ** (Look into the C code). */ SCR_LOAD_ABS (drs, 4), PADDRH (saved_drs), /* ** 64 bit chip only. ** If PM handling from SCRIPTS, we are just ** a helper for the C code, so jump to ** dispatcher now. */ SCR_FROM_REG (ccntl0), 0, SCR_JUMP ^ IFFALSE (MASK (ENPMJ, ENPMJ)), PADDR (dispatch), /* ** 64 bit chip with hardware PM handling enabled. ** ** Since we are paranoid:), we donnot want ** a SWIDE followed by a CHMOV(1) to lead to ** a CHMOV(0) in our PM context. ** We check against such a condition. ** Also does the C code. */ SCR_FROM_REG (rbc), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc1), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc2), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, /* ** If we are there, RBC(0..23) is zero, ** and we just have to load the current ** DATA SCRIPTS address (register TEMP) ** with the IA and go to dispatch. ** No PM context is needed. */ SCR_STORE_ABS (ia, 4), PADDRH (scratch), SCR_LOAD_ABS (temp, 4), PADDRH (scratch), SCR_JUMP, PADDR (dispatch), }/*-------------------------< ZERO >------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SCRATCH >---------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SCRATCH1 >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM0_DATA_ADDR >---------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM1_DATA_ADDR >---------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DSA >-------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DRS >-------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< DONE_POS >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< STARTPOS >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< TARGTBL >---------------------*/,{ SCR_DATA_ZERO, /* ** We may use MEMORY MOVE instructions to load the on chip-RAM, ** if it happens that mapping PCI memory is not possible. ** But writing the RAM from the CPU is the preferred method, ** since PCI 2.2 seems to disallow PCI self-mastering. */ #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED }/*-------------------------< START_RAM >-------------------*/,{ /* ** Load the script into on-chip RAM, ** and jump to start point. */ SCR_COPY (sizeof (struct script)), }/*-------------------------< SCRIPT0_BA >--------------------*/,{ 0, PADDR (start), SCR_JUMP, PADDR (init), }/*-------------------------< START_RAM64 >--------------------*/,{ /* ** Load the RAM and start for 64 bit PCI (895A,896). ** Both scripts (script and scripth) are loaded into ** the RAM which is 8K (4K for 825A/875/895). ** We also need to load some 32-63 bit segments ** address of the SCRIPTS processor. ** LOAD/STORE ABSOLUTE always refers to on-chip RAM ** in our implementation. The main memory is ** accessed using LOAD/STORE DSA RELATIVE. */ SCR_LOAD_REL (mmws, 4), offsetof (struct ncb, scr_ram_seg), SCR_COPY (sizeof(struct script)), }/*-------------------------< SCRIPT0_BA64 >--------------------*/,{ 0, PADDR (start), SCR_COPY (sizeof(struct scripth)), }/*-------------------------< SCRIPTH0_BA64 >--------------------*/,{ 0, PADDRH (start64), SCR_LOAD_REL (mmrs, 4), offsetof (struct ncb, scr_ram_seg), SCR_JUMP64, PADDRH (start64), }/*-------------------------< RAM_SEG64 >--------------------*/,{ 0, #endif /* SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ }/*-------------------------< SNOOPTEST >-------------------*/,{ /* ** Read the variable. */ SCR_LOAD_REL (scratcha, 4), offsetof(struct ncb, ncr_cache), SCR_STORE_REL (temp, 4), offsetof(struct ncb, ncr_cache), SCR_LOAD_REL (temp, 4), offsetof(struct ncb, ncr_cache), }/*-------------------------< SNOOPEND >-------------------*/,{ /* ** And stop. */ SCR_INT, 99, }/*--------------------------------------------------------*/ }; /*========================================================== ** ** ** Fill in #define dependent parts of the script ** ** **========================================================== */ void __init ncr_script_fill (struct script * scr, struct scripth * scrh) { int i; ncrcmd *p; p = scr->data_in; for (i=0; idata_in + sizeof (scr->data_in)); p = scr->data_out; for (i=0; idata_out + sizeof (scr->data_out)); } /*========================================================== ** ** ** Copy and rebind a script. ** ** **========================================================== */ static void __init ncr_script_copy_and_bind (ncb_p np,ncrcmd *src,ncrcmd *dst,int len) { ncrcmd opcode, new, old, tmp1, tmp2; ncrcmd *start, *end; int relocs; int opchanged = 0; start = src; end = src + len/4; while (src < end) { opcode = *src++; *dst++ = cpu_to_scr(opcode); /* ** If we forget to change the length ** in struct script, a field will be ** padded with 0. This is an illegal ** command. */ if (opcode == 0) { printk (KERN_INFO "%s: ERROR0 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); MDELAY (10000); continue; }; /* ** We use the bogus value 0xf00ff00f ;-) ** to reserve data area in SCRIPTS. */ if (opcode == SCR_DATA_ZERO) { dst[-1] = 0; continue; } if (DEBUG_FLAGS & DEBUG_SCRIPT) printk (KERN_INFO "%p: <%x>\n", (src-1), (unsigned)opcode); /* ** We don't have to decode ALL commands */ switch (opcode >> 28) { case 0xf: /* ** LOAD / STORE DSA relative, don't relocate. */ relocs = 0; break; case 0xe: /* ** LOAD / STORE absolute. */ relocs = 1; break; case 0xc: /* ** COPY has TWO arguments. */ relocs = 2; tmp1 = src[0]; tmp2 = src[1]; #ifdef RELOC_KVAR if ((tmp1 & RELOC_MASK) == RELOC_KVAR) tmp1 = 0; if ((tmp2 & RELOC_MASK) == RELOC_KVAR) tmp2 = 0; #endif if ((tmp1 ^ tmp2) & 3) { printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", ncr_name(np), (int) (src-start-1)); MDELAY (1000); } /* ** If PREFETCH feature not enabled, remove ** the NO FLUSH bit if present. */ if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); ++opchanged; } break; case 0x0: /* ** MOVE/CHMOV (absolute address) */ if (!(np->features & FE_WIDE)) dst[-1] = cpu_to_scr(opcode | OPC_MOVE); relocs = 1; break; case 0x1: /* ** MOVE/CHMOV (table indirect) */ if (!(np->features & FE_WIDE)) dst[-1] = cpu_to_scr(opcode | OPC_MOVE); relocs = 0; break; case 0x8: /* ** JUMP / CALL ** dont't relocate if relative :-) */ if (opcode & 0x00800000) relocs = 0; else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ relocs = 2; else relocs = 1; break; case 0x4: case 0x5: case 0x6: case 0x7: relocs = 1; break; default: relocs = 0; break; }; if (!relocs) { *dst++ = cpu_to_scr(*src++); continue; } while (relocs--) { old = *src++; switch (old & RELOC_MASK) { case RELOC_REGISTER: new = (old & ~RELOC_MASK) + pcivtobus(np->base_ba); break; case RELOC_LABEL: new = (old & ~RELOC_MASK) + np->p_script; break; case RELOC_LABELH: new = (old & ~RELOC_MASK) + np->p_scripth; break; case RELOC_SOFTC: new = (old & ~RELOC_MASK) + vtobus(np); break; #ifdef RELOC_KVAR case RELOC_KVAR: if (((old & ~RELOC_MASK) < SCRIPT_KVAR_FIRST) || ((old & ~RELOC_MASK) > SCRIPT_KVAR_LAST)) panic("ncr KVAR out of range"); new = vtobus(script_kvars[old & ~RELOC_MASK]); #endif break; case 0: /* Don't relocate a 0 address. */ if (old == 0) { new = old; break; } /* fall through */ default: new = 0; /* For 'cc' not to complain */ panic("ncr_script_copy_and_bind: " "weird relocation %x\n", old); break; } *dst++ = cpu_to_scr(new); } }; } /*========================================================== ** ** ** Auto configuration: attach and init a host adapter. ** ** **========================================================== */ /* ** Linux host data structure. */ struct host_data { struct ncb *ncb; }; /* ** Print something which allows to retrieve the controler type, unit, ** target, lun concerned by a kernel message. */ static void PRINT_TARGET(ncb_p np, int target) { printk(KERN_INFO "%s-<%d,*>: ", ncr_name(np), target); } static void PRINT_LUN(ncb_p np, int target, int lun) { printk(KERN_INFO "%s-<%d,%d>: ", ncr_name(np), target, lun); } static void PRINT_ADDR(Scsi_Cmnd *cmd) { struct host_data *host_data = (struct host_data *) cmd->host->hostdata; PRINT_LUN(host_data->ncb, cmd->target, cmd->lun); } /*========================================================== ** ** NCR chip clock divisor table. ** Divisors are multiplied by 10,000,000 in order to make ** calculations more simple. ** **========================================================== */ #define _5M 5000000 static u_long div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; /*=============================================================== ** ** Prepare io register values used by ncr_init() according ** to selected and supported features. ** ** NCR/SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, ** 128 transfers. All chips support at least 16 transfers bursts. ** The 825A, 875 and 895 chips support bursts of up to 128 ** transfers and the 895A and 896 support bursts of up to 64 ** transfers. All other chips support up to 16 transfers bursts. ** ** For PCI 32 bit data transfers each transfer is a DWORD (4 bytes). ** It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. ** Only the 896 is able to perform 64 bit data transfers. ** ** We use log base 2 (burst length) as internal code, with ** value 0 meaning "burst disabled". ** **=============================================================== */ /* * Burst length from burst code. */ #define burst_length(bc) (!(bc))? 0 : 1 << (bc) /* * Burst code from io register bits. */ #define burst_code(dmode, ctest4, ctest5) \ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 /* * Set initial io register bits from burst code. */ static inline void ncr_init_burst(ncb_p np, u_char bc) { np->rv_ctest4 &= ~0x80; np->rv_dmode &= ~(0x3 << 6); np->rv_ctest5 &= ~0x4; if (!bc) { np->rv_ctest4 |= 0x80; } else { --bc; np->rv_dmode |= ((bc & 0x3) << 6); np->rv_ctest5 |= (bc & 0x4); } } #ifdef SCSI_NCR_NVRAM_SUPPORT /* ** Get target set-up from Symbios format NVRAM. */ static void __init ncr_Symbios_setup_target(ncb_p np, int target, Symbios_nvram *nvram) { tcb_p tp = &np->target[target]; Symbios_target *tn = &nvram->target[target]; tp->usrsync = tn->sync_period ? (tn->sync_period + 3) / 4 : 255; tp->usrwide = tn->bus_width == 0x10 ? 1 : 0; tp->usrtags = (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? MAX_TAGS : 0; if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) tp->usrflag |= UF_NODISC; if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) tp->usrflag |= UF_NOSCAN; } /* ** Get target set-up from Tekram format NVRAM. */ static void __init ncr_Tekram_setup_target(ncb_p np, int target, Tekram_nvram *nvram) { tcb_p tp = &np->target[target]; struct Tekram_target *tn = &nvram->target[target]; int i; if (tn->flags & TEKRAM_SYNC_NEGO) { i = tn->sync_index & 0xf; tp->usrsync = i < 12 ? Tekram_sync[i] : 255; } tp->usrwide = (tn->flags & TEKRAM_WIDE_NEGO) ? 1 : 0; if (tn->flags & TEKRAM_TAGGED_COMMANDS) { tp->usrtags = 2 << nvram->max_tags_index; } if (!(tn->flags & TEKRAM_DISCONNECT_ENABLE)) tp->usrflag = UF_NODISC; /* If any device does not support parity, we will not use this option */ if (!(tn->flags & TEKRAM_PARITY_CHECK)) np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ } #endif /* SCSI_NCR_NVRAM_SUPPORT */ static int __init ncr_prepare_setting(ncb_p np, ncr_nvram *nvram) { u_char burst_max; u_long period; int i; /* ** Save assumed BIOS setting */ np->sv_scntl0 = INB(nc_scntl0) & 0x0a; np->sv_scntl3 = INB(nc_scntl3) & 0x07; np->sv_dmode = INB(nc_dmode) & 0xce; np->sv_dcntl = INB(nc_dcntl) & 0xa8; np->sv_ctest3 = INB(nc_ctest3) & 0x01; np->sv_ctest4 = INB(nc_ctest4) & 0x80; np->sv_ctest5 = INB(nc_ctest5) & 0x24; np->sv_gpcntl = INB(nc_gpcntl); np->sv_stest2 = INB(nc_stest2) & 0x20; np->sv_stest4 = INB(nc_stest4); /* ** Wide ? */ np->maxwide = (np->features & FE_WIDE)? 1 : 0; /* ** Get the frequency of the chip's clock. ** Find the right value for scntl3. */ if (np->features & FE_QUAD) np->multiplier = 4; else if (np->features & FE_DBLR) np->multiplier = 2; else np->multiplier = 1; np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000; np->clock_khz *= np->multiplier; if (np->clock_khz != 40000) ncr_getclock(np, np->multiplier); /* * Divisor to be used for async (timer pre-scaler). */ i = np->clock_divn - 1; while (--i >= 0) { if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { ++i; break; } } np->rv_scntl3 = i+1; /* * Minimum synchronous period factor supported by the chip. * Btw, 'period' is in tenths of nanoseconds. */ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; if (period <= 250) np->minsync = 10; else if (period <= 303) np->minsync = 11; else if (period <= 500) np->minsync = 12; else np->minsync = (period + 40 - 1) / 40; /* * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). */ if (np->minsync < 25 && !(np->features & (FE_ULTRA|FE_ULTRA2))) np->minsync = 25; else if (np->minsync < 12 && !(np->features & FE_ULTRA2)) np->minsync = 12; /* * Maximum synchronous period factor supported by the chip. */ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); np->maxsync = period > 2540 ? 254 : period / 10; /* ** 64 bit (53C895A or 53C896) ? */ if (np->features & FE_64BIT) #if BITS_PER_LONG > 32 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); #else np->rv_ccntl1 |= (DDAC); #endif /* ** Phase mismatch handled by SCRIPTS (53C895A or 53C896) ? */ if (np->features & FE_NOPM) np->rv_ccntl0 |= (ENPMJ); /* ** Prepare initial value of other IO registers */ #if defined SCSI_NCR_TRUST_BIOS_SETTING np->rv_scntl0 = np->sv_scntl0; np->rv_dmode = np->sv_dmode; np->rv_dcntl = np->sv_dcntl; np->rv_ctest3 = np->sv_ctest3; np->rv_ctest4 = np->sv_ctest4; np->rv_ctest5 = np->sv_ctest5; burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); #else /* ** Select burst length (dwords) */ burst_max = driver_setup.burst_max; if (burst_max == 255) burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5); if (burst_max > 7) burst_max = 7; if (burst_max > np->maxburst) burst_max = np->maxburst; /* ** DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. ** This chip and the 860 Rev 1 may wrongly use PCI cache line ** based transactions on LOAD/STORE instructions. So we have ** to prevent these chips from using such PCI transactions in ** this driver. The generic sym53c8xx driver that does not use ** LOAD/STORE instructions does not need this work-around. */ if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 && np->revision_id >= 0x10 && np->revision_id <= 0x11) || (np->device_id == PCI_DEVICE_ID_NCR_53C860 && np->revision_id <= 0x1)) np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); /* ** Select all supported special features. ** If we are using on-board RAM for scripts, prefetch (PFEN) ** does not help, but burst op fetch (BOF) does. ** Disabling PFEN makes sure BOF will be used. */ if (np->features & FE_ERL) np->rv_dmode |= ERL; /* Enable Read Line */ if (np->features & FE_BOF) np->rv_dmode |= BOF; /* Burst Opcode Fetch */ if (np->features & FE_ERMP) np->rv_dmode |= ERMP; /* Enable Read Multiple */ #ifdef SCSI_NCR_OPTIMIZE_896 if ((np->features & FE_PFEN) && !np->base2_ba) #else if (np->features & FE_PFEN) #endif np->rv_dcntl |= PFEN; /* Prefetch Enable */ if (np->features & FE_CLSE) np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ if (np->features & FE_WRIE) np->rv_ctest3 |= WRIE; /* Write and Invalidate */ if (np->features & FE_DFS) np->rv_ctest5 |= DFS; /* Dma Fifo Size */ /* ** Select some other */ if (driver_setup.master_parity) np->rv_ctest4 |= MPEE; /* Master parity checking */ if (driver_setup.scsi_parity) np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ #ifdef SCSI_NCR_NVRAM_SUPPORT /* ** Get parity checking, host ID and verbose mode from NVRAM **/ if (nvram) { switch(nvram->type) { case SCSI_NCR_TEKRAM_NVRAM: np->myaddr = nvram->data.Tekram.host_id & 0x0f; break; case SCSI_NCR_SYMBIOS_NVRAM: if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) np->rv_scntl0 &= ~0x0a; np->myaddr = nvram->data.Symbios.host_id & 0x0f; if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) np->verbose += 1; break; } } #endif /* ** Get SCSI addr of host adapter (set by bios?). */ if (np->myaddr == 255) { np->myaddr = INB(nc_scid) & 0x07; if (!np->myaddr) np->myaddr = SCSI_NCR_MYADDR; } #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ /* * Prepare initial io register bits for burst length */ ncr_init_burst(np, burst_max); /* ** Set SCSI BUS mode. ** ** - ULTRA2 chips (895/895A/896) report the current ** BUS mode through the STEST4 IO register. ** - For previous generation chips (825/825A/875), ** user has to tell us how to check against HVD, ** since a 100% safe algorithm is not possible. */ np->scsi_mode = SMODE_SE; if (np->features & FE_ULTRA2) np->scsi_mode = (np->sv_stest4 & SMODE); else if (np->features & FE_DIFF) { switch(driver_setup.diff_support) { case 4: /* Trust previous settings if present, then GPIO3 */ if (np->sv_scntl3) { if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; } case 3: /* SYMBIOS controllers report HVD through GPIO3 */ if (nvram && nvram->type != SCSI_NCR_SYMBIOS_NVRAM) break; if (INB(nc_gpreg) & 0x08) break; case 2: /* Set HVD unconditionally */ np->scsi_mode = SMODE_HVD; case 1: /* Trust previous settings for HVD */ if (np->sv_stest2 & 0x20) np->scsi_mode = SMODE_HVD; break; default:/* Don't care about HVD */ break; } } if (np->scsi_mode == SMODE_HVD) np->rv_stest2 |= 0x20; /* ** Set LED support from SCRIPTS. ** Ignore this feature for boards known to use a ** specific GPIO wiring and for the 895A or 896 ** that drive the LED directly. ** Also probe initial setting of GPIO0 as output. */ if ((driver_setup.led_pin || (nvram && nvram->type == SCSI_NCR_SYMBIOS_NVRAM)) && !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) np->features |= FE_LED0; /* ** Set irq mode. */ switch(driver_setup.irqm & 3) { case 2: np->rv_dcntl |= IRQM; break; case 1: np->rv_dcntl |= (np->sv_dcntl & IRQM); break; default: break; } /* ** Configure targets according to driver setup. ** If NVRAM present get targets setup from NVRAM. ** Allow to override sync, wide and NOSCAN from ** boot command line. */ for (i = 0 ; i < MAX_TARGET ; i++) { tcb_p tp = &np->target[i]; tp->usrsync = 255; #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvram) { switch(nvram->type) { case SCSI_NCR_TEKRAM_NVRAM: ncr_Tekram_setup_target(np, i, &nvram->data.Tekram); break; case SCSI_NCR_SYMBIOS_NVRAM: ncr_Symbios_setup_target(np, i, &nvram->data.Symbios); break; } if (driver_setup.use_nvram & 0x2) tp->usrsync = driver_setup.default_sync; if (driver_setup.use_nvram & 0x4) tp->usrwide = driver_setup.max_wide; if (driver_setup.use_nvram & 0x8) tp->usrflag &= ~UF_NOSCAN; } else { #else if (1) { #endif tp->usrsync = driver_setup.default_sync; tp->usrwide = driver_setup.max_wide; tp->usrtags = MAX_TAGS; if (!driver_setup.disconnection) np->target[i].usrflag = UF_NODISC; } } /* ** Announce all that stuff to user. */ i = nvram ? nvram->type : 0; printk(KERN_INFO "%s: %sID %d, Fast-%d%s%s\n", ncr_name(np), i == SCSI_NCR_SYMBIOS_NVRAM ? "Symbios format NVRAM, " : (i == SCSI_NCR_TEKRAM_NVRAM ? "Tekram format NVRAM, " : ""), np->myaddr, np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", (np->rv_stest2 & 0x20) ? ", Differential" : ""); if (bootverbose > 1) { printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); } if (bootverbose && np->base2_ba) printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", ncr_name(np), np->base2_ba); return 0; } #ifdef SCSI_NCR_DEBUG_NVRAM void __init ncr_display_Symbios_nvram(ncb_p np, Symbios_nvram *nvram) { int i; /* display Symbios nvram host data */ printk(KERN_DEBUG "%s: HOST ID=%d%s%s%s%s%s\n", ncr_name(np), nvram->host_id & 0x0f, (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); /* display Symbios nvram drive data */ for (i = 0 ; i < 15 ; i++) { struct Symbios_target *tn = &nvram->target[i]; printk(KERN_DEBUG "%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", ncr_name(np), i, (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", tn->bus_width, tn->sync_period / 4, tn->timeout); } } static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120}; void __init ncr_display_Tekram_nvram(ncb_p np, Tekram_nvram *nvram) { int i, tags, boot_delay; char *rem; /* display Tekram nvram host data */ tags = 2 << nvram->max_tags_index; boot_delay = 0; if (nvram->boot_delay_index < 6) boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { default: case 0: rem = ""; break; case 1: rem = " REMOVABLE=boot device"; break; case 2: rem = " REMOVABLE=all"; break; } printk(KERN_DEBUG "%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", ncr_name(np), nvram->host_id & 0x0f, (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"", (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", rem, boot_delay, tags); /* display Tekram nvram drive data */ for (i = 0; i <= 15; i++) { int sync, j; struct Tekram_target *tn = &nvram->target[i]; j = tn->sync_index & 0xf; sync = j < 12 ? Tekram_sync[j] : 255; printk(KERN_DEBUG "%s-%d:%s%s%s%s%s%s PERIOD=%d\n", ncr_name(np), i, (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", (tn->flags & TEKRAM_START_CMD) ? " START" : "", (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", sync); } } #endif /* SCSI_NCR_DEBUG_NVRAM */ /* ** Host attach and initialisations. ** ** Allocate host data and ncb structure. ** Request IO region and remap MMIO region. ** Do chip initialization. ** If all is OK, install interrupt handling and ** start the timer daemon. */ static int __init ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device) { struct host_data *host_data; ncb_p np = 0; struct Scsi_Host *instance = 0; u_long flags = 0; ncr_nvram *nvram = device->nvram; int i; #ifdef __sparc__ printk(KERN_INFO "ncr53c%s-%d: rev=0x%02x, base=0x%lx, io_port=0x%lx, irq=0x%x\n", device->chip.name, unit, device->chip.revision_id, device->slot.base, device->slot.io_port, device->slot.irq); #else printk(KERN_INFO NAME53C "%s-%d: rev=0x%02x, base=0x%lx, io_port=0x%lx, irq=%d\n", device->chip.name, unit, device->chip.revision_id, device->slot.base, device->slot.io_port, device->slot.irq); #endif /* ** Allocate host_data structure */ if (!(instance = scsi_register(tpnt, sizeof(*host_data)))) goto attach_error; host_data = (struct host_data *) instance->hostdata; /* ** Allocate the host control block. */ np = m_calloc(sizeof(struct ncb), "NCB", MEMO_WARN); if (!np) goto attach_error; NCR_INIT_LOCK_NCB(np); host_data->ncb = np; /* ** Store input informations in the host data structure. */ strncpy(np->chip_name, device->chip.name, sizeof(np->chip_name) - 1); np->unit = unit; np->verbose = driver_setup.verbose; sprintf(np->inst_name, NAME53C "%s-%d", np->chip_name, np->unit); np->device_id = device->chip.device_id; np->revision_id = device->chip.revision_id; np->features = device->chip.features; np->clock_divn = device->chip.nr_divisor; np->maxoffs = device->chip.offset_max; np->maxburst = device->chip.burst_max; np->myaddr = device->host_id; /* ** Allocate the start queue. */ np->squeue = (ncrcmd *) m_calloc(sizeof(ncrcmd)*(MAX_START*2), "SQUEUE", MEMO_WARN); if (!np->squeue) goto attach_error; /* ** Allocate the done queue. */ np->dqueue = (ncrcmd *) m_calloc(sizeof(ncrcmd)*(MAX_START*2), "DQUEUE", MEMO_WARN); if (!np->dqueue) goto attach_error; /* ** Allocate the target bus address array. */ np->targtbl = (u_int32 *) m_calloc(256, "TARGTBL", MEMO_WARN); if (!np->targtbl) goto attach_error; /* ** Allocate SCRIPTS areas */ np->script0 = (struct script *) m_calloc(sizeof(struct script), "SCRIPT", MEMO_WARN); if (!np->script0) goto attach_error; np->scripth0 = (struct scripth *) m_calloc(sizeof(struct scripth), "SCRIPTH", MEMO_WARN); if (!np->scripth0) goto attach_error; /* ** Initialyze the CCB free queue and, ** allocate some CCB. We need at least ONE. */ xpt_que_init(&np->free_ccbq); xpt_que_init(&np->b0_ccbq); if (!ncr_alloc_ccb(np)) goto attach_error; /* ** Initialize timer structure ** */ init_timer(&np->timer); np->timer.data = (unsigned long) np; np->timer.function = sym53c8xx_timeout; /* ** Try to map the controller chip to ** virtual and physical memory. */ np->base_ba = device->slot.base; np->base_ws = (np->features & FE_IO256)? 256 : 128; np->base2_ba = (np->features & FE_RAM)? device->slot.base_2 : 0; #ifndef NCR_IOMAPPED np->base_va = remap_pci_mem(np->base_ba, np->base_ws); if (!np->base_va) { printk(KERN_ERR "%s: can't map PCI MMIO region\n",ncr_name(np)); goto attach_error; } else if (bootverbose > 1) printk(KERN_INFO "%s: using memory mapped IO\n", ncr_name(np)); /* ** Make the controller's registers available. ** Now the INB INW INL OUTB OUTW OUTL macros ** can be used safely. */ np->reg = (struct ncr_reg *) np->base_va; #endif /* !defined NCR_IOMAPPED */ /* ** Try to map the controller chip into iospace. */ if (device->slot.io_port) { request_region(device->slot.io_port, np->base_ws, NAME53C8XX); np->base_io = device->slot.io_port; } #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvram) { switch(nvram->type) { case SCSI_NCR_SYMBIOS_NVRAM: #ifdef SCSI_NCR_DEBUG_NVRAM ncr_display_Symbios_nvram(np, &nvram->data.Symbios); #endif break; case SCSI_NCR_TEKRAM_NVRAM: #ifdef SCSI_NCR_DEBUG_NVRAM ncr_display_Tekram_nvram(np, &nvram->data.Tekram); #endif break; default: nvram = 0; #ifdef SCSI_NCR_DEBUG_NVRAM printk(KERN_DEBUG "%s: NVRAM: None or invalid data.\n", ncr_name(np)); #endif } } #endif /* ** Do chip dependent initialization. */ if (np->base2_ba && sizeof(struct script) > 4096) { printk(KERN_ERR "%s: script too large.\n", ncr_name(np)); goto attach_error; } (void) ncr_prepare_setting(np, nvram); /* ** Check the PCI clock frequency. ** Must be done after prepare_setting since it ** destroys STEST1 that is used to probe for ** the clock doubler. */ i = (int) ncr_getpciclock(np); if (i > 37000) { printk(KERN_ERR "%s: PCI clock seems too high (%u KHz).\n", ncr_name(np), i); goto attach_error; } /* ** Patch script to physical addresses */ ncr_script_fill (&script0, &scripth0); np->p_script = vtobus(np->script0); np->p_scripth = vtobus(np->scripth0); np->p_scripth0 = np->p_scripth; if (np->base2_ba) { np->p_script = pcivtobus(np->base2_ba); if (np->features & FE_RAM8K) { np->base2_ws = 8192; np->p_scripth = np->p_script + 4096; #if BITS_PER_LONG > 32 np->scr_ram_seg = cpu_to_scr(np->base2_ba >> 32); #endif } else np->base2_ws = 4096; #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED np->base2_va = remap_pci_mem(np->base2_ba, np->base2_ws); if (!np->base2_va) { printk(KERN_ERR "%s: can't map PCI MEMORY region\n", ncr_name(np)); goto attach_error; } #endif } ncr_script_copy_and_bind (np, (ncrcmd *) &script0, (ncrcmd *) np->script0, sizeof(struct script)); ncr_script_copy_and_bind (np, (ncrcmd *) &scripth0, (ncrcmd *) np->scripth0, sizeof(struct scripth)); /* ** If not 64 bit chip, patch some places in SCRIPTS. */ if (!