Configuring version 3.8 (for Linux) with some most common soundcards ==================================================================== This document describes configuring soundcards with freeware version of Open Sound Systems (OSS/Free). Information about the commercial version (OSS/Linux) and it's configuration is available from http://www.4front-tech.com/linux.html. Information presented here is not valid for OSS/Linux. IMPORTANT! This document covers only cards that were "known" when this driver version was released. Please look at http://www.4front-tech.com/ossfree for info about cards introduced recently. The following covers mainly the "old" configuration method (make config). Most of it is valid for the "new" configuration (make menuconfig/xconfig) too. Cards having some kind of loadable "microcode" such as PSS, SM Wave, AudioTrix Pro and Maui/Tropez must be configured using the old method. The new one will not work with them. The "old" method is used by default by "make config". "make xconfig" will always use the "new" method. "make menuconfig" will allow you to select which method to use. After you have used the "new" method once it will always be used when you use any of the config programs. To return back to the "old" method you should reinstall the kernel sources. The /etc/soundconf file (forget it if you don't know what this file does) contains settings that are used only by the "old" method. Don't ever think the "active" settings are stored there (they really are _NOT_ stored there). Don't try to edit /etc/soundconf or any other kernel or sound driver config files manually. The _only_ proper ways to change the settings are make config, make menuconfig or make xconfig. When using make xconfig and/or make menuconfig, you should carefully check each sound configuration option (particularly "Support for /dev/dsp and /dev/audio"). The default values offered by these programs are not necessarily valid. THE BIGGEST MISTAKES YOU CAN DO =============================== 1. Assuming that the card is Sound Blaster compatible when it's not. -------------------------------------------------------------------- The number one mistake is to assume that your card is compatible with Sound Blaster. Only the cards made by Creative Technology or which have one or more chips labeled by Creative are SB compatible. In addition there are few sound chipsets which are SB compatible in Linux such as ESS1688 or Jazz16. Note that SB compatibility in DOS/Windows does _NOT_ mean anything in Linux. IF YOU REALLY ARE 150% SURE YOU REALLY HAVE A SOUND BLASTER YOU CAN SKIP THE REST OF THIS CHAPTER. For most other "supposed to be SB compatible" cards you have use other than SB drivers (see below). It is possible to get most soundcards to work in SB mode but in general it's complete waste of time. There are several problems which you will encounter by using SB mode with cards that are not truly SB compatible: - The SB emulation is at most SB Pro (DSP version 3.x) which means that you get only 8 bit audio (there is always an another ("native") mode which gives the 16 bit capability). The 8 bit only operation is the reason why many users claim that sound quality in Linux is much worse than in DOS. In addition some applications require 16 bit mode and they produce just noise with a 8 bit only device. - The card may work only in some cases but refuse to work most of the time. The SB compatible mode always requires special intialization which is done by the DOS/Windows drivers. This kind of cards work in Linux after you have warm booted it after DOS but they don't work after cold boot (power on or reset). - You get the famous "DMA timed out" messages. Usually all SB clones have software selectable IRQ and DMA settings. If the (power on default) values currently used by the card don't match configuration of the driver you will get the above error message whenever you try to record or play. There are few other reasons to the DMA timeout message but using the SB mode seems to be the most common cause. 2. Trying to use a PnP (Plug & Play) card just like an ordinary soundcard ------------------------------------------------------------------------- Plug & Play is a protocol defined by Intel and Microsoft. It let's operating systems to easily identify and reconfigure I/O ports, IRQs and DMAs of ISA cards. The problem with PnP cards is that the standard Linux doesn't currently (versions 2.1.x and earlier) don't support PnP. This means that you will have to use some special tricks (see later) to get a PnP card alive. Many PnP cards work after they have been initialized but this is not always the case. There are usually both a non PnP and PnP versions of the same soundcard. The non PnP version is the original model which usually has been discontinued more than an year ago. The PnP version has the same name but with a PnP appended to it (sometimes not). This causes major confusion since even the non PnP model works with Linux the PnP one doesn't. You should carefully check if "Plug & Play" or "PnP" is mentioned in the name of the card or in the documentation or package that came with the card. Everything described in the rest of this document is not necessarily valid for PnP models of soudcards even you have managed to wake up the card properly. Many PnP cards are simply too much different than their original non PnP ancestors which are covered by this document. Cards that are not (fully) supported by this driver =================================================== See http://www.4front-tech.com/ossfree for information about soundcards to be supported in future. How to use sound without recompiling kernel and/or sound driver =============================================================== There is commercial sound driver which should be released during Apr 96. It comes in precompiled form and doesn't require recompiling of kernel. See http://www.4Front-tech.com/oss.html for more info. Configuring PnP cards ===================== New versions of most soundcards use so called ISA PnP protocol for soft configuring their I/O, IRQ, DMA and shared memory resources. Currently at least cards made by Creative Technology (SB32 and SB32AWE PnP), Gravis (GUS PnP and GUS PnP Pro), Ensoniq (Soundscape PnP) and Aztech (some Sound Galaxy models) use PnP technology. The CS4232/4236 audio chip by Crystal Semiconductor (Intel Atlantis, HP Pavilion and many other motherboards) is also based on PnP technology but there is a "native" driver available for it (see information about CS4232 later in this document). PnP soundcards (as well as most other PnP ISA cards) are not supported by this version of the driver . Proper support for them should be released during 97 once the kernel level PnP support is available. There is a method to get most of the PnP cards to work. The basic method is the following: 1) Boot DOS so that card's DOS drivers have chance to initialize the card. 2) _Cold_ boot to Linux by using "loadlin.exe". Hitting ctrl-alt-del works with older machines but causes hard reset of all cards on latest (Pentium) machines. 