/* * sound/awe_wave.c * * The low level driver for the AWE32/SB32/AWE64 wave table synth. * version 0.4.4; Jan. 4, 2000 * * Copyright (C) 1996-2000 Takashi Iwai * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #if defined CONFIG_ISAPNP || defined CONFIG_ISAPNP_MODULE #include #endif #include "sound_config.h" #include "awe_wave.h" #include "awe_hw.h" #ifdef AWE_HAS_GUS_COMPATIBILITY #include "tuning.h" #include #endif /* * debug message */ #ifdef AWE_DEBUG_ON #define DEBUG(LVL,XXX) {if (ctrls[AWE_MD_DEBUG_MODE] > LVL) { XXX; }} #define ERRMSG(XXX) {if (ctrls[AWE_MD_DEBUG_MODE]) { XXX; }} #define FATALERR(XXX) XXX #else #define DEBUG(LVL,XXX) /**/ #define ERRMSG(XXX) XXX #define FATALERR(XXX) XXX #endif /* * bank and voice record */ typedef struct _sf_list sf_list; typedef struct _awe_voice_list awe_voice_list; typedef struct _awe_sample_list awe_sample_list; /* soundfont record */ struct _sf_list { unsigned short sf_id; /* id number */ unsigned short type; /* lock & shared flags */ int num_info; /* current info table index */ int num_sample; /* current sample table index */ int mem_ptr; /* current word byte pointer */ awe_voice_list *infos, *last_infos; /* instruments */ awe_sample_list *samples, *last_samples; /* samples */ #ifdef AWE_ALLOW_SAMPLE_SHARING sf_list *shared; /* shared list */ unsigned char name[AWE_PATCH_NAME_LEN]; /* sharing id */ #endif sf_list *next, *prev; }; /* instrument list */ struct _awe_voice_list { awe_voice_info v; /* instrument information */ sf_list *holder; /* parent sf_list of this record */ unsigned char bank, instr; /* preset number information */ char type, disabled; /* type=normal/mapped, disabled=boolean */ awe_voice_list *next; /* linked list with same sf_id */ awe_voice_list *next_instr; /* instrument list */ awe_voice_list *next_bank; /* hash table list */ }; /* voice list type */ #define V_ST_NORMAL 0 #define V_ST_MAPPED 1 /* sample list */ struct _awe_sample_list { awe_sample_info v; /* sample information */ sf_list *holder; /* parent sf_list of this record */ awe_sample_list *next; /* linked list with same sf_id */ }; /* sample and information table */ static int current_sf_id = 0; /* current number of fonts */ static int locked_sf_id = 0; /* locked position */ static sf_list *sfhead = NULL, *sftail = NULL; /* linked-lists */ #define awe_free_mem_ptr() (sftail ? sftail->mem_ptr : 0) #define awe_free_info() (sftail ? sftail->num_info : 0) #define awe_free_sample() (sftail ? sftail->num_sample : 0) #define AWE_MAX_PRESETS 256 #define AWE_DEFAULT_PRESET 0 #define AWE_DEFAULT_BANK 0 #define AWE_DEFAULT_DRUM 0 #define AWE_DRUM_BANK 128 #define MAX_LAYERS AWE_MAX_VOICES /* preset table index */ static awe_voice_list *preset_table[AWE_MAX_PRESETS]; /* * voice table */ /* effects table */ typedef struct FX_Rec { /* channel effects */ unsigned char flags[AWE_FX_END]; short val[AWE_FX_END]; } FX_Rec; /* channel parameters */ typedef struct _awe_chan_info { int channel; /* channel number */ int bank; /* current tone bank */ int instr; /* current program */ int bender; /* midi pitchbend (-8192 - 8192) */ int bender_range; /* midi bender range (x100) */ int panning; /* panning (0-127) */ int main_vol; /* channel volume (0-127) */ int expression_vol; /* midi expression (0-127) */ int chan_press; /* channel pressure */ int sustained; /* sustain status in MIDI */ FX_Rec fx; /* effects */ FX_Rec fx_layer[MAX_LAYERS]; /* layer effects */ } awe_chan_info; /* voice parameters */ typedef struct _voice_info { int state; #define AWE_ST_OFF (1<<0) /* no sound */ #define AWE_ST_ON (1<<1) /* playing */ #define AWE_ST_STANDBY (1<<2) /* stand by for playing */ #define AWE_ST_SUSTAINED (1<<3) /* sustained */ #define AWE_ST_MARK (1<<4) /* marked for allocation */ #define AWE_ST_DRAM (1<<5) /* DRAM read/write */ #define AWE_ST_FM (1<<6) /* reserved for FM */ #define AWE_ST_RELEASED (1<<7) /* released */ int ch; /* midi channel */ int key; /* internal key for search */ int layer; /* layer number (for channel mode only) */ int time; /* allocated time */ awe_chan_info *cinfo; /* channel info */ int note; /* midi key (0-127) */ int velocity; /* midi velocity (0-127) */ int sostenuto; /* sostenuto on/off */ awe_voice_info *sample; /* assigned voice */ /* EMU8000 parameters */ int apitch; /* pitch parameter */ int avol; /* volume parameter */ int apan; /* panning parameter */ int acutoff; /* cutoff parameter */ short aaux; /* aux word */ } voice_info; /* voice information */ static voice_info voices[AWE_MAX_VOICES]; #define