(np->features & FE_64BIT)) { np->scripth0->swide_fin_32[0] = cpu_to_scr(SCR_JUMP); np->scripth0->swide_fin_32[1] = cpu_to_scr(NCB_SCRIPT_PHYS(np, dispatch)); } /* ** Patch some variables in SCRIPTS */ np->scripth0->pm0_data_addr[0] = cpu_to_scr(NCB_SCRIPT_PHYS(np, pm0_data)); np->scripth0->pm1_data_addr[0] = cpu_to_scr(NCB_SCRIPT_PHYS(np, pm1_data)); #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED np->scripth0->script0_ba[0] = cpu_to_scr(vtobus(np->script0)); np->scripth0->script0_ba64[0] = cpu_to_scr(vtobus(np->script0)); np->scripth0->scripth0_ba64[0] = cpu_to_scr(vtobus(np->scripth0)); np->scripth0->ram_seg64[0] = np->scr_ram_seg; #endif /* ** Prepare the idle and invalid task actions. */ np->idletask.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); np->idletask.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l)); np->p_idletask = vtobus(&np->idletask); np->notask.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); np->notask.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l)); np->p_notask = vtobus(&np->notask); np->bad_i_t_l.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); np->bad_i_t_l.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l)); np->p_bad_i_t_l = vtobus(&np->bad_i_t_l); np->bad_i_t_l_q.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); np->bad_i_t_l_q.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np,bad_i_t_l_q)); np->p_bad_i_t_l_q = vtobus(&np->bad_i_t_l_q); /* ** Allocate and prepare the bad lun table. */ np->badluntbl = m_calloc(256, "BADLUNTBL", MEMO_WARN); if (!np->badluntbl) goto attach_error; assert (offsetof(struct lcb, resel_task) == 0); np->resel_badlun = cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_identify)); for (i = 0 ; i < 64 ; i++) np->badluntbl[i] = cpu_to_scr(vtobus(&np->resel_badlun)); /* ** Prepare the target bus address array. */ np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl)); for (i = 0 ; i < MAX_TARGET ; i++) { np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); np->target[i].b_luntbl = cpu_to_scr(vtobus(np->badluntbl)); np->target[i].b_lun0 = cpu_to_scr(vtobus(&np->resel_badlun)); } /* ** Patch the script for LED support. */ if (np->features & FE_LED0) { np->script0->idle[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); np->script0->reselected[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); np->script0->start[0] = cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); } #ifdef SCSI_NCR_IARB_SUPPORT /* ** If user does not want to use IMMEDIATE ARBITRATION ** when we are reselected while attempting to arbitrate, ** patch the SCRIPTS accordingly with a SCRIPT NO_OP. */ if (!(driver_setup.iarb & 1)) np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); /* ** If user wants IARB to be set when we win arbitration ** and have other jobs, compute the max number of consecutive ** settings of IARB hint before we leave devices a chance to ** arbitrate for reselection. */ np->iarb_max = (driver_setup.iarb >> 4); #endif /* ** DEL 472 - 53C896 Rev 1 - Part Number 609-0393055 - ITEM 5. */ if (np->device_id == PCI_DEVICE_ID_NCR_53C896 && np->revision_id <= 0x1 && (np->features & FE_NOPM)) { np->scatter = ncr_scatter_896R1; #ifndef SCSI_NCR_PROFILE_SUPPORT #define XXX 0 #else #define XXX 3 #endif np->script0->dataphase[XXX] = cpu_to_scr(SCR_JUMP); np->script0->dataphase[XXX+1] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tweak_pmj)); #undef XXX } else #ifdef DEBUG_896R1 np->scatter = ncr_scatter_896R1; #else np->scatter = ncr_scatter; #endif /* ** Reset chip. ** We should use ncr_soft_reset(), but we donnot want to do ** so, since we may not be safe if ABRT interrupt occurs due ** to the BIOS or previous O/S having enable this interrupt. */ OUTB (nc_istat, SRST); UDELAY(10); OUTB (nc_istat, 0); /* ** Now check the cache handling of the pci chipset. */ if (ncr_snooptest (np)) { printk (KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); goto attach_error; }; /* ** Install the interrupt handler. ** If we synchonize the C code with SCRIPTS on interrupt, ** we donnot want to share the INTR line at all. */ if (request_irq(device->slot.irq, sym53c8xx_intr, #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR ((driver_setup.irqm & 0x20) ? 0 : SA_INTERRUPT), #else ((driver_setup.irqm & 0x10) ? 0 : SA_SHIRQ) | #if LINUX_VERSION_CODE < LinuxVersionCode(2,2,0) ((driver_setup.irqm & 0x20) ? 0 : SA_INTERRUPT), #else 0, #endif #endif NAME53C8XX, np)) { printk(KERN_ERR "%s: request irq %d failure\n", ncr_name(np), device->slot.irq); goto attach_error; } np->irq = device->slot.irq; /* ** After SCSI devices have been opened, we cannot ** reset the bus safely, so we do it here. ** Interrupt handler does the real work. ** Process the reset exception, ** if interrupts are not enabled yet. ** Then enable disconnects. */ NCR_LOCK_NCB(np, flags); if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); NCR_UNLOCK_NCB(np, flags); goto attach_error; } ncr_exception (np); /* ** The middle-level SCSI driver does not ** wait for devices to settle. ** Wait synchronously if more than 2 seconds. */ if (driver_setup.settle_delay > 2) { printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", ncr_name(np), driver_setup.settle_delay); MDELAY (1000 * driver_setup.settle_delay); } /* ** start the timeout daemon */ np->lasttime=0; ncr_timeout (np); /* ** use SIMPLE TAG messages by default */ #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG np->order = M_SIMPLE_TAG; #endif /* ** Done. */ if (!first_host) first_host = instance; /* ** Fill Linux host instance structure ** and return success. */ instance->max_channel = 0; instance->this_id = np->myaddr; instance->max_id = np->maxwide ? 16 : 8; instance->max_lun = MAX_LUN; #ifndef NCR_IOMAPPED instance->base = (char *) np->reg; #endif instance->irq = np->irq; instance->unique_id = np->base_io; instance->io_port = np->base_io; instance->n_io_port = np->base_ws; instance->dma_channel = 0; instance->cmd_per_lun = MAX_TAGS; instance->can_queue = (MAX_START-4); instance->select_queue_depths = sym53c8xx_select_queue_depths; NCR_UNLOCK_NCB(np, flags); /* ** Now let the generic SCSI driver ** look for the SCSI devices on the bus .. */ return 0; attach_error: if (!instance) return -1; printk(KERN_INFO "%s: giving up ...\n", ncr_name(np)); if (np) ncr_free_resources(np); scsi_unregister(instance); return -1; } /* ** Free controller resources. */ static void ncr_free_resources(ncb_p np) { ccb_p cp; tcb_p tp; lcb_p lp; int target, lun; if (np->irq) free_irq(np->irq, np); if (np->base_io) release_region(np->base_io, np->base_ws); #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED if (np->base_va) unmap_pci_mem(np->base_va, np->base_ws); if (np->base2_va) unmap_pci_mem(np->base2_va, np->base2_ws); #endif if (np->scripth0) m_free(np->scripth0, sizeof(struct scripth), "SCRIPTH"); if (np->script0) m_free(np->script0, sizeof(struct script), "SCRIPT"); if (np->squeue) m_free(np->squeue, sizeof(ncrcmd)*(MAX_START*2), "SQUEUE"); if (np->dqueue) m_free(np->dqueue, sizeof(ncrcmd)*(MAX_START*2),"DQUEUE"); while ((cp = np->ccbc) != NULL) { np->ccbc = cp->link_ccb; m_free(cp, sizeof(*cp), "CCB"); } if (np->badluntbl) m_free(np->badluntbl, 256,"BADLUNTBL"); for (target = 0; target < MAX_TARGET ; target++) { tp = &np->target[target]; for (lun = 0 ; lun < MAX_LUN ; lun++) { lp = ncr_lp(np, tp, lun); if (!lp) continue; if (lp->tasktbl != &lp->tasktbl_0) m_free(lp->tasktbl, MAX_TASKS*4, "TASKTBL"); if (lp->cb_tags) m_free(lp->cb_tags, MAX_TAGS, "CB_TAGS"); m_free(lp, sizeof(*lp), "LCB"); } #if MAX_LUN > 1 if (tp->lmp) m_free(tp->lmp, MAX_LUN * sizeof(lcb_p), "LMP"); #endif } m_free(np, sizeof(*np), "NCB"); } /*========================================================== ** ** ** Done SCSI commands list management. ** ** We donnot enter the scsi_done() callback immediately ** after a command has been seen as completed but we ** insert it into a list which is flushed outside any kind ** of driver critical section. ** This allows to do minimal stuff under interrupt and ** inside critical sections and to also avoid locking up ** on recursive calls to driver entry points under SMP. ** In fact, the only kernel point which is entered by the ** driver with a driver lock set is get_free_pages(GFP_ATOMIC...) ** that shall not reenter the driver under any circumstance. ** **========================================================== */ static inline void ncr_queue_done_cmd(ncb_p np, Scsi_Cmnd *cmd) { cmd->host_scribble = (char *) np->done_list; np->done_list = cmd; } static inline void ncr_flush_done_cmds(Scsi_Cmnd *lcmd) { Scsi_Cmnd *cmd; while (lcmd) { cmd = lcmd; lcmd = (Scsi_Cmnd *) cmd->host_scribble; cmd->scsi_done(cmd); } } /*========================================================== ** ** ** Prepare the next negotiation message if needed. ** ** Fill in the part of message buffer that contains the ** negotiation and the nego_status field of the CCB. ** Returns the size of the message in bytes. ** ** **========================================================== */ static int ncr_prepare_nego(ncb_p np, ccb_p cp, u_char *msgptr) { tcb_p tp = &np->target[cp->target]; int msglen = 0; int nego = 0; if (tp->inq_done) { /* ** negotiate wide transfers ? */ if (!tp->widedone) { if (tp->inq_byte7 & INQ7_WIDE16) { nego = NS_WIDE; } else tp->widedone=1; }; /* ** negotiate synchronous transfers? */ if (!nego && !tp->period) { if (tp->inq_byte7 & INQ7_SYNC) { nego = NS_SYNC; } else { tp->period =0xffff; PRINT_TARGET(np, cp->target); printk ("target did not report SYNC.\n"); }; }; }; switch (nego) { case NS_SYNC: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 3; msgptr[msglen++] = M_X_SYNC_REQ; msgptr[msglen++] = tp->maxoffs ? tp->minsync : 0; msgptr[msglen++] = tp->maxoffs; break; case NS_WIDE: msgptr[msglen++] = M_EXTENDED; msgptr[msglen++] = 2; msgptr[msglen++] = M_X_WIDE_REQ; msgptr[msglen++] = tp->usrwide; break; }; cp->nego_status = nego; if (nego) { tp->nego_cp = cp; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, nego == NS_WIDE ? "wide msgout":"sync_msgout", msgptr); }; }; return msglen; } /*========================================================== ** ** ** Start execution of a SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_queue_command (ncb_p np, Scsi_Cmnd *cmd) { /* Scsi_Device *device = cmd->device; */ tcb_p tp = &np->target[cmd->target]; lcb_p lp = ncr_lp(np, tp, cmd->lun); ccb_p cp; int segments; u_char idmsg, *msgptr; u_int msglen; int direction; u_int32 lastp, goalp; /*--------------------------------------------- ** ** Some shortcuts ... ** **--------------------------------------------- */ if ((cmd->target == np->myaddr ) || (cmd->target >= MAX_TARGET) || (cmd->lun >= MAX_LUN )) { return(DID_BAD_TARGET); } /*--------------------------------------------- ** ** Complete the 1st TEST UNIT READY command ** with error condition if the device is ** flagged NOSCAN, in order to speed up ** the boot. ** **--------------------------------------------- */ if (cmd->cmnd[0] == 0 && (tp->usrflag & UF_NOSCAN)) { tp->usrflag &= ~UF_NOSCAN; return DID_BAD_TARGET; } if (DEBUG_FLAGS & DEBUG_TINY) { PRINT_ADDR(cmd); printk ("CMD=%x ", cmd->cmnd[0]); } /*--------------------------------------------------- ** ** Assign a ccb / bind cmd. ** If resetting, shorten settle_time if necessary ** in order to avoid spurious timeouts. ** If resetting or no free ccb, ** insert cmd into the waiting list. ** **---------------------------------------------------- */ if (np->settle_time && cmd->timeout_per_command >= HZ) { u_long tlimit = ktime_get(cmd->timeout_per_command - HZ); if (ktime_dif(np->settle_time, tlimit) > 0) np->settle_time = tlimit; } if (np->settle_time || !(cp=ncr_get_ccb (np, cmd->target, cmd->lun))) { insert_into_waiting_list(np, cmd); return(DID_OK); } cp->cmd = cmd; /*--------------------------------------------------- ** ** Enable tagged queue if asked by scsi ioctl ** **---------------------------------------------------- */ #if 0 /* This stuff was only usefull for linux-1.2.13 */ if (lp && !lp->numtags && cmd->device && cmd->device->tagged_queue) { lp->numtags = tp->usrtags; ncr_setup_tags (np, cp->target, cp->lun); } #endif #ifdef SCSI_NCR_PROFILE_SUPPORT cp->phys.num_disc = 0; #endif /*---------------------------------------------------- ** ** Build the identify / tag / sdtr message ** **---------------------------------------------------- */ idmsg = M_IDENTIFY | cp->lun; if (cp ->tag != NO_TAG || (lp && !(tp->usrflag & UF_NODISC))) idmsg |= 0x40; msgptr = cp->scsi_smsg; msglen = 0; msgptr[msglen++] = idmsg; if (cp->tag != NO_TAG) { char order = np->order; /* ** Force ordered tag if necessary to avoid timeouts ** and to preserve interactivity. */ if (lp && ktime_exp(lp->tags_stime)) { lp->tags_si = !(lp->tags_si); if (lp->tags_sum[lp->tags_si]) { order = M_ORDERED_TAG; if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>0){ PRINT_ADDR(cmd); printk("ordered tag forced.\n"); } } lp->tags_stime = ktime_get(3*HZ); } if (order == 0) { /* ** Ordered write ops, unordered read ops. */ switch (cmd->cmnd[0]) { case 0x08: /* READ_SMALL (6) */ case 0x28: /* READ_BIG (10) */ case 0xa8: /* READ_HUGE (12) */ order = M_SIMPLE_TAG; break; default: order = M_ORDERED_TAG; } } msgptr[msglen++] = order; /* ** For less than 128 tags, actual tags are numbered ** 1,3,5,..2*MAXTAGS+1,since we may have to deal ** with devices that have problems with #TAG 0 or too ** great #TAG numbers. For more tags (up to 256), ** we use directly our tag number. */ #if MAX_TASKS > (512/4) msgptr[msglen++] = cp->tag; #else msgptr[msglen++] = (cp->tag << 1) + 1; #endif } cp->host_flags = 0; /*---------------------------------------------------- ** ** Build the data descriptors ** **---------------------------------------------------- */ cp->segments = segments = np->scatter (cp, cp->cmd); if (segments < 0) { ncr_free_ccb(np, cp); return(DID_ERROR); } /*---------------------------------------------------- ** ** Determine xfer direction. ** **---------------------------------------------------- */ if (!cp->data_len) direction = 0; else { switch((int) cmd->cmnd[0]) { case 0x08: /* READ(6) 08 */ case 0x28: /* READ(10) 28 */ case 0xA8: /* READ(12) A8 */ direction = XFER_IN; break; case 0x0A: /* WRITE(6) 0A */ case 0x2A: /* WRITE(10) 2A */ case 0xAA: /* WRITE(12) AA */ direction = XFER_OUT; break; default: direction = (XFER_IN|XFER_OUT); break; } } /*---------------------------------------------------- ** ** Set the DATA POINTER. ** **---------------------------------------------------- */ /* ** Default to no data transfer. */ lastp = goalp = NCB_SCRIPTH_PHYS (np, no_data); /* ** Compute data out pointers, if needed. */ if (direction & XFER_OUT) { goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; lastp = goalp - 8 - (segments * (SCR_SG_SIZE*4)); /* ** If actual data direction is unknown, save pointers ** in header. The SCRIPTS will swap them to current ** if target decision will be data out. */ if (direction & XFER_IN) { cp->phys.header.wgoalp = cpu_to_scr(goalp); cp->phys.header.wlastp = cpu_to_scr(lastp); } } /* ** Compute data in pointers, if needed. */ if (direction & XFER_IN) { goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; lastp = goalp - 8 - (segments * (SCR_SG_SIZE*4)); } /* ** Set all pointers values needed by SCRIPTS. ** If direction is unknown, start at data_io. */ cp->phys.header.lastp = cpu_to_scr(lastp); cp->phys.header.goalp = cpu_to_scr(goalp); if ((direction & (XFER_IN|XFER_OUT)) == (XFER_IN|XFER_OUT)) cp->phys.header.savep = cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); else cp->phys.header.savep= cpu_to_scr(lastp); /* ** Save the initial data pointer in order to be able ** to redo the command. ** We also have to save the initial lastp, since it ** will be changed to DATA_IO if we don't know the data ** direction and the device completes the command with ** QUEUE FULL status (without entering the data phase). */ cp->startp = cp->phys.header.savep; cp->lastp0 = cp->phys.header.lastp; /*--------------------------------------------------- ** ** negotiation required? ** ** (nego_status is filled by ncr_prepare_nego()) ** **--------------------------------------------------- */ cp->nego_status = 0; if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) msglen += ncr_prepare_nego (np, cp, msgptr + msglen); /*---------------------------------------------------- ** ** fill in ccb ** **---------------------------------------------------- ** ** ** physical -> virtual backlink ** Generic SCSI command */ /* ** Startqueue */ cp->phys.header.go.start = cpu_to_scr(NCB_SCRIPT_PHYS (np,select)); cp->phys.header.go.restart = cpu_to_scr(NCB_SCRIPT_PHYS (np,resel_dsa)); /* ** select */ cp->phys.select.sel_id = cp->target; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; /* ** message */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); cp->phys.smsg.size = cpu_to_scr(msglen); /* ** command */ cp->phys.cmd.addr = cpu_to_scr(vtobus (&cmd->cmnd[0])); cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); /* ** status */ cp->actualquirks = tp->quirks; cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->xerr_status = 0; cp->phys.extra_bytes = 0; /* ** extreme data pointer. ** shall be positive, so -1 is lower than lowest.:) */ cp->ext_sg = -1; cp->ext_ofs = 0; /*---------------------------------------------------- ** ** Critical region: start this job. ** **---------------------------------------------------- */ /* ** activate this job. */ /* ** insert next CCBs into start queue. ** 2 max at a time is enough to flush the CCB wait queue. */ if (lp) ncr_start_next_ccb(np, lp, 2); else ncr_put_start_queue(np, cp); /* ** Command is successfully queued. */ return(DID_OK); } /*========================================================== ** ** ** Insert a CCB into the start queue and wake up the ** SCRIPTS processor. ** ** **========================================================== */ static void ncr_start_next_ccb(ncb_p np, lcb_p lp, int maxn) { XPT_QUEHEAD *qp; ccb_p cp; while (maxn-- && lp->queuedccbs < lp->queuedepth) { qp = xpt_remque_head(&lp->wait_ccbq); if (!qp) break; ++lp->queuedccbs; cp = xpt_que_entry(qp, struct ccb, link_ccbq); xpt_insque_tail(qp, &lp->busy_ccbq); lp->tasktbl[cp->tag == NO_TAG ? 0 : cp->tag] = cpu_to_scr(cp->p_ccb); ncr_put_start_queue(np, cp); } } static void ncr_put_start_queue(ncb_p np, ccb_p cp) { u_short qidx; #ifdef SCSI_NCR_IARB_SUPPORT /* ** If the previously queued CCB is not yet done, ** set the IARB hint. The SCRIPTS will go with IARB ** for this job when starting the previous one. ** We leave devices a chance to win arbitration by ** not using more than 'iarb_max' consecutive ** immediate arbitrations. */ if (np->last_cp && np->iarb_count < np->iarb_max) { np->last_cp->host_flags |= HF_HINT_IARB; ++np->iarb_count; } else np->iarb_count = 0; np->last_cp = cp; #endif /* ** insert into start queue. */ qidx = np->squeueput + 2; if (qidx >= MAX_START*2) qidx = 0; np->squeue [qidx] = cpu_to_scr(np->p_idletask); MEMORY_BARRIER(); np->squeue [np->squeueput] = cpu_to_scr(cp->p_ccb); np->squeueput = qidx; cp->queued = 1; if (DEBUG_FLAGS & DEBUG_QUEUE) printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); /* ** Script processor may be waiting for reselect. ** Wake it up. */ MEMORY_BARRIER(); OUTB (nc_istat, SIGP|np->istat_sem); } /*========================================================== ** ** Soft reset the chip. ** ** Some 896 and 876 chip revisions may hang-up if we set ** the SRST (soft reset) bit at the wrong time when SCRIPTS ** are running. ** So, we need to abort the current operation prior to ** soft resetting the chip. ** **========================================================== */ static void ncr_soft_reset(ncb_p np) { u_char istat; int i; OUTB (nc_istat, CABRT); for (i = 1000000 ; i ; --i) { istat = INB (nc_istat); if (istat & SIP) { INW (nc_sist); continue; } if (istat & DIP) { OUTB (nc_istat, 0); INB (nc_dstat); break; } } if (!i) printk("%s: unable to abort current chip operation.\n", ncr_name(np)); OUTB (nc_istat, SRST); UDELAY(10); OUTB (nc_istat, 0); } /*========================================================== ** ** ** Start reset process. ** The interrupt handler will reinitialize the chip. ** The timeout handler will wait for settle_time before ** clearing it and so resuming command processing. ** ** **========================================================== */ static void ncr_start_reset(ncb_p np) { (void) ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); } static int ncr_reset_scsi_bus(ncb_p np, int enab_int, int settle_delay) { u_int32 term; int retv = 0; np->settle_time = ktime_get(settle_delay * HZ); if (bootverbose > 1) printk("%s: resetting, " "command processing suspended for %d seconds\n", ncr_name(np), settle_delay); ncr_soft_reset(np); /* Soft reset the chip */ UDELAY (2000); /* The 895/6 need time for the bus mode to settle */ if (enab_int) OUTW (nc_sien, RST); /* ** Enable Tolerant, reset IRQD if present and ** properly set IRQ mode, prior to resetting the bus. */ OUTB (nc_stest3, TE); OUTB (nc_dcntl, (np->rv_dcntl & IRQM)); OUTB (nc_scntl1, CRST); UDELAY (200); if (!driver_setup.bus_check) goto out; /* ** Check for no terminators or SCSI bus shorts to ground. ** Read SCSI data bus, data parity bits and control signals. ** We are expecting RESET to be TRUE and other signals to be ** FALSE. */ term = INB(nc_sstat0); /* rst, sdp0 */ term = ((term & 2) << 7) + ((term & 1) << 16); term |= ((INB(nc_sstat2) & 0x01) << 25) | /* sdp1 */ (INW(nc_sbdl) << 9) | /* d15-0 */ INB(nc_sbcl); /* req, ack, bsy, sel, atn, msg, cd, io */ if (!(np->features & FE_WIDE)) term &= 0x3ffff; if (term != (2<<7)) { printk("%s: suspicious SCSI data while resetting the BUS.\n", ncr_name(np)); printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " "0x%lx, expecting 0x%lx\n", ncr_name(np), (np->features & FE_WIDE) ? "dp1,d15-8," : "", (u_long)term, (u_long)(2<<7)); if (driver_setup.bus_check == 1) retv = 1; } out: OUTB (nc_scntl1, 0); return retv; } /*========================================================== ** ** ** Reset the SCSI BUS. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_reset_bus (ncb_p np, Scsi_Cmnd *cmd, int sync_reset) { /* Scsi_Device *device = cmd->device; */ ccb_p cp; int found; /* * Return immediately if reset is in progress. */ if (np->settle_time) { return SCSI_RESET_PUNT; } /* * Start the reset process. * The script processor is then assumed to be stopped. * Commands will now be queued in the waiting list until a settle * delay of 2 seconds will be completed. */ ncr_start_reset(np); /* * First, look in the wakeup list */ for (found=0, cp=np->ccbc; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) { found = 1; break; } } /* * Then, look in the waiting list */ if (!found && retrieve_from_waiting_list(0, np, cmd)) found = 1; /* * Wake-up all awaiting commands with DID_RESET. */ reset_waiting_list(np); /* * Wake-up all pending commands with HS_RESET -> DID_RESET. */ ncr_wakeup(np, HS_RESET); /* * If the involved command was not in a driver queue, and the * scsi driver told us reset is synchronous, and the command is not * currently in the waiting list, complete it with DID_RESET status, * in order to keep it alive. */ if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { SetScsiResult(cmd, DID_RESET, 0); ncr_queue_done_cmd(np, cmd); } return SCSI_RESET_SUCCESS; } /*========================================================== ** ** ** Abort an SCSI command. ** This is called from the generic SCSI driver. ** ** **========================================================== */ static int ncr_abort_command (ncb_p np, Scsi_Cmnd *cmd) { /* Scsi_Device *device = cmd->device; */ ccb_p cp; /* * First, look for the scsi command in the waiting list */ if (remove_from_waiting_list(np, cmd)) { SetScsiResult(cmd, DID_ABORT, 0); ncr_queue_done_cmd(np, cmd); return SCSI_ABORT_SUCCESS; } /* * Then, look in the wakeup list */ for (cp=np->ccbc; cp; cp=cp->link_ccb) { /* ** look for the ccb of this command. */ if (cp->host_status == HS_IDLE) continue; if (cp->cmd == cmd) break; } if (!cp) { return SCSI_ABORT_NOT_RUNNING; } /* ** Keep track we have to abort this job. */ cp->to_abort = 1; /* ** Tell the SCRIPTS processor to stop ** and synchronize with us. */ np->istat_sem = SEM; /* ** If there are no requests, the script ** processor will sleep on SEL_WAIT_RESEL. ** Let's wake it up, since it may have to work. */ OUTB (nc_istat, SIGP|SEM); /* ** Tell user we are working for him. */ return SCSI_ABORT_PENDING; } /*========================================================== ** ** Linux release module stuff. ** ** Called before unloading the module ** Detach the host. ** We have to free resources and halt the NCR chip ** **========================================================== */ #ifdef MODULE static int ncr_detach(ncb_p np) { int i; printk("%s: detaching ...