3) If you have sound driver in Linux configured properly, the card should work now. "Proper" means here that I/O, IRQ and DMA settings are the same than in DOS. The hard part is to find which settings were used. See documentation of your card for more info. Windows 95 could work as well as DOS but running loadlin may be somehow difficult. Probably you should "shut down" your machine to MS-DOS mode before running it. Some machines have BIOS utility for setting PnP resources. This is a good way to configure some cards. In this case you don't need to boot DOS/Win95 prior starting Linux. Another way to initialize PnP cards without DOS/Win95 is a Linux based PnP isolation tool. When writing this there is a pre alpha test version of such tool available from ftp://ftp.demon.co.uk/pub/unix/linux/utils. The file is called isapnptools-*. Please note that this tool is just a temporary solution which may be incompatible with future kernel versions having proper support for PnP cards. There are bugs in setting DMA channels in earlier versions of isapnptools so at least version 1.6 is required with soundcards. Yet another way to use PnP cards is to use (commercial) OSS/Linux drivers. See http://www.4front-tech.com/linux.html for more info. This is the way you probably like to do it if you don't waste hours of time in recompiling kernel and the required tools. Read this before trying to configure the driver =============================================== There are currently many cards that work with this driver. Some of the cards have native support while others work since they emulate some other card (usually SB, MSS/WSS and/or MPU401). The following cards have native support in the driver. Detailed instructions for configuring these cards will be given later in this document. Pro Audio Spectrum 16 (PAS16) and compatibles: Pro Audio Spectrum 16 Pro Audio Studio 16 Logitech Sound Man 16 NOTE! The original Pro Audio Spectrum as well as the PAS+ are not and will not be supported by the driver. Media Vision Jazz16 based cards Pro Sonic 16 Logitech SoundMan Wave (Other Jazz based cards should work but I don't have any reports about them). Sound Blasters SB 1.0 to 2.0 SB Pro SB 16 SB32/64/AWE Configure SB32/64/AWE just like SB16. See lowlevel/README.awe for information about using the wave table synth. NOTE! AWE63/Gold and 16/32/AWE "PnP" cards need to be activated using isapnptools before they work with OSS/Free. SB16 compatible cards by other manufacturers than Creative. You have been fooled since there are _no_ SB16 compatible cards on the market (May 97). It's likely that your card is compatible just with SB Pro but there is also a non-SB- compatible 16 bit mode. Usually it's MSS/WSS but it could also be a proprietary one like MV Jazz16 or ESS ES688. OPTi MAD16 chips are very common in so called "SB 16 bit cards". ====================================================================== "Supposed to be SB compatible" cards. Forget the SB compatibility and check for other alternatives first. The only cards that work with the SB driver in Linux have been made by Creative Technology (there is at least one chip on the card with "CREATIVE" printed on it). The only other SB compatible chips are ESS and Jazz16 chips (maybe ALSxxx chips too but they probably don't work). Most other "16 bit SB compatible" cards such as "OPTi/MAD16" or "Crystal" are _NOT_ SB compatible in Linux. Practically all soundcards have some kind of SB emulation mode in addition to their native (16 bit) mode. In most cases this (8 bit only) SB compatible mode doesn't work with Linux. If you get it working it may cause problems with games and applications which require 16 bit audio. Some 16 bit only applications don't check if the card actually supports 16 bits. They just dump 16 bit data to a 8 bit card which produces just noise. In most cases the 16 bit native mode is supported by Linux. Use the SB mode with "clones" only if you don't find anything better from the rest of this doc. ====================================================================== Gravis Ultrasound (GUS) GUS GUS + the 16 bit option GUS MAX GUS ACE (No MIDI port and audio recording) GUS PnP (with RAM) MPU-401 and compatibles The driver works both with the full (intelligent mode) MPU-401 cards (such as MPU IPC-T and MQX-32M) and with the UART only dumb MIDI ports. MPU-401 is currently the most common MIDI interface. Most soundcards are compatible with it. However, don't enable MPU401 mode blindly. Many cards with native support in the driver have their own MPU401 driver. Enabling the standard one will cause a conflict with these cards. So check if your card is in the list of supported cards before enabling MPU401. Windows Sound System (MSS/WSS) Even when Microsoft has discontinued their own Sound System card they managed to make it a standard. MSS compatible cards are based on a codec chip which is easily available from at least two manufacturers (AD1848 by Analog Devices and CS4231/CS4248 by Crystal Semiconductor). Currently most soundcards are based on one of the MSS compatible codec chips. The CS4231 is used in the high quality cards such as GUS MAX, MediaTrix AudioTrix Pro and TB Tropez (GUS MAX is not MSS compatible). Having a AD1848, CS4248 or CS4231 codec chip on the card is a good sign. Even if the card is not MSS compatible, it could be easy to write support for it. Note also that most MSS compatible cards require special boot time initialization which may not be present in the driver. Also, some MSS compatible cards have native support. Enabling the MSS support with these cards is likely to cause a conflict. So check if your card is listed in this file before enabling the MSS support. Yamaha FM synthesizers (OPL2, OPL3 (not OPL3-SA) and OPL4) Most soundcards have a FM synthesizer chip. The OPL2 is a 2 operator chip used in the original AdLib card. Currently it's used only in the cheapest (8 bit mono) cards. The OPL3 is a 4 operator FM chip which provides better sound quality and/or more available voices than the OPL2. The OPL4 is a new chip that has an OPL3 and a wave table synthesizer packed onto the same chip. The driver supports just the OPL3 mode directly. Most cards with an OPL4 (like SM Wave and AudioTrix Pro) support the OPL4 mode using MPU401 emulation. Writing a native OPL4 support is difficult since Yamaha doesn't give information about their sample ROM chip. Enable the generic OPL2/OPL3 FM synthesizer support if your card has a FM chip made by Yamaha. Don't enable it if your card has a software (TRS) based FM emulator. ---------------------------------------------------------------- NOTE! OPL3-SA is different chip than the ordinary OPL3. In addition to the FM synth this chip has also digital audio (WSS) and MIDI (MPU401) capabilities. OPL3-SA is not supported by OSS/Free. Support for it is included in OSS/Linux v3.8 and later. ---------------------------------------------------------------- PSS based cards (AD1848 + ADSP-2115 + Echo ESC614 ASIC) Analog Devices and Echo Speech have