/* * wd33c93.c - Linux-68k device driver for the Commodore * Amiga A2091/590 SCSI controller card * * Copyright (c) 1996 John Shifflett, GeoLog Consulting * john@geolog.com * jshiffle@netcom.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC * provided much of the inspiration and some of the code for this * driver. Everything I know about Amiga DMA was gleaned from careful * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I * borrowed shamelessly from all over that source. Thanks Hamish! * * _This_ driver is (I feel) an improvement over the old one in * several respects: * * - Target Disconnection/Reconnection is now supported. Any * system with more than one device active on the SCSI bus * will benefit from this. The driver defaults to what I * call 'adaptive disconnect' - meaning that each command * is evaluated individually as to whether or not it should * be run with the option to disconnect/reselect (if the * device chooses), or as a "SCSI-bus-hog". * * - Synchronous data transfers are now supported. Because of * a few devices that choke after telling the driver that * they can do sync transfers, we don't automatically use * this faster protocol - it can be enabled via the command- * line on a device-by-device basis. * * - Runtime operating parameters can now be specified through * the 'amiboot' or the 'insmod' command line. For amiboot do: * "amiboot [usual stuff] wd33c93=blah,blah,blah" * The defaults should be good for most people. See the comment * for 'setup_strings' below for more details. * * - The old driver relied exclusively on what the Western Digital * docs call "Combination Level 2 Commands", which are a great * idea in that the CPU is relieved of a lot of interrupt * overhead. However, by accepting a certain (user-settable) * amount of additional interrupts, this driver achieves * better control over the SCSI bus, and data transfers are * almost as fast while being much easier to define, track, * and debug. * * * TODO: * more speed. linked commands. * * * People with bug reports, wish-lists, complaints, comments, * or improvements are asked to pah-leeez email me (John Shifflett) * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get * this thing into as good a shape as possible, and I'm positive * there are lots of lurking bugs and "Stupid Places". * */ #include #include #include #include #include #include #include #include #include #include "scsi.h" #include "hosts.h" #define WD33C93_VERSION "1.25" #define WD33C93_DATE "09/Jul/1997" /* NOTE: 1.25 for m68k is related to in2000-1.31 for x86 */ /* * Note - the following defines have been moved to 'wd33c93.h': * * PROC_INTERFACE * PROC_STATISTICS * SYNC_DEBUG * DEBUGGING_ON * DEBUG_DEFAULTS * */ #include "wd33c93.h" /* * 'setup_strings' is a single string used to pass operating parameters and * settings from the kernel/module command-line to the driver. 'setup_args[]' * is an array of strings that define the compile-time default values for * these settings. If Linux boots with an amiboot or insmod command-line, * those settings are combined with 'setup_args[]'. Note that amiboot * command-lines are prefixed with "wd33c93=" while insmod uses a * "setup_strings=" prefix. The driver recognizes the following keywords * (lower case required) and arguments: * * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with * the 7 possible SCSI devices. Set a bit to negotiate for * asynchronous transfers on that device. To maintain * backwards compatibility, a command-line such as * "wd33c93=255" will be automatically translated to * "wd33c93=nosync:0xff". * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is * optional - if not present, same as "nodma:1". * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer * period. Default is 500; acceptable values are 250 - 1000. * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. * x = 1 does 'adaptive' disconnects, which is the default * and generally the best choice. * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes * various types of debug output to printed - see the DB_xxx * defines in wd33c93.h * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values * would be from 8 through 20. Default is 8. * - next -No argument. Used to separate blocks of keywords when * there's more than one host adapter in the system. * * Syntax Notes: * - Numeric arguments can be decimal or the '0x' form of hex notation. There * _must_ be a colon between a keyword and its numeric argument, with no * spaces. * - Keywords are separated by commas, no spaces, in the standard kernel * command-line manner. * - A keyword in the 'nth' comma-separated command-line member will overwrite * the 'nth' element of setup_args[]. A blank command-line member (in * other words, a comma with no preceding keyword) will _not_ overwrite * the corresponding setup_args[] element. * - If a keyword is used more than once, the first one applies to the first * SCSI host found, the second to the second card, etc, unless the 'next' * keyword is used to change the order. * * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): * - wd33c93=nosync:255 * - wd33c93=nodma * - wd33c93=nodma:1 * - wd33c93=disconnect:2,nosync:0x08,period:250 * - wd33c93=debug:0x1c */ /* Normally, no defaults are specified */ static char *setup_args[] = {"","","","","","","","",""}; /* filled in by 'insmod' */ static char *setup_strings = 0; #ifdef MODULE_PARM MODULE_PARM(setup_strings, "s"); #endif static inline uchar read_wd33c93(wd33c93_regs *regp,uchar reg_num) { regp->SASR = reg_num; mb(); return(regp->SCMD); } #define READ_AUX_STAT() (regp->SASR) static inline void write_wd33c93(wd33c93_regs *regp,uchar reg_num, uchar value) { regp->SASR = reg_num; mb(); regp->SCMD = value; mb(); } static inline void write_wd33c93_cmd(wd33c93_regs *regp, uchar cmd) { regp->SASR = WD_COMMAND; mb(); regp->SCMD = cmd; mb(); } static inline uchar read_1_byte(wd33c93_regs *regp) { uchar asr; uchar x = 0; write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_cmd(regp, WD_CMD_TRANS_INFO|0x80); do { asr = READ_AUX_STAT(); if (asr & ASR_DBR) x = read_wd33c93(regp, WD_DATA); } while (!