\n", ncr_name(np)); /* ** Stop the ncr_timeout process ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. */ np->release_stage = 1; for (i = 50 ; i && np->release_stage != 2 ; i--) MDELAY (100); if (np->release_stage != 2) printk("%s: the timer seems to be already stopped\n", ncr_name(np)); else np->release_stage = 2; /* ** Reset NCR chip. ** We should use ncr_soft_reset(), but we donnot want to do ** so, since we may not be safe if interrupts occur. */ printk("%s: resetting chip\n", ncr_name(np)); OUTB (nc_istat, SRST); UDELAY (100); OUTB (nc_istat, 0 ); /* ** Restore bios setting for automatic clock detection. */ OUTB(nc_dmode, np->sv_dmode); OUTB(nc_dcntl, np->sv_dcntl); OUTB(nc_ctest3, np->sv_ctest3); OUTB(nc_ctest4, np->sv_ctest4); OUTB(nc_ctest5, np->sv_ctest5); OUTB(nc_gpcntl, np->sv_gpcntl); OUTB(nc_stest2, np->sv_stest2); ncr_selectclock(np, np->sv_scntl3); /* ** Free host resources */ ncr_free_resources(np); return 1; } #endif /*========================================================== ** ** ** Complete execution of a SCSI command. ** Signal completion to the generic SCSI driver. ** ** **========================================================== */ void ncr_complete (ncb_p np, ccb_p cp) { Scsi_Cmnd *cmd; tcb_p tp; lcb_p lp; /* ** Sanity check */ if (!cp || !cp->cmd) return; /* ** Gather profiling data */ #ifdef SCSI_NCR_PROFILE_SUPPORT ncb_profile (np, cp); #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, cp->host_status,cp->scsi_status); /* ** Get command, target and lun pointers. */ cmd = cp->cmd; cp->cmd = NULL; tp = &np->target[cp->target]; lp = ncr_lp(np, tp, cp->lun); /* ** We donnot queue more than 1 ccb per target ** with negotiation at any time. If this ccb was ** used for negotiation, clear this info in the tcb. */ if (cp == tp->nego_cp) tp->nego_cp = 0; #ifdef SCSI_NCR_IARB_SUPPORT /* ** We just complete the last queued CCB. ** Clear this info that is no more relevant. */ if (cp == np->last_cp) np->last_cp = 0; #endif /* ** If auto-sense performed, change scsi status, ** Otherwise, compute the residual. */ if (cp->host_flags & HF_AUTO_SENSE) { cp->scsi_status = cp->sv_scsi_status; cp->xerr_status = cp->sv_xerr_status; } else { cp->resid = 0; if (cp->phys.header.lastp != cp->phys.header.goalp) cp->resid = ncr_compute_residual(np, cp); } /* ** Check for extended errors. */ if (cp->xerr_status) { if (cp->xerr_status & XE_PARITY_ERR) { PRINT_ADDR(cp->cmd); printk ("unrecovered SCSI parity error.\n"); } if (cp->xerr_status & XE_EXTRA_DATA) { PRINT_ADDR(cp->cmd); printk ("extraneous data discarded.\n"); } if (cp->xerr_status & XE_BAD_PHASE) { PRINT_ADDR(cp->cmd); printk ("illegal scsi phase (4/5).\n"); } if (cp->host_status==HS_COMPLETE) cp->host_status = HS_FAIL; } /* ** Print out any error for debugging purpose. */ if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD || cp->resid) { PRINT_ADDR(cmd); printk ("ERROR: cmd=%x host_status=%x scsi_status=%x " "data_len=%d residual=%d\n", cmd->cmnd[0], cp->host_status, cp->scsi_status, cp->data_len, -cp->resid); } } /* ** Check the status. */ if ( (cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_GOOD || cp->scsi_status == S_COND_MET)) { /* ** All went well (GOOD status). ** CONDITION MET status is returned on ** `Pre-Fetch' or `Search data' success. */ SetScsiResult(cmd, DID_OK, cp->scsi_status); /* ** Allocate the lcb if not yet. */ if (!lp) ncr_alloc_lcb (np, cp->target, cp->lun); /* ** On standard INQUIRY response (EVPD and CmDt ** not set), setup logical unit according to ** announced capabilities (we need the 1rst 7 bytes). */ if (cmd->cmnd[0] == 0x12 && !(cmd->cmnd[1] & 0x3) && cmd->cmnd[4] >= 7 && !cmd->use_sg) { ncr_setup_lcb (np, cp->target, cp->lun, (char *) cmd->request_buffer); } tp->bytes += cp->data_len; tp->transfers ++; /* ** If tags was reduced due to queue full, ** increase tags if 1000 good status received. */ if (lp && lp->usetags && lp->numtags < lp->maxtags) { ++lp->num_good; if (lp->num_good >= 1000) { lp->num_good = 0; ++lp->numtags; ncr_setup_tags (np, cp->target, cp->lun); } } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_CHECK_COND)) { /* ** Check condition code */ SetScsiResult(cmd, DID_OK, S_CHECK_COND); if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { PRINT_ADDR(cmd); ncr_printl_hex("sense data:", cmd->sense_buffer, 14); } } else if ((cp->host_status == HS_COMPLETE) && (cp->scsi_status == S_BUSY || cp->scsi_status == S_QUEUE_FULL)) { /* ** Target is busy. */ SetScsiResult(cmd, DID_OK, cp->scsi_status); } else if ((cp->host_status == HS_SEL_TIMEOUT) || (cp->host_status == HS_TIMEOUT)) { /* ** No response */ SetScsiResult(cmd, DID_TIME_OUT, cp->scsi_status); } else if (cp->host_status == HS_RESET) { /* ** SCSI bus reset */ SetScsiResult(cmd, DID_RESET, cp->scsi_status); } else if (cp->host_status == HS_ABORTED) { /* ** Transfer aborted */ SetScsiResult(cmd, DID_ABORT, cp->scsi_status); } else { int did_status; /* ** Other protocol messes */ PRINT_ADDR(cmd); printk ("COMMAND FAILED (%x %x) @%p.\n", cp->host_status, cp->scsi_status, cp); did_status = DID_ERROR; if (cp->xerr_status & XE_PARITY_ERR) did_status = DID_PARITY; SetScsiResult(cmd, did_status, cp->scsi_status); } /* ** trace output */ if (tp->usrflag & UF_TRACE) { PRINT_ADDR(cmd); printk (" CMD:"); ncr_print_hex(cmd->cmnd, cmd->cmd_len); if (cp->host_status==HS_COMPLETE) { switch (cp->scsi_status) { case S_GOOD: printk (" GOOD"); break; case S_CHECK_COND: printk (" SENSE:"); ncr_print_hex(cmd->sense_buffer, 14); break; default: printk (" STAT: %x\n", cp->scsi_status); break; } } else printk (" HOSTERROR: %x", cp->host_status); printk ("\n"); } /* ** Free this ccb */ ncr_free_ccb (np, cp); /* ** requeue awaiting scsi commands for this lun. */ if (lp && lp->queuedccbs < lp->queuedepth && !xpt_que_empty(&lp->wait_ccbq)) ncr_start_next_ccb(np, lp, 2); /* ** requeue awaiting scsi commands for this controller. */ if (np->waiting_list) requeue_waiting_list(np); /* ** signal completion to generic driver. */ ncr_queue_done_cmd(np, cmd); } /*========================================================== ** ** ** Signal all (or one) control block done. ** ** **========================================================== */ /* ** The NCR has completed CCBs. ** Look at the DONE QUEUE. */ int ncr_wakeup_done (ncb_p np) { ccb_p cp; int i, n; u_long dsa; n = 0; i = np->dqueueget; while (1) { dsa = scr_to_cpu(np->dqueue[i]); if (!dsa) break; np->dqueue[i] = 0; if ((i = i+2) >= MAX_START*2) i = 0; cp = ncr_ccb_from_dsa(np, dsa); if (cp) { ncr_complete (np, cp); ++n; } else printk (KERN_ERR "%s: bad DSA (%lx) in done queue.\n", ncr_name(np), dsa); } np->dqueueget = i; return n; } /* ** Complete all active CCBs. */ void ncr_wakeup (ncb_p np, u_long code) { ccb_p cp = np->ccbc; while (cp) { if (cp->host_status != HS_IDLE) { cp->host_status = code; ncr_complete (np, cp); } cp = cp->link_ccb; } } /*========================================================== ** ** ** Start NCR chip. ** ** **========================================================== */ void ncr_init (ncb_p np, int reset, char * msg, u_long code) { int i; u_long phys; /* ** Reset chip if asked, otherwise just clear fifos. */ if (reset) ncr_soft_reset(np); else { OUTB (nc_stest3, TE|CSF); OUTONB (nc_ctest3, CLF); } /* ** Message. */ if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); /* ** Clear Start Queue */ phys = vtobus(np->squeue); np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ for (i = 0; i < MAX_START*2; i += 2) { np->squeue[i] = cpu_to_scr(np->p_idletask); np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->squeue[MAX_START*2-1] = cpu_to_scr(phys); /* ** Start at first entry. */ np->squeueput = 0; np->scripth0->startpos[0] = cpu_to_scr(phys); /* ** Clear Done Queue */ phys = vtobus(np->dqueue); for (i = 0; i < MAX_START*2; i += 2) { np->dqueue[i] = 0; np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); } np->dqueue[MAX_START*2-1] = cpu_to_scr(phys); /* ** Start at first entry. */ np->scripth0->done_pos[0] = cpu_to_scr(phys); np->dqueueget = 0; /* ** Wakeup all pending jobs. */ ncr_wakeup (np, code); /* ** Init chip. */ OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */ UDELAY (2000); /* The 895 needs time for the bus mode to settle */ OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); /* full arb., ena parity, par->ATN */ OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ OUTW (nc_respid, 1ul<myaddr); /* Id to respond to */ OUTB (nc_istat , SIGP ); /* Signal Process */ OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ OUTB (nc_stest3, TE); /* TolerANT enable */ OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ /* ** DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. ** Disable overlapped arbitration. ** The 896 Rev 1 needs also this work-around to be applied. */ if (np->device_id == PCI_DEVICE_ID_NCR_53C875 && np->revision_id >= 0x10 && np->revision_id <= 0x15) OUTB (nc_ctest0, (1<<5)); else if (np->device_id == PCI_DEVICE_ID_NCR_53C896 && np->revision_id <= 0x1) np->rv_ccntl0 |= DPR; /* ** If 64 bit (53C895A or 53C896) enable 40 bit address table ** indirect addressing for MOVE. */ if (np->features & FE_64BIT) { OUTB (nc_ccntl1, np->rv_ccntl1); } /* ** If phase mismatch handled by scripts (53C895A or 53C896), ** set PM jump addresses. */ if (np->features & FE_NOPM) { printk(KERN_INFO "%s: handling phase mismatch from SCRIPTS.\n", ncr_name(np)); OUTB (nc_ccntl0, np->rv_ccntl0); OUTL (nc_pmjad1, NCB_SCRIPTH_PHYS (np, pm_handle)); OUTL (nc_pmjad2, NCB_SCRIPTH_PHYS (np, pm_handle)); } /* ** Enable GPIO0 pin for writing if LED support from SCRIPTS. ** Also set GPIO5 and clear GPIO6 if hardware LED control. */ if (np->features & FE_LED0) OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01); else if (np->features & FE_LEDC) OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20); /* ** enable ints */ OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); OUTB (nc_dien , MDPE|BF|SSI|SIR|IID); /* ** For 895/6 enable SBMC interrupt and save current SCSI bus mode. */ if (np->features & FE_ULTRA2) { OUTONW (nc_sien, SBMC); np->scsi_mode = INB (nc_stest4) & SMODE; } /* ** Fill in target structure. ** Reinitialize usrsync. ** Reinitialize usrwide. ** Prepare sync negotiation according to actual SCSI bus mode. */ for (i=0;itarget[i]; tp->to_reset = 0; tp->sval = 0; tp->wval = np->rv_scntl3; if (tp->usrsync != 255) { if (tp->usrsync <= np->maxsync) { if (tp->usrsync < np->minsync) { tp->usrsync = np->minsync; } } else tp->usrsync = 255; }; if (tp->usrwide > np->maxwide) tp->usrwide = np->maxwide; ncr_negotiate (np, tp); } /* ** Download SCSI SCRIPTS to on-chip RAM if present, ** and start script processor. ** We do the download preferently from the CPU. ** For platforms that may not support PCI memory mapping, ** we use a simple SCRIPTS that performs MEMORY MOVEs. */ MEMORY_BARRIER(); if (np->base2_ba) { if (bootverbose) printk ("%s: Downloading SCSI SCRIPTS.\n", ncr_name(np)); #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED if (np->base2_ws == 8192) phys = NCB_SCRIPTH0_PHYS (np, start_ram64); else phys = NCB_SCRIPTH_PHYS (np, start_ram); #else if (np->base2_ws == 8192) { memcpy_to_pci(np->base2_va + 4096, np->scripth0, sizeof(struct scripth)); OUTL (nc_mmws, np->scr_ram_seg); OUTL (nc_mmrs, np->scr_ram_seg); OUTL (nc_sfs, np->scr_ram_seg); phys = NCB_SCRIPTH_PHYS (np, start64); } else phys = NCB_SCRIPT_PHYS (np, init); memcpy_to_pci(np->base2_va, np->script0, sizeof(struct script)); #endif /* SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ } else phys = NCB_SCRIPT_PHYS (np, init); np->istat_sem = 0; OUTL (nc_dsa, vtobus(np)); OUTL (nc_dsp, phys); } /*========================================================== ** ** Prepare the negotiation values for wide and ** synchronous transfers. ** **========================================================== */ static void ncr_negotiate (struct ncb* np, struct tcb* tp) { /* ** minsync unit is 4ns ! */ u_long minsync = tp->usrsync; /* ** SCSI bus mode limit */ if (np->scsi_mode && np->scsi_mode == SMODE_SE) { if (minsync < 12) minsync = 12; } /* ** our limit .. */ if (minsync < np->minsync) minsync = np->minsync; /* ** divider limit */ if (minsync > np->maxsync) minsync = 255; tp->minsync = minsync; tp->maxoffs = (minsync<255 ? np->maxoffs : 0); /* ** period=0: has to negotiate sync transfer */ tp->period=0; /* ** widedone=0: has to negotiate wide transfer */ tp->widedone=0; } /*========================================================== ** ** Get clock factor and sync divisor for a given ** synchronous factor period. ** Returns the clock factor (in sxfer) and scntl3 ** synchronous divisor field. ** **========================================================== */ static void ncr_getsync(ncb_p np, u_char sfac, u_char *fakp, u_char *scntl3p) { u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ int div = np->clock_divn; /* Number of divisors supported */ u_long fak; /* Sync factor in sxfer */ u_long per; /* Period in tenths of ns */ u_long kpc; /* (per * clk) */ /* ** Compute the synchronous period in tenths of nano-seconds */ if (sfac <= 10) per = 250; else if (sfac == 11) per = 303; else if (sfac == 12) per = 500; else per = 40 * sfac; /* ** Look for the greatest clock divisor that allows an ** input speed faster than the period. */ kpc = per * clk; while (--div >= 0) if (kpc >= (div_10M[div] << 2)) break; /* ** Calculate the lowest clock factor that allows an output ** speed not faster than the period. */ fak = (kpc - 1) / div_10M[div] + 1; #if 0 /* This optimization does not seem very usefull */ per = (fak * div_10M[div]) / clk; /* ** Why not to try the immediate lower divisor and to choose ** the one that allows the fastest output speed ? ** We dont want input speed too much greater than output speed. */ if (div >= 1 && fak < 8) { u_long fak2, per2; fak2 = (kpc - 1) / div_10M[div-1] + 1; per2 = (fak2 * div_10M[div-1]) / clk; if (per2 < per && fak2 <= 8) { fak = fak2; per = per2; --div; } } #endif if (fak < 4) fak = 4; /* Should never happen, too bad ... */ /* ** Compute and return sync parameters for the ncr */ *fakp = fak - 4; *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); } /*========================================================== ** ** Set actual values, sync status and patch all ccbs of ** a target according to new sync/wide agreement. ** **========================================================== */ static void ncr_set_sync_wide_status (ncb_p np, u_char target) { ccb_p cp; tcb_p tp = &np->target[target]; /* ** set actual value and sync_status */ OUTB (nc_sxfer, tp->sval); OUTB (nc_scntl3, tp->wval); /* ** patch ALL ccbs of this target. */ for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status == HS_IDLE) continue; if (cp->target != target) continue; cp->phys.select.sel_scntl3 = tp->wval; cp->phys.select.sel_sxfer = tp->sval; }; } /*========================================================== ** ** Switch sync mode for current job and it's target ** **========================================================== */ static void ncr_setsync (ncb_p np, ccb_p cp, u_char scntl3, u_char sxfer) { tcb_p tp; u_char target = INB (nc_sdid) & 0x0f; u_char idiv; assert (cp); if (!cp) return; assert (target == (cp->target & 0xf)); tp = &np->target[target]; if (!scntl3 || !(sxfer & 0x1f)) scntl3 = np->rv_scntl3; scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); /* ** Deduce the value of controller sync period from scntl3. ** period is in tenths of nano-seconds. */ idiv = ((scntl3 >> 4) & 0x7); if ((sxfer & 0x1f) && idiv) tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; else tp->period = 0xffff; /* ** Stop there if sync parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) ** Donnot announce negotiations due to auto-sense, ** unless user really want us to be verbose. :) */ if (bootverbose < 2 && (cp->host_flags & HF_AUTO_SENSE)) goto next; PRINT_TARGET(np, target); if (sxfer & 0x01f) { unsigned f10 = 100000 << (tp->widedone ? tp->widedone -1 : 0); unsigned mb10 = (f10 + tp->period/2) / tp->period; char *scsi; /* ** Disable extended Sreq/Sack filtering */ if (tp->period <= 2000) OUTOFFB (nc_stest2, EXT); /* ** Bells and whistles ;-) */ if (tp->period < 500) scsi = "FAST-40"; else if (tp->period < 1000) scsi = "FAST-20"; else if (tp->period < 2000) scsi = "FAST-10"; else scsi = "FAST-5"; printk ("%s %sSCSI %d.%d MB/s (%d ns, offset %d)\n", scsi, tp->widedone > 1 ? "WIDE " : "", mb10 / 10, mb10 % 10, tp->period / 10, sxfer & 0x1f); } else printk ("%sasynchronous.\n", tp->widedone > 1 ? "wide " : ""); next: /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch wide mode for current job and it's target ** SCSI specs say: a SCSI device that accepts a WDTR ** message shall reset the synchronous agreement to ** asynchronous mode. ** **========================================================== */ static void ncr_setwide (ncb_p np, ccb_p cp, u_char wide, u_char ack) { u_short target = INB (nc_sdid) & 0x0f; tcb_p tp; u_char scntl3; u_char sxfer; assert (cp); if (!cp) return; assert (target == (cp->target & 0xf)); tp = &np->target[target]; tp->widedone = wide+1; scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); sxfer = ack ? 0 : tp->sval; /* ** Stop there if sync/wide parameters are unchanged */ if (tp->sval == sxfer && tp->wval == scntl3) return; tp->sval = sxfer; tp->wval = scntl3; /* ** Bells and whistles ;-) */ if (bootverbose >= 2) { PRINT_TARGET(np, target); if (scntl3 & EWS) printk ("WIDE SCSI (16 bit) enabled.\n"); else printk ("WIDE SCSI disabled.\n"); } /* ** set actual value and sync_status ** patch ALL ccbs of this target. */ ncr_set_sync_wide_status(np, target); } /*========================================================== ** ** Switch tagged mode for a target. ** **========================================================== */ static void ncr_setup_tags (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = ncr_lp(np, tp, ln); u_short reqtags, maxdepth; /* ** Just in case ... */ if ((!tp) || (!lp)) return; /* ** If SCSI device queue depth is not yet set, leave here. */ if (!lp->scdev_depth) return; /* ** Donnot allow more tags than the SCSI driver can queue ** for this device. ** Donnot allow more tags than we can handle. */ maxdepth = lp->scdev_depth; if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; if (lp->numtags > maxdepth) lp->numtags = maxdepth; /* ** only devices conformant to ANSI Version >= 2 ** only devices capable of tagged commands ** only if enabled by user .. */ if ((lp->inq_byte7 & INQ7_QUEUE) && lp->numtags > 1) { reqtags = lp->numtags; } else { reqtags = 1; }; /* ** Update max number of tags */ lp->numtags = reqtags; if (lp->numtags > lp->maxtags) lp->maxtags = lp->numtags; /* ** If we want to switch tag mode, we must wait ** for no CCB to be active. */ if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ if (lp->queuedepth == reqtags) /* Already announced */ return; lp->queuedepth = reqtags; } else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ lp->queuedepth = reqtags; return; } else { /* Want to switch tag mode */ if (lp->busyccbs) /* If not yet safe, return */ return; lp->queuedepth = reqtags; lp->usetags = reqtags > 1 ? 1 : 0; } /* ** Patch the lun mini-script, according to tag mode. */ lp->resel_task = lp->usetags? cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); /* ** Announce change to user. */ if (bootverbose) { PRINT_LUN(np, tn, ln); if (lp->usetags) printk("tagged command queue depth set to %d\n", reqtags); else printk("tagged command queueing disabled\n"); } } /*---------------------------------------------------- ** ** handle user commands ** **---------------------------------------------------- */ #ifdef SCSI_NCR_USER_COMMAND_SUPPORT static void ncr_usercmd (ncb_p np) { u_char t; tcb_p tp; int ln; u_long size; switch (np->user.cmd) { case 0: return; case UC_SETDEBUG: #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT ncr_debug = np->user.data; #endif break; case UC_SETORDER: np->order = np->user.data; break; case UC_SETVERBOSE: np->verbose = np->user.data; break; #ifdef SCSI_NCR_PROFILE_SUPPORT case UC_CLEARPROF: bzero(&np->profile, sizeof(np->profile)); break; #endif default: /* ** We assume that other commands apply to targets. ** This should always be the case and avoid the below ** 4 lines to be repeated 5 times. */ for (t = 0; t < MAX_TARGET; t++) { if (!((np->user.target >> t) & 1)) continue; tp = &np->target[t]; switch (np->user.cmd) { case UC_SETSYNC: tp->usrsync = np->user.data; ncr_negotiate (np, tp); break; case UC_SETWIDE: size = np->user.data; if (size > np->maxwide) size=np->maxwide; tp->usrwide = size; ncr_negotiate (np, tp); break; case UC_SETTAGS: tp->usrtags = np->user.data; for (ln = 0; ln < MAX_LUN; ln++) { lcb_p lp; lp = ncr_lp(np, tp, ln); if (!lp) continue; lp->numtags = np->user.data; lp->maxtags = lp->numtags; ncr_setup_tags (np, t, ln); } break; case UC_RESETDEV: tp->to_reset = 1; np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); break; case UC_CLEARDEV: for (ln = 0; ln < MAX_LUN; ln++) { lcb_p lp; lp = ncr_lp(np, tp, ln); if (lp) lp->to_clear = 1; } np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); break; case UC_SETFLAG: tp->usrflag = np->user.data; break; } } break; } np->user.cmd=0; } #endif /*========================================================== ** ** ** ncr timeout handler. ** ** **========================================================== ** ** Misused to keep the driver running when ** interrupts are not configured correctly. ** **---------------------------------------------------------- */ static void ncr_timeout (ncb_p np) { u_long thistime = ktime_get(0); /* ** If release process in progress, let's go ** Set the release stage from 1 to 2 to synchronize ** with the release process. */ if (np->release_stage) { if (np->release_stage == 1) np->release_stage = 2; return; } #ifdef SCSI_NCR_PCIQ_BROKEN_INTR np->timer.expires = ktime_get((HZ+9)/10); #else np->timer.expires = ktime_get(SCSI_NCR_TIMER_INTERVAL); #endif add_timer(&np->timer); /* ** If we are resetting the ncr, wait for settle_time before ** clearing it. Then command processing will be resumed. */ if (np->settle_time) { if (np->settle_time <= thistime) { if (bootverbose > 1) printk("%s: command processing resumed\n", ncr_name(np)); np->settle_time = 0; requeue_waiting_list(np); } return; } /* ** Nothing to do for now, but that may come. */ if (np->lasttime + 4*HZ < thistime) { np->lasttime = thistime; } #ifdef SCSI_NCR_PCIQ_MAY_MISS_COMPLETIONS /* ** Some way-broken PCI bridges may lead to ** completions being lost when the clearing ** of the INTFLY flag by the CPU occurs ** concurrently with the chip raising this flag. ** If this ever happen, lost completions will ** be reaped here. */ ncr_wakeup_done(np); #endif #ifdef SCSI_NCR_PCIQ_BROKEN_INTR if (INB(nc_istat) & (INTF|SIP|DIP)) { /* ** Process pending interrupts. */ if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); ncr_exception (np); if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); } #endif /* SCSI_NCR_PCIQ_BROKEN_INTR */ } /*========================================================== ** ** log message for real hard errors ** ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." ** ** exception register: ** ds: dstat ** si: sist ** ** SCSI bus lines: ** so: control lines as driver by NCR. ** si: control lines as seen by NCR. ** sd: scsi data lines as seen by NCR. ** ** wide/fastmode: ** sxfer: (see the manual) ** scntl3: (see the manual) ** ** current script command: ** dsp: script adress (relative to start of script). ** dbc: first word of script command. ** ** First 24 register of the chip: ** r0..rf ** **========================================================== */ static void ncr_log_hard_error(ncb_p np, u_short sist, u_char dstat) { u_int32 dsp; int script_ofs; int script_size; char *script_name; u_char *script_base; int i; dsp = INL (nc_dsp); if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { script_ofs = dsp - np->p_script; script_size = sizeof(struct script); script_base = (u_char *) np->script0; script_name = "script"; } else if (np->p_scripth < dsp && dsp <= np->p_scripth + sizeof(struct scripth)) { script_ofs = dsp - np->p_scripth; script_size = sizeof(struct scripth); script_base = (u_char *) np->scripth0; script_name = "scripth"; } else { script_ofs = dsp; script_size = 0; script_base = 0; script_name = "mem"; } printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, (unsigned)INL (nc_dbc)); if (((script_ofs & 3) == 0) && (unsigned)script_ofs < script_size) { printk ("%s: script cmd = %08x\n", ncr_name(np), scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); } printk ("%s: regdump:", ncr_name(np)); for (i=0; i<24;i++) printk (" %02x", (unsigned)INB_OFF(i)); printk (".\n"); } /*============================================================ ** ** ncr chip exception handler. ** **============================================================ ** ** In normal situations, interrupt conditions occur one at ** a time. But when something bad happens on the SCSI BUS, ** the chip may raise several interrupt flags before ** stopping and interrupting the CPU. The additionnal ** interrupt flags are stacked in some extra registers ** after the SIP and/or DIP flag has been raised in the ** ISTAT. After the CPU has read the interrupt condition ** flag from SIST or DSTAT, the chip unstacks the other ** interrupt flags and sets the corresponding bits in ** SIST or DSTAT. Since the chip starts stacking once the ** SIP or DIP flag is set, there is a small window of time ** where the stacking does not occur. ** ** Typically, multiple interrupt conditions may happen in ** the following situations: ** ** - SCSI parity error + Phase mismatch (PAR|MA) ** When an parity error is detected in input phase ** and the device switches to msg-in phase inside a ** block MOV. ** - SCSI parity error + Unexpected disconnect (PAR|UDC) ** When a stupid device does not want to handle the ** recovery of an SCSI parity error. ** - Some combinations of STO, PAR, UDC, ... ** When using non compliant SCSI stuff, when user is ** doing non compliant hot tampering on the BUS, when ** something really bad happens to a device, etc ... ** ** The heuristic suggested by SYMBIOS to handle ** multiple interrupts is to try unstacking all ** interrupts conditions and to handle them on some ** priority based on error severity. ** This will work when the unstacking has been ** successful, but we cannot be 100 % sure of that, ** since the CPU may have been faster to unstack than ** the chip is able to stack. Hmmm ... But it seems that ** such a situation is very unlikely to happen. ** ** If this happen, for example STO catched by the CPU ** then UDC happenning before the CPU have restarted ** the SCRIPTS, the driver may wrongly complete the ** same command on UDC, since the SCRIPTS didn't restart ** and the DSA still points to the same command. ** We avoid this situation by setting the DSA to an ** invalid value when the CCB is completed and before ** restarting the SCRIPTS. ** ** Another issue is that we need some section of our ** recovery procedures to be somehow uninterruptible and ** that the SCRIPTS processor does not provides such a ** feature. For this reason, we handle recovery preferently ** from the C code and check against some SCRIPTS ** critical sections from the C code. ** ** Hopefully, the interrupt handling of the driver is now ** able to resist to weird BUS error conditions, but donnot ** ask me for any guarantee that it will never fail. :-) ** Use at your own decision and risk. ** **============================================================ */ void ncr_exception (ncb_p np) { u_char istat, istatc; u_char dstat; u_short sist; int i; #ifdef SCSI_NCR_OPTIMIZE_896_1 /* ** This optimization when used with a 896 that handles ** phase mismatch from the SCRIPTS allows to only do ** PCI memory writes transactions from the CPU and so to ** take advantage of PCI posted writes. ** Who wants his 500 MHz CPU to wait several micro-seconds ** for the PCI BUS to be granted when this can be avoided? ** I don't, even for my slow 233 MHz PII. :-) ** ** We assume we have been called for command completion. ** If no completion found, go with normal handling. ** Ordering is ensured by the SCRIPTS performing a read ** from main memory prior to raising INTFLY. ** We have to raise SIGP since the chip may be currently ** going to a wait reselect instruction. IMO, SIGP should ** not be clearable in ISTAT since it can be polled and ** cleared by reading CTEST2. This tiny chip misdesign is a ** penalty here. ** ** The MA interrupt and interrupt sharing may also have ** adverse effects on this optimization, so we only want ** to use it if it is enabled by user. ** (BTW, this optimization seems to even have some goodness ** with my 895 that unfortunately suffers of the MA int.). */ if (driver_setup.optimize & 1) { OUTB(nc_istat, (INTF | SIGP | np->istat_sem)); if (ncr_wakeup_done (np)) { #ifdef SCSI_NCR_PROFILE_SUPPORT ++np->profile.num_fly; #endif return; } } #endif /* SCSI_NCR_OPTIMIZE_896_1 */ /* ** interrupt on the fly ? ** ** For bridges that donnot flush posted writes ** in the reverse direction on read, a dummy read ** may help not to miss completions. */ istat = INB (nc_istat); if (istat & INTF) { OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem); #ifdef SCSI_NCR_PCIQ_MAY_NOT_FLUSH_PW_UPSTREAM istat = INB (nc_istat); /* DUMMY READ */ #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); (void)ncr_wakeup_done (np); #ifdef SCSI_NCR_PROFILE_SUPPORT ++np->profile.num_fly; #endif }; if (!