together defined a soundcard architecture based on the above chips. The DSP chip is used for emulation of SB Pro, FM and General MIDI/MT32. There are several cards based on this architecture. The most known ones are Orchid SW32 and Cardinal DSP16. The driver supports downloading DSP algorithms to these cards. NOTE! You will have to use the "old" config script when configuring PSS cards. MediaTrix AudioTrix Pro The ATP card is built around a CS4231 codec and an OPL4 synthesizer chips. The OPL4 mode is supported by a microcontroller running a General MIDI emulator. There is also a SB 1.5 compatible playback mode. NOTE! You will have to use the "old" config script when configuring AudioTrix Pro. Ensoniq SoundScape and compatibles Ensoniq has designed a soundcard architecture based on the OTTO synthesizer chip used in their professional MIDI synthesizers. Several companies (including Ensoniq, Reveal and Spea) are selling cards based on this architecture. NOTE! The SoundScape PnP is not supported by OSS/Free. Ensoniq VIVO and VIVO90 cards are not compatible with Soundscapes so the Soundscape driver will not work with them. You may want to use OSS/Linux with these cards. MAD16 and Mozart based cards The Mozart (OAK OTI-601), MAD16 (OPTi 82C928), MAD16 Pro (OPTi 82C929), OPTi 82C924/82C925 (in _non_ PnP mode) and OPTi 82C930 interface chips are used in many different soundcards, including some cards by Reveal miro and Turtle Beach (Tropez). The purpose of these chips is to connect other audio components to the PC bus. The interface chip performs address decoding for the other chips. NOTE! Tropez Plus is not MAD16 but CS4232 based. NOTE! MAD16 PnP cards (82C924, 82C925, 82C931) are not MAD16 compatible in the PnP mode. You will have to use them in MSS mode after having initialized them using isapnptools or DOS. 82C931 probably requires initialization using DOS/Windows (running isapnptools is not enough). It's possible to use 82C931 with OSS/Free by jumpering it to non-PnP mode (provided that the card has a jumper for this). In non-PnP mode 82C931 is compatible with 82C930 and should work with the MAD16 driver (without need to use isapnptools or DOS to initialize it). All OPTi chips are supported by OSS/Linux (both in PnP and non-PnP modes). Audio Excel DSP16 Support for this card was written by Riccardo Faccetti (riccardo@cdc8g5.cdc.polimi.it). The AEDSP16 driver included in the lowlevel/ directory. To use it you should use the "new" config script and to enable the "Additional low level drivers" option. Crystal CS4232 and CS4236 based cards such as AcerMagic S23, TB Tropez _Plus_ and many PC motherboards (Compaq, HP, Intel, ...) CS4232 is a PnP multimedia chip which contains a CS3231A codec, SB and MPU401 emulations. There is support for OPL3 too. Unfortunately the MPU401 mode doesn't work (I don't know how to initialize it). CS4236 is an enhanced (compatible) version of CS4232. NOTE! Don't ever try to use isapnptools with CS4232 since this just freezes your machine (due to chip bugs). If you have problems in getting CS4232 working you could try initializing it with DOS (CS4232C.EXE) and then booting Linux using loadlin. CS4232C.EXE loads a secret firmware patch which is not documented by Crystal. Turtle Beach Maui and Tropez "classic" This driver version supports sample, patch and program loading commands described in the Maui/Tropez User's manual. There is now full initialization support too. The audio side of the Tropez is based on the MAD16 chip (see above). NOTE! You will have to use the "old" config script when configuring Maui or Tropez. NOTE! Tropez Plus is different card than Tropez "classic" and will not work fully in Linux. You can get audio features working by configuring the card as a CS4232 based card (above). Jumpers and software configuration ================================== Some of the earliest soundcards were jumper configurable. You have to configure the driver use I/O, IRQ and DMA settings that match the jumpers. Just few 8 bit cards are fully jumper configurable (SB 1.x/2.x, SB Pro and clones). Some cards made by Aztech have an EEPROM which contains the config info. These cards behave much like hardware jumpered cards. Most cards have jumper for the base I/O address but other parameters are software configurable. Sometimes there are few other jumpers too. Latest cards are fully software configurable or they are PnP ISA compatible. There are no jumpers on the board. The driver handles software configurable cards automatically. Just configure the driver to use I/O, IRQ and DMA settings which are known to work. You could usually use the same values than with DOS and/or Windows. Using different settings is possible but not recommended since it may cause some trouble (for example when warm booting from an OS to another or when installing new hardware to the machine). Sound driver sets the soft configurable parameters of the card automatically during boot. Usually you don't need to run any extra initialization programs when booting Linux but there are some exceptions. See the card specific instructions (below) for more info. The drawback of software configuration is that the driver needs to know how the card must be initialized. It cannot initialize unknown cards even if they are otherwise compatible with some other cards (like SB, MPU401 or Windows Sound System). What if your card was not listed above? ======================================= The first thing to do is to look at the major IC chips on the card. Many of the latest soundcards are based on some standard chips. If you are lucky, all of them could be supported by the driver. The most common ones are the OPTi MAD16, Mozart, SoundScape (Ensoniq) and the PSS architectures listed above. Also look at the end of this file for list of unsupported cards and the ones which could be supported later. The last resort is to send _exact_ name and model information of the card to me together with a list of the major IC chips (manufactured, model) to me. I could then try to check if your card looks like something familiar. There are much more cards in the word than listed above. The first thing to do with these cards is to check if they emulate some other card/interface such as SB, MSS and/or MPU401. In this case there is a chance to get the card to work by booting DOS before starting Linux (boot DOS, hit ctrl-alt-del and boot Linux without hard resetting the machine). In this method the DOS based driver initializes the hardware to use a known I/O, IRQ and DMA settings. If sound driver is configured to use the same settings, everything should work OK. Configuring sound driver (with Linux) ===================================== Sound driver is currently a part of Linux kernel distribution. The driver files are located in directory /usr/src/linux/drivers/sound. **************************************************************************** * ALWAYS USE THE SOUND DRIVER VERSION WHICH IS DISTRIBUTED WITH * * THE KERNEL SOURCE PACKAGE YOU ARE USING. SOME ALPHA AND BETA TEST * * VERSIONS CAN BE INSTALLED