(asr & ASR_INT)); return x; } static void write_wd33c93_count(wd33c93_regs *regp,unsigned long value) { regp->SASR = WD_TRANSFER_COUNT_MSB; mb(); regp->SCMD = value >> 16; regp->SCMD = value >> 8; regp->SCMD = value; mb(); } static unsigned long read_wd33c93_count(wd33c93_regs *regp) { unsigned long value; regp->SASR = WD_TRANSFER_COUNT_MSB; mb(); value = regp->SCMD << 16; value |= regp->SCMD << 8; value |= regp->SCMD; mb(); return value; } /* The 33c93 needs to be told which direction a command transfers its * data; we use this function to figure it out. Returns true if there * will be a DATA_OUT phase with this command, false otherwise. * (Thanks to Joerg Dorchain for the research and suggestion.) */ static int is_dir_out(Scsi_Cmnd *cmd) { switch (cmd->cmnd[0]) { case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_LONG: case WRITE_SAME: case WRITE_BUFFER: case WRITE_VERIFY: case WRITE_VERIFY_12: case COMPARE: case COPY: case COPY_VERIFY: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case SEARCH_EQUAL_12: case SEARCH_HIGH_12: case SEARCH_LOW_12: case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE: case MODE_SELECT: case MODE_SELECT_10: case LOG_SELECT: case SEND_DIAGNOSTIC: case CHANGE_DEFINITION: case UPDATE_BLOCK: case SET_WINDOW: case MEDIUM_SCAN: case SEND_VOLUME_TAG: case 0xea: return 1; default: return 0; } } static struct sx_period sx_table[] = { { 1, 0x20}, {252, 0x20}, {376, 0x30}, {500, 0x40}, {624, 0x50}, {752, 0x60}, {876, 0x70}, {1000,0x00}, {0, 0} }; static int round_period(unsigned int period) { int x; for (x=1; sx_table[x].period_ns; x++) { if ((period <= sx_table[x-0].period_ns) && (period > sx_table[x-1].period_ns)) { return x; } } return 7; } static uchar calc_sync_xfer(unsigned int period, unsigned int offset) { uchar result; period *= 4; /* convert SDTR code to ns */ result = sx_table[round_period(period)].reg_value; result |= (offset < OPTIMUM_SX_OFF)?offset:OPTIMUM_SX_OFF; return result; } static void wd33c93_execute(struct Scsi_Host *instance); int wd33c93_queuecommand (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *)) { struct WD33C93_hostdata *hostdata; Scsi_Cmnd *tmp; unsigned long flags; hostdata = (struct WD33C93_hostdata *)cmd->host->hostdata; DB(DB_QUEUE_COMMAND,printk("Q-%d-%02x-%ld( ",cmd->target,cmd->cmnd[0],cmd->pid)) /* Set up a few fields in the Scsi_Cmnd structure for our own use: * - host_scribble is the pointer to the next cmd in the input queue * - scsi_done points to the routine we call when a cmd is finished * - result is what you'd expect */ cmd->host_scribble = NULL; cmd->scsi_done = done; cmd->result = 0; /* We use the Scsi_Pointer structure that's included with each command * as a scratchpad (as it's intended to be used!). The handy thing about * the SCp.xxx fields is that they're always associated with a given * cmd, and are preserved across disconnect-reselect. This means we * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages * if we keep all the critical pointers and counters in SCp: * - SCp.ptr is the pointer into the RAM buffer * - SCp.this_residual is the size of that buffer * - SCp.buffer points to the current scatter-gather buffer * - SCp.buffers_residual tells us how many S.G. buffers there are * - SCp.have_data_in is not used * - SCp.sent_command is not used * - SCp.phase records this command's SRCID_ER bit setting */ if (cmd->use_sg) { cmd->SCp.buffer = (struct scatterlist *)cmd->buffer; cmd->SCp.buffers_residual = cmd->use_sg - 1; cmd->SCp.ptr = (char *)cmd->SCp.buffer->address; cmd->SCp.this_residual = cmd->SCp.buffer->length; } else { cmd->SCp.buffer = NULL; cmd->SCp.buffers_residual = 0; cmd->SCp.ptr = (char *)cmd->request_buffer; cmd->SCp.this_residual = cmd->request_bufflen; } /* WD docs state that at the conclusion of a "LEVEL2" command, the * status byte can be retrieved from the LUN register. Apparently, * this is the case only for *uninterrupted* LEVEL2 commands! If * there are any unexpected phases entered, even if they are 100% * legal (different devices may choose to do things differently), * the LEVEL2 command sequence is exited. This often occurs prior * to receiving the status byte, in which case the driver does a * status phase interrupt and gets the status byte on its own. * While such a command can then be "resumed" (ie restarted to * finish up as a LEVEL2 command), the LUN register will NOT be * a valid status byte at the command's conclusion, and we must * use the byte obtained during the earlier interrupt. Here, we * preset SCp.Status to an illegal value (0xff) so that when * this command finally completes, we can tell where the actual * status byte is stored. */ cmd->SCp.Status = ILLEGAL_STATUS_BYTE; /* * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE * commands are added to the head of the queue so that the desired * sense data is not lost before REQUEST_SENSE executes. */ save_flags(flags); cli(); if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { cmd->host_scribble = (uchar *)hostdata->input_Q; hostdata->input_Q = cmd; } else { /* find the end of the queue */ for (tmp=(Scsi_Cmnd *)hostdata->input_Q; tmp->host_scribble; tmp=(Scsi_Cmnd *)tmp->host_scribble) ; tmp->host_scribble = (uchar *)cmd; } /* We know that there's at least one command in 'input_Q' now. * Go see if any of them are runnable! */ wd33c93_execute(cmd->host); DB(DB_QUEUE_COMMAND,printk(")Q-%ld ",cmd->pid)) restore_flags(flags); return 0; } /* * This routine attempts to start a scsi command. If the host_card is * already connected, we give up immediately. Otherwise, look through * the input_Q, using the first command we find that's intended * for a currently non-busy target/lun. * * wd33c93_execute() is always called with interrupts disabled or from * the wd33c93_intr itself, which means that a wd33c93 interrupt * cannot occur while we are in here. */ static void wd33c93_execute (struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata; wd33c93_regs *regp; Scsi_Cmnd *cmd, *prev; int i; hostdata = (struct WD33C93_hostdata *)instance->hostdata; regp = hostdata->regp; DB(DB_EXECUTE,printk("EX(")) if (hostdata->selecting || hostdata->connected) { DB(DB_EXECUTE,printk(")EX-0 ")) return; } /* * Search through the input_Q for a command destined * for an idle target/lun. */ cmd = (Scsi_Cmnd *)hostdata->input_Q; prev = 0; while (cmd) { if (!