(istat & (SIP|DIP))) return; #ifdef SCSI_NCR_PROFILE_SUPPORT ++np->profile.num_int; #endif #if 0 /* We should never get this one */ if (istat & CABRT) OUTB (nc_istat, CABRT); #endif /* ** Steinbach's Guideline for Systems Programming: ** Never test for an error condition you don't know how to handle. */ /*======================================================== ** PAR and MA interrupts may occur at the same time, ** and we need to know of both in order to handle ** this situation properly. We try to unstack SCSI ** interrupts for that reason. BTW, I dislike a LOT ** such a loop inside the interrupt routine. ** Even if DMA interrupt stacking is very unlikely to ** happen, we also try unstacking these ones, since ** this has no performance impact. **========================================================= */ sist = 0; dstat = 0; istatc = istat; do { if (istatc & SIP) sist |= INW (nc_sist); if (istatc & DIP) dstat |= INB (nc_dstat); istatc = INB (nc_istat); istat |= istatc; } while (istatc & (SIP|DIP)); if (DEBUG_FLAGS & DEBUG_TINY) printk ("<%d|%x:%x|%x:%x>", (int)INB(nc_scr0), dstat,sist, (unsigned)INL(nc_dsp), (unsigned)INL(nc_dbc)); /*======================================================== ** First, interrupts we want to service cleanly. ** ** Phase mismatch (MA) is the most frequent interrupt ** for chip earlier than the 896 and so we have to service ** it as quickly as possible. ** A SCSI parity error (PAR) may be combined with a phase ** mismatch condition (MA). ** Programmed interrupts (SIR) are used to call the C code ** from SCRIPTS. ** The single step interrupt (SSI) is not used in this ** driver. **========================================================= */ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & PAR) ncr_int_par (np, sist); else if (sist & MA) ncr_int_ma (np); else if (dstat & SIR) ncr_int_sir (np); else if (dstat & SSI) OUTONB (nc_dcntl, (STD|NOCOM)); else goto unknown_int; return; }; /*======================================================== ** Now, interrupts that donnot happen in normal ** situations and that we may need to recover from. ** ** On SCSI RESET (RST), we reset everything. ** On SCSI BUS MODE CHANGE (SBMC), we complete all ** active CCBs with RESET status, prepare all devices ** for negotiating again and restart the SCRIPTS. ** On STO and UDC, we complete the CCB with the corres- ** ponding status and restart the SCRIPTS. **========================================================= */ if (sist & RST) { ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); return; }; OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ if (!(sist & (GEN|HTH|SGE)) && !(dstat & (MDPE|BF|ABRT|IID))) { if (sist & SBMC) ncr_int_sbmc (np); else if (sist & STO) ncr_int_sto (np); else if (sist & UDC) ncr_int_udc (np); else goto unknown_int; return; }; /*========================================================= ** Now, interrupts we are not able to recover cleanly. ** ** Do the register dump. ** Log message for hard errors. ** Reset everything. **========================================================= */ if (ktime_exp(np->regtime)) { np->regtime = ktime_get(10*HZ); for (i = 0; iregdump); i++) ((char*)&np->regdump)[i] = INB_OFF(i); np->regdump.nc_dstat = dstat; np->regdump.nc_sist = sist; }; ncr_log_hard_error(np, sist, dstat); if ((sist & (GEN|HTH|SGE)) || (dstat & (MDPE|BF|ABRT|IID))) { ncr_start_reset(np); return; }; unknown_int: /*========================================================= ** We just miss the cause of the interrupt. :( ** Print a message. The timeout will do the real work. **========================================================= */ printk( "%s: unknown interrupt(s) ignored, " "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", ncr_name(np), istat, dstat, sist); } /*========================================================== ** ** generic recovery from scsi interrupt ** **========================================================== ** ** The doc says that when the chip gets an SCSI interrupt, ** it tries to stop in an orderly fashion, by completing ** an instruction fetch that had started or by flushing ** the DMA fifo for a write to memory that was executing. ** Such a fashion is not enough to know if the instruction ** that was just before the current DSP value has been ** executed or not. ** ** There are 3 small SCRIPTS sections that deal with the ** start queue and the done queue that may break any ** assomption from the C code if we are interrupted ** inside, so we reset if it happens. Btw, since these ** SCRIPTS sections are executed while the SCRIPTS hasn't ** started SCSI operations, it is very unlikely to happen. ** ** All the driver data structures are supposed to be ** allocated from the same 4 GB memory window, so there ** is a 1 to 1 relationship between DSA and driver data ** structures. Since we are careful :) to invalidate the ** DSA when we complete a command or when the SCRIPTS ** pushes a DSA into a queue, we can trust it when it ** points to a CCB. ** **---------------------------------------------------------- */ static void ncr_recover_scsi_int (ncb_p np, u_char hsts) { u_int32 dsp = INL (nc_dsp); u_int32 dsa = INL (nc_dsa); ccb_p cp = ncr_ccb_from_dsa(np, dsa); /* ** If we haven't been interrupted inside the SCRIPTS ** critical pathes, we can safely restart the SCRIPTS ** and trust the DSA value if it matches a CCB. */ if ((!(dsp > NCB_SCRIPT_PHYS (np, getjob_begin) && dsp < NCB_SCRIPT_PHYS (np, getjob_end) + 1)) && (!(dsp > NCB_SCRIPT_PHYS (np, ungetjob) && dsp < NCB_SCRIPT_PHYS (np, reselect) + 1)) && (!(dsp > NCB_SCRIPTH_PHYS (np, sel_for_abort) && dsp < NCB_SCRIPTH_PHYS (np, sel_for_abort_1) + 1)) && (!(dsp > NCB_SCRIPT_PHYS (np, done) && dsp < NCB_SCRIPT_PHYS (np, done_end) + 1))) { if (cp) { cp->host_status = hsts; ncr_complete (np, cp); } OUTL (nc_dsa, DSA_INVALID); OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); } else goto reset_all; return; reset_all: ncr_start_reset(np); } /*========================================================== ** ** ncr chip exception handler for selection timeout ** **========================================================== ** ** There seems to be a bug in the 53c810. ** Although a STO-Interrupt is pending, ** it continues executing script commands. ** But it will fail and interrupt (IID) on ** the next instruction where it's looking ** for a valid phase. ** **---------------------------------------------------------- */ void ncr_int_sto (ncb_p np) { u_int32 dsp = INL (nc_dsp); if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); if (dsp == NCB_SCRIPT_PHYS (np, wf_sel_done) + 8 || !(driver_setup.recovery & 1)) ncr_recover_scsi_int(np, HS_SEL_TIMEOUT); else ncr_start_reset(np); } /*========================================================== ** ** ncr chip exception handler for unexpected disconnect ** **========================================================== ** **---------------------------------------------------------- */ void ncr_int_udc (ncb_p np) { printk ("%s: unexpected disconnect\n", ncr_name(np)); ncr_recover_scsi_int(np, HS_UNEXPECTED); } /*========================================================== ** ** ncr chip exception handler for SCSI bus mode change ** **========================================================== ** ** spi2-r12 11.2.3 says a transceiver mode change must ** generate a reset event and a device that detects a reset ** event shall initiate a hard reset. It says also that a ** device that detects a mode change shall set data transfer ** mode to eight bit asynchronous, etc... ** So, just resetting should be enough. ** ** **---------------------------------------------------------- */ static void ncr_int_sbmc (ncb_p np) { u_char scsi_mode = INB (nc_stest4) & SMODE; printk("%s: SCSI bus mode change from %x to %x.\n", ncr_name(np), np->scsi_mode, scsi_mode); np->scsi_mode = scsi_mode; /* ** Suspend command processing for 1 second and ** reinitialize all except the chip. */ np->settle_time = ktime_get(1*HZ); ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); } /*========================================================== ** ** ncr chip exception handler for SCSI parity error. ** **========================================================== ** ** When the chip detects a SCSI parity error and is ** currently executing a (CH)MOV instruction, it does ** not interrupt immediately, but tries to finish the ** transfer of the current scatter entry before ** interrupting. The following situations may occur: ** ** - The complete scatter entry has been transferred ** without the device having changed phase. ** The chip will then interrupt with the DSP pointing ** to the instruction that follows the MOV. ** ** - A phase mismatch occurs before the MOV finished ** and phase errors are to be handled by the C code. ** The chip will then interrupt with both PAR and MA ** conditions set. ** ** - A phase mismatch occurs before the MOV finished and ** phase errors are to be handled by SCRIPTS (895A or 896). ** The chip will load the DSP with the phase mismatch ** JUMP address and interrupt the host processor. ** **---------------------------------------------------------- */ static void ncr_int_par (ncb_p np, u_short sist) { u_char hsts = INB (HS_PRT); u_int32 dsp = INL (nc_dsp); u_int32 dbc = INL (nc_dbc); u_int32 dsa = INL (nc_dsa); u_char sbcl = INB (nc_sbcl); u_char cmd = dbc >> 24; int phase = cmd & 7; ccb_p cp = ncr_ccb_from_dsa(np, dsa); printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", ncr_name(np), hsts, dbc, sbcl); /* ** Check that the chip is connected to the SCSI BUS. */ if (!(INB (nc_scntl1) & ISCON)) { if (!(driver_setup.recovery & 1)) { ncr_recover_scsi_int(np, HS_FAIL); return; } goto reset_all; } /* ** If the nexus is not clearly identified, reset the bus. ** We will try to do better later. */ if (!cp) goto reset_all; /* ** Check instruction was a MOV, direction was INPUT and ** ATN is asserted. */ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) goto reset_all; /* ** Keep track of the parity error. */ cp->xerr_status |= XE_PARITY_ERR; /* ** Prepare the message to send to the device. */ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; /* ** If the old phase was DATA IN phase, we have to deal with ** the 3 situations described above. ** For other input phases (MSG IN and STATUS), the device ** must resend the whole thing that failed parity checking ** or signal error. So, jumping to dispatcher should be OK. */ if (phase == 1) { /* Phase mismatch handled by SCRIPTS */ if (dsp == NCB_SCRIPTH_PHYS (np, pm_handle)) OUTL (nc_dsp, dsp); /* Phase mismatch handled by the C code */ else if (sist & MA) ncr_int_ma (np); /* No phase mismatch occurred */ else { OUTL (nc_temp, dsp); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, dispatch)); } } else OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); return; reset_all: ncr_start_reset(np); return; } /*========================================================== ** ** ** ncr chip exception handler for phase errors. ** ** **========================================================== ** ** We have to construct a new transfer descriptor, ** to transfer the rest of the current block. ** **---------------------------------------------------------- */ static void ncr_int_ma (ncb_p np) { u_int32 dbc; u_int32 rest; u_int32 dsp; u_int32 dsa; u_int32 nxtdsp; u_int32 *vdsp; u_int32 oadr, olen; u_int32 *tblp; u_int32 newcmd; u_int delta; u_char cmd; u_char hflags, hflags0; struct pm_ctx *pm; ccb_p cp; #ifdef SCSI_NCR_PROFILE_SUPPORT ++np->profile.num_break; #endif dsp = INL (nc_dsp); dbc = INL (nc_dbc); dsa = INL (nc_dsa); cmd = dbc >> 24; rest = dbc & 0xffffff; delta = 0; /* ** locate matching cp. */ cp = ncr_ccb_from_dsa(np, dsa); /* ** Donnot take into account dma fifo and various buffers in ** INPUT phase since the chip flushes everything before ** raising the MA interrupt for interrupted INPUT phases. ** For DATA IN phase, we will check for the SWIDE later. */ if ((cmd & 7) != 1) { u_int32 dfifo; u_char ss0, ss2; /* ** Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. */ dfifo = INL(nc_dfifo); /* ** Calculate remaining bytes in DMA fifo. ** (CTEST5 = dfifo >> 16) */ if (dfifo & (DFS << 16)) delta = ((((dfifo >> 8) & 0x300) | (dfifo & 0xff)) - rest) & 0x3ff; else delta = ((dfifo & 0xff) - rest) & 0x7f; /* ** The data in the dma fifo has not been transfered to ** the target -> add the amount to the rest ** and clear the data. ** Check the sstat2 register in case of wide transfer. */ rest += delta; ss0 = INB (nc_sstat0); if (ss0 & OLF) rest++; if (ss0 & ORF) rest++; if (cp && (cp->phys.select.sel_scntl3 & EWS)) { ss2 = INB (nc_sstat2); if (ss2 & OLF1) rest++; if (ss2 & ORF1) rest++; }; /* ** Clear fifos. */ OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ OUTB (nc_stest3, TE|CSF); /* scsi fifo */ } /* ** log the information */ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) printk ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7, (unsigned) rest, (unsigned) delta); /* ** try to find the interrupted script command, ** and the address at which to continue. */ vdsp = 0; nxtdsp = 0; if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { vdsp = (u_int32 *)((char*)np->script0 + (dsp-np->p_script-8)); nxtdsp = dsp; } else if (dsp > np->p_scripth && dsp <= np->p_scripth + sizeof(struct scripth)) { vdsp = (u_int32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); nxtdsp = dsp; } /* ** log the information */ if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); }; if (!vdsp) { printk ("%s: interrupted SCRIPT address not found.\n", ncr_name (np)); goto reset_all; } if (!cp) { printk ("%s: SCSI phase error fixup: CCB already dequeued.\n", ncr_name (np)); goto reset_all; } /* ** get old startaddress and old length. */ oadr = scr_to_cpu(vdsp[1]); if (cmd & 0x10) { /* Table indirect */ tblp = (u_int32 *) ((char*) &cp->phys + oadr); olen = scr_to_cpu(tblp[0]); oadr = scr_to_cpu(tblp[1]); } else { tblp = (u_int32 *) 0; olen = scr_to_cpu(vdsp[0]) & 0xffffff; }; if (DEBUG_FLAGS & DEBUG_PHASE) { printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", (unsigned) (scr_to_cpu(vdsp[0]) >> 24), tblp, (unsigned) olen, (unsigned) oadr); }; /* ** check cmd against assumed interrupted script command. */ if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { PRINT_ADDR(cp->cmd); printk ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24); goto reset_all; }; /* ** if old phase not dataphase, leave here. */ if (cmd & 0x06) { PRINT_ADDR(cp->cmd); printk ("phase change %x-%x %d@%08x resid=%d.\n", cmd&7, INB(nc_sbcl)&7, (unsigned)olen, (unsigned)oadr, (unsigned)rest); goto unexpected_phase; }; /* ** Choose the correct PM save area. ** ** Look at the PM_SAVE SCRIPT if you want to understand ** this stuff. The equivalent code is implemented in ** SCRIPTS for the 895A and 896 that are able to handle ** PM from the SCRIPTS processor. */ hflags0 = INB (HF_PRT); hflags = hflags0; if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { if (hflags & HF_IN_PM0) nxtdsp = scr_to_cpu(cp->phys.pm0.ret); else if (hflags & HF_IN_PM1) nxtdsp = scr_to_cpu(cp->phys.pm1.ret); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; } if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; newcmd = NCB_SCRIPT_PHYS(np, pm0_data); } else { pm = &cp->phys.pm1; newcmd = NCB_SCRIPT_PHYS(np, pm1_data); } hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); if (hflags != hflags0) OUTB (HF_PRT, hflags); /* ** fillin the phase mismatch context */ pm->sg.addr = cpu_to_scr(oadr + olen - rest); pm->sg.size = cpu_to_scr(rest); pm->ret = cpu_to_scr(nxtdsp); /* ** If we have a SWIDE, ** - prepare the address to write the SWIDE from SCRIPTS, ** - compute the SCRIPTS address to restart from, ** - move current data pointer context by one byte. */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && (INB (nc_scntl2) & WSR)) { /* ** Hmmm... The device may want to also ignore ** this residue but it must send immediately the ** appropriate message. We snoop the SCSI BUS ** and will just throw away this message from ** SCRIPTS if the SWIDE is to be ignored. */ if ((INB (nc_sbcl) & 7) == 7 && INB (nc_sbdl) == M_IGN_RESIDUE) { nxtdsp = NCB_SCRIPT_PHYS (np, ign_i_w_r_msg); } /* ** We must grab the SWIDE. ** We will use some complex SCRIPTS for that. */ else { OUTL (nc_scratcha, pm->sg.addr); nxtdsp = NCB_SCRIPTH_PHYS (np, swide_ma_32); if (np->features & FE_64BIT) { OUTB (nc_sbr, (pm->sg.size >> 24)); nxtdsp = NCB_SCRIPTH_PHYS (np, swide_ma_64); } /* ** Adjust our data pointer context. */ ++pm->sg.addr; --pm->sg.size; /* ** Hmmm... Could it be possible that a SWIDE that ** is followed by a 1 byte CHMOV would lead to ** a CHMOV(0). Anyway, we handle it by just ** skipping context that would attempt a CHMOV(0). */ if (!pm->sg.size) newcmd = pm->ret; } } if (DEBUG_FLAGS & DEBUG_PHASE) { PRINT_ADDR(cp->cmd); printk ("PM %x %x %x / %x %x %x.\n", hflags0, hflags, newcmd, (unsigned)scr_to_cpu(pm->sg.addr), (unsigned)scr_to_cpu(pm->sg.size), (unsigned)scr_to_cpu(pm->ret)); } /* ** Restart the SCRIPTS processor. */ OUTL (nc_temp, newcmd); OUTL (nc_dsp, nxtdsp); return; /* ** Unexpected phase changes that occurs when the current phase ** is not a DATA IN or DATA OUT phase are due to error conditions. ** Such event may only happen when the SCRIPTS is using a ** multibyte SCSI MOVE. ** ** Phase change Some possible cause ** ** COMMAND --> MSG IN SCSI parity error detected by target. ** COMMAND --> STATUS Bad command or refused by target. ** MSG OUT --> MSG IN Message rejected by target. ** MSG OUT --> COMMAND Bogus target that discards extended ** negotiation messages. ** ** The code below does not care of the new phase and so ** trusts the target. Why to annoy it ? ** If the interrupted phase is COMMAND phase, we restart at ** dispatcher. ** If a target does not get all the messages after selection, ** the code assumes blindly that the target discards extended ** messages and clears the negotiation status. ** If the target does not want all our response to negotiation, ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids ** bloat for such a should_not_happen situation). ** In all other situation, we reset the BUS. ** Are these assumptions reasonnable ? (Wait and see ...) */ unexpected_phase: dsp -= 8; nxtdsp = 0; switch (cmd & 7) { case 2: /* COMMAND phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #if 0 case 3: /* STATUS phase */ nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); break; #endif case 6: /* MSG OUT phase */ /* ** If the device may want to use untagged when we want ** tagged, we prepare an IDENTIFY without disc. granted, ** since we will not be able to handle reselect. ** Otherwise, we just don't care. */ if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { if (cp->tag != NO_TAG && olen - rest <= 3) { cp->host_status = HS_BUSY; np->msgout[0] = M_IDENTIFY | cp->lun; nxtdsp = NCB_SCRIPTH_PHYS (np, ident_break_atn); } else nxtdsp = NCB_SCRIPTH_PHYS (np, ident_break); } else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); } break; #if 0 case 7: /* MSG IN phase */ nxtdsp = NCB_SCRIPT_PHYS (np, clrack); break; #endif } if (nxtdsp) { OUTL (nc_dsp, nxtdsp); return; } reset_all: ncr_start_reset(np); } /*========================================================== ** ** ncr chip handler for QUEUE FULL and CHECK CONDITION ** **========================================================== ** ** On QUEUE FULL status, we set the actual tagged command ** queue depth to the number of disconnected CCBs that is ** hopefully a good value to avoid further QUEUE FULL. ** ** On CHECK CONDITION or COMMAND TERMINATED, we use the ** CCB of the failed command for performing a REQUEST ** SENSE SCSI command. ** ** We do not want to change the order commands will be ** actually queued to the device after we received a ** QUEUE FULL status. We also want to properly deal with ** contingent allegiance condition. For these reasons, ** we remove from the start queue all commands for this ** LUN that haven't been yet queued to the device and ** put them back in the correponding LUN queue, then ** requeue the CCB that failed in front of the LUN queue. ** I just hope this not to be performed too often. :) ** ** If we are using IMMEDIATE ARBITRATION, we clear the ** IARB hint for every commands we encounter in order not ** to be stuck with a won arbitration and no job to queue ** to a device. **---------------------------------------------------------- */ static void ncr_sir_to_redo(ncb_p np, int num, ccb_p cp) { Scsi_Cmnd *cmd = cp->cmd; tcb_p tp = &np->target[cp->target]; lcb_p lp = ncr_lp(np, tp, cp->lun); ccb_p cp2; int busyccbs = 1; u_int32 startp; u_char s_status = INB (SS_PRT); int msglen; /* ** Remove all CCBs queued to the chip for that LUN and put ** them back in the LUN CCB wait queue. */ if (lp) { int i = np->squeueput; int j = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; int k = np->squeueput; busyccbs = lp->queuedccbs; while (1) { if (i == j) break; if (i == 0) i = MAX_START*2; i = i - 2; cp2 = ncr_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); if (!cp2) continue; if (cp2->target != cp->target || cp2->lun != cp->lun) continue; #ifdef SCSI_NCR_IARB_SUPPORT cp2->host_flags &= ~HF_HINT_IARB; if (cp2 == np->last_cp) np->last_cp = 0; #endif xpt_remque(&cp2->link_ccbq); xpt_insque_head(&cp2->link_ccbq, &lp->wait_ccbq); --lp->queuedccbs; cp2->queued = 0; np->squeue[i] = DSA_INVALID; k = i; } /* ** Requeue the interrupted CCB in front of ** the LUN CCB wait queue. */ #ifdef SCSI_NCR_IARB_SUPPORT cp->host_flags &= ~HF_HINT_IARB; if (cp == np->last_cp) np->last_cp = 0; #endif xpt_remque(&cp->link_ccbq); xpt_insque_head(&cp->link_ccbq, &lp->wait_ccbq); --lp->queuedccbs; cp->queued = 0; #ifdef SCSI_NCR_IARB_SUPPORT if (np->last_cp) np->last_cp->host_flags &= ~HF_HINT_IARB; #endif /* ** Repair the startqueue if necessary. */ if (k != np->squeueput) { j = k; while (1) { j += 2; if (j >= MAX_START*2) j = 0; if (np->squeue[j] == DSA_INVALID) continue; np->squeue[k] = np->squeue[j]; if (j == np->squeueput) break; k += 2; if (k >= MAX_START*2) k = 0; } np->squeueput = k; } } /* ** Now we can restart the SCRIPTS processor safely. */ MEMORY_BARRIER(); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, start)); switch(s_status) { default: /* Just for safety, should never happen */ case S_QUEUE_FULL: if (!lp || !lp->queuedccbs) { ncr_complete(np, cp); break; } if (bootverbose >= 1) { PRINT_ADDR(cmd); printk ("QUEUE FULL! %d busy, %d disconnected CCBs\n", busyccbs, lp->queuedccbs); } /* ** Decrease number of tags to the number of ** disconnected commands. */ if (lp->queuedccbs < lp->numtags) { lp->numtags = lp->queuedccbs; lp->num_good = 0; ncr_setup_tags (np, cp->target, cp->lun); } /* ** Repair the offending CCB. */ cp->phys.header.savep = cp->startp; cp->phys.header.lastp = cp->lastp0; cp->host_status = HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->xerr_status = 0; cp->phys.extra_bytes = 0; cp->host_flags &= HF_PM_TO_C; break; case S_TERMINATED: case S_CHECK_COND: /* ** If we were requesting sense, give up. */ if (cp->host_flags & HF_AUTO_SENSE) { ncr_complete(np, cp); break; } /* ** Save SCSI status and extended error. ** Compute the data residual now. */ cp->sv_scsi_status = cp->scsi_status; cp->sv_xerr_status = cp->xerr_status; cp->resid = ncr_compute_residual(np, cp); /* ** Device returned CHECK CONDITION status. ** Prepare all needed data strutures for getting ** sense data. */ /* ** identify message */ cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun; msglen = 1; /* ** If we are currently using anything different from ** async. 