IS_NO_SOUND(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_RELEASED|AWE_ST_STANDBY|AWE_ST_SUSTAINED)) #define IS_NO_EFFECT(v) (voices[v].state != AWE_ST_ON) #define IS_PLAYING(v) (voices[v].state & (AWE_ST_ON|AWE_ST_SUSTAINED|AWE_ST_RELEASED)) #define IS_EMPTY(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_MARK|AWE_ST_DRAM|AWE_ST_FM)) /* MIDI channel effects information (for hw control) */ static awe_chan_info channels[AWE_MAX_CHANNELS]; /* * global variables */ #ifndef AWE_DEFAULT_BASE_ADDR #define AWE_DEFAULT_BASE_ADDR 0 /* autodetect */ #endif #ifndef AWE_DEFAULT_MEM_SIZE #define AWE_DEFAULT_MEM_SIZE -1 /* autodetect */ #endif int io = AWE_DEFAULT_BASE_ADDR; /* Emu8000 base address */ int memsize = AWE_DEFAULT_MEM_SIZE; /* memory size in Kbytes */ #if defined CONFIG_ISAPNP || defined CONFIG_ISAPNP_MODULE static int isapnp = 1; #else static int isapnp = 0; #endif MODULE_AUTHOR("Takashi Iwai "); MODULE_DESCRIPTION("SB AWE32/64 WaveTable driver"); MODULE_PARM(io, "i"); MODULE_PARM_DESC(io, "base i/o port of Emu8000"); MODULE_PARM(memsize, "i"); MODULE_PARM_DESC(memsize, "onboard DRAM size in Kbytes"); MODULE_PARM(isapnp, "i"); MODULE_PARM_DESC(isapnp, "use ISAPnP detection"); EXPORT_NO_SYMBOLS; /* DRAM start offset */ static int awe_mem_start = AWE_DRAM_OFFSET; /* maximum channels for playing */ static int awe_max_voices = AWE_MAX_VOICES; static int patch_opened = 0; /* sample already loaded? */ static char atten_relative = FALSE; static short atten_offset = 0; static int awe_present = FALSE; /* awe device present? */ static int awe_busy = FALSE; /* awe device opened? */ static int my_dev = -1; #define DEFAULT_DRUM_FLAGS ((1 << 9) | (1 << 25)) #define IS_DRUM_CHANNEL(c) (drum_flags & (1 << (c))) #define DRUM_CHANNEL_ON(c) (drum_flags |= (1 << (c))) #define DRUM_CHANNEL_OFF(c) (drum_flags &= ~(1 << (c))) static unsigned int drum_flags = DEFAULT_DRUM_FLAGS; /* channel flags */ static int playing_mode = AWE_PLAY_INDIRECT; #define SINGLE_LAYER_MODE() (playing_mode == AWE_PLAY_INDIRECT || playing_mode == AWE_PLAY_DIRECT) #define MULTI_LAYER_MODE() (playing_mode == AWE_PLAY_MULTI || playing_mode == AWE_PLAY_MULTI2) static int current_alloc_time = 0; /* voice allocation index for channel mode */ static struct synth_info awe_info = { "AWE32 Synth", /* name */ 0, /* device */ SYNTH_TYPE_SAMPLE, /* synth_type */ SAMPLE_TYPE_AWE32, /* synth_subtype */ 0, /* perc_mode (obsolete) */ AWE_MAX_VOICES, /* nr_voices */ 0, /* nr_drums (obsolete) */ 400 /* instr_bank_size */ }; static struct voice_alloc_info *voice_alloc; /* set at initialization */ /* * function prototypes */ static int awe_check_port(void); static void awe_request_region(void); static void awe_release_region(void); static void awe_reset_samples(void); /* emu8000 chip i/o access */ static void setup_ports(int p1, int p2, int p3); static void awe_poke(unsigned short cmd, unsigned short port, unsigned short data); static void awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data); static unsigned short awe_peek(unsigned short cmd, unsigned short port); static unsigned int awe_peek_dw(unsigned short cmd, unsigned short port); static void awe_wait(unsigned short delay); /* initialize emu8000 chip */ static int _attach_awe(void); static void _unload_awe(void); static void awe_initialize(void); /* set voice parameters */ static void awe_init_ctrl_parms(int init_all); static void awe_init_voice_info(awe_voice_info *vp); static void awe_init_voice_parm(awe_voice_parm *pp); #ifdef AWE_HAS_GUS_COMPATIBILITY static int freq_to_note(int freq); static int calc_rate_offset(int Hz); /*static int calc_parm_delay(int msec);*/ static int calc_parm_hold(int msec); static int calc_parm_attack(int msec); static int calc_parm_decay(int msec); static int calc_parm_search(int msec, short *table); #endif /* gus compat */ /* turn on/off note */ static void awe_note_on(int voice); static void awe_note_off(int voice); static void awe_terminate(int voice); static void awe_exclusive_off(int voice); static void awe_note_off_all(int do_sustain); /* calculate voice parameters */ typedef void (*fx_affect_func)(int voice, int forced); static void awe_set_pitch(int voice, int forced); static void awe_set_voice_pitch(int voice, int forced); static void awe_set_volume(int voice, int forced); static void awe_set_voice_vol(int voice, int forced); static void awe_set_pan(int voice, int forced); static void awe_fx_fmmod(int voice, int forced); static void awe_fx_tremfrq(int