/* * sound/audio.c * * Device file manager for /dev/audio */ /* * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ #include #include "sound_config.h" #ifdef CONFIG_AUDIO #include "ulaw.h" #include "coproc.h" #define NEUTRAL8 0x80 #define NEUTRAL16 0x00 static int audio_mode[MAX_AUDIO_DEV]; static int dev_nblock[MAX_AUDIO_DEV]; /* 1 if in nonblocking mode */ #define AM_NONE 0 #define AM_WRITE OPEN_WRITE #define AM_READ OPEN_READ static int dma_ioctl (int dev, unsigned int cmd, caddr_t arg); static int local_format[MAX_AUDIO_DEV], audio_format[MAX_AUDIO_DEV]; static int local_conversion[MAX_AUDIO_DEV]; #define CNV_MU_LAW 0x00000001 static int set_format (int dev, int fmt) { if (fmt != AFMT_QUERY) { local_conversion[dev] = 0; if (!(audio_devs[dev]->format_mask & fmt)) /* Not supported */ if (fmt == AFMT_MU_LAW) { fmt = AFMT_U8; local_conversion[dev] = CNV_MU_LAW; } else fmt = AFMT_U8; /* This is always supported */ audio_format[dev] = audio_devs[dev]->d->set_bits (dev, fmt); local_format[dev] = fmt; } else return local_format[dev]; return audio_format[dev]; } int audio_open (int dev, struct fileinfo *file) { int ret; int bits; int dev_type = dev & 0x0f; int mode = file->mode & O_ACCMODE; dev = dev >> 4; if (dev_type == SND_DEV_DSP16) bits = 16; else bits = 8; if (dev < 0 || dev >= num_audiodevs) return -ENXIO; if ((ret = DMAbuf_open (dev, mode)) < 0) return ret; if (audio_devs[dev]->coproc) if ((ret = audio_devs[dev]->coproc-> open (audio_devs[dev]->coproc->devc, COPR_PCM)) < 0) { audio_release (dev, file); printk ("Sound: Can't access coprocessor device\n"); return ret; } local_conversion[dev] = 0; if (dev_type == SND_DEV_AUDIO) { set_format (dev, AFMT_MU_LAW); } else set_format (dev, bits); audio_mode[dev] = AM_NONE; dev_nblock[dev] = 0; return ret; } static void sync_output (int dev) { int p, i; int l; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; if (dmap->fragment_size <= 0) return; dmap->flags |= DMA_POST; /* Align the write pointer with fragment boundaries */ if ((l = dmap->user_counter % dmap->fragment_size) > 0) { int len; unsigned long offs = dmap->user_counter % dmap->bytes_in_use; len = dmap->fragment_size - l; memset (dmap->raw_buf + offs, dmap->neutral_byte, len); DMAbuf_move_wrpointer (dev, len); } /* * Clean all unused buffer fragments. */ p = dmap->qtail; dmap->flags |= DMA_POST; for (i = dmap->qlen + 1; i < dmap->nbufs; i++) { p = (p + 1) % dmap->nbufs; if (((dmap->raw_buf + p * dmap->fragment_size) + dmap->fragment_size) > (dmap->raw_buf + dmap->buffsize)) printk ("audio: Buffer error 2\n"); memset (dmap->raw_buf + p * dmap->fragment_size, dmap->neutral_byte, dmap->fragment_size); } dmap->flags |= DMA_DIRTY; } void audio_release (int dev, struct fileinfo *file) { int mode; dev = dev >> 4; mode = file->mode & O_ACCMODE; audio_devs[dev]->dmap_out->closing = 1; audio_devs[dev]->dmap_in->closing = 1; sync_output (dev); if (audio_devs[dev]->coproc) audio_devs[dev]->coproc->close (audio_devs[dev]->coproc->devc, COPR_PCM); DMAbuf_release (dev, mode); } #if defined(NO_INLINE_ASM) || !defined(i386) static void translate_bytes (const unsigned char *table, unsigned char *buff, int n) { unsigned long i; if (n <= 0) return; for (i = 0; i < n; ++i) buff[i] = table[buff[i]]; } #else extern inline void translate_bytes (const void *table, void *buff, int n) { if (n > 0) { __asm__ ("cld\n" "1:\tlodsb\n\t" "xlatb\n\t" "stosb\n\t" "loop 1b\n\t": : "b" ((long) table), "c" (n), "D" ((long) buff), "S" ((long) buff) : "bx", "cx", "di", "si", "ax"); } } #endif int audio_write (int dev, struct fileinfo *file, const char *buf, int count) { int c, p, l, buf_size; int err; char *dma_buf; dev = dev >> 4; p = 0; c = count; if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return -EPERM; if (audio_devs[dev]->flags & DMA_DUPLEX) audio_mode[dev] |= AM_WRITE; else audio_mode[dev] = AM_WRITE; if (!count) /* Flush output */ { sync_output (dev); return 0; } while (c) { if ((err = DMAbuf_getwrbuffer (dev, &dma_buf, &buf_size, dev_nblock[dev])) < 0) { /* Handle nonblocking mode */ if (dev_nblock[dev] && err == -EAGAIN) return p; /* No more space. Return # of accepted bytes */ return err; } l = c; if (l > buf_size) l = buf_size; if (!audio_devs[dev]->d->copy_user) { if ((dma_buf + l) > (audio_devs[dev]->dmap_out->raw_buf + audio_devs[dev]->dmap_out->buffsize)) printk ("audio: Buffer error 3 (%lx,%d), (%lx, %d)\n", (long) dma_buf, l, (long) audio_devs[dev]->dmap_out->raw_buf, (int) audio_devs[dev]->dmap_out->buffsize); if (dma_buf < audio_devs[dev]->dmap_out->raw_buf) printk ("audio: Buffer error 13\n"); copy_from_user (dma_buf, &(buf)[p], l); } else audio_devs[dev]->d->copy_user (dev, dma_buf, 0, buf, p, l); if (local_conversion[dev] & CNV_MU_LAW) { /* * This just allows interrupts while the conversion is running */ sti (); translate_bytes (ulaw_dsp, (unsigned char *) dma_buf, l); } c -= l; p += l; DMAbuf_move_wrpointer (dev, l); } return count; } int audio_read (int dev, struct fileinfo *file, char *buf, int count) { int c, p, l; char *dmabuf; int buf_no; dev = dev >> 4; p = 0; c = count; if (!(audio_devs[dev]->open_mode & OPEN_READ)) return -EPERM; if ((audio_mode[dev] & AM_WRITE) && !(audio_devs[dev]->flags & DMA_DUPLEX)) { sync_output (dev); } if (audio_devs[dev]->flags & DMA_DUPLEX) audio_mode[dev] |= AM_READ; else audio_mode[dev] = AM_READ; while (c) { if ((buf_no = DMAbuf_getrdbuffer (dev, &dmabuf, &l, dev_nblock[dev])) < 0) { /* Nonblocking mode handling. Return current # of bytes */ if (dev_nblock[dev] && buf_no == -EAGAIN) return p; return buf_no; } if (l > c) l = c; /* * Insert any local processing here. */ if (local_conversion[dev] & CNV_MU_LAW) { /* * This just allows interrupts while the conversion is running */ sti (); translate_bytes (dsp_ulaw, (unsigned char *) dmabuf, l); } { char *fixit = dmabuf; copy_to_user (&(buf)[p], fixit, l); }; DMAbuf_rmchars (dev, buf_no, l); p += l; c -= l; } return count - c; } int audio_ioctl (int dev, struct fileinfo *file_must_not_be_used, unsigned int cmd, caddr_t arg) { int val; /* printk("audio_ioctl(%x, %x)\n", (int)cmd, (int)arg); */ dev = dev >> 4; if (((cmd >> 8) & 0xff) == 'C') { if (audio_devs[dev]->coproc) /* Coprocessor ioctl */ return audio_devs[dev]->coproc->ioctl (audio_devs[dev]->coproc->devc, cmd, arg, 0); else printk ("/dev/dsp%d: No coprocessor for this device\n", dev); return -ENXIO; } else switch (cmd) { case SNDCTL_DSP_SYNC: if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return 0; if (audio_devs[dev]->dmap_out->fragment_size == 0) return 0; sync_output (dev); DMAbuf_sync (dev); DMAbuf_reset (dev); return 0; break; case SNDCTL_DSP_POST: if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return 0; if (audio_devs[dev]->dmap_out->fragment_size == 0) return 0; audio_devs[dev]->dmap_out->flags |= DMA_POST | DMA_DIRTY; sync_output (dev); dma_ioctl (dev, SNDCTL_DSP_POST, (caddr_t) 0); return 0; break; case SNDCTL_DSP_RESET: audio_mode[dev] = AM_NONE; DMAbuf_reset (dev); return 0; break; case SNDCTL_DSP_GETFMTS: return (*(int *) arg = audio_devs[dev]->format_mask); break; case SNDCTL_DSP_SETFMT: val = *(int *) arg; return (*(int *) arg = set_format (dev, val)); case SNDCTL_DSP_GETISPACE: if (!