8 bit data transfers with that target, ** start a negotiation, since the device may want ** to report us a UNIT ATTENTION condition due to ** a cause we currently ignore, and we donnot want ** to be stuck with WIDE and/or SYNC data transfer. ** ** cp->nego_status is filled by ncr_prepare_nego(). */ ncr_negotiate(np, tp); cp->nego_status = 0; if ((tp->wval & EWS) || (tp->sval & 0x1f)) msglen += ncr_prepare_nego (np, cp, &cp->scsi_smsg2[msglen]); /* ** Message table indirect structure. */ cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); cp->phys.smsg.size = cpu_to_scr(msglen); /* ** sense command */ cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); cp->phys.cmd.size = cpu_to_scr(6); /* ** patch requested size into sense command */ cp->sensecmd[0] = 0x03; cp->sensecmd[1] = cp->lun << 5; cp->sensecmd[4] = sizeof(cmd->sense_buffer); /* ** sense data */ bzero(cmd->sense_buffer, sizeof(cmd->sense_buffer)); cp->phys.sense.addr = cpu_to_scr(vtobus (&cmd->sense_buffer[0])); cp->phys.sense.size = cpu_to_scr(sizeof(cmd->sense_buffer)); /* ** requeue the command. */ startp = NCB_SCRIPTH_PHYS (np, sdata_in); cp->phys.header.savep = cpu_to_scr(startp); cp->phys.header.goalp = cpu_to_scr(startp + 16); cp->phys.header.lastp = cpu_to_scr(startp); cp->phys.header.wgoalp = cpu_to_scr(startp + 16); cp->phys.header.wlastp = cpu_to_scr(startp); cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; cp->scsi_status = S_ILLEGAL; cp->host_flags = HF_AUTO_SENSE; cp->phys.header.go.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); /* ** If lp not yet allocated, requeue the command. */ if (!lp) ncr_put_start_queue(np, cp); break; } /* ** requeue awaiting scsi commands for this lun. */ if (lp) ncr_start_next_ccb(np, lp, 1); return; } /*---------------------------------------------------------- ** ** After a device has accepted some management message ** as BUS DEVICE RESET, ABORT TASK, etc ..., or when ** a device signals a UNIT ATTENTION condition, some ** tasks are thrown away by the device. We are required ** to reflect that on our tasks list since the device ** will never complete these tasks. ** ** This function completes all disconnected CCBs for a ** given target that matches the following criteria: ** - lun=-1 means any logical UNIT otherwise a given one. ** - task=-1 means any task, otherwise a given one. **---------------------------------------------------------- */ static int ncr_clear_tasks(ncb_p np, u_char hsts, int target, int lun, int task) { int i = 0; ccb_p cp; for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status != HS_DISCONNECT) continue; if (cp->target != target) continue; if (lun != -1 && cp->lun != lun) continue; if (task != -1 && cp->tag != NO_TAG && cp->scsi_smsg[2] != task) continue; cp->host_status = hsts; cp->scsi_status = S_ILLEGAL; ncr_complete(np, cp); ++i; } return i; } /*========================================================== ** ** ncr chip handler for TASKS recovery. ** **========================================================== ** ** We cannot safely abort a command, while the SCRIPTS ** processor is running, since we just would be in race ** with it. ** ** As long as we have tasks to abort, we keep the SEM ** bit set in the ISTAT. When this bit is set, the ** SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) ** each time it enters the scheduler. ** ** If we have to reset a target, clear tasks of a unit, ** or to perform the abort of a disconnected job, we ** restart the SCRIPTS for selecting the target. Once ** selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). ** If it loses arbitration, the SCRIPTS will interrupt again ** the next time it will enter its scheduler, and so on ... ** ** On SIR_TARGET_SELECTED, we scan for the more ** appropriate thing to do: ** ** - If nothing, we just sent a M_ABORT message to the ** target to get rid of the useless SCSI bus ownership. ** According to the specs, no tasks shall be affected. ** - If the target is to be reset, we send it a M_RESET ** message. ** - If a logical UNIT is to be cleared , we send the ** IDENTIFY(lun) + M_ABORT. ** - If an untagged task is to be aborted, we send the ** IDENTIFY(lun) + M_ABORT. ** - If a tagged task is to be aborted, we send the ** IDENTIFY(lun) + task attributes + M_ABORT_TAG. ** ** Once our 'kiss of death' :) message has been accepted ** by the target, the SCRIPTS interrupts again ** (SIR_ABORT_SENT). On this interrupt, we complete ** all the CCBs that should have been aborted by the ** target according to our message. ** **---------------------------------------------------------- */ static void ncr_sir_task_recovery(ncb_p np, int num) { ccb_p cp; tcb_p tp; int target=-1, lun=-1, task; int i, k; u_char *p; switch(num) { /* ** The SCRIPTS processor stopped before starting ** the next command in order to allow us to perform ** some task recovery. */ case SIR_SCRIPT_STOPPED: /* ** Do we have any target to reset or unit to clear ? */ for (i = 0 ; i < MAX_TARGET ; i++) { tp = &np->target[i]; if (tp->to_reset || (tp->l0p && tp->l0p->to_clear)) { target = i; break; } if (!tp->lmp) continue; for (k = 1 ; k < MAX_LUN ; k++) { if (tp->lmp[k] && tp->lmp[k]->to_clear) { target = i; break; } } if (target != -1) break; } /* ** If not, look at the CCB list for any ** disconnected CCB to be aborted. */ if (target == -1) { for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status != HS_DISCONNECT) continue; if (cp->to_abort) { target = cp->target; break; } } } /* ** If some target is to be selected, ** prepare and start the selection. */ if (target != -1) { tp = &np->target[target]; np->abrt_sel.sel_id = target; np->abrt_sel.sel_scntl3 = tp->wval; np->abrt_sel.sel_sxfer = tp->sval; OUTL(nc_dsa, vtobus(np)); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, sel_for_abort)); return; } /* ** Nothing is to be selected, so we donnot need ** to synchronize with the SCRIPTS anymore. ** Remove the SEM flag from the ISTAT. */ np->istat_sem = 0; OUTB (nc_istat, SIGP); /* ** Now look at CCBs to abort that haven't started yet. ** Remove all those CCBs from the start queue and ** complete them with appropriate status. ** Btw, the SCRIPTS processor is still stopped, so ** we are not in race. */ for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status != HS_BUSY && cp->host_status != HS_NEGOTIATE) continue; if (!cp->to_abort) continue; #ifdef SCSI_NCR_IARB_SUPPORT /* ** If we are using IMMEDIATE ARBITRATION, we donnot ** want to cancel the last queued CCB, since the ** SCRIPTS may have anticipated the selection. */ if (cp == np->last_cp) { cp->to_abort = 0; continue; } #endif /* ** Compute index of next position in the start ** queue the SCRIPTS will schedule. */ i = (INL (nc_scratcha) - vtobus(np->squeue)) / 4; /* ** Remove the job from the start queue. */ k = -1; while (1) { if (i == np->squeueput) break; if (k == -1) { /* Not found yet */ if (cp == ncr_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]))) k = i; /* Found */ } else { /* ** Once found, we have to move ** back all jobs by 1 position. */ np->squeue[k] = np->squeue[i]; k += 2; if (k >= MAX_START*2) k = 0; } i += 2; if (i >= MAX_START*2) i = 0; } assert(k != -1); if (k != 1) { np->squeue[k] = np->squeue[i]; /* Idle task */ cp->host_status = HS_ABORTED; cp->scsi_status = S_ILLEGAL; ncr_complete(np, cp); } } break; /* ** The SCRIPTS processor has selected a target ** we may have some manual recovery to perform for. */ case SIR_TARGET_SELECTED: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; np->abrt_tbl.addr = vtobus(np->abrt_msg); /* ** If the target is to be reset, prepare a ** M_RESET message and clear the to_reset flag ** since we donnot expect this operation to fail. */ if (tp->to_reset) { np->abrt_msg[0] = M_RESET; np->abrt_tbl.size = 1; tp->to_reset = 0; break; } /* ** Otherwise, look for some logical unit to be cleared. */ if (tp->l0p && tp->l0p->to_clear) lun = 0; else if (tp->lmp) { for (k = 1 ; k < MAX_LUN ; k++) { if (tp->lmp[k] && tp->lmp[k]->to_clear) { lun = k; break; } } } /* ** If a logical unit is to be cleared, prepare ** an IDENTIFY(lun) + ABORT MESSAGE. */ if (lun != -1) { lcb_p lp = ncr_lp(np, tp, lun); lp->to_clear = 0; /* We donnot expect to fail here */ np->abrt_msg[0] = M_IDENTIFY | lun; np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; break; } /* ** Otherwise, look for some disconnected job to ** abort for this target. */ for (cp = np->ccbc; cp; cp = cp->link_ccb) { if (cp->host_status != HS_DISCONNECT) continue; if (cp->target != target) continue; if (cp->to_abort) break; } /* ** If we have none, probably since the device has ** completed the command before we won abitration, ** send a M_ABORT message without IDENTIFY. ** According to the specs, the device must just ** disconnect the BUS and not abort any task. */ if (!cp) { np->abrt_msg[0] = M_ABORT; np->abrt_tbl.size = 1; break; } /* ** We have some task to abort. ** Set the IDENTIFY(lun) */ np->abrt_msg[0] = M_IDENTIFY | cp->lun; /* ** If we want to abort an untagged command, we ** will send a IDENTIFY + M_ABORT. ** Otherwise (tagged command), we will send ** a IDENTITFY + task attributes + ABORT TAG. */ if (cp->tag == NO_TAG) { np->abrt_msg[1] = M_ABORT; np->abrt_tbl.size = 2; } else { np->abrt_msg[1] = cp->scsi_smsg[1]; np->abrt_msg[2] = cp->scsi_smsg[2]; np->abrt_msg[3] = M_ABORT_TAG; np->abrt_tbl.size = 4; } cp->to_abort = 0; /* We donnot expect to fail here */ break; /* ** The target has accepted our message and switched ** to BUS FREE phase as we expected. */ case SIR_ABORT_SENT: target = (INB (nc_sdid) & 0xf); tp = &np->target[target]; /* ** If we didn't abort anything, leave here. */ if (np->abrt_msg[0] == M_ABORT) break; /* ** If we sent a M_RESET, then a hardware reset has ** been performed by the target. ** - Reset everything to async 8 bit ** - Tell ourself to negotiate next time :-) ** - Prepare to clear all disconnected CCBs for ** this target from our task list (lun=task=-1) */ lun = -1; task = -1; if (np->abrt_msg[0] == M_RESET) { tp->sval = 0; tp->wval = np->rv_scntl3; ncr_set_sync_wide_status(np, target); ncr_negotiate(np, tp); } /* ** Otherwise, check for the LUN and TASK(s) ** concerned by the cancelation. ** If it is not ABORT_TAG then it is CLEAR_QUEUE ** or an ABORT message :-) */ else { lun = np->abrt_msg[0] & 0x3f; if (np->abrt_msg[1] == M_ABORT_TAG) task = np->abrt_msg[2]; } /* ** Complete all the CCBs the device should have ** aborted due to our 'kiss of death' message. */ (void) ncr_clear_tasks(np, HS_ABORTED, target, lun, task); break; /* ** We have performed a auto-sense that succeeded. ** If the device reports a UNIT ATTENTION condition ** due to a RESET condition, we must complete all ** disconnect CCBs for this unit since the device ** shall have thrown them away. ** Since I haven't time to guess what the specs are ** expecting for other UNIT ATTENTION conditions, I ** decided to only care about RESET conditions. :) */ case SIR_AUTO_SENSE_DONE: cp = ncr_ccb_from_dsa(np, INL (nc_dsa)); p = &cp->cmd->sense_buffer[0]; if (p[0] != 0x70 || p[2] != 0x6 || p[12] != 0x29) break; (void) ncr_clear_tasks(np, HS_RESET, cp->target, cp->lun, -1); break; } /* ** Print to the log the message we intend to send. */ if (num == SIR_TARGET_SELECTED) { PRINT_TARGET(np, target); ncr_printl_hex("control msgout:", np->abrt_msg, np->abrt_tbl.size); np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); } /* ** Let the SCRIPTS processor continue. */ OUTONB (nc_dcntl, (STD|NOCOM)); } /*========================================================== ** ** Gérard's alchemy:) that deals with with the data ** pointer for both MDP and the residual calculation. ** **========================================================== ** ** I didn't want to bloat the code by more than 200 ** lignes for the handling of both MDP and the residual. ** This has been achieved by using a data pointer ** representation consisting in an index in the data ** array (dp_sg) and a negative offset (dp_ofs) that ** have the following meaning: ** ** - dp_sg = MAX_SCATTER ** we are at the end of the data script. ** - dp_sg < MAX_SCATTER ** dp_sg points to the next entry of the scatter array ** we want to transfer. ** - dp_ofs < 0 ** dp_ofs represents the residual of bytes of the ** previous entry scatter entry we will send first. ** - dp_ofs = 0 ** no residual to send first. ** ** The function ncr_evaluate_dp() accepts an arbitray ** offset (basically from the MDP message) and returns ** the corresponding values of dp_sg and dp_ofs. ** **---------------------------------------------------------- */ static int ncr_evaluate_dp(ncb_p np, ccb_p cp, u_int32 scr, int *ofs) { u_int32 dp_scr; int dp_ofs, dp_sg, dp_sgmin; int tmp; struct pm_ctx *pm; /* ** Compute the resulted data pointer in term of a script ** address within some DATA script and a signed byte offset. */ dp_scr = scr; dp_ofs = *ofs; if (dp_scr == NCB_SCRIPT_PHYS (np, pm0_data)) pm = &cp->phys.pm0; else if (dp_scr == NCB_SCRIPT_PHYS (np, pm1_data)) pm = &cp->phys.pm1; else pm = 0; if (pm) { dp_scr = pm->ret; dp_ofs -= pm->sg.size; } /* ** Deduce the index of the sg entry. ** Keep track of the index of the first valid entry. ** If result is dp_sg = MAX_SCATTER, then we are at the ** end of the data. */ tmp = scr_to_cpu(cp->phys.header.goalp); dp_sg = MAX_SCATTER - (tmp - 8 - (int)dp_scr) / (SCR_SG_SIZE*4); dp_sgmin = MAX_SCATTER - cp->segments; /* ** Move to the sg entry the data pointer belongs to. ** ** If we are inside the data area, we expect result to be: ** ** Either, ** dp_ofs = 0 and dp_sg is the index of the sg entry ** the data pointer belongs to (or the end of the data) ** Or, ** dp_ofs < 0 and dp_sg is the index of the sg entry ** the data pointer belongs to + 1. */ if (dp_ofs < 0) { int n; while (dp_sg > dp_sgmin) { --dp_sg; tmp = scr_to_cpu(cp->phys.data[dp_sg].size); n = dp_ofs + (tmp & 0xffffff); if (n > 0) { ++dp_sg; break; } dp_ofs = n; } } else if (dp_ofs > 0) { while (dp_sg < MAX_SCATTER) { ++dp_sg; tmp = scr_to_cpu(cp->phys.data[dp_sg].size); dp_ofs -= (tmp & 0xffffff); if (dp_ofs <= 0) break; } } /* ** Make sure the data pointer is inside the data area. ** If not, return some error. */ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) goto out_err; else if (dp_sg > MAX_SCATTER || (dp_sg == MAX_SCATTER && dp_ofs > 0)) goto out_err; /* ** Save the extreme pointer if needed. */ if (dp_sg > cp->ext_sg || (dp_sg == cp->ext_sg && dp_ofs < cp->ext_ofs)) { cp->ext_sg = dp_sg; cp->ext_ofs = dp_ofs; } /* ** Return data. */ *ofs = dp_ofs; return dp_sg; out_err: return -1; } /*========================================================== ** ** ncr chip handler for MODIFY DATA POINTER MESSAGE ** **========================================================== ** ** We also call this function on IGNORE WIDE RESIDUE ** messages that do not match a SWIDE full condition. ** Btw, we assume in that situation that such a message ** is equivalent to a MODIFY DATA POINTER (offset=-1). ** **---------------------------------------------------------- */ static void ncr_modify_dp(ncb_p np, tcb_p tp, ccb_p cp, int ofs) { int dp_ofs = ofs; u_int32 dp_scr = INL (nc_temp); u_int32 dp_ret; u_char hflags; int dp_sg; struct pm_ctx *pm; /* ** Not supported for auto_sense; */ if (cp->host_flags & HF_AUTO_SENSE) goto out_reject; /* ** Apply our alchemy:) (see comments in ncr_evaluate_dp()), ** to the resulted data pointer. */ dp_sg = ncr_evaluate_dp(np, cp, dp_scr, &dp_ofs); if (dp_sg < 0) goto out_reject; /* ** And our alchemy:) allows to easily calculate the data ** script address we want to return for the next data phase. */ dp_ret = cpu_to_scr(cp->phys.header.goalp); dp_ret = dp_ret - 8 - (MAX_SCATTER - dp_sg) * (SCR_SG_SIZE*4); /* ** If offset / scatter entry is zero we donnot need ** a context for the new current data pointer. */ if (dp_ofs == 0) { dp_scr = dp_ret; goto out_ok; } /* ** Get a context for the new current data pointer. */ hflags = INB (HF_PRT); if (hflags & HF_DP_SAVED) hflags ^= HF_ACT_PM; if (!(hflags & HF_ACT_PM)) { pm = &cp->phys.pm0; dp_scr = NCB_SCRIPT_PHYS (np, pm0_data); } else { pm = &cp->phys.pm1; dp_scr = NCB_SCRIPT_PHYS (np, pm1_data); } hflags &= ~(HF_DP_SAVED); OUTB (HF_PRT, hflags); /* ** Set up the new current data pointer. ** ofs < 0 there, and for the next data phase, we ** want to transfer part of the data of the sg entry ** corresponding to index dp_sg-1 prior to returning ** to the main data script. */ pm->ret = cpu_to_scr(dp_ret); pm->sg.addr = cp->phys.data[dp_sg-1].addr + dp_ofs; pm->sg.size = cp->phys.data[dp_sg-1].size - dp_ofs; out_ok: OUTL (nc_temp, dp_scr); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); return; out_reject: OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_bad)); } /*========================================================== ** ** ncr chip calculation of the data residual. ** **========================================================== ** ** As I used to say, the requirement of data residual ** in SCSI is broken, useless and cannot be achieved ** without huge complexity. ** But most OSes and even the official CAM require it. ** When stupidity happens to be so widely spread inside ** a community, it gets hard to convince. ** ** Anyway, I don't care, since I am not going to use ** any software that considers this data residual as ** a relevant information. :) ** **---------------------------------------------------------- */ static int ncr_compute_residual(ncb_p np, ccb_p cp) { int dp_sg, dp_sgmin, resid, tmp; int dp_ofs = 0; /* ** Should have been checked by the caller. */ if (cp->phys.header.lastp == cp->phys.header.goalp) return 0; /* ** If the last data pointer is data_io (direction ** unknown), then no data transfer should have ** taken place. */ if (cp->phys.header.lastp == NCB_SCRIPTH_PHYS (np, data_io)) return -cp->data_len; /* ** If the device asked for more data than available, ** return a positive residual value. */ if (cp->phys.extra_bytes) return scr_to_cpu(cp->phys.extra_bytes); /* ** Evaluate the pointer saved on message COMPLETE. ** According to our alchemy:), the extreme data ** pointer will also be updated if needed. ** On error, assume no data transferred (this may ** happen if the data direction is unknown). */ tmp = cpu_to_scr(cp->phys.header.lastp); if (ncr_evaluate_dp(np, cp, tmp, &dp_ofs) < 0) return -cp->data_len; /* ** We are now full comfortable in the computation ** of the data residual (2's complement). */ dp_sgmin = MAX_SCATTER - cp->segments; resid = cp->ext_ofs; for (dp_sg = cp->ext_sg; dp_sg < MAX_SCATTER; ++dp_sg) { tmp = scr_to_cpu(cp->phys.data[dp_sg].size); resid -= (tmp & 0xffffff); } /* ** Hopefully, the result is not too wrong. */ return resid; } /*========================================================== ** ** Print out the containt of a SCSI message. ** **========================================================== */ static int ncr_show_msg (u_char * msg) { u_char i; printk ("%x",*msg); if (*msg==M_EXTENDED) { for (i=1;i<8;i++) { if (i-1>msg[1]) break; printk ("-%x",msg[i]); }; return (i+1); } else if ((*msg & 0xf0) == 0x20) { printk ("-%x",msg[1]); return (2); }; return (1); } static void ncr_print_msg (ccb_p cp, char *label, u_char *msg) { if (cp) PRINT_ADDR(cp->cmd); if (label) printk ("%s: ", label); (void) ncr_show_msg (msg); printk (".\n"); } /*=================================================================== ** ** Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. ** **=================================================================== ** ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... ** ** We try to negotiate sync and wide transfer only after ** a successfull inquire command. We look at byte 7 of the ** inquire data to determine the capabilities of the target. ** ** When we try to negotiate, we append the negotiation message ** to the identify and (maybe) simple tag message. ** The host status field is set to HS_NEGOTIATE to mark this ** situation. ** ** If the target doesn't answer this message immediately ** (as required by the standard), the SIR_NEGO_FAILED interrupt ** will be raised eventually. ** The handler removes the HS_NEGOTIATE status, and sets the ** negotiated value to the default (async / nowide). ** ** If we receive a matching answer immediately, we check it ** for validity, and set the values. ** ** If we receive a Reject message immediately, we assume the ** negotiation has failed, and fall back to standard values. ** ** If we receive a negotiation message while not in HS_NEGOTIATE ** state, it's a target initiated negotiation. We prepare a ** (hopefully) valid answer, set our parameters, and send back ** this answer to the target. ** ** If the target doesn't fetch the answer (no message out phase), ** we assume the negotiation has failed, and fall back to default ** settings (SIR_NEGO_PROTO interrupt). ** ** When we set the values, we adjust them in all ccbs belonging ** to this target, in the controller's register, and in the "phys" ** field of the controller's struct ncb. ** **--------------------------------------------------------------------- */ /*========================================================== ** ** ncr chip handler for SYNCHRONOUS DATA TRANSFER ** REQUEST (SDTR) message. ** **========================================================== ** ** Read comments above. ** **---------------------------------------------------------- */ static void ncr_sync_nego(ncb_p np, tcb_p tp, ccb_p cp) { u_char scntl3; u_char chg, ofs, per, fak; /* ** Synchronous request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "sync msg in", np->msgin); }; /* ** get requested values. */ chg = 0; per = np->msgin[3]; ofs = np->msgin[4]; if (ofs==0) per=255; /* ** if target sends SDTR message, ** it CAN transfer synch. */ if (ofs) tp->inq_byte7 |= INQ7_SYNC; /* ** check values against driver limits. */ if (per < np->minsync) {chg = 1; per = np->minsync;} if (per < tp->minsync) {chg = 1; per = tp->minsync;} if (ofs > tp->maxoffs) {chg = 1; ofs = tp->maxoffs;} /* ** Check against controller limits. */ fak = 7; scntl3 = 0; if (ofs != 0) { ncr_getsync(np, per, &fak, &scntl3); if (fak > 7) { chg = 1; ofs = 0; } } if (ofs == 0) { fak = 7; per = 0; scntl3 = 0; tp->minsync = 0; } if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("sync: per=%d scntl3=0x%x ofs=%d fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_SYNC: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setsync (np, cp, 0, 0xe0); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setsync (np, cp, scntl3, (fak<<5)|ofs); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; }; /* ** It was a request. Set value and ** prepare an answer message */ ncr_setsync (np, cp, scntl3, (fak<<5)|ofs); np->msgout[0] = M_EXTENDED; np->msgout[1] = 3; np->msgout[2] = M_X_SYNC_REQ; np->msgout[3] = per; np->msgout[4] = ofs; cp->nego_status = NS_SYNC; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "sync msgout", np->msgout); } np->msgin [0] = M_NOOP; if (!ofs) OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_bad)); else OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, sdtr_resp)); } /*========================================================== ** ** ncr chip handler for WIDE DATA TRANSFER REQUEST ** (WDTR) message. ** **========================================================== ** ** Read comments above. ** **---------------------------------------------------------- */ static void ncr_wide_nego(ncb_p np, tcb_p tp, ccb_p cp) { u_char chg, wide; /* ** Wide request message received. */ if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "wide msgin", np->msgin); }; /* ** get requested values. */ chg = 0; wide = np->msgin[3]; /* ** if target sends WDTR message, ** it CAN transfer wide. */ if (wide) tp->inq_byte7 |= INQ7_WIDE16; /* ** check values against driver limits. */ if (wide > tp->usrwide) {chg = 1; wide = tp->usrwide;} if (DEBUG_FLAGS & DEBUG_NEGO) { PRINT_ADDR(cp->cmd); printk ("wide: wide=%d chg=%d.\n", wide, chg); } if (INB (HS_PRT) == HS_NEGOTIATE) { OUTB (HS_PRT, HS_BUSY); switch (cp->nego_status) { case NS_WIDE: /* ** This was an answer message */ if (chg) { /* ** Answer wasn't acceptable. */ ncr_setwide (np, cp, 0, 1); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_bad)); } else { /* ** Answer is ok. */ ncr_setwide (np, cp, wide, 1); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); }; return; case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; }; }; /* ** It was a request, set value and ** prepare an answer message */ ncr_setwide (np, cp, wide, 1); np->msgout[0] = M_EXTENDED; np->msgout[1] = 2; np->msgout[2] = M_X_WIDE_REQ; np->msgout[3] = wide; np->msgin [0] = M_NOOP; cp->nego_status = NS_WIDE; if (DEBUG_FLAGS & DEBUG_NEGO) { ncr_print_msg(cp, "wide msgout", np->msgout); } OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, wdtr_resp)); } /* ** Reset SYNC or WIDE to default settings. ** Called when a negotiation does not succeed either ** on rejection or on protocol error. */ static void ncr_nego_default(ncb_p np, tcb_p tp, ccb_p cp) { /* ** any error in negotiation: ** fall back to default mode. */ switch (cp->nego_status) { case NS_SYNC: ncr_setsync (np, cp, 0, 0xe0); break; case NS_WIDE: ncr_setwide (np, cp, 0, 0); break; }; np->msgin [0] = M_NOOP; np->msgout[0] = M_NOOP; cp->nego_status = 0; } /*========================================================== ** ** ncr chip handler for MESSAGE REJECT received for ** a WIDE or SYNCHRONOUS negotiation. ** **========================================================== ** ** Read comments above. ** **---------------------------------------------------------- */ static void ncr_nego_rejected(ncb_p np, tcb_p tp, ccb_p cp) { ncr_nego_default(np, tp, cp); OUTB (HS_PRT, HS_BUSY); } /*========================================================== ** ** ** ncr chip exception handler for programmed interrupts. ** ** **========================================================== */ void ncr_int_sir (ncb_p np) { u_char num = INB (nc_dsps); u_long dsa = INL (nc_dsa); ccb_p cp = ncr_ccb_from_dsa(np, dsa); u_char target = INB (nc_sdid) & 0x0f; tcb_p tp = &np->target[target]; int tmp; if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); switch (num) { /* ** See comments in the SCRIPTS code. */ #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR case SIR_DUMMY_INTERRUPT: goto out; #endif /* ** The C code is currently trying to recover from something. ** Typically, user want to abort some command. */ case SIR_SCRIPT_STOPPED: case SIR_TARGET_SELECTED: case SIR_ABORT_SENT: ncr_sir_task_recovery(np, num); return; /* ** The device didn't go to MSG OUT phase after having ** been selected with ATN. We donnot want to handle ** that. */ case SIR_SEL_ATN_NO_MSG_OUT: printk ("%s:%d: No MSG OUT phase after selection with ATN.