voice, int forced); static void awe_fx_fm2frq2(int voice, int forced); static void awe_fx_filterQ(int voice, int forced); static void awe_calc_pitch(int voice); #ifdef AWE_HAS_GUS_COMPATIBILITY static void awe_calc_pitch_from_freq(int voice, int freq); #endif static void awe_calc_volume(int voice); static void awe_update_volume(void); static void awe_change_master_volume(short val); static void awe_voice_init(int voice, int init_all); static void awe_channel_init(int ch, int init_all); static void awe_fx_init(int ch); static void awe_send_effect(int voice, int layer, int type, int val); static void awe_modwheel_change(int voice, int value); /* sequencer interface */ static int awe_open(int dev, int mode); static void awe_close(int dev); static int awe_ioctl(int dev, unsigned int cmd, caddr_t arg); static int awe_kill_note(int dev, int voice, int note, int velocity); static int awe_start_note(int dev, int v, int note_num, int volume); static int awe_set_instr(int dev, int voice, int instr_no); static int awe_set_instr_2(int dev, int voice, int instr_no); static void awe_reset(int dev); static void awe_hw_control(int dev, unsigned char *event); static int awe_load_patch(int dev, int format, const char *addr, int offs, int count, int pmgr_flag); static void awe_aftertouch(int dev, int voice, int pressure); static void awe_controller(int dev, int voice, int ctrl_num, int value); static void awe_panning(int dev, int voice, int value); static void awe_volume_method(int dev, int mode); static void awe_bender(int dev, int voice, int value); static int awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc); static void awe_setup_voice(int dev, int voice, int chn); #define awe_key_pressure(dev,voice,key,press) awe_start_note(dev,voice,(key)+128,press) /* hardware controls */ #ifdef AWE_HAS_GUS_COMPATIBILITY static void awe_hw_gus_control(int dev, int cmd, unsigned char *event); #endif static void awe_hw_awe_control(int dev, int cmd, unsigned char *event); static void awe_voice_change(int voice, fx_affect_func func); static void awe_sostenuto_on(int voice, int forced); static void awe_sustain_off(int voice, int forced); static void awe_terminate_and_init(int voice, int forced); /* voice search */ static int awe_search_key(int bank, int preset, int note); static awe_voice_list *awe_search_instr(int bank, int preset, int note); static int awe_search_multi_voices(awe_voice_list *rec, int note, int velocity, awe_voice_info **vlist); static void awe_alloc_multi_voices(int ch, int note, int velocity, int key); static void awe_alloc_one_voice(int voice, int note, int velocity); static int awe_clear_voice(void); /* load / remove patches */ static int awe_open_patch(awe_patch_info *patch, const char *addr, int count); static int awe_close_patch(awe_patch_info *patch, const char *addr, int count); static int awe_unload_patch(awe_patch_info *patch, const char *addr, int count); static int awe_load_info(awe_patch_info *patch, const char *addr, int count); static int awe_remove_info(awe_patch_info *patch, const char *addr, int count); static int awe_load_data(awe_patch_info *patch, const char *addr, int count); static int awe_replace_data(awe_patch_info *patch, const char *addr, int count); static int awe_load_map(awe_patch_info *patch, const char *addr, int count); #ifdef AWE_HAS_GUS_COMPATIBILITY static int awe_load_guspatch(const char *addr, int offs, int size, int pmgr_flag); #endif /*static int awe_probe_info(awe_patch_info *patch, const char *addr, int count);*/ static int awe_probe_data(awe_patch_info *patch, const char *addr, int count); static sf_list *check_patch_opened(int type, char *name); static int awe_write_wave_data(const char *addr, int offset, awe_sample_list *sp, int channels); static int awe_create_sf(int type, char *name); static void awe_free_sf(sf_list *sf); static void add_sf_info(sf_list *sf, awe_voice_list *rec); static void add_sf_sample(sf_list *sf, awe_sample_list *smp); static void purge_old_list(awe_voice_list *rec, awe_voice_list *next); static void add_info_list(awe_voice_list *rec); static void awe_remove_samples(int sf_id); static void rebuild_preset_list(void); static short awe_set_sample(awe_voice_list *rec); static awe_sample_list *search_sample_index(sf_list *sf, int sample); static int is_identical_holder(sf_list *sf1, sf_list *sf2); #ifdef AWE_ALLOW_SAMPLE_SHARING static int is_identical_name(unsigned char *name, sf_list *p); static int is_shared_sf(unsigned char *name); static int info_duplicated(sf_list *sf, awe_voice_list *rec); #endif /* allow sharing */ /* lowlevel functions */ static void awe_init_audio(void); static void awe_init_dma(void); static void awe_init_array(void); static void awe_send_array(unsigned short *data); static void awe_tweak_voice(int voice); static void awe_tweak(void); static void awe_init_fm(void); static int awe_open_dram_for_write(int offset, int channels); static void awe_open_dram_for_check(void); static void awe_close_dram(void); /*static void awe_write_dram(unsigned short c);*/ static int awe_detect_base(int addr); static int awe_detect(void); static void awe_check_dram(void); static int awe_load_chorus_fx(awe_patch_info *patch, const char *addr, int count); static void awe_set_chorus_mode(int mode); static void awe_update_chorus_mode(void); static int awe_load_reverb_fx(awe_patch_info *patch, const char *addr, int count); static void awe_set_reverb_mode(int mode); static void awe_update_reverb_mode(void); static void awe_equalizer(int bass, int treble); static void awe_update_equalizer(void); #ifdef CONFIG_AWE32_MIXER static void attach_mixer(void); static void unload_mixer(void); #endif #ifdef CONFIG_AWE32_MIDIEMU static void attach_midiemu(void); static void unload_midiemu(void); #endif #define limitvalue(x, a, b) if ((x) < (a)) (x) = (a); else if ((x) > (b)) (x) = (b) /* * control parameters */ #ifdef AWE_USE_NEW_VOLUME_CALC #define DEF_VOLUME_CALC TRUE #else #define DEF_VOLUME_CALC FALSE #endif /* new volume */ #define DEF_ZERO_ATTEN 32 /* 12dB below */ #define DEF_MOD_SENSE 18 #define DEF_CHORUS_MODE 2 #define DEF_REVERB_MODE 4 #define DEF_BASS_LEVEL 5 #define DEF_TREBLE_LEVEL 9 static struct CtrlParmsDef { int value; int init_each_time; void (*update)(void); } ctrl_parms[AWE_MD_END] = { {0,0, NULL}, {0,0, NULL}, /* <-- not used */ {AWE_VERSION_NUMBER, FALSE, NULL}, {TRUE, FALSE, NULL}, /* exclusive */ {TRUE, FALSE, NULL}, /* realpan */ {AWE_DEFAULT_BANK, FALSE, NULL}, /* gusbank */ {FALSE, TRUE, NULL}, /* keep effect */ {DEF_ZERO_ATTEN, FALSE, awe_update_volume}, /* zero_atten */ {FALSE, FALSE, NULL}, /* chn_prior */ {DEF_MOD_SENSE, FALSE, NULL}, /* modwheel sense */ {AWE_DEFAULT_PRESET, FALSE, NULL}, /* def_preset */ {AWE_DEFAULT_BANK, FALSE, NULL}, /* def_bank */ {AWE_DEFAULT_DRUM, FALSE, NULL}, /* def_drum */ {FALSE, FALSE, NULL}, /* toggle_drum_bank */ {DEF_VOLUME_CALC, FALSE, awe_update_volume}, /* new_volume_calc */ {DEF_CHORUS_MODE, FALSE, awe_update_chorus_mode}, /* chorus mode */ {DEF_REVERB_MODE, FALSE, awe_update_reverb_mode}, /* reverb mode */ {DEF_BASS_LEVEL, FALSE, awe_update_equalizer}, /* bass level */ {DEF_TREBLE_LEVEL, FALSE, awe_update_equalizer}, /* treble level */ {0, FALSE, NULL}, /* debug mode */ {FALSE, FALSE, NULL}, /* pan exchange */ }; static int ctrls[AWE_MD_END]; /* * synth operation table */ static struct synth_operations awe_operations = { owner: THIS_MODULE, id: "EMU8K", info: &awe_info, midi_dev: 0, synth_type: SYNTH_TYPE_SAMPLE, synth_subtype: SAMPLE_TYPE_AWE32, open: awe_open, close: awe_close, ioctl: awe_ioctl, kill_note: awe_kill_note, start_note: awe_start_note, set_instr: awe_set_instr_2, reset: awe_reset, hw_control: awe_hw_control, load_patch: awe_load_patch, aftertouch: awe_aftertouch, controller: awe_controller, panning: awe_panning, volume_method: awe_volume_method, bender: awe_bender, alloc_voice: awe_alloc, setup_voice: awe_setup_voice }; /* * General attach / unload interface */ static int __init _attach_awe(void) { if (awe_present) return 0; /* for OSS38.. called twice? */ /* check presence of AWE32 card */ if (! awe_detect()) { printk(KERN_ERR "AWE32: not detected\n"); return 0; } /* check AWE32 ports are available */ if (awe_check_port()) { printk(KERN_ERR "AWE32: I/O area already used.\n"); return 0; } /* set buffers to NULL */ sfhead = sftail = NULL; my_dev = sound_alloc_synthdev(); if (my_dev == -1) { printk(KERN_ERR "AWE32 Error: too many synthesizers\n"); return 0; } voice_alloc = &awe_operations.alloc; voice_alloc->max_voice = awe_max_voices; synth_devs[my_dev] = &awe_operations; #ifdef CONFIG_AWE32_MIXER attach_mixer(); #endif #ifdef CONFIG_AWE32_MIDIEMU attach_midiemu(); #endif /* reserve I/O ports for awedrv */ awe_request_region(); /* clear all samples */ awe_reset_samples(); /* intialize AWE32 hardware */ awe_initialize(); sprintf(awe_info.name, "AWE32-%s (RAM%dk)", AWEDRV_VERSION, memsize/1024); printk(KERN_INFO "\n", memsize/1024); awe_present = TRUE; return 1; } static void free_tables(void) { if (sftail) { sf_list *p, *prev; for (p = sftail; p; p = prev) { prev = p->prev; awe_free_sf(p); } } sfhead = sftail = NULL; } static void __exit _unload_awe(void) { if (awe_present) { awe_reset_samples(); awe_release_region(); free_tables(); #ifdef CONFIG_AWE32_MIXER unload_mixer(); #endif #ifdef CONFIG_AWE32_MIDIEMU unload_midiemu(); #endif sound_unload_synthdev(my_dev); awe_present = FALSE; } } /* * clear sample tables */ static void awe_reset_samples(void) { /* free all bank tables */ memset(preset_table, 0, sizeof(preset_table)); free_tables(); current_sf_id = 0; locked_sf_id = 0; patch_opened = 0; } /* * EMU register access */ /* select a given AWE32 pointer */ static int awe_ports[5]; static int port_setuped = FALSE; static int awe_cur_cmd = -1; #define awe_set_cmd(cmd) \ if (awe_cur_cmd != cmd) { outw(cmd, awe_ports[Pointer]); awe_cur_cmd = cmd; } /* store values to i/o port array */ static void setup_ports(int port1, int port2, int port3) { awe_ports[0] = port1; if (port2 == 0) port2 = port1 + 0x400; awe_ports[1] = port2; awe_ports[2] = port2 + 2; if (port3 == 0) port3 = port1 + 0x800; awe_ports[3] = port3; awe_ports[4] = port3 + 2; port_setuped = TRUE; } /* write 16bit data */ static void awe_poke(unsigned short cmd, unsigned short port, unsigned short data) { awe_set_cmd(cmd); outw(data, awe_ports[port]); } /* write 32bit data */ static void awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data) { unsigned short addr = awe_ports[port]; awe_set_cmd(cmd); outw(data, addr); /* write lower 16 bits */ outw(data >> 16, addr + 2); /* write higher 16 bits */ } /* read 16bit data */ static unsigned short awe_peek(unsigned short cmd, unsigned short port) { unsigned short k; awe_set_cmd(cmd); k = inw(awe_ports[port]); return k; } /* read 32bit data */ static unsigned int awe_peek_dw(unsigned short cmd, unsigned short port) { unsigned int k1, k2; unsigned short addr = awe_ports[port]; awe_set_cmd(cmd); k1 = inw(addr); k2 = inw(addr + 2); k1 |= k2 << 16; return k1; } /* wait delay number of AWE32 44100Hz clocks */ #ifdef WAIT_BY_LOOP /* wait by loop -- that's not good.. */ static void awe_wait(unsigned short delay) { unsigned short clock, target; unsigned short port = awe_ports[AWE_WC_Port]; int counter; /* sample counter */ awe_set_cmd(AWE_WC_Cmd); clock = (unsigned short)inw(port); target = clock + delay; counter = 0; if (target < clock) { for (; (unsigned short)inw(port) > target; counter++) if (counter > 65536) break; } for (; (unsigned short)inw(port) < target; counter++) if (counter > 65536) break; } #else static void awe_wait(unsigned short delay) { current->state = TASK_INTERRUPTIBLE; schedule_timeout((HZ*(unsigned long)delay + 44099)/44100); } /* static void awe_wait(unsigned short delay) { udelay(((unsigned long)delay * 1000000L + 44099) / 44100); } */ #endif /* wait by loop */ /* write a word data */ #define awe_write_dram(c) awe_poke(AWE_SMLD, c) /* * port check / request * 0x620-623, 0xA20-A23, 0xE20-E23 */ static int __init awe_check_port(void) { if (! port_setuped) return 0; return (check_region(awe_ports[0], 4) || check_region(awe_ports[1], 4) || check_region(awe_ports[3], 4)); } static void __init awe_request_region(void) { if (! port_setuped) return; request_region(awe_ports[0], 4, "sound driver (AWE32)"); request_region(awe_ports[1], 4, "sound driver (AWE32)"); request_region(awe_ports[3], 4, "sound driver (AWE32)"); } static void __exit awe_release_region(void) { if (! port_setuped) return; release_region(awe_ports[0], 4); release_region(awe_ports[1], 4); release_region(awe_ports[3], 4); } /* * initialization of AWE driver */ static void awe_initialize(void) { DEBUG(0,printk("AWE32: initializing..\n")); /* initialize hardware configuration */ awe_poke(AWE_HWCF1, 0x0059); awe_poke(AWE_HWCF2, 0x0020); /* disable audio; this seems to reduce a clicking noise a bit.. */ awe_poke(AWE_HWCF3, 0); /* initialize audio channels */ awe_init_audio(); /* initialize DMA */ awe_init_dma(); /* initialize init array */ awe_init_array(); /* check DRAM memory size */ awe_check_dram(); /* initialize the FM section of the AWE32 */ awe_init_fm(); /* set up voice envelopes */ awe_tweak(); /* enable audio */ awe_poke(AWE_HWCF3, 0x0004); /* set default values */ awe_init_ctrl_parms(TRUE); /* set equalizer */ awe_update_equalizer(); /* set reverb & chorus modes */ awe_update_reverb_mode(); awe_update_chorus_mode(); } /* * AWE32 voice parameters */ /* initialize voice_info record */ static void awe_init_voice_info(awe_voice_info *vp) { vp->sample = 0; vp->rate_offset = 0; vp->start = 0; vp->end = 0; vp->loopstart = 0; vp->loopend = 0; vp->mode = 0; vp->root = 60; vp->tune = 0; vp->low = 0; vp->high = 127; vp->vellow = 0; vp->velhigh = 127; vp->fixkey = -1; vp->fixvel = -1; vp->fixpan = -1; vp->pan = -1; vp->exclusiveClass = 0; vp->amplitude = 127; vp->attenuation = 0; vp->scaleTuning = 100; awe_init_voice_parm(&vp->parm); } /* initialize voice_parm record: * Env1/2: delay=0, attack=0, hold=0, sustain=0, decay=0, release=0. * Vibrato and Tremolo effects are zero. * Cutoff is maximum. * Chorus and Reverb effects are zero. */ static void awe_init_voice_parm(awe_voice_parm *pp) { pp->moddelay = 0x8000; pp->modatkhld = 0x7f7f; pp->moddcysus = 0x7f7f; pp->modrelease = 0x807f; pp->modkeyhold = 0; pp->modkeydecay = 0; pp->voldelay = 0x8000; pp->volatkhld = 0x7f7f; pp->voldcysus = 0x7f7f; pp->volrelease = 0x807f; pp->volkeyhold = 0; pp->volkeydecay = 0; pp->lfo1delay = 0x8000; pp->lfo2delay = 0x8000; pp->pefe = 0; pp->fmmod = 0; pp->tremfrq = 0; pp->fm2frq2 = 0; pp->cutoff = 0xff; pp->filterQ = 0; pp->chorus = 0; pp->reverb = 0; } #ifdef AWE_HAS_GUS_COMPATIBILITY /* convert frequency mHz to abstract cents (= midi key * 100) */ static int freq_to_note(int mHz) { /* abscents = log(mHz/8176) / log(2) * 1200 */ unsigned int max_val = (unsigned int)0xffffffff / 10000; int i, times; unsigned int base; unsigned int freq; int note, tune; if (mHz == 0) return 0; if (mHz < 0) return 12799; /* maximum */ freq = mHz; note = 0; for (base = 8176 * 2; freq >= base; base *= 2) { note += 12; if (note >= 128) /* over maximum */ return 12799; } base /= 2; /* to avoid overflow... */ times = 10000; while (freq > max_val) { max_val *= 10; times /= 10; base /= 10; } freq = freq * times / base; for (i = 0; i < 12; i++) { if (freq < semitone_tuning[i+1]) break; note++; } tune = 0; freq = freq * 10000 / semitone_tuning[i]; for (i = 0; i < 100; i++) { if (freq < cent_tuning[i+1]) break; tune++; } return note * 100 + tune; } /* convert Hz to AWE32 rate offset: * sample pitch offset for the specified sample rate * rate=44100 is no offset, each 4096 is 1 octave (twice). * eg, when rate is 22050, this offset becomes -4096. */ static int calc_rate_offset(int Hz) { /* offset = log(Hz / 44100) / log(2) * 4096 */ int freq, base, i; /* maybe smaller than max (44100Hz) */ if (Hz <= 0 || Hz >= 44100) return 0; base = 0; for (freq = Hz * 2; freq < 44100; freq *= 2) base++; base *= 1200; freq = 44100 * 10000 / (freq/2); for (i = 0; i < 12; i++) { if (freq < semitone_tuning[i+1]) break; base += 100; } freq = freq * 10000 / semitone_tuning[i]; for (i = 0; i < 100; i++) { if (freq < cent_tuning[i+1]) break; base++; } return -base * 4096 / 1200; } /* * convert envelope time parameter to AWE32 raw parameter */ /* attack & decay/release time table (msec) */ static short attack_time_tbl[128] = { 32767, 32767, 5989, 4235, 2994, 2518, 2117, 1780, 1497, 1373, 1259, 1154, 1058, 970, 890, 816, 707, 691, 662, 634, 607, 581, 557, 533, 510, 489, 468, 448, 429, 411, 393, 377, 361, 345, 331, 317, 303, 290, 278, 266, 255, 244, 234, 224, 214, 205, 196, 188, 180, 172, 165, 158, 151, 145, 139, 133, 127, 122, 117, 112, 107, 102, 98, 94, 90, 86, 82, 79, 75, 72, 69, 66, 63, 61, 58, 56, 53, 51, 49, 47, 45, 43, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21, 20, 19, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 0, }; static short decay_time_tbl[128] = { 32767, 32767, 22614, 15990, 11307, 9508, 7995, 6723, 5653, 5184, 4754, 4359, 3997, 3665, 3361, 3082, 2828, 2765, 2648, 2535, 2428, 2325, 2226, 2132, 2042, 1955, 1872, 1793, 1717, 1644, 1574, 1507, 1443, 1382, 1324, 1267, 1214, 1162, 1113, 1066, 978, 936, 897, 859, 822, 787, 754, 722, 691, 662, 634, 607, 581, 557, 533, 510, 489, 468, 448, 429, 411, 393, 377, 361, 345, 331, 317, 303, 290, 278, 266, 255, 244, 234, 224, 214, 205, 196, 188, 180, 172, 165, 158, 151, 145, 139, 133, 127, 122, 117, 112, 107, 102, 98, 94, 90, 86, 82, 79, 75, 72, 69, 66, 63, 61, 58, 56, 53, 51, 49, 47, 45, 43, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 26, 25, 24, 23, 22, }; #define calc_parm_delay(msec) (0x8000 - (msec) * 1000 / 725); /* delay time = 0x8000 - msec/92 */ static int calc_parm_hold(int msec) { int val = (0x7f * 92 - msec) / 92; if (val < 1) val = 1; if (val > 127) val = 127; return val; } /* attack time: search from time table */ static int calc_parm_attack(int msec) { return calc_parm_search(msec, attack_time_tbl); } /* decay/release time: search from time table */ static int calc_parm_decay(int msec) { return calc_parm_search(msec, decay_time_tbl); } /* search an index for specified time from given time table */ static int calc_parm_search(int msec, short *table) { int left = 1, right = 127, mid; while (left < right) { mid = (left + right) / 2; if (msec < (int)table[mid]) left = mid + 1; else right = mid; } return left; } #endif /* AWE_HAS_GUS_COMPATIBILITY */ /* * effects table */ /* set an effect value */ #define FX_FLAG_OFF 0 #define FX_FLAG_SET 1 #define FX_FLAG_ADD 2 #define FX_SET(rec,type,value) \ ((rec)->flags[type] = FX_FLAG_SET, (rec)->val[type] = (value)) #define FX_ADD(rec,type,value) \ ((rec)->flags[type] = FX_FLAG_ADD, (rec)->val[type] = (value)) #define FX_UNSET(rec,type) \ ((rec)->flags[type] = FX_FLAG_OFF, (rec)->val[type] = 0) /* check the effect value is set */ #define FX_ON(rec,type) ((rec)->flags[type]) #define PARM_BYTE 0 #define PARM_WORD 1 #define PARM_SIGN 2 static struct PARM_DEFS { int type; /* byte or word */ int low, high; /* value range */ fx_affect_func realtime; /* realtime paramater change */ } parm_defs[] = { {PARM_WORD, 0, 0x8000, NULL}, /* env1 delay */ {PARM_BYTE, 1, 0x7f, NULL}, /* env1 attack */ {PARM_BYTE, 0, 0x7e, NULL}, /* env1 hold */ {PARM_BYTE, 1, 0x7f, NULL}, /* env1 decay */ {PARM_BYTE, 1, 0x7f, NULL}, /* env1 release */ {PARM_BYTE, 0, 0x7f, NULL}, /* env1 sustain */ {PARM_BYTE, 0, 0xff, NULL}, /* env1 pitch */ {PARM_BYTE, 0, 0xff, NULL}, /* env1 cutoff */ {PARM_WORD, 0, 0x8000, NULL}, /* env2 delay */ {PARM_BYTE, 1, 0x7f, NULL}, /* env2 attack */ {PARM_BYTE, 0, 0x7e, NULL}, /* env2 hold */ {PARM_BYTE, 1, 0x7f, NULL}, /* env2 decay */ {PARM_BYTE, 1, 0x7f, NULL}, /* env2 release */ {PARM_BYTE, 0, 0x7f, NULL}, /* env2 sustain */ {PARM_WORD, 0, 0x8000, NULL}, /* lfo1 delay */ {PARM_BYTE, 0, 0xff, awe_fx_tremfrq}, /* lfo1 freq */ {PARM_SIGN, -128, 127, awe_fx_tremfrq}, /* lfo1 volume */ {PARM_SIGN, -128, 127, awe_fx_fmmod}, /* lfo1 pitch */ {PARM_BYTE, 0, 0xff, awe_fx_fmmod}, /* lfo1 cutoff */ {PARM_WORD, 0, 0x8000, NULL}, /* lfo2 delay */ {PARM_BYTE, 0, 0xff, awe_fx_fm2frq2}, /* lfo2 freq */ {PARM_SIGN, -128, 127, awe_fx_fm2frq2}, /* lfo2 pitch */ {PARM_WORD, 0, 0xffff, awe_set_voice_pitch}, /* initial pitch */ {PARM_BYTE, 0, 0xff, NULL}, /* chorus */ {PARM_BYTE, 0, 0xff, NULL}, /* reverb */ {PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial cutoff */ {PARM_BYTE, 0, 15, awe_fx_filterQ}, /* initial resonance */ {PARM_WORD, 0, 0xffff, NULL}, /* sample start */ {PARM_WORD, 0, 0xffff, NULL}, /* loop start */ {PARM_WORD, 0, 0xffff, NULL}, /* loop end */ {PARM_WORD, 0, 0xffff, NULL}, /* coarse sample start */ {PARM_WORD, 0, 0xffff, NULL}, /* coarse loop start */ {PARM_WORD, 0, 0xffff, NULL}, /* coarse loop end */ {PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial attenuation */ }; static unsigned char FX_BYTE(FX_Rec *rec, FX_Rec *lay, int type, unsigned char value) { int effect = 0; int on = 0; if (lay && (on = FX_ON(lay, type)) != 0) effect = lay->val[type]; if (!on && (on = FX_ON(rec, type)) != 0) effect = rec->val[type]; if (on == FX_FLAG_ADD) { if (parm_defs[type].type == PARM_SIGN) { if (value > 0x7f) effect += (int)value - 0x100; else effect += (int)value; } else { effect += (int)value; } } if (on) { if (effect < parm_defs[type].low) effect = parm_defs[type].low; else if (effect > parm_defs[type].high) effect = parm_defs[type].high; return (unsigned char)effect; } return value; } /* get word effect value */ static unsigned short FX_WORD(FX_Rec *rec, FX_Rec *lay, int type, unsigned short value) { int effect = 0; int on = 0; if (lay && (on = FX_ON(lay, type)) != 0) effect = lay->val[type]; if (!on && (on = FX_ON(rec, type)) != 0) effect = rec->val[type]; if (on == FX_FLAG_ADD) effect += (int)value; if (on) { if (effect < parm_defs[type].low) effect = parm_defs[type].low; else if (effect > parm_defs[type].high) effect = parm_defs[type].high; return (unsigned short)effect; } return value; } /* get word (upper=type1/lower=type2) effect value */ static unsigned short FX_COMB(FX_Rec *rec, FX_Rec *lay, int type1, int type2, unsigned short value) { unsigned short tmp; tmp = FX_BYTE(rec, lay, type1, (unsigned char)(value >> 8)); tmp <<= 8; tmp |= FX_BYTE(rec, lay, type2, (unsigned char)(value & 0xff)); return tmp; } /* address offset */ static int FX_OFFSET(FX_Rec *rec, FX_Rec *lay, int lo, int hi, int mode) { int addr = 0; if (lay && FX_ON(lay, hi)) addr = (short)lay->val[hi]; else if (FX_ON(rec, hi)) addr = (short)rec->val[hi]; addr = addr << 15; if (lay && FX_ON(lay, lo)) addr += (short)lay->val[lo]; else if (FX_ON(rec, lo)) addr += (short)rec->val[lo]; if (!