(audio_devs[dev]->open_mode & OPEN_READ)) return 0; if ((audio_mode[dev] & AM_WRITE) && !(audio_devs[dev]->flags & DMA_DUPLEX)) return -EBUSY; { audio_buf_info info; int err = dma_ioctl (dev, cmd, (caddr_t) & info); if (err < 0) return err; memcpy ((&((char *) arg)[0]), (char *) &info, sizeof (info)); return 0; } case SNDCTL_DSP_GETOSPACE: if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return -EPERM; if ((audio_mode[dev] & AM_READ) && !(audio_devs[dev]->flags & DMA_DUPLEX)) return -EBUSY; { audio_buf_info info; int err = dma_ioctl (dev, cmd, (caddr_t) & info); if (err < 0) return err; memcpy ((&((char *) arg)[0]), (char *) &info, sizeof (info)); return 0; } case SNDCTL_DSP_NONBLOCK: dev_nblock[dev] = 1; return 0; break; case SNDCTL_DSP_GETCAPS: { int info = 1; /* Revision level of this ioctl() */ if (audio_devs[dev]->flags & DMA_DUPLEX && audio_devs[dev]->open_mode == OPEN_READWRITE) info |= DSP_CAP_DUPLEX; if (audio_devs[dev]->coproc) info |= DSP_CAP_COPROC; if (audio_devs[dev]->d->local_qlen) /* Device has hidden buffers */ info |= DSP_CAP_BATCH; if (audio_devs[dev]->d->trigger) /* Supports SETTRIGGER */ info |= DSP_CAP_TRIGGER; info |= DSP_CAP_MMAP; memcpy ((&((char *) arg)[0]), (char *) &info, sizeof (info)); return 0; } break; case SOUND_PCM_WRITE_RATE: val = *(int *) arg; return (*(int *) arg = audio_devs[dev]->d->set_speed (dev, val)); case SOUND_PCM_READ_RATE: return (*(int *) arg = audio_devs[dev]->d->set_speed (dev, 0)); case SNDCTL_DSP_STEREO: { int n; n = *(int *) arg; if (n > 1) { printk ("sound: SNDCTL_DSP_STEREO called with invalid argument %d\n", n); return -EINVAL; } if (n < 0) return -EINVAL; return (*(int *) arg = audio_devs[dev]->d->set_channels (dev, n + 1) - 1); } case SOUND_PCM_WRITE_CHANNELS: val = *(int *) arg; return (*(int *) arg = audio_devs[dev]->d->set_channels (dev, val)); case SOUND_PCM_READ_CHANNELS: return (*(int *) arg = audio_devs[dev]->d->set_channels (dev, 0)); case SOUND_PCM_READ_BITS: return (*(int *) arg = audio_devs[dev]->d->set_bits (dev, 0)); case SNDCTL_DSP_SETDUPLEX: if (audio_devs[dev]->open_mode != OPEN_READWRITE) return -EPERM; if (audio_devs[dev]->flags & DMA_DUPLEX) return 0; else return -EIO; break; case SNDCTL_DSP_PROFILE: if (audio_devs[dev]->open_mode & OPEN_WRITE) audio_devs[dev]->dmap_out->applic_profile = *(int *) arg; if (audio_devs[dev]->open_mode & OPEN_READ) audio_devs[dev]->dmap_in->applic_profile = *(int *) arg; return 0; break; default: return dma_ioctl (dev, cmd, arg); } } void audio_init_devices (void) { /* * NOTE! This routine could be called several times during boot. */ } #endif void reorganize_buffers (int dev, struct dma_buffparms *dmap, int recording) { /* * This routine breaks the physical device buffers to logical ones. */ struct audio_operations *dsp_dev = audio_devs[dev]; unsigned i, n; unsigned sr, nc, sz, bsz; if (!dmap->needs_reorg) return; sr = dsp_dev->d->set_speed (dev, 0); nc = dsp_dev->d->set_channels (dev, 0); sz = dsp_dev->d->set_bits (dev, 0); dmap->needs_reorg = 0; if (sz == 8) dmap->neutral_byte = NEUTRAL8; else dmap->neutral_byte = NEUTRAL16; if (sr < 1 || nc < 1 || sz < 1) { printk ("Warning: Invalid PCM parameters[%d] sr=%d, nc=%d, sz=%d\n", dev, sr, nc, sz); sr = DSP_DEFAULT_SPEED; nc = 1; sz = 8; } sz = sr * nc * sz; sz /= 8; /* #bits -> #bytes */ dmap->data_rate = sz; if (dmap->fragment_size == 0) { /* Compute the fragment size using the default algorithm */ /* * Compute a buffer size for time not exceeding 1 second. * Usually this algorithm gives a buffer size for 0.5 to 1.0 seconds * of sound (using the current speed, sample size and #channels). */ bsz = dmap->buffsize; while (bsz > sz) bsz /= 2; if (bsz == dmap->buffsize) bsz /= 2; /* Needs at least 2 buffers */ /* * Split the computed fragment to smaller parts. After 3.5a9 * the default subdivision is 4 which should give better * results when recording. */ if (dmap->subdivision == 0) /* Not already set */ { dmap->subdivision = 4; /* Init to the default value */ if ((bsz / dmap->subdivision) > 4096) dmap->subdivision *= 2; if ((bsz / dmap->subdivision) < 4096) dmap->subdivision = 1; } bsz /= dmap->subdivision; if (bsz < 16) bsz = 16; /* Just a sanity check */ dmap->fragment_size = bsz; } else { /* * The process has specified the buffer size with SNDCTL_DSP_SETFRAGMENT or * the buffer size computation has already been done. */ if (dmap->fragment_size > (dmap->buffsize / 2)) dmap->fragment_size = (dmap->buffsize / 2); bsz = dmap->fragment_size; } if (audio_devs[dev]->min_fragment) if (bsz < (1 << audio_devs[dev]->min_fragment)) bsz = 1 << audio_devs[dev]->min_fragment; if (audio_devs[dev]->max_fragment) if (bsz > (1 << audio_devs[dev]->max_fragment)) bsz = 1 << audio_devs[dev]->max_fragment; bsz &= ~0x07; /* Force size which is multiple of 8 bytes */ #ifdef OS_DMA_ALIGN_CHECK OS_DMA_ALIGN_CHECK (bsz); #endif n = dmap->buffsize / bsz; if (n > MAX_SUB_BUFFERS) n = MAX_SUB_BUFFERS; if (n > dmap->max_fragments) n = dmap->max_fragments; if (n < 2) { n = 2; bsz /= 2; } dmap->nbufs = n; dmap->bytes_in_use = n * bsz; dmap->fragment_size = bsz; dmap->max_byte_counter = (dmap->data_rate * 60 * 60) + dmap->bytes_in_use; /* Approximately one hour */ if (dmap->raw_buf) { memset (dmap->raw_buf, dmap->neutral_byte, dmap->bytes_in_use); } for (i = 0; i < dmap->nbufs; i++) { dmap->counts[i] = 0; } dmap->flags |= DMA_ALLOC_DONE | DMA_EMPTY; } static int dma_subdivide (int dev, struct dma_buffparms *dmap, caddr_t arg, int fact) { if (fact == 0) { fact = dmap->subdivision; if (fact == 0) fact = 1; return (*(int *) arg = fact); } if (dmap->subdivision != 0 || dmap->fragment_size) /* Too late to change */ return -EINVAL; if (fact > MAX_REALTIME_FACTOR) return -EINVAL; if (fact != 1 && fact != 2 && fact != 4 && fact != 8 && fact != 16) return -EINVAL; dmap->subdivision = fact; return (*(int *) arg = fact); } static int dma_set_fragment (int dev, struct dma_buffparms *dmap, caddr_t arg, int fact) { int bytes, count; if (fact == 0) return -EIO; if (dmap->subdivision != 0 || dmap->fragment_size) /* Too late to change */ return -EINVAL; bytes = fact & 0xffff; count = (fact >> 16) & 0x7fff; if (count == 0) count = MAX_SUB_BUFFERS; else if (count < MAX_SUB_BUFFERS) count++; if (bytes < 4 || bytes > 17) /* <16 || > 512k */ return -EINVAL; if (count < 2) return -EINVAL; if (audio_devs[dev]->min_fragment > 0) if (bytes < audio_devs[dev]->min_fragment) bytes = audio_devs[dev]->min_fragment; if (audio_devs[dev]->max_fragment > 0) if (bytes > audio_devs[dev]->max_fragment) bytes = audio_devs[dev]->max_fragment; #ifdef OS_DMA_MINBITS if (bytes < OS_DMA_MINBITS) bytes = OS_DMA_MINBITS; #endif dmap->fragment_size = (1 << bytes); dmap->max_fragments = count; if (dmap->fragment_size > dmap->buffsize) dmap->fragment_size = dmap->buffsize; if (dmap->fragment_size == dmap->buffsize && audio_devs[dev]->flags & DMA_AUTOMODE) dmap->fragment_size /= 2; /* Needs at least 2 buffers */ dmap->subdivision = 1; /* Disable SNDCTL_DSP_SUBDIVIDE */ if (arg) return (*(int *) arg = bytes | ((count - 1) << 16)); else return 0; } static int dma_ioctl (int dev, unsigned int cmd, caddr_t arg) { struct dma_buffparms *dmap_out = audio_devs[dev]->dmap_out; struct dma_buffparms *dmap_in = audio_devs[dev]->dmap_in; switch (cmd) { case SNDCTL_DSP_SUBDIVIDE: { int fact; int ret = 0; fact = *(int *) arg; if (audio_devs[dev]->open_mode & OPEN_WRITE) ret = dma_subdivide (dev, dmap_out, arg, fact); if (ret < 0) return ret; if (audio_devs[dev]->open_mode != OPEN_WRITE || (audio_devs[dev]->flags & DMA_DUPLEX && audio_devs[dev]->open_mode & OPEN_READ)) ret = dma_subdivide (dev, dmap_in, arg, fact); return ret; } break; case SNDCTL_DSP_GETISPACE: case SNDCTL_DSP_GETOSPACE: { struct dma_buffparms *dmap = dmap_out; audio_buf_info *info = (audio_buf_info *) arg; if (cmd == SNDCTL_DSP_GETISPACE && !(audio_devs[dev]->open_mode & OPEN_READ)) return -EINVAL; if (cmd == SNDCTL_DSP_GETOSPACE && !(audio_devs[dev]->open_mode & OPEN_WRITE)) return -EINVAL; if (cmd == SNDCTL_DSP_GETISPACE && audio_devs[dev]->flags & DMA_DUPLEX) dmap = dmap_in; if (dmap->mapping_flags & DMA_MAP_MAPPED) return -EINVAL; if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers (dev, dmap, (cmd == SNDCTL_DSP_GETISPACE)); info->fragstotal = dmap->nbufs; if (cmd == SNDCTL_DSP_GETISPACE) info->fragments = dmap->qlen; else { if (!DMAbuf_space_in_queue (dev)) info->fragments = 0; else { info->fragments = DMAbuf_space_in_queue (dev); if (audio_devs[dev]->d->local_qlen) { int tmp = audio_devs[dev]->d->local_qlen (dev); if (tmp && info->fragments) tmp--; /* * This buffer has been counted twice */ info->fragments -= tmp; } } } if (info->fragments < 0) info->fragments = 0; else if (info->fragments > dmap->nbufs) info->fragments = dmap->nbufs; info->fragsize = dmap->fragment_size; info->bytes = info->fragments * dmap->fragment_size; if (cmd == SNDCTL_DSP_GETISPACE && dmap->qlen) info->bytes -= dmap->counts[dmap->qhead]; } return 0; case SNDCTL_DSP_SETTRIGGER: { unsigned long flags; int bits; int changed; bits = *(int *) arg; bits &= audio_devs[dev]->open_mode; if (audio_devs[dev]->d->trigger == NULL) return -EINVAL; if (!(audio_devs[dev]->flags & DMA_DUPLEX)) if ((bits & PCM_ENABLE_INPUT) && (bits & PCM_ENABLE_OUTPUT)) { printk ("Sound: Device doesn't have full duplex capability\n"); return -EINVAL; } save_flags (flags); cli (); changed = audio_devs[dev]->enable_bits ^ bits; if ((changed & bits) & PCM_ENABLE_INPUT && audio_devs[dev]->go) { int err; reorganize_buffers (dev, dmap_in, 1); if ((err = audio_devs[dev]->d->prepare_for_input (dev, dmap_in->fragment_size, dmap_in->nbufs)) < 0) return -err; dmap_in->dma_mode = DMODE_INPUT; audio_devs[dev]->enable_bits = bits; DMAbuf_activate_recording (dev, dmap_in); } if ((changed & bits) & PCM_ENABLE_OUTPUT && (dmap_out->mapping_flags & DMA_MAP_MAPPED || dmap_out->qlen > 0) && audio_devs[dev]->go) { if (!