\n", ncr_name (np), target); goto out_stuck; /* ** The device didn't switch to MSG IN phase after ** having reseleted the initiator. */ case SIR_RESEL_NO_MSG_IN: /* ** After reselection, the device sent a message that wasn't ** an IDENTIFY. */ case SIR_RESEL_NO_IDENTIFY: /* ** If devices reselecting without sending an IDENTIFY ** message still exist, this should help. ** We just assume lun=0, 1 CCB, no tag. */ if (tp->l0p) { OUTL (nc_dsa, scr_to_cpu(tp->l0p->tasktbl[0])); OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, resel_go)); return; } /* ** The device reselected a LUN we donnot know of. */ case SIR_RESEL_BAD_LUN: np->msgout[0] = M_RESET; goto out; /* ** The device reselected for an untagged nexus and we ** haven't any. */ case SIR_RESEL_BAD_I_T_L: np->msgout[0] = M_ABORT; goto out; /* ** The device reselected for a tagged nexus that we donnot ** have. */ case SIR_RESEL_BAD_I_T_L_Q: np->msgout[0] = M_ABORT_TAG; goto out; /* ** The SCRIPTS let us know that the device has grabbed ** our message and will abort the job. */ case SIR_RESEL_ABORTED: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; printk ("%s:%d: message %x sent on bad reselection.\n", ncr_name (np), target, np->lastmsg); goto out; /* ** The SCRIPTS let us know that a message has been ** successfully sent to the device. */ case SIR_MSG_OUT_DONE: np->lastmsg = np->msgout[0]; np->msgout[0] = M_NOOP; /* Should we really care of that */ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { if (cp) cp->xerr_status &= ~XE_PARITY_ERR; } goto out; /* ** The device didn't send a GOOD SCSI status. ** We may have some work to do prior to allow ** the SCRIPTS processor to continue. */ case SIR_BAD_STATUS: if (!cp) goto out; ncr_sir_to_redo(np, num, cp); return; /* ** We are asked by the SCRIPTS to prepare a ** REJECT message. */ case SIR_REJECT_TO_SEND: ncr_print_msg(cp, "M_REJECT to send for ", np->msgin); np->msgout[0] = M_REJECT; goto out; /* ** We have been ODD at the end of a DATA IN ** transfer and the device didn't send a ** IGNORE WIDE RESIDUE message. ** It is a data overrun condition. */ case SIR_SWIDE_OVERRUN: if (cp) cp->xerr_status |= XE_EXTRA_DATA; goto out; /* ** We have been ODD at the end of a DATA OUT ** transfer. ** It is a data underrun condition. */ case SIR_SODL_UNDERRUN: if (cp) cp->xerr_status |= XE_EXTRA_DATA; goto out; /* ** We received a message. */ case SIR_MSG_RECEIVED: if (!cp) goto out_stuck; switch (np->msgin [0]) { /* ** We received an extended message. ** We handle MODIFY DATA POINTER, SDTR, WDTR ** and reject all other extended messages. */ case M_EXTENDED: switch (np->msgin [2]) { case M_X_MODIFY_DP: if (DEBUG_FLAGS & DEBUG_POINTER) ncr_print_msg(cp,"modify DP",np->msgin); tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + (np->msgin[5]<<8) + (np->msgin[6]); ncr_modify_dp(np, tp, cp, tmp); return; case M_X_SYNC_REQ: ncr_sync_nego(np, tp, cp); return; case M_X_WIDE_REQ: ncr_wide_nego(np, tp, cp); return; default: goto out_reject; } break; /* ** We received a 1/2 byte message not handled from SCRIPTS. ** We are only expecting MESSAGE REJECT and IGNORE WIDE ** RESIDUE messages that haven't been anticipated by ** SCRIPTS on SWIDE full condition. Unanticipated IGNORE ** WIDE RESIDUE messages are aliased as MODIFY DP (-1). */ case M_IGN_RESIDUE: if (DEBUG_FLAGS & DEBUG_POINTER) ncr_print_msg(cp,"ign wide residue", np->msgin); ncr_modify_dp(np, tp, cp, -1); return; case M_REJECT: if (INB (HS_PRT) == HS_NEGOTIATE) ncr_nego_rejected(np, tp, cp); else { PRINT_ADDR(cp->cmd); printk ("M_REJECT received (%x:%x).\n", scr_to_cpu(np->lastmsg), np->msgout[0]); } goto out_clrack; break; default: goto out_reject; } break; /* ** We received an unknown message. ** Ignore all MSG IN phases and reject it. */ case SIR_MSG_WEIRD: ncr_print_msg(cp, "WEIRD message received", np->msgin); OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_weird)); return; /* ** Negotiation failed. ** Target does not send us the reply. ** Remove the HS_NEGOTIATE status. */ case SIR_NEGO_FAILED: OUTB (HS_PRT, HS_BUSY); /* ** Negotiation failed. ** Target does not want answer message. */ case SIR_NEGO_PROTO: ncr_nego_default(np, tp, cp); goto out; }; out: OUTONB (nc_dcntl, (STD|NOCOM)); return; out_reject: OUTL (nc_dsp, NCB_SCRIPTH_PHYS (np, msg_bad)); return; out_clrack: OUTL (nc_dsp, NCB_SCRIPT_PHYS (np, clrack)); return; out_stuck: } /*========================================================== ** ** ** Aquire a control block ** ** **========================================================== */ static ccb_p ncr_get_ccb (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = ncr_lp(np, tp, ln); u_short tag = NO_TAG; XPT_QUEHEAD *qp; ccb_p cp = (ccb_p) 0; /* ** Allocate a new CCB if needed. */ if (xpt_que_empty(&np->free_ccbq)) (void) ncr_alloc_ccb(np); /* ** Look for a free CCB */ qp = xpt_remque_head(&np->free_ccbq); if (!qp) goto out; cp = xpt_que_entry(qp, struct ccb, link_ccbq); /* ** If the LCB is not yet available and we already ** have queued a CCB for a LUN without LCB, ** give up. Otherwise all is fine. :-) */ if (!lp) { if (xpt_que_empty(&np->b0_ccbq)) xpt_insque_head(&cp->link_ccbq, &np->b0_ccbq); else goto out_free; } else { /* ** Tune tag mode if asked by user. */ if (lp->queuedepth != lp->numtags) { ncr_setup_tags(np, tn, ln); } /* ** Get a tag for this nexus if required. ** Keep from using more tags than we can handle. */ if (lp->usetags) { if (lp->busyccbs < lp->maxnxs) { tag = lp->cb_tags[lp->ia_tag]; ++lp->ia_tag; if (lp->ia_tag == MAX_TAGS) lp->ia_tag = 0; cp->tags_si = lp->tags_si; ++lp->tags_sum[cp->tags_si]; } else goto out_free; } /* ** Put the CCB in the LUN wait queue and ** count it as busy. */ xpt_insque_tail(&cp->link_ccbq, &lp->wait_ccbq); ++lp->busyccbs; } /* ** Remember all informations needed to free this CCB. */ cp->to_abort = 0; cp->tag = tag; cp->target = tn; cp->lun = ln; if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, tn, ln); printk ("ccb @%p using tag %d.\n", cp, tag); } out: return cp; out_free: xpt_insque_head(&cp->link_ccbq, &np->free_ccbq); return (ccb_p) 0; } /*========================================================== ** ** ** Release one control block ** ** **========================================================== */ static void ncr_free_ccb (ncb_p np, ccb_p cp) { tcb_p tp = &np->target[cp->target]; lcb_p lp = ncr_lp(np, tp, cp->lun); if (DEBUG_FLAGS & DEBUG_TAGS) { PRINT_LUN(np, cp->target, cp->lun); printk ("ccb @%p freeing tag %d.\n", cp, cp->tag); } /* ** If lun control block available, make available ** the task slot and the tag if any. ** Decrement counters. */ if (lp) { if (cp->tag != NO_TAG) { lp->cb_tags[lp->if_tag++] = cp->tag; if (lp->if_tag == MAX_TAGS) lp->if_tag = 0; --lp->tags_sum[cp->tags_si]; lp->tasktbl[cp->tag] = cpu_to_scr(np->p_bad_i_t_l_q); } else { lp->tasktbl[0] = cpu_to_scr(np->p_bad_i_t_l); } --lp->busyccbs; if (cp->queued) { --lp->queuedccbs; } } /* ** Make this CCB available. */ xpt_remque(&cp->link_ccbq); xpt_insque_head(&cp->link_ccbq, &np->free_ccbq); cp -> host_status = HS_IDLE; cp -> queued = 0; } /*------------------------------------------------------------------------ ** Allocate a CCB and initialize its fixed part. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static ccb_p ncr_alloc_ccb(ncb_p np) { ccb_p cp = 0; int hcode; /* ** Allocate memory for this CCB. */ cp = m_calloc(sizeof(struct ccb), "CCB", MEMO_WARN); if (!cp) return 0; /* ** Count it and initialyze it. */ np->actccbs++; /* ** Remember virtual and bus address of this ccb. */ cp->p_ccb = vtobus(cp); /* ** Insert this ccb into the hashed list. */ hcode = CCB_HASH_CODE(cp->p_ccb); cp->link_ccbh = np->ccbh[hcode]; np->ccbh[hcode] = cp; /* ** Initialyze the start and restart actions. */ cp->phys.header.go.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); cp->phys.header.go.restart = cpu_to_scr(NCB_SCRIPTH_PHYS(np,bad_i_t_l)); /* ** Initilialyze some other fields. */ cp->phys.smsg_ext.addr = cpu_to_scr(vtobus(&np->msgin[2])); /* ** Chain into wakeup list and free ccb queue. */ cp->link_ccb = np->ccbc; np->ccbc = cp; xpt_insque_head(&cp->link_ccbq, &np->free_ccbq); return cp; } /*------------------------------------------------------------------------ ** Look up a CCB from a DSA value. **------------------------------------------------------------------------ **------------------------------------------------------------------------ */ static ccb_p ncr_ccb_from_dsa(ncb_p np, u_long dsa) { int hcode; ccb_p cp; hcode = CCB_HASH_CODE(dsa); cp = np->ccbh[hcode]; while (cp) { if (cp->p_ccb == dsa) break; cp = cp->link_ccbh; } return cp; } /*========================================================== ** ** ** Allocation of resources for Targets/Luns/Tags. ** ** **========================================================== */ /*------------------------------------------------------------------------ ** Target control block initialisation. **------------------------------------------------------------------------ ** This data structure is fully initialized after a SCSI command ** has been successfully completed for this target. **------------------------------------------------------------------------ */ static void ncr_init_tcb (ncb_p np, u_char tn) { /* ** Check some alignments required by the chip. */ assert (( (offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) == 0); assert (( (offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) == 0); } /*------------------------------------------------------------------------ ** Lun control block allocation and initialization. **------------------------------------------------------------------------ ** This data structure is allocated and initialized after a SCSI ** command has been successfully completed for this target/lun. **------------------------------------------------------------------------ */ static lcb_p ncr_alloc_lcb (ncb_p np, u_char tn, u_char ln) { tcb_p tp = &np->target[tn]; lcb_p lp = ncr_lp(np, tp, ln); /* ** Already done, return. */ if (lp) return lp; /* ** Initialize the target control block if not yet. */ ncr_init_tcb(np, tn); /* ** Allocate the lcb bus address array. ** Compute the bus address of this table. */ if (ln && !tp->luntbl) { int i; tp->luntbl = m_calloc(256, "LUNTBL", MEMO_WARN); if (!tp->luntbl) goto fail; for (i = 0 ; i < 64 ; i++) tp->luntbl[i] = cpu_to_scr(vtobus(&np->resel_badlun)); tp->b_luntbl = cpu_to_scr(vtobus(tp->luntbl)); } /* ** Allocate the table of pointers for LUN(s) > 0, if needed. */ if (ln && !tp->lmp) { tp->lmp = m_calloc(MAX_LUN * sizeof(lcb_p), "LMP", MEMO_WARN); if (!tp->lmp) goto fail; } /* ** Allocate the lcb. ** Make it available to the chip. */ lp = m_calloc(sizeof(struct lcb), "LCB", MEMO_WARN); if (!lp) goto fail; if (ln) { tp->lmp[ln] = lp; tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); } else { tp->l0p = lp; tp->b_lun0 = cpu_to_scr(vtobus(lp)); } /* ** Initialize the CCB queue headers. */ xpt_que_init(&lp->busy_ccbq); xpt_que_init(&lp->wait_ccbq); /* ** Set max CCBs to 1 and use the default task array ** by default. */ lp->maxnxs = 1; lp->tasktbl = &lp->tasktbl_0; lp->b_tasktbl = cpu_to_scr(vtobus(lp->tasktbl)); lp->tasktbl[0] = cpu_to_scr(np->p_notask); lp->resel_task = cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); /* ** Initialize command queuing control. */ lp->busyccbs = 1; lp->queuedccbs = 1; lp->queuedepth = 1; fail: return lp; } /*------------------------------------------------------------------------ ** Lun control block setup on INQUIRY data received. **------------------------------------------------------------------------ ** We only support WIDE, SYNC for targets and CMDQ for logical units. ** This setup is done on each INQUIRY since we are expecting user ** will play with CHANGE DEFINITION commands. :-) **------------------------------------------------------------------------ */ static lcb_p ncr_setup_lcb (ncb_p np, u_char tn, u_char ln, u_char *inq_data) { tcb_p tp = &np->target[tn]; lcb_p lp = ncr_lp(np, tp, ln); u_char inq_byte7; int i; /* ** If no lcb, try to allocate it. */ if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) goto fail; #if 0 /* No more used. Left here as provision */ /* ** Get device quirks. */ tp->quirks = 0; if (tp->quirks && bootverbose) { PRINT_LUN(np, tn, ln); printk ("quirks=%x.\n", tp->quirks); } #endif /* ** Evaluate trustable target/unit capabilities. ** We only believe device version >= SCSI-2 that ** use appropriate response data format (2). ** But it seems that some CCS devices also ** support SYNC and I donnot want to frustrate ** anybody. ;-) */ inq_byte7 = 0; if ((inq_data[2] & 0x7) >= 2 && (inq_data[3] & 0xf) == 2) inq_byte7 = inq_data[7]; else if ((inq_data[2] & 0x7) == 1 && (inq_data[3] & 0xf) == 1) inq_byte7 = INQ7_SYNC; /* ** Throw away announced LUN capabilities if we are told ** that there is no real device supported by the logical unit. */ if ((inq_data[0] & 0xe0) > 0x20 || (inq_data[0] & 0x1f) == 0x1f) inq_byte7 &= (INQ7_SYNC | INQ7_WIDE16); /* ** If user is wanting SYNC, force this feature. */ if (driver_setup.force_sync_nego) inq_byte7 |= INQ7_SYNC; /* ** Prepare negotiation if SIP capabilities have changed. */ tp->inq_done = 1; if ((inq_byte7 ^ tp->inq_byte7) & (INQ7_SYNC | INQ7_WIDE16)) { tp->inq_byte7 = inq_byte7; ncr_negotiate(np, tp); } /* ** If unit supports tagged commands, allocate and ** initialyze the task table if not yet. */ if ((inq_byte7 & INQ7_QUEUE) && lp->tasktbl == &lp->tasktbl_0) { lp->tasktbl = m_calloc(MAX_TASKS*4, "TASKTBL", MEMO_WARN); if (!lp->tasktbl) { lp->tasktbl = &lp->tasktbl_0; goto fail; } lp->b_tasktbl = cpu_to_scr(vtobus(lp->tasktbl)); for (i = 0 ; i < MAX_TASKS ; i++) lp->tasktbl[i] = cpu_to_scr(np->p_notask); lp->cb_tags = m_calloc(MAX_TAGS, "CB_TAGS", MEMO_WARN); if (!lp->cb_tags) goto fail; for (i = 0 ; i < MAX_TAGS ; i++) lp->cb_tags[i] = i; lp->maxnxs = MAX_TAGS; lp->tags_stime = ktime_get(3*HZ); } /* ** Adjust tagged queueing status if needed. */ if ((inq_byte7 ^ lp->inq_byte7) & INQ7_QUEUE) { lp->inq_byte7 = inq_byte7; lp->numtags = lp->maxtags; ncr_setup_tags (np, tn, ln); } fail: return lp; } /*========================================================== ** ** ** Build Scatter Gather Block ** ** **========================================================== ** ** The transfer area may be scattered among ** several non adjacent physical pages. ** ** We may use MAX_SCATTER blocks. ** **---------------------------------------------------------- */ /* ** We try to reduce the number of interrupts caused ** by unexpected phase changes due to disconnects. ** A typical harddisk may disconnect before ANY block. ** If we wanted to avoid unexpected phase changes at all ** we had to use a break point every 512 bytes. ** Of course the number of scatter/gather blocks is ** limited. ** Under Linux, the scatter/gatter blocks are provided by ** the generic driver. We just have to copy addresses and ** sizes to the data segment array. */ /* ** For 64 bit systems, we use the 8 upper bits of the size field ** to provide bus address bits 32-39 to the SCRIPTS processor. ** This allows the 895A and 896 to address up to 1 TB of memory. ** For 32 bit chips on 64 bit systems, we must be provided with ** memory addresses that fit into the first 32 bit bus address ** range and so, this does not matter and we expect an error from ** the chip if this ever happen. ** ** We use a separate function for the case Linux does not provide ** a scatter list in order to allow better code optimization ** for the case we have a scatter list (BTW, for now this just wastes ** about 40 bytes of code for x86, but my guess is that the scatter ** code will get more complex later). */ #if BITS_PER_LONG > 32 #define SCATTER_ONE(data, badd, len) \ (data)->addr = cpu_to_scr(badd); \ (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); #else #define SCATTER_ONE(data, badd, len) \ (data)->addr = cpu_to_scr(badd); \ (data)->size = cpu_to_scr(len); #endif #define CROSS_16MB(p, n) (((((u_long) p) + n - 1) ^ ((u_long) p)) & ~0xffffff) static int ncr_scatter_no_sglist(ccb_p cp, Scsi_Cmnd *cmd) { struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER-1]; int segment; cp->data_len = cmd->request_bufflen; if (cmd->request_bufflen) { u_long baddr = vtobus(cmd->request_buffer); SCATTER_ONE(data, baddr, cmd->request_bufflen); if (CROSS_16MB(baddr, cmd->request_bufflen)) { cp->host_flags |= HF_PM_TO_C; #ifdef DEBUG_896R1 printk("He! we are crossing a 16 MB boundary (0x%lx, 0x%x)\n", baddr, cmd->request_bufflen); #endif } segment = 1; } else segment = 0; return segment; } /* ** DEL 472 - 53C896 Rev 1 - Part Number 609-0393055 - ITEM 5. ** ** We disable data phase mismatch handling from SCRIPTS for data ** transfers that contains scatter/gather entries that cross ** a 16 MB boundary. ** We use a different scatter function for 896 rev. 1 that needs ** such a work-around. Doing so, we do not affect performance for ** other chips. ** This problem should not be triggered for disk IOs under Linux, ** since such IOs are performed using pages and buffers that are ** nicely power-of-two sized and aligned. But, since this may change ** at any time, a work-around was required. */ static int ncr_scatter_896R1(ccb_p cp, Scsi_Cmnd *cmd) { int segn; int use_sg = (int) cmd->use_sg; cp->data_len = 0; if (!use_sg) segn = ncr_scatter_no_sglist(cp, cmd); else if (use_sg > MAX_SCATTER) segn = -1; else { struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - use_sg]; for (segn = 0; segn < use_sg; segn++) { u_long baddr = vtobus(scatter[segn].address); SCATTER_ONE(&data[segn], baddr, scatter[segn].length); if (CROSS_16MB(baddr, scatter[segn].length)) { cp->host_flags |= HF_PM_TO_C; #ifdef DEBUG_896R1 printk("He! we are crossing a 16 MB boundary (0x%lx, 0x%x)\n", baddr, scatter[segn].length); #endif } cp->data_len += scatter[segn].length; } } return segn; } static int ncr_scatter(ccb_p cp, Scsi_Cmnd *cmd) { int segment; int use_sg = (int) cmd->use_sg; cp->data_len = 0; if (!use_sg) segment = ncr_scatter_no_sglist(cp, cmd); else if (use_sg > MAX_SCATTER) segment = -1; else { struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - use_sg]; for (segment = 0; segment < use_sg; segment++) { u_long baddr = vtobus(scatter[segment].address); SCATTER_ONE(&data[segment], baddr, scatter[segment].length); cp->data_len += scatter[segment].length; } } return segment; } /*========================================================== ** ** ** Test the pci bus snoop logic :-( ** ** Has to be called with interrupts disabled. ** ** **========================================================== */ #ifndef NCR_IOMAPPED static int __init ncr_regtest (struct ncb* np) { register volatile u_int32 data; /* ** ncr registers may NOT be cached. ** write 0xffffffff to a read only register area, ** and try to read it back. */ data = 0xffffffff; OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); #if 1 if (data == 0xffffffff) { #else if ((data & 0xe2f0fffd) != 0x02000080) { #endif printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", (unsigned) data); return (0x10); }; return (0); } #endif static int __init ncr_snooptest (struct ncb* np) { u_int32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; int i, err=0; #ifndef NCR_IOMAPPED if (np->reg) { err |= ncr_regtest (np); if (err) return (err); } #endif /* ** init */ pc = NCB_SCRIPTH0_PHYS (np, snooptest); host_wr = 1; ncr_wr = 2; /* ** Set memory and register. */ np->ncr_cache = cpu_to_scr(host_wr); OUTL (nc_temp, ncr_wr); /* ** Start script (exchange values) */ OUTL (nc_dsa, vtobus(np)); OUTL (nc_dsp, pc); /* ** Wait 'til done (with timeout) */ for (i=0; incr_cache); ncr_rd = INL (nc_scratcha); ncr_bk = INL (nc_temp); /* ** check for timeout */ if (i>=NCR_SNOOP_TIMEOUT) { printk ("CACHE TEST FAILED: timeout.\n"); return (0x20); }; /* ** Check termination position. */ if (pc != NCB_SCRIPTH0_PHYS (np, snoopend)+8) { printk ("CACHE TEST FAILED: script execution failed.\n"); printk ("start=%08lx, pc=%08lx, end=%08lx\n", (u_long) NCB_SCRIPTH0_PHYS (np, snooptest), (u_long) pc, (u_long) NCB_SCRIPTH0_PHYS (np, snoopend) +8); return (0x40); }; /* ** Show results. */ if (host_wr != ncr_rd) { printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", (int) host_wr, (int) ncr_rd); err |= 1; }; if (host_rd != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", (int) ncr_wr, (int) host_rd); err |= 2; }; if (ncr_bk != ncr_wr) { printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", (int) ncr_wr, (int) ncr_bk); err |= 4; }; return (err); } /*========================================================== ** ** ** Profiling the drivers and targets performance. ** ** **========================================================== */ #ifdef SCSI_NCR_PROFILE_SUPPORT static void ncb_profile (ncb_p np, ccb_p cp) { int num_disc = (cp->phys.num_disc & 0xff); int num_disc0 = (cp->phys.num_disc >> 8); ++np->profile.num_trans; np->profile.num_disc += num_disc; np->profile.num_disc0 += num_disc0; np->profile.num_kbytes += (cp->data_len >> 10); #if 000 if (num_disc > num_disc0) { if (cp->data_len <= 1024) np->profile.num_br1k += (num_disc - num_disc0); else if (cp->data_len <= 2048) np->profile.num_br2k += (num_disc - num_disc0); else if (cp->data_len <= 4096) np->profile.num_br4k += (num_disc - num_disc0); else if (cp->data_len <= 8192) np->profile.num_br8k += (num_disc - num_disc0); else np->profile.num_brnk += (num_disc - num_disc0); } #endif } #endif /* SCSI_NCR_PROFILE_SUPPORT */ /*========================================================== ** ** Determine the ncr's clock frequency. ** This is essential for the negotiation ** of the synchronous transfer rate. ** **========================================================== ** ** Note: we have to return the correct value. ** THERE IS NO SAFE DEFAULT VALUE. ** ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. ** 53C860 and 53C875 rev. 1 support fast20 transfers but ** do not have a clock doubler and so are provided with a ** 80 MHz clock. All other fast20 boards incorporate a doubler ** and so should be delivered with a 40 MHz clock. ** The recent fast40 chips (895/896/895A) use a 40 Mhz base clock ** and provide a clock quadrupler (160 Mhz). The code below ** tries to deal as cleverly as possible with all this stuff. ** **---------------------------------------------------------- */ /* * Select NCR SCSI clock frequency */ static void ncr_selectclock(ncb_p np, u_char scntl3) { if (np->multiplier < 2) { OUTB(nc_scntl3, scntl3); return; } if (bootverbose >= 2) printk ("%s: enabling clock multiplier\n", ncr_name(np)); OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ int i = 20; while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) UDELAY (20); if (!i) printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); } else /* Wait 20 micro-seconds for doubler */ UDELAY (20); OUTB(nc_stest3, HSC); /* Halt the scsi clock */ OUTB(nc_scntl3, scntl3); OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ OUTB(nc_stest3, 0x00); /* Restart scsi clock */ } /* * calculate NCR SCSI clock frequency (in KHz) */ static unsigned __init ncrgetfreq (ncb_p np, int gen) { unsigned int ms = 0; unsigned int f; /* * Measure GEN timer delay in order * to calculate SCSI clock frequency * * This code will never execute too * many loop iterations (if DELAY is * reasonably correct). It could get * too low a delay (too high a freq.) * if the CPU is slow executing the * loop for some reason (an NMI, for * example). For this reason we will * if multiple measurements are to be * performed trust the higher delay * (lower frequency returned). */ OUTW (nc_sien , 0); /* mask all scsi interrupts */ (void) INW (nc_sist); /* clear pending scsi interrupt */ OUTB (nc_dien , 0); /* mask all dma interrupts */ (void) INW (nc_sist); /* another one, just to be sure :) */ OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ OUTB (nc_stime1, 0); /* disable general purpose timer */ OUTB (nc_stime1, gen); /* set to nominal delay of 1<= 2) printk ("%s: Delay (GEN=%d): %u msec, %u KHz\n", ncr_name(np), gen, ms, f); return f; } static unsigned __init ncr_getfreq (ncb_p np) { u_int f1, f2; int gen = 11; (void) ncrgetfreq (np, gen); /* throw away first result */ f1 = ncrgetfreq (np, gen); f2 = ncrgetfreq (np, gen); if (f1 > f2) f1 = f2; /* trust lower result */ return f1; } /* * Get/probe NCR SCSI clock frequency */ static void __init ncr_getclock (ncb_p np, int mult) { unsigned char scntl3 = INB(nc_scntl3); unsigned char stest1 = INB(nc_stest1); unsigned f1; np->multiplier = 1; f1 = 40000; /* ** True with 875/895/896/895A with clock multiplier selected */ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { if (bootverbose >= 2) printk ("%s: clock multiplier found\n", ncr_name(np)); np->multiplier = mult; } /* ** If multiplier not found or scntl3 not 7,5,3, ** reset chip and get frequency from general purpose timer. ** Otherwise trust scntl3 BIOS setting. */ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { OUTB (nc_stest1, 0); /* make sure doubler is OFF */ f1 = ncr_getfreq (np); if (bootverbose) printk ("%s: NCR clock is %uKHz\n", ncr_name(np), f1); if (f1 < 45000) f1 = 40000; else if (f1 < 55000) f1 = 50000; else f1 = 80000; if (f1 < 80000 && mult > 1) { if (bootverbose >= 2) printk ("%s: clock multiplier assumed\n", ncr_name(np)); np->multiplier = mult; } } else { if ((scntl3 & 7) == 3) f1 = 40000; else if ((scntl3 & 7) == 5) f1 = 80000; else f1 = 160000; f1 /= np->multiplier; } /* ** Compute controller synchronous parameters. */ f1 *= np->multiplier; np->clock_khz = f1; } /* * Get/probe PCI clock frequency */ static u_int __init ncr_getpciclock (ncb_p np) { static u_int f = 0; if (!f) { OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ f = ncr_getfreq (np); OUTB (nc_stest1, 0); } return f; } /*===================== LINUX ENTRY POINTS SECTION ==========================*/ #ifndef uchar #define uchar unsigned char #endif #ifndef ushort #define ushort unsigned short #endif #ifndef ulong #define ulong unsigned long #endif /* --------------------------------------------------------------------- ** ** Driver setup from the boot command line ** ** --------------------------------------------------------------------- */ #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif #define OPT_TAGS 1 #define OPT_MASTER_PARITY 2 #define OPT_SCSI_PARITY 3 #define OPT_DISCONNECTION 4 #define OPT_SPECIAL_FEATURES 5 #define OPT_ULTRA_SCSI 6 #define OPT_FORCE_SYNC_NEGO 7 #define OPT_REVERSE_PROBE 8 #define OPT_DEFAULT_SYNC 9 #define OPT_VERBOSE 10 #define OPT_DEBUG 11 #define OPT_BURST_MAX 12 #define OPT_LED_PIN 13 #define OPT_MAX_WIDE 14 #define OPT_SETTLE_DELAY 15 #define OPT_DIFF_SUPPORT 16 #define OPT_IRQM 17 #define OPT_PCI_FIX_UP 18 #define OPT_BUS_CHECK 19 #define OPT_OPTIMIZE 20 #define OPT_RECOVERY 21 #define OPT_SAFE_SETUP 22 #define OPT_USE_NVRAM 23 #define OPT_EXCLUDE 24 #define OPT_HOST_ID 25 #ifdef SCSI_NCR_IARB_SUPPORT #define OPT_IARB 26 #endif static char setup_token[] __initdata = "tags:" "mpar:" "spar:" "disc:" "specf:" "ultra:" "fsn:" "revprob:" "sync:" "verb:" "debug:" "burst:" "led:" "wide:" "settle:" "diff:" "irqm:" "pcifix:" "buschk:" "optim:" "recovery:" "safe:" "nvram:" "excl:" "hostid:" #ifdef SCSI_NCR_IARB_SUPPORT "iarb:" #endif ; /* DONNOT REMOVE THIS ';' */ #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif static int __init get_setup_token(char *p) { char *cur = setup_token; char *pc; int i = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { ++pc; ++i; if (!strncmp(p, cur, pc - cur)) return i; cur = pc; } return 0; } int __init sym53c8xx_setup(char *str) { #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT char *cur = str; char *pc, *pv; int i, val, c; int xi = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { char *pe; val = 0; pv = pc; c = *++pv; if (c == 'n') val = 0; else if (c == 'y') val = 1; else val = (int) simple_strtoul(pv, &pe, 0); switch (get_setup_token(cur)) { case OPT_TAGS: driver_setup.default_tags = val; if (pe && *pe == '/') { i = 0; while (*pe && *pe != ARG_SEP && i < sizeof(driver_setup.tag_ctrl)-1) { driver_setup.tag_ctrl[i++] = *pe++; } driver_setup.tag_ctrl[i] = '\0'; } break; case OPT_MASTER_PARITY: driver_setup.master_parity = val; break; case OPT_SCSI_PARITY: driver_setup.scsi_parity = val; break; case OPT_DISCONNECTION: driver_setup.disconnection = val; break; case OPT_SPECIAL_FEATURES: driver_setup.special_features = val; break; case OPT_ULTRA_SCSI: driver_setup.ultra_scsi = val; break; case OPT_FORCE_SYNC_NEGO: driver_setup.force_sync_nego = val; break; case OPT_REVERSE_PROBE: driver_setup.reverse_probe = val; break; case OPT_DEFAULT_SYNC: driver_setup.default_sync = val; break; case OPT_VERBOSE: driver_setup.verbose = val; break; case OPT_DEBUG: driver_setup.debug = val; break; case OPT_BURST_MAX: driver_setup.burst_max = val; break; case OPT_LED_PIN: driver_setup.led_pin = val; break; case OPT_MAX_WIDE: driver_setup.max_wide = val? 1:0; break; case OPT_SETTLE_DELAY: driver_setup.settle_delay = val; break; case OPT_DIFF_SUPPORT: driver_setup.diff_support = val; break; case OPT_IRQM: driver_setup.irqm = val; break; case OPT_PCI_FIX_UP: driver_setup.pci_fix_up = val; break; case OPT_BUS_CHECK: driver_setup.bus_check = val; break; case OPT_OPTIMIZE: driver_setup.optimize = val; break; case OPT_RECOVERY: driver_setup.recovery = val; break; case OPT_USE_NVRAM: driver_setup.use_nvram = val; break; case OPT_SAFE_SETUP: memcpy(&driver_setup, &driver_safe_setup, sizeof(driver_setup)); break; case OPT_EXCLUDE: if (xi < SCSI_NCR_MAX_EXCLUDES) driver_setup.excludes[xi++] = val; break; case OPT_HOST_ID: driver_setup.host_id = val; break; #ifdef SCSI_NCR_IARB_SUPPORT case OPT_IARB: driver_setup.iarb = val; break; #endif default: printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); break; } if ((cur = strchr(cur, ARG_SEP)) != NULL) ++cur; } #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ return 0; } #if LINUX_VERSION_CODE >= LinuxVersionCode(2,3,13) #ifndef MODULE __setup("sym53c8xx=", sym53c8xx_setup); #endif #endif static int sym53c8xx_pci_init(Scsi_Host_Template *tpnt, uchar bus, uchar device_fn, ncr_device *device); /* ** Linux entry point for SYM53C8XX devices detection routine. ** ** Called by the middle-level scsi drivers at initialization time, ** or at module installation. ** ** Read the PCI configuration and try to attach each ** detected NCR board. ** ** If NVRAM is present, try to attach boards according to ** the used defined boot order. ** ** Returns the number of boards successfully attached. */ static void __init ncr_print_driver_setup(void) { #define YesNo(y) y ? 'y' : 'n' printk (NAME53C8XX ": setup=disc:%c,specf:%d,ultra:%d,tags:%d,sync:%d," "burst:%d,wide:%c,diff:%d,revprob:%c,buschk:0x%x\n", YesNo(driver_setup.disconnection), driver_setup.special_features, driver_setup.ultra_scsi, driver_setup.default_tags, driver_setup.default_sync, driver_setup.burst_max, YesNo(driver_setup.max_wide), driver_setup.diff_support, YesNo(driver_setup.reverse_probe), driver_setup.bus_check); printk (NAME53C8XX ": setup=mpar:%c,spar:%c,fsn=%c,verb:%d,debug:0x%x," "led:%c,settle:%d,irqm:0x%x,nvram:0x%x,pcifix:0x%x\n", YesNo(driver_setup.master_parity), YesNo(driver_setup.scsi_parity), YesNo(driver_setup.force_sync_nego), driver_setup.verbose, driver_setup.debug, YesNo(driver_setup.led_pin), driver_setup.settle_delay, driver_setup.irqm, driver_setup.use_nvram, driver_setup.pci_fix_up); #undef YesNo } /*=================================================================== ** SYM53C8XX devices description table and chip ids list. **=================================================================== */ static ncr_chip ncr_chip_table[] __initdata = SCSI_NCR_CHIP_TABLE; static ushort ncr_chip_ids[] __initdata = SCSI_NCR_CHIP_IDS; #ifdef SCSI_NCR_PQS_PDS_SUPPORT /*=================================================================== ** Detect all NCR PQS/PDS boards and keep track of their bus nr. ** ** The NCR PQS or PDS card is constructed as a DEC bridge ** behind which sit a proprietary NCR memory controller and ** four or two 53c875s as separate devices. In its usual mode ** of operation, the 875s are slaved to the memory controller ** for all transfers. We can tell if an 875 is part of a ** PQS/PDS or not since if it is, it will be on the same bus ** as the memory controller. To operate with the Linux ** driver, the memory controller is disabled and the 875s ** freed to function independently. The only wrinkle is that ** the preset SCSI ID (which may be zero) must be read in from ** a special configuration space register of the 875 **=================================================================== */ #define SCSI_NCR_MAX_PQS_BUS 16 static int pqs_bus[SCSI_NCR_MAX_PQS_BUS] __initdata = { 0 }; static void __init ncr_detect_pqs_pds(void) { short index; for(index=0; index < SCSI_NCR_MAX_PQS_BUS; index ++) { u_char tmp, bus, device_fn; if (pcibios_find_device(0x101a, 0x0009, index, &bus, &device_fn) != PCIBIOS_SUCCESSFUL) { pqs_bus[index] = -1; break; } printk(KERN_INFO NAME53C8XX ": NCR PQS/PDS memory controller detected on bus %d\n", bus); pcibios_read_config_byte(bus, device_fn, 0x44, &tmp); /* bit 1: allow individual 875 configuration */ tmp |= 0x2; pcibios_write_config_byte(bus, device_fn, 0x44, tmp); pcibios_read_config_byte(bus, device_fn, 0x45, &tmp); /* bit 2: drive individual 875 interrupts to the bus */ tmp |= 0x4; pcibios_write_config_byte(bus, device_fn, 0x45, tmp); pqs_bus[index] = bus; } } #endif /* SCSI_NCR_PQS_PDS_SUPPORT */ /*=================================================================== ** Detect all 53c8xx hosts and then attach them. ** ** If we are using NVRAM, once all hosts are detected, we need to ** check any NVRAM for boot order in case detect and boot order ** differ and attach them using the order in the NVRAM. ** ** If no NVRAM is found or data appears invalid attach boards in ** the the order they are detected. **=================================================================== */ int __init sym53c8xx_detect(Scsi_Host_Template *tpnt) { int i, j, chips, hosts, count; u_char bus, device_fn; short index; int attach_count = 0; ncr_device *devtbl, *devp; #ifdef SCSI_NCR_NVRAM_SUPPORT ncr_nvram nvram0, nvram, *nvp; #endif /* ** PCI is required. */ #if LINUX_VERSION_CODE >= LinuxVersionCode(2,1,92) if (!pci_present()) #else if (!pcibios_present()) #endif return 0; /* ** Initialize driver general stuff. */ #ifdef SCSI_NCR_PROC_INFO_SUPPORT tpnt->proc_dir = &proc_scsi_sym53c8xx; tpnt->proc_info = sym53c8xx_proc_info; #endif #if defined(SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT) && defined(MODULE) if (sym53c8xx) sym53c8xx_setup(sym53c8xx); #endif #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT ncr_debug = driver_setup.debug; #endif if (initverbose >= 2) ncr_print_driver_setup(); /* ** Allocate the device table since we donnot want to ** overflow the kernel stack. ** 1 x 4K PAGE is enough for more than 40 devices for i386. */ devtbl = m_calloc(PAGE_SIZE, "devtbl", MEMO_WARN); if (!devtbl) return 0; /* ** Detect all NCR PQS/PDS memory controllers. */ #ifdef SCSI_NCR_PQS_PDS_SUPPORT ncr_detect_pqs_pds(); #endif /* ** Detect all 53c8xx hosts. ** Save the first Symbios NVRAM content if any ** for the boot order. */ chips = sizeof(ncr_chip_ids) / sizeof(ncr_chip_ids[0]); hosts = PAGE_SIZE / sizeof(*devtbl); #ifdef SCSI_NCR_NVRAM_SUPPORT nvp = (driver_setup.use_nvram & 0x1) ? &nvram0 : 0; #endif j = 0; index = 0; count = 0; while (1) { char *msg = ""; if (count >= hosts) break; if (j >= chips) break; i = driver_setup.reverse_probe ? chips - 1 - j : j; if (pcibios_find_device(PCI_VENDOR_ID_NCR, ncr_chip_ids[i], index, &bus, &device_fn)) { ++j; index = 0; continue; } ++index; /* Some HW as the HP LH4 may report twice PCI devices */ for (i = 0; i < count ; i++) { if (devtbl[i].slot.bus == bus && devtbl[i].slot.device_fn == device_fn) break; } if (i != count) /* Ignore this device if we already have it */ continue; devp = &devtbl[count]; devp->host_id = driver_setup.host_id; devp->attach_done = 0; if (sym53c8xx_pci_init(tpnt, bus, device_fn, devp)) { continue; } ++count; #ifdef SCSI_NCR_NVRAM_SUPPORT if (nvp) { ncr_get_nvram(devp, nvp); switch(nvp->type) { case SCSI_NCR_SYMBIOS_NVRAM: /* * Switch to the other nvram buffer, so that * nvram0 will contain the first Symbios * format NVRAM content with boot order. */ nvp = &nvram; msg = "with Symbios NVRAM"; break; case SCSI_NCR_TEKRAM_NVRAM: msg = "with Tekram NVRAM"; break; } } #endif #ifdef SCSI_NCR_PQS_PDS_SUPPORT if (devp->pqs_pds) msg = "(NCR PQS/PDS)"; #endif printk(KERN_INFO NAME53C8XX ": 53c%s detected %s\n", devp->chip.name, msg); } /* ** If we have found a SYMBIOS NVRAM, use first the NVRAM boot ** sequence as device boot order. ** check devices in the boot record against devices detected. ** attach devices if we find a match. boot table records that ** do not match any detected devices will be ignored. ** devices that do not match any boot table will not be attached ** here but will attempt to be attached during the device table ** rescan. */ #ifdef SCSI_NCR_NVRAM_SUPPORT if (!nvp || nvram0.type != SCSI_NCR_SYMBIOS_NVRAM) goto next; for (i = 0; i < 4; i++) { Symbios_host *h = &nvram0.data.Symbios.host[i]; for (j = 0 ; j < count ; j++) { devp = &devtbl[j]; if (h->device_fn != devp->slot.device_fn || h->bus_nr != devp->slot.bus || h->device_id != devp->chip.device_id) continue; if (devp->attach_done) continue; if (h->flags & SYMBIOS_INIT_SCAN_AT_BOOT) { ncr_get_nvram(devp, nvp); if (!ncr_attach (tpnt, attach_count, devp)) attach_count++; } else if (!(driver_setup.use_nvram & 0x80)) printk(KERN_INFO NAME53C8XX ": 53c%s state OFF thus not attached\n", devp->chip.name); else continue; devp->attach_done = 1; break; } } next: #endif /* ** Rescan device list to make sure all boards attached. ** Devices without boot records will not be attached yet ** so try to attach them here. */ for (i= 0; i < count; i++) { devp = &devtbl[i]; if (!devp->attach_done) { #ifdef SCSI_NCR_NVRAM_SUPPORT ncr_get_nvram(devp, nvp); #endif if (!ncr_attach (tpnt, attach_count, devp)) attach_count++; } } m_free(devtbl, PAGE_SIZE, "devtbl"); return attach_count; } /*=================================================================== ** Generically read a base address from the PCI configuration space. ** Return the offset immediately after the base address that has ** been read. Btw, we blindly assume that the high 32 bits of 64 bit ** base addresses are set to zero on 32 bit architectures. **=================================================================== */ #if LINUX_VERSION_CODE <= LinuxVersionCode(2,1,92) static int __init pci_read_base_address(u_char bus, u_char device_fn, int offset, u_long *base) { u_int32 tmp; pcibios_read_config_dword(bus, device_fn, offset, &tmp); *base = tmp; offset += sizeof(u_int32); if ((tmp & 0x7) == 0x4) { #if BITS_PER_LONG > 32 pcibios_read_config_dword(bus, device_fn, offset, &tmp); *base |= (((u_long)tmp) << 32); #endif offset += sizeof(u_int32); } return offset; } #elif LINUX_VERSION_CODE <= LinuxVersionCode(2,3,12) static int __init pci_get_base_address(struct pci_dev *pdev, int index, u_long *base) { *base = pdev->base_address[index++]; if ((*base & 0x7) == 0x4) { #if BITS_PER_LONG > 32 *base |= (((u_long)pdev->base_address[index]) << 32); #endif ++index; } return index; } #else /* LINUX_VERSION_CODE > LinuxVersionCode(2,3,12) */ static int __init pci_get_base_address(struct pci_dev *pdev, int index, u_long *base) { *base = pdev->resource[index].start; if ((pdev->resource[index].flags & 0x7) == 0x4) ++index; return ++index; } #endif /*=================================================================== ** Read and check the PCI configuration for any detected NCR ** boards and save data for attaching after all boards have ** been detected. **=================================================================== */ static int __init sym53c8xx_pci_init(Scsi_Host_Template *tpnt, uchar bus, uchar device_fn, ncr_device *device) { u_short vendor_id, device_id, command; u_char cache_line_size, latency_timer; u_char suggested_cache_line_size = 0; u_char pci_fix_up; u_char revision; #if LINUX_VERSION_CODE > LinuxVersionCode(2,1,92) struct pci_dev *pdev; u_int irq; #else u_char irq; #endif u_long base, base_2, io_port; int i; ncr_chip *chip; printk(KERN_INFO NAME53C8XX ": at PCI bus %d, device %d, function %d\n", bus, (int) (device_fn & 0xf8) >> 3, (int) device_fn & 7); /* ** Read info from the PCI config space. ** pcibios_read_config_xxx() functions are assumed to be used for ** successfully detected PCI devices. */ #if LINUX_VERSION_CODE > LinuxVersionCode(2,1,92) pdev = pci_find_slot(bus, device_fn); vendor_id = pdev->vendor; device_id = pdev->device; irq = pdev->irq; i = 0; i = pci_get_base_address(pdev, i, &io_port); i = pci_get_base_address(pdev, i, &base); (void) pci_get_base_address(pdev, i, &base_2); #else pcibios_read_config_word(bus, device_fn, PCI_VENDOR_ID, &vendor_id); pcibios_read_config_word(bus, device_fn, PCI_DEVICE_ID, &device_id); pcibios_read_config_byte(bus, device_fn, PCI_INTERRUPT_LINE, &irq); i = PCI_BASE_ADDRESS_0; i = pci_read_base_address(bus, device_fn, i, &io_port); i = pci_read_base_address(bus, device_fn, i, &base); (void) pci_read_base_address(bus, device_fn, i, &base_2); #endif pcibios_read_config_word(bus, device_fn, PCI_COMMAND, &command); pcibios_read_config_byte(bus, device_fn, PCI_CLASS_REVISION, &revision); pcibios_read_config_byte(bus, device_fn, PCI_CACHE_LINE_SIZE, &cache_line_size); pcibios_read_config_byte(bus, device_fn, PCI_LATENCY_TIMER, &latency_timer); #ifdef SCSI_NCR_PQS_PDS_SUPPORT /* ** Match the BUS number for PQS/PDS devices. ** Read the SCSI ID from a special register mapped ** into the configuration space of the individual ** 875s. This register is set up by the PQS bios */ for(i = 0; i < SCSI_NCR_MAX_PQS_BUS && pqs_bus[i] != -1; i++) { u_char tmp; if (pqs_bus[i] == bus) { pcibios_read_config_byte(bus, device_fn, 0x84, &tmp); device->pqs_pds = 1; device->host_id = tmp; break; } } #endif /* SCSI_NCR_PQS_PDS_SUPPORT */ /* ** If user excludes this chip, donnot initialize it. */ for (i = 0 ; i < SCSI_NCR_MAX_EXCLUDES ; i++) { if (driver_setup.excludes[i] == (io_port & PCI_BASE_ADDRESS_IO_MASK)) return -1; } /* ** Check if the chip is supported */ chip = 0; for (i = 0; i < sizeof(ncr_chip_table)/sizeof(ncr_chip_table[0]); i++) { if (device_id != ncr_chip_table[i].device_id) continue; if (revision > ncr_chip_table[i].revision_id) continue; if (!(ncr_chip_table[i].features & FE_LDSTR)) break; chip = &device->chip; memcpy(chip, &ncr_chip_table[i], sizeof(*chip)); chip->revision_id = revision; break; } /* ** Ignore Symbios chips controlled by SISL RAID controller. ** This controller sets value 0x52414944 at RAM end - 16. */ #if defined(__i386__) && !defined(SCSI_NCR_PCI_MEM_NOT_SUPPORTED) if (chip && (base_2 & PCI_BASE_ADDRESS_MEM_MASK)) { unsigned int ram_size, ram_val; u_long ram_ptr; if (chip->features & FE_RAM8K) ram_size = 8192; else ram_size = 4096; ram_ptr = remap_pci_mem(base_2 & PCI_BASE_ADDRESS_MEM_MASK, ram_size); if (ram_ptr) { ram_val = readl_raw(ram_ptr + ram_size - 16); unmap_pci_mem(ram_ptr, ram_size); if (ram_val == 0x52414944) { printk(NAME53C8XX": not initializing, " "driven by SISL RAID controller.\n"); return -1; } } } #endif /* i386 and PCI MEMORY accessible */ if (!chip) { printk(NAME53C8XX ": not initializing, device not supported\n"); return -1; } #ifdef __powerpc__ /* ** Fix-up for power/pc. ** Should not be performed by the driver. */ if ((command & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) != (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) { printk(NAME53C8XX ": setting%s%s...\n", (command & PCI_COMMAND_IO) ? "" : " PCI_COMMAND_IO", (command & PCI_COMMAND_MEMORY) ? "" : " PCI_COMMAND_MEMORY"); command |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY); pcibios_write_config_word(bus, device_fn, PCI_COMMAND, command); } #if LINUX_VERSION_CODE < LinuxVersionCode(2,2,0) if ( is_prep ) { if (io_port >= 0x10000000) { printk(NAME53C8XX ": reallocating io_port (Wacky IBM)"); io_port = (io_port & 0x00FFFFFF) | 0x01000000; pcibios_write_config_dword(bus, device_fn, PCI_BASE_ADDRESS_0, io_port); } if (base >= 0x10000000) { printk(NAME53C8XX ": reallocating base (Wacky IBM)"); base = (base & 0x00FFFFFF) | 0x01000000; pcibios_write_config_dword(bus, device_fn, PCI_BASE_ADDRESS_1, base); } if (base_2 >= 0x10000000) { printk(NAME53C8XX ": reallocating base2 (Wacky IBM)"); base_2 = (base_2 & 0x00FFFFFF) | 0x01000000; pcibios_write_config_dword(bus, device_fn, PCI_BASE_ADDRESS_2, base_2); } } #endif #endif /* __powerpc__ */ #ifdef __sparc__ /* ** Fix-ups for sparc. ** ** I wrote: Should not be performed by the driver, ** Guy wrote: but how can OBP know each and every PCI card, ** if they don't use Fcode? ** I replied: no need to know each and every PCI card, just ** be skilled enough to understand the PCI specs. */ /* ** PCI configuration is based on configuration registers being ** coherent with hardware and software resource identifications. ** This is fairly simple, but seems still too complex for Sparc. */ base = __pa(base); base_2 = __pa(base_2); if (!cache_line_size) suggested_cache_line_size = 16; #endif /* __sparc__ */ #if defined(__i386__) && !defined(MODULE) if (!cache_line_size) { #if LINUX_VERSION_CODE < LinuxVersionCode(2,1,75) extern char x86; switch(x86) { #else switch(boot_cpu_data.x86) { #endif case 4: suggested_cache_line_size = 4; break; case 6: case 5: suggested_cache_line_size = 8; break; } } #endif /* __i386__ */ /* ** Check availability of IO space, memory space. ** Enable master capability if not yet. ** ** We shouldn't have to care about the IO region when ** we are using MMIO. But calling check_region() from ** both the ncr53c8xx and the sym53c8xx drivers prevents ** from attaching devices from the both drivers. ** If you have a better idea, let me know. */ /* #ifdef NCR_IOMAPPED */ #if 1 if (!(command & PCI_COMMAND_IO)) { printk(NAME53C8XX ": I/O base address (0x%lx) disabled.\n", (long) io_port); io_port = 0; } #endif if (!(command & PCI_COMMAND_MEMORY)) { printk(NAME53C8XX ": PCI_COMMAND_MEMORY not set.\n"); base = 0; base_2 = 0; } io_port &= PCI_BASE_ADDRESS_IO_MASK; base &= PCI_BASE_ADDRESS_MEM_MASK; base_2 &= PCI_BASE_ADDRESS_MEM_MASK; /* #ifdef NCR_IOMAPPED */ #if 1 if (io_port && check_region (io_port, 128)) { printk(NAME53C8XX ": IO region 0x%lx[0..127] is in use\n", (long) io_port); io_port = 0; } if (!io_port) return -1; #endif #ifndef NCR_IOMAPPED if (!base) { printk(NAME53C8XX ": MMIO base address disabled.\n"); return -1; } #endif /* ** Set MASTER capable and PARITY bit, if not yet. */ if ((command & (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY)) != (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY)) { printk(NAME53C8XX ": setting%s%s...(fix-up)\n", (command & PCI_COMMAND_MASTER) ? "" : " PCI_COMMAND_MASTER", (command & PCI_COMMAND_PARITY) ? "" : " PCI_COMMAND_PARITY"); command |= (PCI_COMMAND_MASTER | PCI_COMMAND_PARITY); pcibios_write_config_word(bus, device_fn, PCI_COMMAND, command); } /* ** Fix some features according to driver setup. */ if (!(driver_setup.special_features & 1)) chip->features &= ~FE_SPECIAL_SET; else { if (driver_setup.special_features & 2) chip->features &= ~FE_WRIE; if (driver_setup.special_features & 4) chip->features &= ~FE_NOPM; } if (driver_setup.ultra_scsi < 2 && (chip->features & FE_ULTRA2)) { chip->features |= FE_ULTRA; chip->features &= ~FE_ULTRA2; } if (driver_setup.ultra_scsi < 1) chip->features &= ~FE_ULTRA; if (!driver_setup.max_wide) chip->features &= ~FE_WIDE; /* ** Some features are required to be enabled in order to ** work around some chip problems. :) ;) ** (ITEM 12 of a DEL about the 896 I haven't yet). ** We must ensure the chip will use WRITE AND INVALIDATE. ** The revision number limit is for now arbitrary. */ pci_fix_up = driver_setup.pci_fix_up; if (device_id == PCI_DEVICE_ID_NCR_53C896 && revision <= 0x10) { chip->features |= (FE_WRIE | FE_CLSE); pci_fix_up |= 3; /* Force appropriate PCI fix-up */ } #ifdef SCSI_NCR_PCI_FIX_UP_SUPPORT /* ** Try to fix up PCI config according to wished features. */ if ((pci_fix_up & 1) && (chip->features & FE_CLSE) && !cache_line_size && suggested_cache_line_size) { cache_line_size = suggested_cache_line_size; pcibios_write_config_byte(bus, device_fn, PCI_CACHE_LINE_SIZE, cache_line_size); printk(NAME53C8XX ": PCI_CACHE_LINE_SIZE set to %d (fix-up).\n", cache_line_size); } if ((pci_fix_up & 2) && cache_line_size && (chip->features & FE_WRIE) && !(command & PCI_COMMAND_INVALIDATE)) { printk(NAME53C8XX": setting PCI_COMMAND_INVALIDATE (fix-up)\n"); command |= PCI_COMMAND_INVALIDATE; pcibios_write_config_word(bus, device_fn, PCI_COMMAND, command); } /* ** Tune PCI LATENCY TIMER according to burst max length transfer. ** (latency timer >= burst length + 6, we add 10 to be quite sure) */ if ((pci_fix_up & 4) && chip->burst_max) { uchar lt = (1 << chip->burst_max) + 6 + 10; if (latency_timer < lt) { latency_timer = lt; printk(NAME53C8XX ": setting PCI_LATENCY_TIMER to %d (fix-up).