FROM A SEPARATELY DISTRIBUTED PACKAGE * * BUT CHECK THAT THE PACKAGE IS NOT MUCH OLDER (OR NEWER) THAN THE * * KERNEL YOU ARE USING. IT'S POSSIBLE THAT THE KERNEL/DRIVER * * INTERFACE CHANGES BETWEEN KERNEL RELEASES WHICH MAY CAUSE SOME * * INCOMPATIBILITY PROBLEMS. * * * * IN CASE YOU INSTALL A SEPARATELY DISTRIBUTED SOUND DRIVER VERSION, * * BE SURE TO REMOVE OR RENAME THE OLD SOUND DRIVER DIRECTORY BEFORE * * INSTALLING THE NEW ONE. LEAVING OLD FILES TO THE SOUND DRIVER * * DIRECTORY _WILL_ CAUSE PROBLEMS WHEN THE DRIVER IS USED OR * * COMPILED. * **************************************************************************** To configure the driver, run "make config" in the kernel source directory (/usr/src/linux). Answer y to the question about Sound card support (after questions about mouse, CD-ROM, ftape, etc. supports). Sound config options will then be asked after some additional questions. After configuring the kernel and sound driver, run "make dep" and compile the kernel following instructions in the kernel README. The sound driver configuration dialog ------------------------------------- All config information of the sound driver is written to file linux/drivers/sound/local.h. You may save the old version is this file and use it again in case you want to use the same config later. In this case just answer n to each question made by the sound config program and put the original local.h back before running "make dep". Don't do this if the version number of the sound driver has changed. In this case you have to enter the configuration information again. If you already have the sound driver installed, consult printout of "cat /dev/sndstat" when configuring the driver again. It gives the I/O, IRQ and DMA settings you have used earlier. The sound config program (linux/drivers/sound/configure) starts by making some yes/no questions. Be careful when answering to these questions since answering y to a question may prevent some later ones from being asked. For example don't answer y to the first question (PAS16) if you don't really have a PAS16. Don't enable more cards than you really need since they just consume memory. Also some drivers (like MPU401) may conflict with your SCSI controller and prevent kernel from booting. If you card was in the list of supported cards (above), please look at the card specific config instructions (later in this file) before starting to configure. Some cards must be configured in way which is not obvious. So here is the beginning of the config dialog. Answer 'y' or 'n' to these questions. The default answer is shown so that (y/n) means 'y' by default and (n/y) means 'n'. To use the default value, just hit ENTER. But be careful since using the default _doesn't_ guarantee anything. Note also that all questions may not be asked. The configuration program may disable some questions depending on the earlier choices. It may also select some options automatically as well. "ProAudioSpectrum 16 support", - Answer 'y'_ONLY_ if you have a Pro Audio Spectrum _16_, Pro Audio Studio 16 or Logitech SoundMan 16 (be sure that you read the above list correctly). Don't answer 'y' if you have some other card made by Media Vision or Logitech since they are not PAS16 compatible. NOTE! Since 3.5-beta10 you need to enable SB support (next question) if you want to use the SB emulation of PAS16. It's also possible to the emulation if you want to use a true SB card together with PAS16 (there is another question about this that is asked later). "Sound Blaster support", - Answer 'y' if you have an original SB card made by Creative Labs or a full 100% hardware compatible clone (like Thunderboard or SM Games). If your card was in the list of supported cards (above), please look at the card specific instructions later in this file before answering this question. For an unknown card you may answer 'y' if the card claims to be SB compatible. Enable this option also with PAS16 (changed since v3.5-beta9). Don't enable SB if you have a MAD16 or Mozart compatible card. "Generic OPL2/OPL3 FM synthesizer support", - Answer 'y' if your card has a FM chip made by Yamaha (OPL2/OPL3/OPL4). Answering 'y' is usually a safe and recommended choice. However some cards may have software (TSR) FM emulation. Enabling FM support with these cards may cause trouble. However I don't currently know such cards. "Gravis Ultrasound support", - Answer 'y' if you have GUS or GUS MAX. Answer 'n' if you don't have GUS since the GUS driver consumes much memory. Currently I don't have experiences with the GUS ACE so I don't know what to answer with it. "MPU-401 support (NOT for SB16)", - Be careful with this question. The MPU401 interface is supported by almost any soundcard today. However some natively supported cards have their own driver for MPU401. Enabling the MPU401 option with these cards will cause a conflict. Also enabling MPU401 on a system that doesn't really have a MPU401 could cause some trouble. If your card was in the list of supported cards (above), please look at the card specific instructions later in this file. In MOST cases this MPU401 driver should only be used with "true" MIDI-only MPU401 professional cards. In most other cases there is another way to get the MPU401 compatible interface of a soundcard to work. Support for the MPU401 compatible MIDI port of SB16, ESS1688 and MV Jazz16 cards is included in the SB driver. Use it instead of this separate MPU401 driver with these cards. As well Soundscape, PSS and Maui drivers include their own MPU401 options. It's safe to answer 'y' if you have a true MPU401 MIDI interface card. "6850 UART Midi support", - It's safe to answer 'n' to this question in all cases. The 6850 UART interface is so rarely used. "PSS (ECHO-ADI2111) support", - Answer 'y' only if you have Orchid SW32, Cardinal DSP16 or some other card based on the PSS chipset (AD1848 codec + ADSP-2115 DSP chip + Echo ESC614 ASIC CHIP). "16 bit sampling option of GUS (_NOT_ GUS MAX)", - Answer 'y' if you have installed the 16 bit sampling daughtercard to your GUS. Answer 'n' if you have GUS MAX. Enabling this option disables GUS MAX support. "GUS MAX support", - Answer 'y' only if you have a GUS MAX. "Microsoft Sound System support", - Again think carefully before answering 'y' to this question. It's safe to answer 'y' in case you have the original Windows Sound System card made by Microsoft or Aztech SG 16 Pro (or NX16 Pro). Also you may answer 'y' in case your card was not listed earlier in this file. For cards having native support in the driver, consult the card specific instructions later in this file. Some drivers have their own MSS support and enabling this option will cause a conflict. Note! The MSS driver permits configuring two DMA channels. This is a "nonstandard" feature and works only with very few cards (if any). In most cases the second DMA channel should be disabled or set to the same channel than the first one. Trying to configure two separate channels with cards that don't support this feature will prevent audio (at least recording) from