(dmap_out->flags & DMA_ALLOC_DONE)) { reorganize_buffers (dev, dmap_out, 0); } dmap_out->dma_mode = DMODE_OUTPUT; ; audio_devs[dev]->enable_bits = bits; dmap_out->counts[dmap_out->qhead] = dmap_out->fragment_size; DMAbuf_launch_output (dev, dmap_out); ; } audio_devs[dev]->enable_bits = bits; if (changed && audio_devs[dev]->d->trigger) { audio_devs[dev]->d->trigger (dev, bits * audio_devs[dev]->go); } restore_flags (flags); } case SNDCTL_DSP_GETTRIGGER: return (*(int *) arg = audio_devs[dev]->enable_bits); break; case SNDCTL_DSP_SETSYNCRO: if (!audio_devs[dev]->d->trigger) return -EINVAL; audio_devs[dev]->d->trigger (dev, 0); audio_devs[dev]->go = 0; return 0; break; case SNDCTL_DSP_GETIPTR: { count_info info; unsigned long flags; struct dma_buffparms *dmap = dmap_in; if (!(audio_devs[dev]->open_mode & OPEN_READ)) return -EINVAL; save_flags (flags); cli (); info.bytes = dmap->byte_counter; info.ptr = DMAbuf_get_buffer_pointer (dev, dmap, DMODE_INPUT) & ~3; if (info.ptr < dmap->fragment_size && dmap->qtail != 0) info.bytes += dmap->bytes_in_use; /* Pointer wrap not handled yet */ info.blocks = dmap->qlen; info.bytes += info.ptr; memcpy ((&((char *) arg)[0]), (char *) &info, sizeof (info)); if (dmap->mapping_flags & DMA_MAP_MAPPED) dmap->qlen = 0; /* Reset interrupt counter */ restore_flags (flags); return 0; } break; case SNDCTL_DSP_GETOPTR: { count_info info; unsigned long flags; struct dma_buffparms *dmap = dmap_out; if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return -EINVAL; save_flags (flags); cli (); info.bytes = dmap->byte_counter; info.ptr = DMAbuf_get_buffer_pointer (dev, dmap, DMODE_OUTPUT) & ~3; if (info.ptr < dmap->fragment_size && dmap->qhead != 0) info.bytes += dmap->bytes_in_use; /* Pointer wrap not handled yet */ info.blocks = dmap->qlen; info.bytes += info.ptr; memcpy ((&((char *) arg)[0]), (char *) &info, sizeof (info)); if (dmap->mapping_flags & DMA_MAP_MAPPED) dmap->qlen = 0; /* Reset interrupt counter */ restore_flags (flags); return 0; } break; case SNDCTL_DSP_POST: ; if (audio_devs[dev]->dmap_out->qlen > 0) if (!(audio_devs[dev]->dmap_out->flags & DMA_ACTIVE)) DMAbuf_launch_output (dev, audio_devs[dev]->dmap_out); ; return 0; break; case SNDCTL_DSP_GETBLKSIZE: { int fragment_size; struct dma_buffparms *dmap = dmap_out; if (audio_devs[dev]->open_mode & OPEN_WRITE) reorganize_buffers (dev, dmap_out, (audio_devs[dev]->open_mode == OPEN_READ)); if (audio_devs[dev]->open_mode != OPEN_WRITE || (audio_devs[dev]->flags & DMA_DUPLEX && audio_devs[dev]->open_mode & OPEN_READ)) reorganize_buffers (dev, dmap_in, (audio_devs[dev]->open_mode == OPEN_READ)); if (audio_devs[dev]->open_mode == OPEN_READ) dmap = dmap_in; fragment_size = dmap->fragment_size; return (*(int *) arg = fragment_size); } break; case SNDCTL_DSP_SETFRAGMENT: { int fact; int ret; fact = *(int *) arg; ret = dma_set_fragment (dev, dmap_out, arg, fact); if (ret < 0) return ret; if (audio_devs[dev]->flags & DMA_DUPLEX && audio_devs[dev]->open_mode & OPEN_READ) ret = dma_set_fragment (dev, dmap_in, arg, fact); return ret; } break; default: return audio_devs[dev]->d->ioctl (dev, cmd, arg); } }