(hostdata->busy[cmd->target] & (1 << cmd->lun))) break; prev = cmd; cmd = (Scsi_Cmnd *)cmd->host_scribble; } /* quit if queue empty or all possible targets are busy */ if (!cmd) { DB(DB_EXECUTE,printk(")EX-1 ")) return; } /* remove command from queue */ if (prev) prev->host_scribble = cmd->host_scribble; else hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble; #ifdef PROC_STATISTICS hostdata->cmd_cnt[cmd->target]++; #endif /* * Start the selection process */ if (is_dir_out(cmd)) write_wd33c93(regp, WD_DESTINATION_ID, cmd->target); else write_wd33c93(regp, WD_DESTINATION_ID, cmd->target | DSTID_DPD); /* Now we need to figure out whether or not this command is a good * candidate for disconnect/reselect. We guess to the best of our * ability, based on a set of hierarchical rules. When several * devices are operating simultaneously, disconnects are usually * an advantage. In a single device system, or if only 1 device * is being accessed, transfers usually go faster if disconnects * are not allowed: * * + Commands should NEVER disconnect if hostdata->disconnect = * DIS_NEVER (this holds for tape drives also), and ALWAYS * disconnect if hostdata->disconnect = DIS_ALWAYS. * + Tape drive commands should always be allowed to disconnect. * + Disconnect should be allowed if disconnected_Q isn't empty. * + Commands should NOT disconnect if input_Q is empty. * + Disconnect should be allowed if there are commands in input_Q * for a different target/lun. In this case, the other commands * should be made disconnect-able, if not already. * * I know, I know - this code would flunk me out of any * "C Programming 101" class ever offered. But it's easy * to change around and experiment with for now. */ cmd->SCp.phase = 0; /* assume no disconnect */ if (hostdata->disconnect == DIS_NEVER) goto no; if (hostdata->disconnect == DIS_ALWAYS) goto yes; if (cmd->device->type == 1) /* tape drive? */ goto yes; if (hostdata->disconnected_Q) /* other commands disconnected? */ goto yes; if (!(hostdata->input_Q)) /* input_Q empty? */ goto no; for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev; prev=(Scsi_Cmnd *)prev->host_scribble) { if ((prev->target != cmd->target) || (prev->lun != cmd->lun)) { for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev; prev=(Scsi_Cmnd *)prev->host_scribble) prev->SCp.phase = 1; goto yes; } } goto no; yes: cmd->SCp.phase = 1; #ifdef PROC_STATISTICS hostdata->disc_allowed_cnt[cmd->target]++; #endif no: write_wd33c93(regp, WD_SOURCE_ID, ((cmd->SCp.phase)?SRCID_ER:0)); write_wd33c93(regp, WD_TARGET_LUN, cmd->lun); write_wd33c93(regp,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]); hostdata->busy[cmd->target] |= (1 << cmd->lun); if ((hostdata->level2 == L2_NONE) || (hostdata->sync_stat[cmd->target] == SS_UNSET)) { /* * Do a 'Select-With-ATN' command. This will end with * one of the following interrupts: * CSR_RESEL_AM: failure - can try again later. * CSR_TIMEOUT: failure - give up. * CSR_SELECT: success - proceed. */ hostdata->selecting = cmd; /* Every target has its own synchronous transfer setting, kept in the * sync_xfer array, and a corresponding status byte in sync_stat[]. * Each target's sync_stat[] entry is initialized to SX_UNSET, and its * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET * means that the parameters are undetermined as yet, and that we * need to send an SDTR message to this device after selection is * complete: We set SS_FIRST to tell the interrupt routine to do so. * If we've been asked not to try synchronous transfers on this * target (and _all_ luns within it), we'll still send the SDTR message * later, but at that time we'll negotiate for async by specifying a * sync fifo depth of 0. */ if (hostdata->sync_stat[cmd->target] == SS_UNSET) hostdata->sync_stat[cmd->target] = SS_FIRST; hostdata->state = S_SELECTING; write_wd33c93_count(regp,0); /* guarantee a DATA_PHASE interrupt */ write_wd33c93_cmd(regp, WD_CMD_SEL_ATN); } else { /* * Do a 'Select-With-ATN-Xfer' command. This will end with * one of the following interrupts: * CSR_RESEL_AM: failure - can try again later. * CSR_TIMEOUT: failure - give up. * anything else: success - proceed. */ hostdata->connected = cmd; write_wd33c93(regp, WD_COMMAND_PHASE, 0); /* copy command_descriptor_block into WD chip * (take advantage of auto-incrementing) */ regp->SASR = WD_CDB_1; for (i=0; icmd_len; i++) regp->SCMD = cmd->cmnd[i]; /* The wd33c93 only knows about Group 0, 1, and 5 commands when * it's doing a 'select-and-transfer'. To be safe, we write the * size of the CDB into the OWN_ID register for every case. This * way there won't be problems with vendor-unique, audio, etc. */ write_wd33c93(regp, WD_OWN_ID, cmd->cmd_len); /* When doing a non-disconnect command with DMA, we can save * ourselves a DATA phase interrupt later by setting everything * up ahead of time. */ if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { if (hostdata->dma_setup(cmd, (is_dir_out(cmd))?DATA_OUT_DIR:DATA_IN_DIR)) write_wd33c93_count(regp,0); /* guarantee a DATA_PHASE interrupt */ else { write_wd33c93(regp,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_DMA); hostdata->dma = D_DMA_RUNNING; } } else write_wd33c93_count(regp,0); /* guarantee a DATA_PHASE interrupt */ hostdata->state = S_RUNNING_LEVEL2; write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); } /* * Since the SCSI bus can handle only 1 connection at a time, * we get out of here now. If the selection fails, or when * the command disconnects, we'll come back to this routine * to search the input_Q again... */ DB(DB_EXECUTE,printk("%s%ld)EX-2 ",(cmd->SCp.phase)?"d:":"",cmd->pid)) } static void transfer_pio(wd33c93_regs *regp, uchar *buf, int cnt, int data_in_dir, struct WD33C93_hostdata *hostdata) { uchar asr; DB(DB_TRANSFER,printk("(%p,%d,%s:",buf,cnt,data_in_dir?"in":"out")) write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_count(regp,cnt); write_wd33c93_cmd(regp, WD_CMD_TRANS_INFO); if (data_in_dir) { do { asr = READ_AUX_STAT(); if (asr & ASR_DBR) *buf++ = read_wd33c93(regp, WD_DATA); } while (!(asr & ASR_INT)); } else { do { asr = READ_AUX_STAT(); if (asr & ASR_DBR) write_wd33c93(regp, WD_DATA, *buf++); } while (!