working. "Ensoniq Soundscape support", - Answer 'y' if you have a soundcard based on the Ensoniq SoundScape chipset. Such cards are being manufactured at least by Ensoniq, Spea and Reveal (note that Reveal makes other cards also). Oldest cards made by Spea don't work properly with Linux. Soundscape PnP as well as Ensoniq VIVO work only with the commercial OSS/Linux version. "MediaTrix AudioTrix Pro support", - Answer 'y' if you have the AudioTrix Pro. "Support for MAD16 and/or Mozart based cards", - Answer y if your card has a Mozart (OAK OTI-601) or MAD16 (OPTi 82C928, 82C929, 82C924/82C925 or 82C930) audio interface chip. These chips are currently quite common so it's possible that many no-name cards have one of them. In addition the MAD16 chip is used in some cards made by known manufacturers such as Turtle Beach (Tropez), Reveal (some models) and Diamond (some recent models). Note OPTi 82C924 and 82C925 are MAD16 compatible only in non PnP mode (jumper selectable on many cards). "Support for TB Maui" - This enables TB Maui specific initialization. Works with TB Maui and TB Tropez (may not work with Tropez Plus). Then the configuration program asks some y/n questions about the higher level services. It's recommended to answer 'y' to each of these questions. Answer 'n' only if you know you will not need the option. "MIDI interface support", - Answering 'n' disables /dev/midi## devices and access to any MIDI ports using /dev/sequencer and /dev/music. This option also affects any MPU401 and/or General MIDI compatible devices. "FM synthesizer (YM3812/OPL-3) support", - Answer 'y' here. "/dev/sequencer support", - Answering 'n' disables /dev/sequencer and /dev/music. Entering the I/O, IRQ and DMA config parameters ----------------------------------------------- After the above questions the configuration program prompts for the card specific configuration information. Usually just a set of I/O address, IRQ and DMA numbers are asked. With some cards the program asks for some files to be used during initialization of the card. For example many cards have a DSP chip or microprocessor which must be initialized by downloading a program (microcode) file to the card. In some cases this file is written to a .h file by the config program and then included to the driver during compile. Instructions for answering these questions are given in the next section. Card specific information ========================= This section gives additional instructions about configuring some cards. Please refer manual of your card for valid I/O, IRQ and DMA numbers. Using the same settings with DOS/Windows and Linux is recommended. Using different values could cause some problems when switching between different operating systems. Sound Blasters (the original ones by Creative) --------------------------------------------- It's possible to configure these cards to use different I/O, IRQ and DMA settings. Since the available settings have changed between various models, you have to consult manual of your card for the proper ones. It's a good idea to use the same values than with DOS/Windows. With SB and SB Pro it's the only choice. SB16 has software selectable IRQ and DMA channels but using different values with DOS and Linux is likely to cause troubles. The DOS driver is not able to reset the card properly after warm boot from Linux if Linux has used different IRQ or DMA values. The original (steam) Sound Blaster (versions 1.x and 2.x) use always DMA1. There is no way to change it. The SB16 needs two DMA channels. A 8 bit one (1 or 3) is required for 8 bit operation and a 16 bit one (5, 6 or 7) for the 16 bit mode. In theory it's possible to use just one (8 bit) DMA channel by answering the 8 bit one when the configuration program asks for the 16 bit one. This may work in some systems but is likely to cause terrible noise on some other systems. NOTE! Don't enable the SM Games option (asked by the configuration program) if you are not 101% sure that your card is a Logitech Soundman Games (not a SM Wave or SM16). SB Clones --------- First of all: There are no SB16 clones. There are SB Pro clones with a 16 bit mode which is not SB16 compatible. The most likely alternative is that the 16 bit mode means MSS/WSS. There are just few fully 100% hardware SB or SB Pro compatible cards. I know just Thunderboard and SM Games. Other cards require some kind of hardware initialization before they become SB compatible. Check if your card was listed in the beginning of this file. In this case you should follow instructions for your card later in this file. For other not fully SB clones you may try initialization using DOS in the following way: - Boot DOS so that the card specific driver gets run. - Hit ctrl-alt-del (or use loadlin) to boot Linux. Don't switch off power or press the reset button. - If you use the same I/O, IRQ and DMA settings in Linux, the card should work. If your card is both SB and MSS compatible, I recommend using the MSS mode. Most cards of this kind are not able to work in the SB and the MSS mode simultaneously. Using the MSS mode provides 16 bit recording and playback. ProAudioSpectrum 16 and compatibles ----------------------------------- PAS16 has a SB emulation chip which can be used together with the native (16 bit) mode of the card. To enable this emulation you should configure the driver to have SB support too (this has been changed since version 3.5-beta9 of this driver). With current driver versions it's also possible to use PAS16 together with another SB compatible card. In this case you should configure SB support for the other card and to disable the SB emulation of PAS16 (there is a separate questions about this). With PAS16 you can use two audio device files at the same time. /dev/dsp (and /dev/audio) is connected to the 8/16 bit native codec and the /dev/dsp1 (and /dev/audio1) is connected to the SB emulation (8 bit mono only). Gravis Ultrasound ----------------- There are many different revisions of the Ultrasound card (GUS). The earliest ones (pre 3.7) don't have a hardware mixer. With these cards the driver uses a software emulation for synth and pcm playbacks. It's also possible to switch some of the inputs (line in, mic) off by setting mixer volume of the channel level below 10%. For recording you have to select the channel as a recording source and to use volume above 10%. GUS 3.7 has a hardware mixer. GUS MAX and the 16 bit sampling daughtercard have a CS4231 codec chip which also contains a mixer. Configuring GUS is simple. Just enable the GUS support and GUS MAX or the 16 bit daughtercard if you have them. Note that enabling the daughter card disables GUS MAX driver. NOTE for owners of the 16 bit daughtercard: By default the daughtercard uses /dev/dsp (and /dev/audio). Command "ln -sf /dev/dsp1 /dev/dsp" selects the daughter card as the default device. With just the standard GUS enabled the configuration program prompts for the I/O, IRQ and DMA numbers for the card. Use the same values than with DOS. With the daughter card option enabled you