\n", latency_timer); pcibios_write_config_byte(bus, device_fn, PCI_LATENCY_TIMER, latency_timer); } } #endif /* SCSI_NCR_PCI_FIX_UP_SUPPORT */ /* ** Initialise ncr_device structure with items required by ncr_attach. */ device->slot.bus = bus; device->slot.device_fn = device_fn; device->slot.base = base; device->slot.base_2 = base_2; device->slot.io_port = io_port; device->slot.irq = irq; device->attach_done = 0; return 0; } /*=================================================================== ** Detect and try to read SYMBIOS and TEKRAM NVRAM. ** ** Data can be used to order booting of boards. ** ** Data is saved in ncr_device structure if NVRAM found. This ** is then used to find drive boot order for ncr_attach(). ** ** NVRAM data is passed to Scsi_Host_Template later during ** ncr_attach() for any device set up. *=================================================================== */ #ifdef SCSI_NCR_NVRAM_SUPPORT static void __init ncr_get_nvram(ncr_device *devp, ncr_nvram *nvp) { devp->nvram = nvp; if (!nvp) return; /* ** Get access to chip IO registers */ #ifdef NCR_IOMAPPED request_region(devp->slot.io_port, 128, NAME53C8XX); devp->slot.base_io = devp->slot.io_port; #else devp->slot.reg = (struct ncr_reg *) remap_pci_mem(devp->slot.base, 128); if (!devp->slot.reg) return; #endif /* ** Try to read SYMBIOS nvram. ** Try to read TEKRAM nvram if Symbios nvram not found. */ if (!ncr_get_Symbios_nvram(&devp->slot, &nvp->data.Symbios)) nvp->type = SCSI_NCR_SYMBIOS_NVRAM; else if (!ncr_get_Tekram_nvram(&devp->slot, &nvp->data.Tekram)) nvp->type = SCSI_NCR_TEKRAM_NVRAM; else { nvp->type = 0; devp->nvram = 0; } /* ** Release access to chip IO registers */ #ifdef NCR_IOMAPPED release_region(devp->slot.base_io, 128); #else unmap_pci_mem((u_long) devp->slot.reg, 128ul); #endif } #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Linux select queue depths function */ #define DEF_DEPTH (driver_setup.default_tags) #define ALL_TARGETS -2 #define NO_TARGET -1 #define ALL_LUNS -2 #define NO_LUN -1 static int device_queue_depth(ncb_p np, int target, int lun) { int c, h, t, u, v; char *p = driver_setup.tag_ctrl; char *ep; h = -1; t = NO_TARGET; u = NO_LUN; while ((c = *p++) != 0) { v = simple_strtoul(p, &ep, 0); switch(c) { case '/': ++h; t = ALL_TARGETS; u = ALL_LUNS; break; case 't': if (t != target) t = (target == v) ? v : NO_TARGET; u = ALL_LUNS; break; case 'u': if (u != lun) u = (lun == v) ? v : NO_LUN; break; case 'q': if (h == np->unit && (t == ALL_TARGETS || t == target) && (u == ALL_LUNS || u == lun)) return v; break; case '-': t = ALL_TARGETS; u = ALL_LUNS; break; default: break; } p = ep; } return DEF_DEPTH; } static void sym53c8xx_select_queue_depths(struct Scsi_Host *host, struct scsi_device *devlist) { struct scsi_device *device; for (device = devlist; device; device = device->next) { ncb_p np; tcb_p tp; lcb_p lp; int numtags; if (device->host != host) continue; np = ((struct host_data *) host->hostdata)->ncb; tp = &np->target[device->id]; lp = ncr_lp(np, tp, device->lun); /* ** Select queue depth from driver setup. ** Donnot use more than configured by user. ** Use at least 2. ** Donnot use more than our maximum. */ numtags = device_queue_depth(np, device->id, device->lun); if (numtags > tp->usrtags) numtags = tp->usrtags; if (!device->tagged_supported) numtags = 1; device->queue_depth = numtags; if (device->queue_depth < 2) device->queue_depth = 2; if (device->queue_depth > MAX_TAGS) device->queue_depth = MAX_TAGS; /* ** Since the queue depth is not tunable under Linux, ** we need to know this value in order not to ** announce stupid things to user. */ if (lp) { lp->numtags = lp->maxtags = numtags; lp->scdev_depth = device->queue_depth; } ncr_setup_tags (np, device->id, device->lun); #ifdef DEBUG_SYM53C8XX printk("sym53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", np->unit, device->id, device->lun, device->queue_depth); #endif } } /* ** Linux entry point for info() function */ const char *sym53c8xx_info (struct Scsi_Host *host) { return SCSI_NCR_DRIVER_NAME; } /* ** Linux entry point of queuecommand() function */ int sym53c8xx_queue_command (Scsi_Cmnd *cmd, void (* done)(Scsi_Cmnd *)) { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; unsigned long flags; int sts; #ifdef DEBUG_SYM53C8XX printk("sym53c8xx_queue_command\n"); #endif cmd->scsi_done = done; cmd->host_scribble = NULL; cmd->SCp.ptr = NULL; cmd->SCp.buffer = NULL; NCR_LOCK_NCB(np, flags); if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { SetScsiResult(cmd, sts, 0); #ifdef DEBUG_SYM53C8XX printk("sym53c8xx : command not queued - result=%d\n", sts); #endif } #ifdef DEBUG_SYM53C8XX else printk("sym53c8xx : command successfully queued\n"); #endif NCR_UNLOCK_NCB(np, flags); if (sts != DID_OK) done(cmd); return sts; } /* ** Linux entry point of the interrupt handler. ** Since linux versions > 1.3.70, we trust the kernel for ** passing the internal host descriptor as 'dev_id'. ** Otherwise, we scan the host list and call the interrupt ** routine for each host that uses this IRQ. */ static void sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) { unsigned long flags; ncb_p np = (ncb_p) dev_id; Scsi_Cmnd *done_list; #ifdef DEBUG_SYM53C8XX printk("sym53c8xx : interrupt received\n"); #endif if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); NCR_LOCK_NCB(np, flags); ncr_exception(np); done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); if (done_list) { NCR_LOCK_SCSI_DONE(np, flags); ncr_flush_done_cmds(done_list); NCR_UNLOCK_SCSI_DONE(np, flags); } } /* ** Linux entry point of the timer handler */ static void sym53c8xx_timeout(unsigned long npref) { ncb_p np = (ncb_p) npref; unsigned long flags; Scsi_Cmnd *done_list; NCR_LOCK_NCB(np, flags); ncr_timeout((ncb_p) np); done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); if (done_list) { NCR_LOCK_SCSI_DONE(np, flags); ncr_flush_done_cmds(done_list); NCR_UNLOCK_SCSI_DONE(np, flags); } } /* ** Linux entry point of reset() function */ #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS int sym53c8xx_reset(Scsi_Cmnd *cmd, unsigned int reset_flags) #else int sym53c8xx_reset(Scsi_Cmnd *cmd) #endif { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; int sts; unsigned long flags; Scsi_Cmnd *done_list; #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS printk("sym53c8xx_reset: pid=%lu reset_flags=%x serial_number=%ld serial_number_at_timeout=%ld\n", cmd->pid, reset_flags, cmd->serial_number, cmd->serial_number_at_timeout); #else printk("sym53c8xx_reset: command pid %lu\n", cmd->pid); #endif NCR_LOCK_NCB(np, flags); /* * We have to just ignore reset requests in some situations. */ #if defined SCSI_RESET_NOT_RUNNING if (cmd->serial_number != cmd->serial_number_at_timeout) { sts = SCSI_RESET_NOT_RUNNING; goto out; } #endif /* * If the mid-level driver told us reset is synchronous, it seems * that we must call the done() callback for the involved command, * even if this command was not queued to the low-level driver, * before returning SCSI_RESET_SUCCESS. */ #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS sts = ncr_reset_bus(np, cmd, (reset_flags & (SCSI_RESET_SYNCHRONOUS | SCSI_RESET_ASYNCHRONOUS)) == SCSI_RESET_SYNCHRONOUS); #else sts = ncr_reset_bus(np, cmd, 0); #endif /* * Since we always reset the controller, when we return success, * we add this information to the return code. */ #if defined SCSI_RESET_HOST_RESET if (sts == SCSI_RESET_SUCCESS) sts |= SCSI_RESET_HOST_RESET; #endif out: done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); ncr_flush_done_cmds(done_list); return sts; } /* ** Linux entry point of abort() function */ int sym53c8xx_abort(Scsi_Cmnd *cmd) { ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; int sts; unsigned long flags; Scsi_Cmnd *done_list; #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS printk("sym53c8xx_abort: pid=%lu serial_number=%ld serial_number_at_timeout=%ld\n", cmd->pid, cmd->serial_number, cmd->serial_number_at_timeout); #else printk("sym53c8xx_abort: command pid %lu\n", cmd->pid); #endif NCR_LOCK_NCB(np, flags); #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS /* * We have to just ignore abort requests in some situations. */ if (cmd->serial_number != cmd->serial_number_at_timeout) { sts = SCSI_ABORT_NOT_RUNNING; goto out; } #endif sts = ncr_abort_command(np, cmd); out: done_list = np->done_list; np->done_list = 0; NCR_UNLOCK_NCB(np, flags); ncr_flush_done_cmds(done_list); return sts; } #ifdef MODULE int sym53c8xx_release(struct Scsi_Host *host) { #ifdef DEBUG_SYM53C8XX printk("sym53c8xx : release\n"); #endif ncr_detach(((struct host_data *) host->hostdata)->ncb); return 1; } #endif /* ** Scsi command waiting list management. ** ** It may happen that we cannot insert a scsi command into the start queue, ** in the following circumstances. ** Too few preallocated ccb(s), ** maxtags < cmd_per_lun of the Linux host control block, ** etc... ** Such scsi commands are inserted into a waiting list. ** When a scsi command complete, we try to requeue the commands of the ** waiting list. */ #define next_wcmd host_scribble static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd) { Scsi_Cmnd *wcmd; #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); #endif cmd->next_wcmd = 0; if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; else { while ((wcmd->next_wcmd) != 0) wcmd = (Scsi_Cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = (char *) cmd; } } static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd) { Scsi_Cmnd **pcmd = &np->waiting_list; while (*pcmd) { if (cmd == *pcmd) { if (to_remove) { *pcmd = (Scsi_Cmnd *) cmd->next_wcmd; cmd->next_wcmd = 0; } #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd); #endif return cmd; } pcmd = (Scsi_Cmnd **) &(*pcmd)->next_wcmd; } return 0; } static void process_waiting_list(ncb_p np, int sts) { Scsi_Cmnd *waiting_list, *wcmd; waiting_list = np->waiting_list; np->waiting_list = 0; #ifdef DEBUG_WAITING_LIST if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); #endif while ((wcmd = waiting_list) != 0) { waiting_list = (Scsi_Cmnd *) wcmd->next_wcmd; wcmd->next_wcmd = 0; if (sts == DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); #endif sts = ncr_queue_command(np, wcmd); } if (sts != DID_OK) { #ifdef DEBUG_WAITING_LIST printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); #endif SetScsiResult(wcmd, sts, 0); ncr_queue_done_cmd(np, wcmd); } } } #undef next_wcmd #ifdef SCSI_NCR_PROC_INFO_SUPPORT /*========================================================================= ** Proc file system stuff ** ** A read operation returns profile information. ** A write operation is a control command. ** The string is parsed in the driver code and the command is passed ** to the ncr_usercmd() function. **========================================================================= */ #ifdef SCSI_NCR_USER_COMMAND_SUPPORT #define is_digit(c) ((c) >= '0' && (c) <= '9') #define digit_to_bin(c) ((c) - '0') #define is_space(c) ((c) == ' ' || (c) == '\t') static int skip_spaces(char *ptr, int len) { int cnt, c; for (cnt = len; cnt > 0 && (c = *ptr++) && is_space(c); cnt--); return (len - cnt); } static int get_int_arg(char *ptr, int len, u_long *pv) { int cnt, c; u_long v; for (v = 0, cnt = len; cnt > 0 && (c = *ptr++) && is_digit(c); cnt--) { v = (v * 10) + digit_to_bin(c); } if (pv) *pv = v; return (len - cnt); } static int is_keyword(char *ptr, int len, char *verb) { int verb_len = strlen(verb); if (len >= strlen(verb) && !memcmp(verb, ptr, verb_len)) return verb_len; else return 0; } #define SKIP_SPACES(min_spaces) \ if ((arg_len = skip_spaces(ptr, len)) < (min_spaces)) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; #define GET_INT_ARG(v) \ if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; /* ** Parse a control command */ static int ncr_user_command(ncb_p np, char *buffer, int length) { char *ptr = buffer; int len = length; struct usrcmd *uc = &np->user; int arg_len; u_long target; bzero(uc, sizeof(*uc)); if (len > 0 && ptr[len-1] == '\n') --len; if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) uc->cmd = UC_SETSYNC; else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) uc->cmd = UC_SETTAGS; else if ((arg_len = is_keyword(ptr, len, "setorder")) != 0) uc->cmd = UC_SETORDER; else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) uc->cmd = UC_SETVERBOSE; else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) uc->cmd = UC_SETWIDE; else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) uc->cmd = UC_SETDEBUG; else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) uc->cmd = UC_SETFLAG; else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) uc->cmd = UC_RESETDEV; else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) uc->cmd = UC_CLEARDEV; #ifdef SCSI_NCR_PROFILE_SUPPORT else if ((arg_len = is_keyword(ptr, len, "clearprof")) != 0) uc->cmd = UC_CLEARPROF; #endif else arg_len = 0; #ifdef DEBUG_PROC_INFO printk("ncr_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); #endif if (!arg_len) return -EINVAL; ptr += arg_len; len -= arg_len; switch(uc->cmd) { case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: case UC_SETFLAG: case UC_RESETDEV: case UC_CLEARDEV: SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "all")) != 0) { ptr += arg_len; len -= arg_len; uc->target = ~0; } else { GET_INT_ARG(target); uc->target = (1<cmd) { case UC_SETVERBOSE: case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: SKIP_SPACES(1); GET_INT_ARG(uc->data); #ifdef DEBUG_PROC_INFO printk("ncr_user_command: data=%ld\n", uc->data); #endif break; case UC_SETORDER: SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "simple"))) uc->data = M_SIMPLE_TAG; else if ((arg_len = is_keyword(ptr, len, "ordered"))) uc->data = M_ORDERED_TAG; else if ((arg_len = is_keyword(ptr, len, "default"))) uc->data = 0; else return -EINVAL; break; case UC_SETDEBUG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "alloc"))) uc->data |= DEBUG_ALLOC; else if ((arg_len = is_keyword(ptr, len, "phase"))) uc->data |= DEBUG_PHASE; else if ((arg_len = is_keyword(ptr, len, "queue"))) uc->data |= DEBUG_QUEUE; else if ((arg_len = is_keyword(ptr, len, "result"))) uc->data |= DEBUG_RESULT; else if ((arg_len = is_keyword(ptr, len, "pointer"))) uc->data |= DEBUG_POINTER; else if ((arg_len = is_keyword(ptr, len, "script"))) uc->data |= DEBUG_SCRIPT; else if ((arg_len = is_keyword(ptr, len, "tiny"))) uc->data |= DEBUG_TINY; else if ((arg_len = is_keyword(ptr, len, "timing"))) uc->data |= DEBUG_TIMING; else if ((arg_len = is_keyword(ptr, len, "nego"))) uc->data |= DEBUG_NEGO; else if ((arg_len = is_keyword(ptr, len, "tags"))) uc->data |= DEBUG_TAGS; else return -EINVAL; ptr += arg_len; len -= arg_len; } #ifdef DEBUG_PROC_INFO printk("ncr_user_command: data=%ld\n", uc->data); #endif break; case UC_SETFLAG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "trace"))) uc->data |= UF_TRACE; else if ((arg_len = is_keyword(ptr, len, "no_disc"))) uc->data |= UF_NODISC; else return -EINVAL; ptr += arg_len; len -= arg_len; } break; default: break; } if (len) return -EINVAL; else { long flags; NCR_LOCK_NCB(np, flags); ncr_usercmd (np); NCR_UNLOCK_NCB(np, flags); } return length; } #endif /* SCSI_NCR_USER_COMMAND_SUPPORT */ #ifdef SCSI_NCR_USER_INFO_SUPPORT struct info_str { char *buffer; int length; int offset; int pos; }; static void copy_mem_info(struct info_str *info, char *data, int len) { if (info->pos + len > info->length) len = info->length - info->pos; if (info->pos + len < info->offset) { info->pos += len; return; } if (info->pos < info->offset) { data += (info->offset - info->pos); len -= (info->offset - info->pos); } if (len > 0) { memcpy(info->buffer + info->pos, data, len); info->pos += len; } } static int copy_info(struct info_str *info, char *fmt, ...) { va_list args; char buf[81]; int len; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); copy_mem_info(info, buf, len); return len; } /* ** Copy formatted profile information into the input buffer. */ #define to_ms(t) ((t) * 1000 / HZ) static int ncr_host_info(ncb_p np, char *ptr, off_t offset, int len) { struct info_str info; info.buffer = ptr; info.length = len; info.offset = offset; info.pos = 0; copy_info(&info, "General information:\n"); copy_info(&info, " Chip " NAME53C "%s, ", np->chip_name); copy_info(&info, "device id 0x%x, ", np->device_id); copy_info(&info, "revision id 0x%x\n", np->revision_id); copy_info(&info, " IO port address 0x%lx, ", (u_long) np->base_io); copy_info(&info, "IRQ number %d\n", (int) np->irq); #ifndef NCR_IOMAPPED if (np->reg) copy_info(&info, " Using memory mapped IO at virtual address 0x%lx\n", (u_long) np->reg); #endif copy_info(&info, " Synchronous period factor %d, ", (int) np->minsync); copy_info(&info, "max commands per lun %d\n", MAX_TAGS); if (driver_setup.debug || driver_setup.verbose > 1) { copy_info(&info, " Debug flags 0x%x, ", driver_setup.debug); copy_info(&info, "verbosity level %d\n", driver_setup.verbose); } #ifdef SCSI_NCR_PROFILE_SUPPORT copy_info(&info, "Profiling information:\n"); copy_info(&info, " %-12s = %lu\n", "num_fly", np->profile.num_fly); copy_info(&info, " %-12s = %lu\n", "num_trans",np->profile.num_trans); copy_info(&info, " %-12s = %lu\n", "num_disc", np->profile.num_disc); copy_info(&info, " %-12s = %lu\n", "num_disc0",np->profile.num_disc0); copy_info(&info, " %-12s = %lu\n", "num_break",np->profile.num_break); #if 000 copy_info(&info, " %-12s = %lu\n", "num_br1k",np->profile.num_br1k); copy_info(&info, " %-12s = %lu\n", "num_br2k",np->profile.num_br2k); copy_info(&info, " %-12s = %lu\n", "num_br4k",np->profile.num_br4k); copy_info(&info, " %-12s = %lu\n", "num_br8k",np->profile.num_br8k); copy_info(&info, " %-12s = %lu\n", "num_brnk",np->profile.num_brnk); #endif copy_info(&info, " %-12s = %lu\n", "num_int", np->profile.num_int); copy_info(&info, " %-12s = %lu\n","num_kbytes",np->profile.num_kbytes); #endif return info.pos > info.offset? info.pos - info.offset : 0; } #endif /* SCSI_NCR_USER_INFO_SUPPORT */ /* ** Entry point of the scsi proc fs of the driver. ** - func = 0 means read (returns profile data) ** - func = 1 means write (parse user control command) */ static int sym53c8xx_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int func) { struct Scsi_Host *host; struct host_data *host_data; ncb_p ncb = 0; int retv; #ifdef DEBUG_PROC_INFO printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func); #endif for (host = first_host; host; host = host->next) { if (host->hostt != first_host->hostt) continue; if (host->host_no == hostno) { host_data = (struct host_data *) host->hostdata; ncb = host_data->ncb; break; } } if (!ncb) return -EINVAL; if (func) { #ifdef SCSI_NCR_USER_COMMAND_SUPPORT retv = ncr_user_command(ncb, buffer, length); #else retv = -EINVAL; #endif } else { if (start) *start = buffer; #ifdef SCSI_NCR_USER_INFO_SUPPORT retv = ncr_host_info(ncb, buffer, offset, length); #else retv = -EINVAL; #endif } return retv; } /*========================================================================= ** End of proc file system stuff **========================================================================= */ #endif #ifdef SCSI_NCR_NVRAM_SUPPORT /* --------------------------------------------------------------------- ** ** Try reading Symbios format nvram ** ** --------------------------------------------------------------------- ** ** GPOI0 - data in/data out ** GPIO1 - clock ** ** return 0 if NVRAM data OK, 1 if NVRAM data not OK ** --------------------------------------------------------------------- */ #define SET_BIT 0 #define CLR_BIT 1 #define SET_CLK 2 #define CLR_CLK 3 static u_short nvram_read_data(ncr_slot *np, u_char *data, int len, u_char *gpreg, u_char *gpcntl); static void nvram_start(ncr_slot *np, u_char *gpreg); static void nvram_write_byte(ncr_slot *np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl); static void nvram_read_byte(ncr_slot *np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl); static void nvram_readAck(ncr_slot *np, u_char *read_bit, u_char *gpreg, u_char *gpcntl); static void nvram_writeAck(ncr_slot *np, u_char write_bit, u_char *gpreg, u_char *gpcntl); static void nvram_doBit(ncr_slot *np, u_char *read_bit, u_char write_bit, u_char *gpreg); static void nvram_stop(ncr_slot *np, u_char *gpreg); static void nvram_setBit(ncr_slot *np, u_char write_bit, u_char *gpreg, int bit_mode); static int __init ncr_get_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram) { static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_short csum; u_char ack_data; int retv = 1; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); gpcntl = old_gpcntl & 0xfc; /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ OUTB (nc_gpreg, old_gpreg); OUTB (nc_gpcntl, gpcntl); /* this is to set NVRAM into a known state with GPIO0/1 both low */ gpreg = old_gpreg; nvram_setBit(np, 0, &gpreg, CLR_CLK); nvram_setBit(np, 0, &gpreg, CLR_BIT); /* now set NVRAM inactive with GPIO0/1 both high */ nvram_stop(np, &gpreg); /* activate NVRAM */ nvram_start(np, &gpreg); /* write device code and random address MSB */ nvram_write_byte(np, &ack_data, 0xa0 | ((SYMBIOS_NVRAM_ADDRESS >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* write random address LSB */ nvram_write_byte(np, &ack_data, (SYMBIOS_NVRAM_ADDRESS & 0x7f) << 1, &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* regenerate START state to set up for reading */ nvram_start(np, &gpreg); /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ nvram_write_byte(np, &ack_data, 0xa1 | ((SYMBIOS_NVRAM_ADDRESS >> 7) & 0x0e), &gpreg, &gpcntl); if (ack_data & 0x01) goto out; /* now set up GPIO0 for inputting data */ gpcntl |= 0x01; OUTB (nc_gpcntl, gpcntl); /* input all active data - only part of total NVRAM */ csum = nvram_read_data(np, (u_char *) nvram, sizeof(*nvram), &gpreg, &gpcntl); /* finally put NVRAM back in inactive mode */ gpcntl &= 0xfe; OUTB (nc_gpcntl, gpcntl); nvram_stop(np, &gpreg); #ifdef SCSI_NCR_DEBUG_NVRAM printk("sym53c8xx: NvRAM type=%x trailer=%x %x %x %x %x %x byte_count=%d/%d checksum=%x/%x\n", nvram->type, nvram->trailer[0], nvram->trailer[1], nvram->trailer[2], nvram->trailer[3], nvram->trailer[4], nvram->trailer[5], nvram->byte_count, sizeof(*nvram) - 12, nvram->checksum, csum); #endif /* check valid NVRAM signature, verify byte count and checksum */ if (nvram->type == 0 && !memcmp(nvram->trailer, Symbios_trailer, 6) && nvram->byte_count == sizeof(*nvram) - 12 && csum == nvram->checksum) retv = 0; out: /* return GPIO0/1 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); return retv; } /* * Read Symbios NvRAM data and compute checksum. */ static u_short __init nvram_read_data(ncr_slot *np, u_char *data, int len, u_char *gpreg, u_char *gpcntl) { int x; u_short csum; for (x = 0; x < len; x++) nvram_read_byte(np, &data[x], (x == (len - 1)), gpreg, gpcntl); for (x = 6, csum = 0; x < len - 6; x++) csum += data[x]; return csum; } /* * Send START condition to NVRAM to wake it up. */ static void __init nvram_start(ncr_slot *np, u_char *gpreg) { nvram_setBit(np, 1, gpreg, SET_BIT); nvram_setBit(np, 0, gpreg, SET_CLK); nvram_setBit(np, 0, gpreg, CLR_BIT); nvram_setBit(np, 0, gpreg, CLR_CLK); } /* * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, * GPIO0 must already be set as an output */ static void __init nvram_write_byte(ncr_slot *np, u_char *ack_data, u_char write_data, u_char *gpreg, u_char *gpcntl) { int x; for (x = 0; x < 8; x++) nvram_doBit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); nvram_readAck(np, ack_data, gpreg, gpcntl); } /* * READ a byte from the NVRAM and then send an ACK to say we have got it, * GPIO0 must already be set as an input */ static void __init nvram_read_byte(ncr_slot *np, u_char *read_data, u_char ack_data, u_char *gpreg, u_char *gpcntl) { int x; u_char read_bit; *read_data = 0; for (x = 0; x < 8; x++) { nvram_doBit(np, &read_bit, 1, gpreg); *read_data |= ((read_bit & 0x01) << (7 - x)); } nvram_writeAck(np, ack_data, gpreg, gpcntl); } /* * Output an ACK to the NVRAM after reading, * change GPIO0 to output and when done back to an input */ static void __init nvram_writeAck(ncr_slot *np, u_char write_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl & 0xfe); nvram_doBit(np, 0, write_bit, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Input an ACK from NVRAM after writing, * change GPIO0 to input and when done back to an output */ static void __init nvram_readAck(ncr_slot *np, u_char *read_bit, u_char *gpreg, u_char *gpcntl) { OUTB (nc_gpcntl, *gpcntl | 0x01); nvram_doBit(np, read_bit, 1, gpreg); OUTB (nc_gpcntl, *gpcntl); } /* * Read or write a bit to the NVRAM, * read if GPIO0 input else write if GPIO0 output */ static void __init nvram_doBit(ncr_slot *np, u_char *read_bit, u_char write_bit, u_char *gpreg) { nvram_setBit(np, write_bit, gpreg, SET_BIT); nvram_setBit(np, 0, gpreg, SET_CLK); if (read_bit) *read_bit = INB (nc_gpreg); nvram_setBit(np, 0, gpreg, CLR_CLK); nvram_setBit(np, 0, gpreg, CLR_BIT); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! */ static void __init nvram_stop(ncr_slot *np, u_char *gpreg) { nvram_setBit(np, 0, gpreg, SET_CLK); nvram_setBit(np, 1, gpreg, SET_BIT); } /* * Set/clear data/clock bit in GPIO0 */ static void __init nvram_setBit(ncr_slot *np, u_char write_bit, u_char *gpreg, int bit_mode) { UDELAY (5); switch (bit_mode){ case SET_BIT: *gpreg |= write_bit; break; case CLR_BIT: *gpreg &= 0xfe; break; case SET_CLK: *gpreg |= 0x02; break; case CLR_CLK: *gpreg &= 0xfd; break; } OUTB (nc_gpreg, *gpreg); UDELAY (5); } #undef SET_BIT 0 #undef CLR_BIT 1 #undef SET_CLK 2 #undef CLR_CLK 3 /* --------------------------------------------------------------------- ** ** Try reading Tekram format nvram ** ** --------------------------------------------------------------------- ** ** GPOI0 - data in ** GPIO1 - data out ** GPIO2 - clock ** GPIO4 - chip select ** ** return 0 if NVRAM data OK, 1 if NVRAM data not OK ** --------------------------------------------------------------------- */ static u_short Tnvram_read_data(ncr_slot *np, u_short *data, int len, u_char *gpreg); static void Tnvram_Send_Command(ncr_slot *np, u_short write_data, u_char *read_bit, u_char *gpreg); static void Tnvram_Read_Word(ncr_slot *np, u_short *nvram_data, u_char *gpreg); static void Tnvram_Read_Bit(ncr_slot *np, u_char *read_bit, u_char *gpreg); static void Tnvram_Write_Bit(ncr_slot *np, u_char write_bit, u_char *gpreg); static void Tnvram_Stop(ncr_slot *np, u_char *gpreg); static void Tnvram_Clk(ncr_slot *np, u_char *gpreg); static int __init ncr_get_Tekram_nvram (ncr_slot *np, Tekram_nvram *nvram) { u_char gpcntl, gpreg; u_char old_gpcntl, old_gpreg; u_short csum; /* save current state of GPCNTL and GPREG */ old_gpreg = INB (nc_gpreg); old_gpcntl = INB (nc_gpcntl); /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, 1/2/4 out */ gpreg = old_gpreg & 0xe9; OUTB (nc_gpreg, gpreg); gpcntl = (old_gpcntl & 0xe9) | 0x09; OUTB (nc_gpcntl, gpcntl); /* input all of NVRAM, 64 words */ csum = Tnvram_read_data(np, (u_short *) nvram, sizeof(*nvram) / sizeof(short), &gpreg); /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ OUTB (nc_gpcntl, old_gpcntl); OUTB (nc_gpreg, old_gpreg); /* check data valid */ if (csum != 0x1234) return 1; return 0; } /* * Read Tekram NvRAM data and compute checksum. */ static u_short __init Tnvram_read_data(ncr_slot *np, u_short *data, int len, u_char *gpreg) { u_char read_bit; u_short csum; int x; for (x = 0, csum = 0; x < len; x++) { /* output read command and address */ Tnvram_Send_Command(np, 0x180 | x, &read_bit, gpreg); if (read_bit & 0x01) return 0; /* Force bad checksum */ Tnvram_Read_Word(np, &data[x], gpreg); csum += data[x]; Tnvram_Stop(np, gpreg); } return csum; } /* * Send read command and address to NVRAM */ static void __init Tnvram_Send_Command(ncr_slot *np, u_short write_data, u_char *read_bit, u_char *gpreg) { int x; /* send 9 bits, start bit (1), command (2), address (6) */ for (x = 0; x < 9; x++) Tnvram_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); *read_bit = INB (nc_gpreg); } /* * READ a byte from the NVRAM */ static void __init Tnvram_Read_Word(ncr_slot *np, u_short *nvram_data, u_char *gpreg) { int x; u_char read_bit; *nvram_data = 0; for (x = 0; x < 16; x++) { Tnvram_Read_Bit(np, &read_bit, gpreg); if (read_bit & 0x01) *nvram_data |= (0x01 << (15 - x)); else *nvram_data &= ~(0x01 << (15 - x)); } } /* * Read bit from NVRAM */ static void __init Tnvram_Read_Bit(ncr_slot *np, u_char *read_bit, u_char *gpreg) { UDELAY (2); Tnvram_Clk(np, gpreg); *read_bit = INB (nc_gpreg); } /* * Write bit to GPIO0 */ static void __init Tnvram_Write_Bit(ncr_slot *np, u_char write_bit, u_char *gpreg) { if (write_bit & 0x01) *gpreg |= 0x02; else *gpreg &= 0xfd; *gpreg |= 0x10; OUTB (nc_gpreg, *gpreg); UDELAY (2); Tnvram_Clk(np, gpreg); } /* * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! */ static void __init Tnvram_Stop(ncr_slot *np, u_char *gpreg) { *gpreg &= 0xef; OUTB (nc_gpreg, *gpreg); UDELAY (2); Tnvram_Clk(np, gpreg); } /* * Pulse clock bit in GPIO0 */ static void __init Tnvram_Clk(ncr_slot *np, u_char *gpreg) { OUTB (nc_gpreg, *gpreg | 0x04); UDELAY (2); OUTB (nc_gpreg, *gpreg); } #endif /* SCSI_NCR_NVRAM_SUPPORT */ /* ** Module stuff */ #ifdef MODULE Scsi_Host_Template driver_template = SYM53C8XX; #include "scsi_module.c" #endif