(asr & ASR_INT)); } /* Note: we are returning with the interrupt UN-cleared. * Since (presumably) an entire I/O operation has * completed, the bus phase is probably different, and * the interrupt routine will discover this when it * responds to the uncleared int. */ } static void transfer_bytes(wd33c93_regs *regp, Scsi_Cmnd *cmd, int data_in_dir) { struct WD33C93_hostdata *hostdata; unsigned long length; hostdata = (struct WD33C93_hostdata *)cmd->host->hostdata; /* Normally, you'd expect 'this_residual' to be non-zero here. * In a series of scatter-gather transfers, however, this * routine will usually be called with 'this_residual' equal * to 0 and 'buffers_residual' non-zero. This means that a * previous transfer completed, clearing 'this_residual', and * now we need to setup the next scatter-gather buffer as the * source or destination for THIS transfer. */ if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { ++cmd->SCp.buffer; --cmd->SCp.buffers_residual; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = cmd->SCp.buffer->address; } write_wd33c93(regp,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]); /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. */ if (hostdata->no_dma) goto use_transfer_pio; /* 'dma_setup()' will return TRUE if we can't do DMA. * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. */ else if (hostdata->dma_setup(cmd, data_in_dir)) { use_transfer_pio: #ifdef PROC_STATISTICS hostdata->pio_cnt++; #endif transfer_pio(regp, (uchar *)cmd->SCp.ptr, cmd->SCp.this_residual, data_in_dir, hostdata); length = cmd->SCp.this_residual; cmd->SCp.this_residual = read_wd33c93_count(regp); cmd->SCp.ptr += (length - cmd->SCp.this_residual); } /* We are able to do DMA (in fact, the Amiga hardware is * already going!), so start up the wd33c93 in DMA mode. * We set 'hostdata->dma' = D_DMA_RUNNING so that when the * transfer completes and causes an interrupt, we're * reminded to tell the Amiga to shut down its end. We'll * postpone the updating of 'this_residual' and 'ptr' * until then. */ else { #ifdef PROC_STATISTICS hostdata->dma_cnt++; #endif write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_DMA); if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { write_wd33c93(regp, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else write_wd33c93_cmd(regp, WD_CMD_TRANS_INFO); hostdata->dma = D_DMA_RUNNING; } } void wd33c93_intr (struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata; Scsi_Cmnd *patch, *cmd; wd33c93_regs *regp; uchar asr, sr, phs, id, lun, *ucp, msg; unsigned long length, flags; hostdata = (struct WD33C93_hostdata *)instance->hostdata; regp = hostdata->regp; asr = READ_AUX_STAT(); if (!(asr & ASR_INT) || (asr & ASR_BSY)) return; save_flags(flags); #ifdef PROC_STATISTICS hostdata->int_cnt++; #endif cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */ sr = read_wd33c93(regp, WD_SCSI_STATUS); /* clear the interrupt */ phs = read_wd33c93(regp, WD_COMMAND_PHASE); DB(DB_INTR,printk("{%02x:%02x-",asr,sr)) /* After starting a DMA transfer, the next interrupt * is guaranteed to be in response to completion of * the transfer. Since the Amiga DMA hardware runs in * in an open-ended fashion, it needs to be told when * to stop; do that here if D_DMA_RUNNING is true. * Also, we have to update 'this_residual' and 'ptr' * based on the contents of the TRANSFER_COUNT register, * in case the device decided to do an intermediate * disconnect (a device may do this if it has to do a * seek, or just to be nice and let other devices have * some bus time during long transfers). After doing * whatever is needed, we go on and service the WD3393 * interrupt normally. */ if (hostdata->dma == D_DMA_RUNNING) { DB(DB_TRANSFER,printk("[%p/%d:",cmd->SCp.ptr,cmd->SCp.this_residual)) hostdata->dma_stop(cmd->host, cmd, 1); hostdata->dma = D_DMA_OFF; length = cmd->SCp.this_residual; cmd->SCp.this_residual = read_wd33c93_count(regp); cmd->SCp.ptr += (length - cmd->SCp.this_residual); DB(DB_TRANSFER,printk("%p/%d]",cmd->SCp.ptr,cmd->SCp.this_residual)) } /* Respond to the specific WD3393 interrupt - there are quite a few! */ switch (sr) { case CSR_TIMEOUT: DB(DB_INTR,printk("TIMEOUT")) if (hostdata->state == S_RUNNING_LEVEL2) hostdata->connected = NULL; else { cmd = (Scsi_Cmnd *)hostdata->selecting; /* get a valid cmd */ hostdata->selecting = NULL; } cmd->result = DID_NO_CONNECT << 16; hostdata->busy[cmd->target] &= ~(1 << cmd->lun); hostdata->state = S_UNCONNECTED; cmd->scsi_done(cmd); /* From esp.c: * There is a window of time within the scsi_done() path * of execution where interrupts are turned back on full * blast and left that way. During that time we could * reconnect to a disconnected command, then we'd bomb * out below. We could also end up executing two commands * at _once_. ...just so you know why the restore_flags() * is here... */ restore_flags(flags); /* We are not connected to a target - check to see if there * are commands waiting to be executed. */ wd33c93_execute(instance); break; /* Note: this interrupt should not occur in a LEVEL2 command */ case CSR_SELECT: DB(DB_INTR,printk("SELECT")) hostdata->connected = cmd = (Scsi_Cmnd *)hostdata->selecting; hostdata->selecting = NULL; /* construct an IDENTIFY message with correct disconnect bit */ hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->lun); if (cmd->SCp.phase) hostdata->outgoing_msg[0] |= 0x40; if (hostdata->sync_stat[cmd->target] == SS_FIRST) { #ifdef SYNC_DEBUG printk(" sending SDTR "); #endif hostdata->sync_stat[cmd->target] = SS_WAITING; /* Tack on a 2nd message to ask about synchronous transfers. If we've * been asked to do only asynchronous transfers on this device, we * request a fifo depth of 0, which is equivalent to async - should * solve the problems some people have had with GVP's Guru ROM. */ hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; hostdata->outgoing_msg[2] = 3; hostdata->outgoing_msg[3] = EXTENDED_SDTR; if (hostdata->no_sync & (1 << cmd->target)) { hostdata->outgoing_msg[4] = hostdata->default_sx_per/4; hostdata->outgoing_msg[5] = 0; } else { hostdata->outgoing_msg[4] = OPTIMUM_SX_PER/4; hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF; } hostdata->outgoing_len = 6; } else hostdata->outgoing_len = 1; hostdata->state = S_CONNECTED; break; case CSR_XFER_DONE|PHS_DATA_IN: case CSR_UNEXP |PHS_DATA_IN: case CSR_SRV_REQ |PHS_DATA_IN: DB(DB_INTR,printk("IN-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual)) transfer_bytes(regp, cmd, DATA_IN_DIR); if (hostdata->state != S_RUNNING_LEVEL2) hostdata->state = S_CONNECTED; break; case CSR_XFER_DONE|PHS_DATA_OUT: case CSR_UNEXP |PHS_DATA_OUT: case CSR_SRV_REQ |PHS_DATA_OUT: DB(DB_INTR,printk("OUT-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual)) transfer_bytes(regp, cmd, DATA_OUT_DIR); if (hostdata->state != S_RUNNING_LEVEL2) hostdata->state = S_CONNECTED; break; /* Note: this interrupt should not occur in a LEVEL2 command */ case CSR_XFER_DONE|PHS_COMMAND: case CSR_UNEXP |PHS_COMMAND: case CSR_SRV_REQ |PHS_COMMAND: DB(DB_INTR,printk("CMND-%02x,%ld",cmd->cmnd[0],cmd->pid)) transfer_pio(regp, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata); hostdata->state = S_CONNECTED; break; case CSR_XFER_DONE|PHS_STATUS: case CSR_UNEXP |PHS_STATUS: case CSR_SRV_REQ |PHS_STATUS: DB(DB_INTR,printk("STATUS=")) cmd->SCp.Status = read_1_byte(regp); DB(DB_INTR,printk("%02x",cmd->SCp.Status)) if (hostdata->level2 >= L2_BASIC) { sr = read_wd33c93(regp, WD_SCSI_STATUS); /* clear interrupt */ hostdata->state = S_RUNNING_LEVEL2; write_wd33c93(regp, WD_COMMAND_PHASE, 0x50); write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); } else { hostdata->state = S_CONNECTED; } break; case CSR_XFER_DONE|PHS_MESS_IN: case CSR_UNEXP |PHS_MESS_IN: case CSR_SRV_REQ |PHS_MESS_IN: DB(DB_INTR,printk("MSG_IN=")) msg = read_1_byte(regp); sr = read_wd33c93(regp, WD_SCSI_STATUS); /* clear interrupt */ hostdata->incoming_msg[hostdata->incoming_ptr] = msg; if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) msg = EXTENDED_MESSAGE; else hostdata->incoming_ptr = 0; cmd->SCp.Message = msg; switch (msg) { case COMMAND_COMPLETE: DB(DB_INTR,printk("CCMP-%ld",cmd->pid)) write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_PRE_CMP_DISC; break; case SAVE_POINTERS: DB(DB_INTR,printk("SDP")) write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case RESTORE_POINTERS: DB(DB_INTR,printk("RDP")) if (hostdata->level2 >= L2_BASIC) { write_wd33c93(regp, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else { write_wd33c93_cmd(regp, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } break; case DISCONNECT: DB(DB_INTR,printk("DIS")) cmd->device->disconnect = 1; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_PRE_TMP_DISC; break; case MESSAGE_REJECT: DB(DB_INTR,printk("REJ")) #ifdef SYNC_DEBUG printk("-REJ-"); #endif if (hostdata->sync_stat[cmd->target] == SS_WAITING) hostdata->sync_stat[cmd->target] = SS_SET; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case EXTENDED_MESSAGE: DB(DB_INTR,printk("EXT")) ucp = hostdata->incoming_msg; #ifdef SYNC_DEBUG printk("%02x",ucp[hostdata->incoming_ptr]); #endif /* Is this the last byte of the extended message? */ if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) { switch (ucp[2]) { /* what's the EXTENDED code? */ case EXTENDED_SDTR: id = calc_sync_xfer(ucp[3],ucp[4]); if (hostdata->sync_stat[cmd->target] != SS_WAITING) { /* A device has sent an unsolicited SDTR message; rather than go * through the effort of decoding it and then figuring out what * our reply should be, we're just gonna say that we have a * synchronous fifo depth of 0. This will result in asynchronous * transfers - not ideal but so much easier. * Actually, this is OK because it assures us that if we don't * specifically ask for sync transfers, we won't do any. */ write_wd33c93_cmd(regp,WD_CMD_ASSERT_ATN); /* want MESS_OUT */ hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; hostdata->outgoing_msg[1] = 3; hostdata->outgoing_msg[2] = EXTENDED_SDTR; hostdata->outgoing_msg[3] = hostdata->default_sx_per/4; hostdata->outgoing_msg[4] = 0; hostdata->outgoing_len = 5; hostdata->sync_xfer[cmd->target] = calc_sync_xfer(hostdata->default_sx_per/4,0); } else { hostdata->sync_xfer[cmd->target] = id; } #ifdef SYNC_DEBUG printk("sync_xfer=%02x",hostdata->sync_xfer[cmd->target]); #endif hostdata->sync_stat[cmd->target] = SS_SET; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case EXTENDED_WDTR: write_wd33c93_cmd(regp,WD_CMD_ASSERT_ATN); /* want MESS_OUT */ printk("sending WDTR "); hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; hostdata->outgoing_msg[1] = 2; hostdata->outgoing_msg[2] = EXTENDED_WDTR; hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ hostdata->outgoing_len = 4; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; default: write_wd33c93_cmd(regp,WD_CMD_ASSERT_ATN); /* want MESS_OUT */ printk("Rejecting Unknown Extended Message(%02x). ",ucp[2]); hostdata->outgoing_msg[0] = MESSAGE_REJECT; hostdata->outgoing_len = 1; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; } hostdata->incoming_ptr = 0; } /* We need to read more MESS_IN bytes for the extended message */ else { hostdata->incoming_ptr++; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } break; default: printk("Rejecting Unknown Message(%02x) ",msg); write_wd33c93_cmd(regp,WD_CMD_ASSERT_ATN); /* want MESS_OUT */ hostdata->outgoing_msg[0] = MESSAGE_REJECT; hostdata->outgoing_len = 1; write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } restore_flags(flags); break; /* Note: this interrupt will occur only after a LEVEL2 command */ case CSR_SEL_XFER_DONE: /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regp,WD_SOURCE_ID, SRCID_ER); if (phs == 0x60) { DB(DB_INTR,printk("SX-DONE-%ld",cmd->pid)) cmd->SCp.Message = COMMAND_COMPLETE; lun = read_wd33c93(regp, WD_TARGET_LUN); DB(DB_INTR,printk(":%d.