will be prompted for the I/O, IRQ and DMA numbers for the daughter card. You have to use different I/O and DMA values than for the standard GUS. The daughter card permits simultaneous recording and playback. Use /dev/dsp (the daughtercard) for recording and /dev/dsp1 (GUS GF1) for playback. GUS MAX uses the same I/O address and IRQ settings than the original GUS (GUS MAX = GUS + a CS4231 codec). In addition an extra DMA channel may be used. Using two DMA channels permits simultaneous playback using two devices (dev/dsp0 and /dev/dsp1). The second DMA channel is required for full duplex audio. To enable the second DMA channels, give a valid DMA channel when the config program asks for the GUS MAX DMA (entering -1 disables the second DMA). Using 16 bit DMA channels (5,6 or 7) is recommended. If you have problems in recording with GUS MAX, you could try to use just one 8 bit DMA channel. Recording will not work with one DMA channel if it's a 16 bit one. Microphone input of GUS MAX is connected to mixer in little bit nonstandard way. There is actually two microphone volume controls. Normal "mic" controls only recording level. Mixer control "speaker" is used to control volume of microphone signal connected directly to line/speaker out. So just decrease volume of "speaker" if you have problems with microphone feedback. GUS ACE works too but any attempt to record or to use the MIDI port will fail. GUS PnP (with RAM) is partially supported but it needs to be initialized using DOS or isapnptools before starting the driver. MPU401 and Windows Sound System ------------------------------- Again. Don't enable these options in case your card is listed somewhere else in this file. Configuring these cards is obvious (or it should be). With MSS you should probably enable the OPL3 synth also since most MSS compatible cards have it. However check that this is true before enabling OPL3. Sound driver supports more than one MPU401 compatible cards at the same time but the config program asks config info for just the first of them. Adding the second or third MPU interfaces must be done manually by editing sound/local.h (after running the config program). Add defines for MPU2_BASE & MPU2_IRQ (and MPU3_BASE & MPU3_IRQ) to the file. CAUTION! The default I/O base of Adaptec AHA-1542 SCSI controller is 0x330 which is also the default of the MPU401 driver. Don't configure the sound driver to use 0x330 as the MPU401 base if you have a AHA1542. The kernel will not boot if you make this mistake. PSS --- Even the PSS cards are compatible with SB, MSS and MPU401, you must not enable these options when configuring the driver. The configuration program handles these options itself. (You may use the SB, MPU and MSS options together with PSS if you have another card on the system). The PSS driver enables MSS and MPU401 modes of the card. SB is not enabled since it doesn't work concurrently with MSS. The driver loads also a DSP algorithm which is used to for the general MIDI emulation. The algorithm file (.ld) is read by the config program and written to a file included when the pss.c is compiled. For this reason the config program asks if you want to download the file. Use the genmidi.ld file distributed with the DOS/Windows drivers of the card (don't use the mt32.ld). With some cards the file is called 'synth.ld'. You must have access to the file when configuring the driver. The easiest way is to mount the DOS partition containing the file with Linux. It's possible to load your own DSP algorithms and run them with the card. Look at the directory pss_test of snd-util-3.0.tar.gz for more info. AudioTrix Pro ------------- You have to enable the OPL3 and SB (not SB Pro or SB16) drivers in addition to the native AudioTrix driver. Don't enable MSS or MPU drivers. Configuring ATP is little bit tricky since it uses so many I/O, IRQ and DMA numbers. Using the same values than with DOS/Win is a good idea. Don't attempt to use the same IRQ or DMA channels twice. The SB mode of ATP is implemented so the the ATP driver just enables SB in the proper address. The SB driver handles the rest. You have to configure both the SB driver and the SB mode of ATP to use the same IRQ, DMA and I/O settings. Also the ATP has a microcontroller for the General MIDI emulation (OPL4). For this reason the driver asks for the name of a file containing the microcode (TRXPRO.HEX). This file is usually located in the directory where the DOS drivers were installed. You must have access to this file when configuring the driver. If you have the effects daughtercard, it must be initialized by running the setfx program of snd-util-3.0.tar.gz package. This step is not required when using the (future) binary distribution version of the driver. Ensoniq SoundScape ------------------ NOTE! The new PnP SoundScape is not supported yet. Soundscape compatible cards made by Reveal don't work with Linux. They use older revision of the Soundscape chipset which is not fully compatible with newer cards made by Ensoniq. The SoundScape driver handles initialization of MSS and MPU supports itself so you don't need to enable other drivers than SoundScape (enable also the /dev/dsp, /dev/sequencer and MIDI supports). !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!! !!!! !!!!! NOTE! Before version 3.5-beta6 there WERE two sets of audio !!!! !!!!! device files (/dev/dsp0 and /dev/dsp1). The first one WAS !!!! !!!!! used only for card initialization and the second for audio !!!! !!!!! purposes. It WAS required to change /dev/dsp (a symlink) to !!!! !!!!! point to /dev/dsp1. !!!! !!!!! !!!! !!!!! This is not required with OSS versions 3.5-beta6 and later !!!! !!!!! since there is now just one audio device file. Please !!!! !!!!! change /dev/dsp to point back to /dev/dsp0 if you are !!!! !!!!! upgrading from an earlier driver version using !!!! !!!!! (cd /dev;rm dsp;ln -s dsp0 dsp). !!!! !!!!! !!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The configuration program asks one DMA channel and two interrupts. One IRQ and one DMA is used by the MSS codec. The second IRQ is required for the MPU401 mode (you have to use different IRQs for both purposes). There were earlier two DMA channels for SoundScape but the current driver version requires just one. The SoundScape card has a Motorola microcontroller which must initialized _after_ boot (the driver doesn't initialize it during boot). The initialization is done by running the 'ssinit' program which is distributed in the snd-util-3.0.tar.gz package. You have to edit two defines in the ssinit.c and then compile the program. You may run ssinit manually (after each boot) or add it to /etc/rc.d/rc.local. The ssinit program needs the microcode file that comes with the DOS/Windows driver of the card. You will need to use version 1.30.00 or later of the microcode file (sndscape.co0 or sndscape.co1 depending on your card model). THE OLD sndscape.cod WILL NOT WORK. IT WILL HANG YOUR MACHINE. The only way to get the new microcode file is to download and install the DOS/Windows driver from