%d",cmd->SCp.Status,lun)) hostdata->connected = NULL; hostdata->busy[cmd->target] &= ~(1 << cmd->lun); hostdata->state = S_UNCONNECTED; if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) cmd->SCp.Status = lun; if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ restore_flags(flags); wd33c93_execute(instance); } else { printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr,sr,phs,cmd->pid); } break; /* Note: this interrupt will occur only after a LEVEL2 command */ case CSR_SDP: DB(DB_INTR,printk("SDP")) hostdata->state = S_RUNNING_LEVEL2; write_wd33c93(regp, WD_COMMAND_PHASE, 0x41); write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); break; case CSR_XFER_DONE|PHS_MESS_OUT: case CSR_UNEXP |PHS_MESS_OUT: case CSR_SRV_REQ |PHS_MESS_OUT: DB(DB_INTR,printk("MSG_OUT=")) /* To get here, we've probably requested MESSAGE_OUT and have * already put the correct bytes in outgoing_msg[] and filled * in outgoing_len. We simply send them out to the SCSI bus. * Sometimes we get MESSAGE_OUT phase when we're not expecting * it - like when our SDTR message is rejected by a target. Some * targets send the REJECT before receiving all of the extended * message, and then seem to go back to MESSAGE_OUT for a byte * or two. Not sure why, or if I'm doing something wrong to * cause this to happen. Regardless, it seems that sending * NOP messages in these situations results in no harm and * makes everyone happy. */ if (hostdata->outgoing_len == 0) { hostdata->outgoing_len = 1; hostdata->outgoing_msg[0] = NOP; } transfer_pio(regp, hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata); DB(DB_INTR,printk("%02x",hostdata->outgoing_msg[0])) hostdata->outgoing_len = 0; hostdata->state = S_CONNECTED; break; case CSR_UNEXP_DISC: /* I think I've seen this after a request-sense that was in response * to an error condition, but not sure. We certainly need to do * something when we get this interrupt - the question is 'what?'. * Let's think positively, and assume some command has finished * in a legal manner (like a command that provokes a request-sense), * so we treat it as a normal command-complete-disconnect. */ /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regp,WD_SOURCE_ID, SRCID_ER); if (cmd == NULL) { printk(" - Already disconnected! "); hostdata->state = S_UNCONNECTED; return; } DB(DB_INTR,printk("UNEXP_DISC-%ld",cmd->pid)) hostdata->connected = NULL; hostdata->busy[cmd->target] &= ~(1 << cmd->lun); hostdata->state = S_UNCONNECTED; if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ /* look above for comments on scsi_done() */ restore_flags(flags); wd33c93_execute(instance); break; case CSR_DISC: /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regp,WD_SOURCE_ID, SRCID_ER); DB(DB_INTR,printk("DISC-%ld",cmd->pid)) if (cmd == NULL) { printk(" - Already disconnected! "); hostdata->state = S_UNCONNECTED; } switch (hostdata->state) { case S_PRE_CMP_DISC: hostdata->connected = NULL; hostdata->busy[cmd->target] &= ~(1 << cmd->lun); hostdata->state = S_UNCONNECTED; DB(DB_INTR,printk(":%d",cmd->SCp.Status)) if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); restore_flags(flags); break; case S_PRE_TMP_DISC: case S_RUNNING_LEVEL2: cmd->host_scribble = (uchar *)hostdata->disconnected_Q; hostdata->disconnected_Q = cmd; hostdata->connected = NULL; hostdata->state = S_UNCONNECTED; #ifdef PROC_STATISTICS hostdata->disc_done_cnt[cmd->target]++; #endif break; default: printk("*** Unexpected DISCONNECT interrupt! ***"); hostdata->state = S_UNCONNECTED; } /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ wd33c93_execute(instance); break; case CSR_RESEL_AM: DB(DB_INTR,printk("RESEL")) /* First we have to make sure this reselection didn't */ /* happen during Arbitration/Selection of some other device. */ /* If yes, put losing command back on top of input_Q. */ if (hostdata->level2 <= L2_NONE) { if (hostdata->selecting) { cmd = (Scsi_Cmnd *)hostdata->selecting; hostdata->selecting = NULL; hostdata->busy[cmd->target] &= ~(1 << cmd->lun); cmd->host_scribble = (uchar *)hostdata->input_Q; hostdata->input_Q = cmd; } } else { if (cmd) { if (phs == 0x00) { hostdata->busy[cmd->target] &= ~(1 << cmd->lun); cmd->host_scribble = (uchar *)hostdata->input_Q; hostdata->input_Q = cmd; } else { printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr,sr,phs); while (1) printk("\r"); } } } /* OK - find out which device reselected us. */ id = read_wd33c93(regp, WD_SOURCE_ID); id &= SRCID_MASK; /* and extract the lun from the ID message. (Note that we don't * bother to check for a valid message here - I guess this is * not the right way to go, but...) */ lun = read_wd33c93(regp, WD_DATA); if (hostdata->level2 < L2_RESELECT) write_wd33c93_cmd(regp,WD_CMD_NEGATE_ACK); lun &= 7; /* Now we look for the command that's reconnecting. */ cmd = (Scsi_Cmnd *)hostdata->disconnected_Q; patch = NULL; while (cmd) { if (id == cmd->target && lun == cmd->lun) break; patch = cmd; cmd = (Scsi_Cmnd *)cmd->host_scribble; } /* Hmm. Couldn't find a valid command.... What to do? */ if (!cmd) { printk("---TROUBLE: target %d.%d not in disconnect queue---",id,lun); return; } /* Ok, found the command - now start it up again. */ if (patch) patch->host_scribble = cmd->host_scribble; else hostdata->disconnected_Q = (Scsi_Cmnd *)cmd->host_scribble; hostdata->connected = cmd; /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' * because these things are preserved over a disconnect. * But we DO need to fix the DPD bit so it's correct for this command. */ if (is_dir_out(cmd)) write_wd33c93(regp, WD_DESTINATION_ID, cmd->target); else write_wd33c93(regp, WD_DESTINATION_ID, cmd->target | DSTID_DPD); if (hostdata->level2 >= L2_RESELECT) { write_wd33c93_count(regp, 0); /* we want a DATA_PHASE interrupt */ write_wd33c93(regp, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regp, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else hostdata->state = S_CONNECTED; DB(DB_INTR,printk("-%ld",cmd->pid)) break; default: printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr,sr,phs); } DB(DB_INTR,printk("} ")) } void reset_wd33c93(struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata; wd33c93_regs *regp; uchar sr; hostdata = (struct WD33C93_hostdata *)instance->hostdata; regp = hostdata->regp; #ifdef CONFIG_SGI_IP22 { int busycount = 0; extern void sgiwd93_reset(uchar*); /* wait 'til the chip gets some time for us */ while (READ_AUX_STAT() & ASR_BSY && busycount++ < 100) udelay (10); /* * there are scsi devices out there, which manage to lock up * the wd33c93 in a busy condition. In this state it won't * accept the reset command. The only way to solve this is to * give the chip a hardware reset (if possible). The code below * does this for the SGI Indy, where this is possible */ /* still busy ? */ if (READ_AUX_STAT() & ASR_BSY) sgiwd93_reset(instance->base); /* yeah, give it the hard one */ } #endif write_wd33c93(regp, WD_OWN_ID, OWNID_EAF | OWNID_RAF | instance->this_id | hostdata->clock_freq); write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93(regp, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per/4,DEFAULT_SX_OFF)); write_wd33c93(regp, WD_COMMAND, WD_CMD_RESET); while (!(READ_AUX_STAT() & ASR_INT)) ; sr = read_wd33c93(regp, WD_SCSI_STATUS); hostdata->microcode = read_wd33c93(regp, WD_CDB_1); if (sr == 0x00) hostdata->chip = C_WD33C93; else if (sr == 0x01) { write_wd33c93(regp, WD_QUEUE_TAG, 0xa5); /* any random number */ sr = read_wd33c93(regp, WD_QUEUE_TAG); if (sr == 0xa5) { hostdata->chip = C_WD33C93B; write_wd33c93(regp, WD_QUEUE_TAG, 0); } else hostdata->chip = C_WD33C93A; } else hostdata->chip = C_UNKNOWN_CHIP; write_wd33c93(regp, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); } int wd33c93_reset(Scsi_Cmnd *SCpnt, unsigned int reset_flags) { struct Scsi_Host *instance; struct WD33C93_hostdata *hostdata; int i; instance = SCpnt->host; hostdata = (struct WD33C93_hostdata *)instance->hostdata; printk("scsi%d: reset. ", instance->host_no); disable_irq(instance->irq); ((struct WD33C93_hostdata *)instance->hostdata)->dma_stop(instance,NULL,0); for (i = 0; i < 8; i++) { hostdata->busy[i] = 0; hostdata->sync_xfer[i] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF); hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ } hostdata->input_Q = NULL; hostdata->selecting = NULL; hostdata->connected = NULL; hostdata->disconnected_Q = NULL; hostdata->state = S_UNCONNECTED; hostdata->dma = D_DMA_OFF; hostdata->incoming_ptr = 0; hostdata->outgoing_len = 0; reset_wd33c93(instance); SCpnt->result = DID_RESET << 16; enable_irq(instance->irq); return 0; } int wd33c93_abort (Scsi_Cmnd *cmd) { struct Scsi_Host *instance; struct WD33C93_hostdata *hostdata; wd33c93_regs *regp; Scsi_Cmnd *tmp, *prev; disable_irq(cmd->host->irq); instance = cmd->host; hostdata = (struct WD33C93_hostdata *)instance->hostdata; regp = hostdata->regp; /* * Case 1 : If the command hasn't been issued yet, we simply remove it * from the input_Q. */ tmp = (Scsi_Cmnd *)hostdata->input_Q; prev = 0; while (tmp) { if (tmp == cmd) { if (prev) prev->host_scribble = cmd->host_scribble; else hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble; cmd->host_scribble = NULL; cmd->result = DID_ABORT << 16; printk("scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->pid); enable_irq(cmd->host->irq); cmd->scsi_done(cmd); return SCSI_ABORT_SUCCESS; } prev = tmp; tmp = (Scsi_Cmnd *)tmp->host_scribble; } /* * Case 2 : If the command is connected, we're going to fail the abort * and let the high level SCSI driver retry at a later time or * issue a reset. * * Timeouts, and therefore aborted commands, will be highly unlikely * and handling them cleanly in this situation would make the common * case of noresets less efficient, and would pollute our code. So, * we fail. */ if (hostdata->connected == cmd) { uchar sr, asr; unsigned long timeout; printk("scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->pid); printk("stopping DMA - "); if (hostdata->dma == D_DMA_RUNNING) { hostdata->dma_stop(instance, cmd, 0); hostdata->dma = D_DMA_OFF; } printk("sending wd33c93 ABORT command - "); write_wd33c93(regp, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_cmd(regp, WD_CMD_ABORT); /* Now we have to attempt to flush out the FIFO... */ printk("flushing fifo - "); timeout = 1000000; do { asr = READ_AUX_STAT(); if (asr & ASR_DBR) read_wd33c93(regp, WD_DATA); } while (!(asr & ASR_INT) && timeout-- > 0); sr = read_wd33c93(regp, WD_SCSI_STATUS); printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_wd33c93_count(regp), timeout); /* * Abort command processed. * Still connected. * We must disconnect. */ printk("sending wd33c93 DISCONNECT command - "); write_wd33c93_cmd(regp, WD_CMD_DISCONNECT); timeout = 1000000; asr = READ_AUX_STAT(); while ((asr & ASR_CIP) && timeout-- > 0) asr = READ_AUX_STAT(); sr = read_wd33c93(regp, WD_SCSI_STATUS); printk("asr=%02x, sr=%02x.",asr,sr); hostdata->busy[cmd->target] &= ~(1 << cmd->lun); hostdata->connected = NULL; hostdata->state = S_UNCONNECTED; cmd->result = DID_ABORT << 16; /* sti();*/ wd33c93_execute (instance); enable_irq(cmd->host->irq); cmd->scsi_done(cmd); return SCSI_ABORT_SUCCESS; } /* * Case 3: If the command is currently disconnected from the bus, * we're not going to expend much effort here: Let's just return * an ABORT_SNOOZE and hope for the best... */ tmp = (Scsi_Cmnd *)hostdata->disconnected_Q; while (tmp) { if (tmp == cmd) { printk("scsi%d: Abort - command %ld found on disconnected_Q - ", instance->host_no, cmd->pid); printk("returning ABORT_SNOOZE. "); enable_irq(cmd->host->irq); return SCSI_ABORT_SNOOZE; } tmp = (Scsi_Cmnd *)tmp->host_scribble; } /* * Case 4 : If we reached this point, the command was not found in any of * the queues. * * We probably reached this point because of an unlikely race condition * between the command completing successfully and the abortion code, * so we won't panic, but we will notify the user in case something really * broke. */ /* sti();*/ wd33c93_execute (instance); enable_irq(cmd->host->irq); printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no); return SCSI_ABORT_NOT_RUNNING; } #define MAX_WD33C93_HOSTS 4 #define MAX_SETUP_ARGS ((int)(sizeof(setup_args) / sizeof(char *))) #define SETUP_BUFFER_SIZE 200 static char setup_buffer[SETUP_BUFFER_SIZE]; static char setup_used[MAX_SETUP_ARGS]; static int done_setup = 0; int wd33c93_setup (char *str) { int i; char *p1,*p2; /* The kernel does some processing of the command-line before calling * this function: If it begins with any decimal or hex number arguments, * ints[0] = how many numbers found and ints[1] through [n] are the values * themselves. str points to where the non-numeric arguments (if any) * start: We do our own parsing of those. We construct synthetic 'nosync' * keywords out of numeric args (to maintain compatibility with older * versions) and then add the rest of the arguments. */ p1 = setup_buffer; *p1 = '\0'; #if 0 /* * Old style command line arguments are now dead */ if (ints[0]) { for (i=0; i= '0') && (*cp <= '9')) { *val = simple_strtoul(cp,NULL,0); } return ++x; } void wd33c93_init (struct Scsi_Host *instance, wd33c93_regs *regs, dma_setup_t setup, dma_stop_t stop, int clock_freq) { struct WD33C93_hostdata *hostdata; int i; int flags; int val; char buf[32]; if (!done_setup && setup_strings) wd33c93_setup(setup_strings); hostdata = (struct WD33C93_hostdata *)instance->hostdata; hostdata->regp = regs; hostdata->clock_freq = clock_freq; hostdata->dma_setup = setup; hostdata->dma_stop = stop; hostdata->dma_bounce_buffer = NULL; hostdata->dma_bounce_len = 0; for (i = 0; i < 8; i++) { hostdata->busy[i] = 0; hostdata->sync_xfer[i] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF); hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ #ifdef PROC_STATISTICS hostdata->cmd_cnt[i] = 0; hostdata->disc_allowed_cnt[i] = 0; hostdata->disc_done_cnt[i] = 0; #endif } hostdata->input_Q = NULL; hostdata->selecting = NULL; hostdata->connected = NULL; hostdata->disconnected_Q = NULL; hostdata->state = S_UNCONNECTED; hostdata->dma = D_DMA_OFF; hostdata->level2 = L2_BASIC; hostdata->disconnect = DIS_ADAPTIVE; hostdata->args = DEBUG_DEFAULTS; hostdata->incoming_ptr = 0; hostdata->outgoing_len = 0; hostdata->default_sx_per = DEFAULT_SX_PER; hostdata->no_sync = 0xff; /* sync defaults to off */ hostdata->no_dma = 0; /* default is DMA enabled */ #ifdef PROC_INTERFACE hostdata->proc = PR_VERSION|PR_INFO|PR_STATISTICS| PR_CONNECTED|PR_INPUTQ|PR_DISCQ| PR_STOP; #ifdef PROC_STATISTICS hostdata->dma_cnt = 0; hostdata->pio_cnt = 0; hostdata->int_cnt = 0; #endif #endif if (check_setup_args("nosync",&flags,&val,buf)) hostdata->no_sync = val; if (check_setup_args("nodma",&flags,&val,buf)) hostdata->no_dma = (val == -1) ? 1 : val; if (check_setup_args("period",&flags,&val,buf)) hostdata->default_sx_per = sx_table[round_period((unsigned int)val)].period_ns; if (check_setup_args("disconnect",&flags,&val,buf)) { if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) hostdata->disconnect = val; else hostdata->disconnect = DIS_ADAPTIVE; } if (check_setup_args("level2",&flags,&val,buf)) hostdata->level2 = val; if (check_setup_args("debug",&flags,&val,buf)) hostdata->args = val & DB_MASK; if (check_setup_args("clock",&flags,&val,buf)) { if (val>7 && val<11) val = WD33C93_FS_8_10; else if (val>11 && val<16) val = WD33C93_FS_12_15; else if (val>15 && val<21) val = WD33C93_FS_16_20; else val = WD33C93_FS_8_10; hostdata->clock_freq = val; } if ((i = check_setup_args("next",&flags,&val,buf))) { while (i) setup_used[--i] = 1; } #ifdef PROC_INTERFACE if (check_setup_args("proc",&flags,&val,buf)) hostdata->proc = val; #endif { unsigned long flags; save_flags(flags); cli(); reset_wd33c93(instance); restore_flags(flags); } printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",instance->host_no, (hostdata->chip==C_WD33C93)?"WD33c93": (hostdata->chip==C_WD33C93A)?"WD33c93A": (hostdata->chip==C_WD33C93B)?"WD33c93B":"unknown", hostdata->microcode,hostdata->no_sync,hostdata->no_dma); #ifdef DEBUGGING_ON printk(" debug_flags=0x%02x\n",hostdata->args); #else printk(" debugging=OFF\n"); #endif printk(" setup_args="); for (i=0; inext) { if (instance->host_no == hn) break; } if (!instance) { printk("*** Hmm... Can't find host #%d!\n",hn); return (-ESRCH); } hd = (struct WD33C93_hostdata *)instance->hostdata; /* If 'in' is TRUE we need to _read_ the proc file. We accept the following * keywords (same format as command-line, but only ONE per read): * debug * disconnect * period * resync * proc * nodma */ if (in) { buf[len] = '\0'; bp = buf; if (!strncmp(bp,"debug:",6)) { bp += 6; hd->args = simple_strtoul(bp,NULL,0) & DB_MASK; } else if (!strncmp(bp,"disconnect:",11)) { bp += 11; x = simple_strtoul(bp,NULL,0); if (x < DIS_NEVER || x > DIS_ALWAYS) x = DIS_ADAPTIVE; hd->disconnect = x; } else if (!strncmp(bp,"period:",7)) { bp += 7; x = simple_strtoul(bp,NULL,0); hd->default_sx_per = sx_table[round_period((unsigned int)x)].period_ns; } else if (!strncmp(bp,"resync:",7)) { bp += 7; x = simple_strtoul(bp,NULL,0); for (i=0; i<7; i++) if (x & (1<sync_stat[i] = SS_UNSET; } else if (!strncmp(bp,"proc:",5)) { bp += 5; hd->proc = simple_strtoul(bp,NULL,0); } else if (!strncmp(bp,"nodma:",6)) { bp += 6; hd->no_dma = simple_strtoul(bp,NULL,0); } else if (!strncmp(bp,"level2:",7)) { bp += 7; hd->level2 = simple_strtoul(bp,NULL,0); } return len; } save_flags(flags); cli(); bp = buf; *bp = '\0'; if (hd->proc & PR_VERSION) { sprintf(tbuf,"\nVersion %s - %s. Compiled %s %s", WD33C93_VERSION,WD33C93_DATE,__DATE__,__TIME__); strcat(bp,tbuf); } if (hd->proc & PR_INFO) { sprintf(tbuf,"\nclock_freq=%02x no_sync=%02x no_dma=%d", hd->clock_freq,hd->no_sync,hd->no_dma); strcat(bp,tbuf); strcat(bp,"\nsync_xfer[] = "); for (x=0; x<7; x++) { sprintf(tbuf,"\t%02x",hd->sync_xfer[x]); strcat(bp,tbuf); } strcat(bp,"\nsync_stat[] = "); for (x=0; x<7; x++) { sprintf(tbuf,"\t%02x",hd->sync_stat[x]); strcat(bp,tbuf); } } #ifdef PROC_STATISTICS if (hd->proc & PR_STATISTICS) { strcat(bp,"\ncommands issued: "); for (x=0; x<7; x++) { sprintf(tbuf,"\t%ld",hd->cmd_cnt[x]); strcat(bp,tbuf); } strcat(bp,"\ndisconnects allowed:"); for (x=0; x<7; x++) { sprintf(tbuf,"\t%ld",hd->disc_allowed_cnt[x]); strcat(bp,tbuf); } strcat(bp,"\ndisconnects done: "); for (x=0; x<7; x++) { sprintf(tbuf,"\t%ld",hd->disc_done_cnt[x]); strcat(bp,tbuf); } sprintf(tbuf,"\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", hd->int_cnt,hd->dma_cnt,hd->pio_cnt); strcat(bp,tbuf); } #endif if (hd->proc & PR_CONNECTED) { strcat(bp,"\nconnected: "); if (hd->connected) { cmd = (Scsi_Cmnd *)hd->connected; sprintf(tbuf," %ld-%d:%d(%02x)", cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); strcat(bp,tbuf); } } if (hd->proc & PR_INPUTQ) { strcat(bp,"\ninput_Q: "); cmd = (Scsi_Cmnd *)hd->input_Q; while (cmd) { sprintf(tbuf," %ld-%d:%d(%02x)", cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); strcat(bp,tbuf); cmd = (Scsi_Cmnd *)cmd->host_scribble; } } if (hd->proc & PR_DISCQ) { strcat(bp,"\ndisconnected_Q:"); cmd = (Scsi_Cmnd *)hd->disconnected_Q; while (cmd) { sprintf(tbuf," %ld-%d:%d(%02x)", cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); strcat(bp,tbuf); cmd = (Scsi_Cmnd *)cmd->host_scribble; } } strcat(bp,"\n"); restore_flags(flags); *start = buf; if (stop) { stop = 0; return 0; } if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */ stop = 1;; if (hd->proc & PR_STOP) /* stop every other time */ stop = 1; return strlen(bp); #else /* PROC_INTERFACE */ return 0; #endif /* PROC_INTERFACE */ } #ifdef MODULE int init_module(void) { return 0; } void cleanup_module(void) {} void wd33c93_release(void) { MOD_DEC_USE_COUNT; } #endif