ftp://ftp.ensoniq.com/pub. Then you have to select the proper microcode file to use: soundscape.co0 is the right one for most cards and sndscape.co1 is for few (older) cards made by Reveal and/or Spea. The driver has capability to detect the card version during boot. Look at the boot log messages in /var/adm/messages and locate the sound driver initialization message for the SoundScape card. If the driver displays string , you have an old card and you will need to use sndscape.co1. For other cards use soundscape.co0. New Soundscape revisions such as Elite and PnP use code files with higher numbers (.co2, .co3, etc.). NOTE! Ensoniq Soundscape VIVO is not compatible with other Soundscape cards. Currently it's possible to use it in Linux only with OSS/Linux drivers. Check /var/adm/messages after running ssinit. The driver prints the board version after downloading the microcode file. That version number must match the number in the name of the microcode file (extension). Running ssinit with a wrong version of the sndscape.co? file is not dangerous as long as you don't try to use a file called sndscape.cod. If you have initialized the card using a wrong microcode file (sounds are terrible), just modify ssinit.c to use another microcode file and try again. It's possible to use an earlier version of sndscape.co[01] but it may sound weird. MAD16 (Pro) and Mozart ---------------------- You need to enable just the MAD16 /Mozart support when configuring the driver. _Don't_ enable SB, MPU401 or MSS. However you will need the /dev/audio, /dev/sequencer and MIDI supports. Mozart and OPTi 82C928 (the original MAD16) chips don't support MPU401 mode so enter just 0 when the configuration program asks the MPU/MIDI I/O base. The MAD16 Pro (OPTi 82C929) and 82C930 chips have MPU401 mode. TB Tropez is based on the 82C929 chip. It has two MIDI ports. The one connected to the MAD16 chip is the second one (there is a second MIDI connector/pins somewhere??). If you have not connected the second MIDI port, just disable the MIDI port of MAD16. The 'Maui' compatible synth of Tropez is jumper configurable and not connected to the MAD16 chip (the Maui driver can be used with it). Some MAD16 based cards may cause feedback, whistle or terrible noise if the line3 mixer channel is turned too high. This happens at least with Shuttle Sound System. Current driver versions set volume of line3 low enough so this should not be a problem. If you have a MAD16 card which have an OPL4 (FM + Wave table) synthesizer chip (_not_ an OPL3), you have to append a line containing #define MAD16_OPL4 to the file linux/drivers/sound/local.h (after running make config). MAD16 cards having a CS4231 codec support full duplex mode. This mode can be enabled by configuring the card to use two DMA channels. Possible DMA channel pairs are: 0&1, 1&0 and 3&0. NOTE! Cards having an OPTi 82C924/82C925 chip work with OSS/Free only in non-PnP mode (usually jumper selectable). The PnP mode is supported only by OSS/Linux. MV Jazz (ProSonic) ------------------ The Jazz16 driver is just a hack made to the SB Pro driver. However it works fairly well. You have to enable SB, SB Pro (_not_ SB16) and MPU401 supports when configuring the driver. The configuration program asks later if you want support for MV Jazz16 based cards (after asking SB base address). Answer 'y' here and the driver asks the second (16 bit) DMA channel. The Jazz16 driver uses the MPU401 driver in a way which will cause problems if you have another MPU401 compatible card. In this case you must give address of the Jazz16 based MPU401 interface when the config program prompts for the MPU401 information. Then look at the MPU401 specific section for instructions about configuring more than one MPU401 cards. Logitech Soundman Wave ---------------------- NOTE! You will have to use the "old" config script when configuring SM Wave. Read the above MV Jazz specific instructions first. The Logitech SoundMan Wave (don't confuse with the SM16 or SM Games) is a MV Jazz based card which has an additional OPL4 based wave table synthesizer. The OPL4 chip is handled by an on board microcontroller which must be initialized during boot. The config program asks if you have a SM Wave immediately after asking the second DMA channel of jazz16. If you answer 'y', the config program will ask name of the file containing code to be loaded to the microcontroller. The file is usually called MIDI0001.BIN and it's located in the DOS/Windows driver directory. The file may also be called as TSUNAMI.BIN or something else (older cards?). The OPL4 synth will be inaccessible without loading the microcontroller code. Also remember to enable SB MPU401 support if you want to use the OPL4 mode. (Don't enable the 'normal' MPU401 device as with some earlier driver versions (pre 3.5-alpha8)). NOTE! Don't answer 'y' when the driver asks about SM Games support (the next question after the MIDI0001.BIN name). However answering 'y' doesn't cause damage your computer so don't panic. Sound Galaxies -------------- There are many different Sound Galaxy cards made by Aztech. The 8 bit ones are fully SB or SB Pro compatible and there should be no problems with them. The older 16 bit cards (SG Pro16, SG NX Pro16, Nova and Lyra) have an EEPROM chip for storing the configuration data. There is a microcontroller which initializes the card to match the EEPROM settings when the machine is powered on. These cards actually behave just like they have jumpers for all of the settings. Configure driver for MSS, MPU, SB/SB Pro and OPL3 supports with these cards. There are some new Sound Galaxies in the market. I have no experience with them so read the card's manual carefully. ESS ES1688 and ES688 'AudioDrive' based cards --------------------------------------------- Support for these two ESS chips is embedded in the SB driver. Configure these cards just like SB. Enable the 'SB MPU401 MIDI port' if you want to use MIDI features of ES1688. ES688 doesn't have MPU mode so you don't need to enable it (the driver uses normal SB MIDI automatically with ES688). NOTE! ESS cards are not compatible with MSS/WSS so don't worry if MSS support of OSS doesn't work with it. There are some ES1688/688 based soundcards and (particularily) motherboards which use software configurable I/O port relocation feature of the chip. This ESS proprietary feature is supported only by OSS/Linux. There are ES1688 based cards which use different interrupt pin assignment than recommended by ESS (5, 7, 9/2 and 10). In this case all IRQ's don't work. At least a card called (Pearl?) Hypersound 16 supports IRQ15 but it doesn't work. ES1868 is a PnP chip which is (supposed to be) compatible with ESS1688 brobably works with OSS/Free after initialization using isapnptools. Reveal cards ------------ There are several different cards made/marketed by Reveal. Some of them are compatible with SoundScape and some use the MAD16 chip. You may have to look at the card and try to identify origin of the card. Diamond ------- The oldest (Sierra Aria based) soundcards made by Diamond are not supported (they may work if the card is initialized using DOS). The recent (LX?) models are based on the MAD16 chip which is supported by the driver. Audio Excel DSP16 ----------------- Support for this card is currently not functional. A new driver for it should be available later this year. PCMCIA cards ------------ Sorry, can't help. Some cards may work and some don't. TI TM4000M notebooks -------------------- These computers have a built in sound support based on the Jazz chipset. Look at the instructions for MV Jazz (above). It's also important to note that there is something wrong with the mouse port and sound at least on some TM models. Don't enable the "C&T 82C710 mouse port support" when configuring Linux. Having it enabled is likely to cause mysterious problems and kernel failures when sound is used. miroSOUND --------- The miroSOUND PCM12 has been used successfully. This card is based on the MAD16, OPL4, and CS4231A chips and everything said in the section about MAD16 cards applies here, too. The only major difference between the PCM12 and other MAD16 cards is that instead of the mixer in the CS4231 codec a separate mixer controlled by an on-board 80C32 microcontroller is used. Control of the mixer takes place via the ACI (miro's audio control interface) protocol that is implemented in a separate lowlevel driver. Make sure you compile this ACI driver together with the normal MAD16 support when you use a miroSOUND PCM12 card. The ACI mixer is controlled by /dev/mixer and the CS4231 mixer by /dev/mixer2. You usually don't want to change anything on the CS4231 mixer. The miroSOUND PCM12 is capable of full duplex operation (simultaneous PCM replay and recording), which allows you to implement nice real-time signal processing audio effect software and network telephones. The ACI mixer has to be configured into a special "solo" mode for duplex operation in order to avoid feedback caused by the mixer (input hears output signal). See lowlevel/aci.c for details on the ioctl() for activating the "solo" mode. The following configuration parameters have worked fine for the PCM12 in Markus Kuhn's system, many other configurations might work, too: MAD16_BASE=0x530, MAD16_IRQ=11, MAD16_DMA=3, MAD16_DMA2=0, MAD16_MPU_BASE=0x330, MAD16_MPU_IRQ=10, DSP_BUFFSIZE=65536, SELECTED_SOUND_OPTIONS=0x00281000. The miroSOUND PCM1 pro and the PCM20 are very similar to the PCM12. Perhaps the same ACI driver also works for these cards, however this has never actually been tested. The PCM20 contains a radio tuner, which is also controlled by ACI. This radio tuner is currently not supported by the ACI driver, but documentation for it was provided by miro and ACI tuner support could easily be added if someone is really interested. Compaq Deskpro XL ----------------- The builtin sound hardware of Compaq Deskpro XL is now supported. You need to configure the driver with MSS and OPL3 supports enabled. In addition you need to manually edit linux/drivers/sound/local.h and to add a line containing "#define DESKPROXL" if you used make menuconfig/xconfig. Others? ------- Since there are so many different soundcards, it's likely that I have forgotten to mention many of them. Please inform me if you know yet another card which works with Linux, please inform me (or is anybody else willing to maintain a database of supported cards (just like in XF86)?). Cards not supported yet ======================= Please check which version of sound driver you are using before complaining that your card is not supported. It's possible that you are using a driver version which was released months before your card was introduced. Driver's release date is listed after its version number in "cat /dev/sndstat" printout and in file linux/drivers/sound/soundvers.h. First of all. There is an easy way to make most soundcards to work with Linux. Just use the DOS based driver to initialize the card to a _known_ state. Then use loadlin.exe to boot Linux. If Linux is configured to use the same I/O, IRQ and DMA numbers than DOS, the card could work. (ctrl-alt-del can be used in place of loadlin.exe but it doesn't work with new motherboards). This method works also with all/most PnP soundcards. Don't get fooled with SB compatibility. Most cards are compatible with SB but that may require a TSR which is not possible with Linux. If the card is compatible with MSS, it's a better choice. Some cards don't work in the SB and MSS modes at the same time. Then there are cards which are no longer manufactured and/or which are relatively rarely used (such as the 8 bit ProAudioSpectrum models). It's extremely unlikely that such cards never get supported. Adding support for a new card requires much work and increases time required in maintaining the driver (some changes need to be done to all low level drivers and be tested too, maybe with multiple operating systems). For this reason I have made a decision to not support obsolete cards. It's possible that someone else makes a separately distributed driver (diffs) for the card. Writing a driver for a new card is not possible if there are no programming information available about the card. If you don't find your new card from this file, look from the home page (http://www.4front-tech.com/ossfree). Then please contact manufacturer of the card and ask if they have (or are willing to) released technical details of the card. Do this before contacting me. I can only answer 'no' if there are no programming information available. I have made decision to not accept code based on reverse engineering to the driver. There are three main reasons: First I don't want to break relationships to sound card manufacturers. The second reason is that maintaining and supporting a driver without any specs will be a pain. The third reason is that companies have freedom to refuse selling their products to other than Windows users. Some companies don't give low level technical information about their products to public or at least their require signing a NDA. It's not possible to implement a freeware driver for them. However it's possible that support for such cards become available in the commercial version of this driver (see http://www.4Front-tech.com/oss.html for more info). There are some common audio chipsets that are not supported yet. For example Sierra Aria and IBM Mwave. It's possible that these architectures get some support in future but I can't make any promises. Just look at the home page (http://www.4front-tech.com/ossfree/new_cards.html) for latest info. Information about unsupported soundcards and chipsets is welcome as well as free copies of soundcards, SDKs and operating systems. If you have any corrections and/or comments, please contact me. Hannu Savolainen hannu@voxware.pp.fi Personal home page: http://personal.eunet.fi/pp/voxware/hannu.html www home page of OSS/Free: http://www.4front-tech.com/ossfree European/Finnish mirror: http://personal.eunet.fi/pp/voxware www home page of commercial OSS (Open Sound System) drivers: http://www.4front-tech.com/oss.html