(mode & AWE_SAMPLE_8BITS)) addr /= 2; return addr; } /* * turn on/off sample */ /* table for volume target calculation */ static unsigned short voltarget[16] = { 0xEAC0, 0XE0C8, 0XD740, 0XCE20, 0XC560, 0XBD08, 0XB500, 0XAD58, 0XA5F8, 0X9EF0, 0X9830, 0X91C0, 0X8B90, 0X85A8, 0X8000, 0X7A90 }; static void awe_note_on(int voice) { unsigned int temp; int addr; int vtarget, ftarget, ptarget, pitch; awe_voice_info *vp; awe_voice_parm_block *parm; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; /* A voice sample must assigned before calling */ if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; parm = (awe_voice_parm_block*)&vp->parm; /* channel to be silent and idle */ awe_poke(AWE_DCYSUSV(voice), 0x0080); awe_poke(AWE_VTFT(voice), 0x0000FFFF); awe_poke(AWE_CVCF(voice), 0x0000FFFF); awe_poke(AWE_PTRX(voice), 0); awe_poke(AWE_CPF(voice), 0); /* set pitch offset */ awe_set_pitch(voice, TRUE); /* modulation & volume envelope */ if (parm->modatk >= 0x80 && parm->moddelay >= 0x8000) { awe_poke(AWE_ENVVAL(voice), 0xBFFF); pitch = (parm->env1pit<<4) + voices[voice].apitch; if (pitch > 0xffff) pitch = 0xffff; /* calculate filter target */ ftarget = parm->cutoff + parm->env1fc; limitvalue(ftarget, 0, 255); ftarget <<= 8; } else { awe_poke(AWE_ENVVAL(voice), FX_WORD(fx, fx_lay, AWE_FX_ENV1_DELAY, parm->moddelay)); ftarget = parm->cutoff; ftarget <<= 8; pitch = voices[voice].apitch; } /* calcualte pitch target */ if (pitch != 0xffff) { ptarget = 1 << (pitch >> 12); if (pitch & 0x800) ptarget += (ptarget*0x102e)/0x2710; if (pitch & 0x400) ptarget += (ptarget*0x764)/0x2710; if (pitch & 0x200) ptarget += (ptarget*0x389)/0x2710; ptarget += (ptarget>>1); if (ptarget > 0xffff) ptarget = 0xffff; } else ptarget = 0xffff; if (parm->modatk >= 0x80) awe_poke(AWE_ATKHLD(voice), FX_BYTE(fx, fx_lay, AWE_FX_ENV1_HOLD, parm->modhld) << 8 | 0x7f); else awe_poke(AWE_ATKHLD(voice), FX_COMB(fx, fx_lay, AWE_FX_ENV1_HOLD, AWE_FX_ENV1_ATTACK, vp->parm.modatkhld)); awe_poke(AWE_DCYSUS(voice), FX_COMB(fx, fx_lay, AWE_FX_ENV1_SUSTAIN, AWE_FX_ENV1_DECAY, vp->parm.moddcysus)); if (parm->volatk >= 0x80 && parm->voldelay >= 0x8000) { awe_poke(AWE_ENVVOL(voice), 0xBFFF); vtarget = voltarget[voices[voice].avol%0x10]>>(voices[voice].avol>>4); } else { awe_poke(AWE_ENVVOL(voice), FX_WORD(fx, fx_lay, AWE_FX_ENV2_DELAY, vp->parm.voldelay)); vtarget = 0; } if (parm->volatk >= 0x80) awe_poke(AWE_ATKHLDV(voice), FX_BYTE(fx, fx_lay, AWE_FX_ENV2_HOLD, parm->volhld) << 8 | 0x7f); else awe_poke(AWE_ATKHLDV(voice), FX_COMB(fx, fx_lay, AWE_FX_ENV2_HOLD, AWE_FX_ENV2_ATTACK, vp->parm.volatkhld)); /* decay/sustain parameter for volume envelope must be set at last */ /* cutoff and volume */ awe_set_volume(voice, TRUE); /* modulation envelope heights */ awe_poke(AWE_PEFE(voice), FX_COMB(fx, fx_lay, AWE_FX_ENV1_PITCH, AWE_FX_ENV1_CUTOFF, vp->parm.pefe)); /* lfo1/2 delay */ awe_poke(AWE_LFO1VAL(voice), FX_WORD(fx, fx_lay, AWE_FX_LFO1_DELAY, vp->parm.lfo1delay)); awe_poke(AWE_LFO2VAL(voice), FX_WORD(fx, fx_lay, AWE_FX_LFO2_DELAY, vp->parm.lfo2delay)); /* lfo1 pitch & cutoff shift */ awe_fx_fmmod(voice, TRUE); /* lfo1 volume & freq */ awe_fx_tremfrq(voice, TRUE); /* lfo2 pitch & freq */ awe_fx_fm2frq2(voice, TRUE); /* pan & loop start */ awe_set_pan(voice, TRUE); /* chorus & loop end (chorus 8bit, MSB) */ addr = vp->loopend - 1; addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_END, AWE_FX_COARSE_LOOP_END, vp->mode); temp = FX_BYTE(fx, fx_lay, AWE_FX_CHORUS, vp->parm.chorus); temp = (temp <<24) | (unsigned int)addr; awe_poke_dw(AWE_CSL(voice), temp); DEBUG(4,printk("AWE32: [-- loopend=%x/%x]\n", vp->loopend, addr)); /* Q & current address (Q 4bit value, MSB) */ addr = vp->start - 1; addr += FX_OFFSET(fx, fx_lay, AWE_FX_SAMPLE_START, AWE_FX_COARSE_SAMPLE_START, vp->mode); temp = FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ); temp = (temp<<28) | (unsigned int)addr; awe_poke_dw(AWE_CCCA(voice), temp); DEBUG(4,printk("AWE32: [-- startaddr=%x/%x]\n", vp->start, addr)); /* clear unknown registers */ awe_poke_dw(AWE_00A0(voice), 0); awe_poke_dw(AWE_0080(voice), 0); /* reset volume */ awe_poke_dw(AWE_VTFT(voice), (vtarget<<16)|ftarget); awe_poke_dw(AWE_CVCF(voice), (vtarget<<16)|ftarget); /* set reverb */ temp = FX_BYTE(fx, fx_lay, AWE_FX_REVERB, vp->parm.reverb); temp = (temp << 8) | (ptarget << 16) | voices[voice].aaux; awe_poke_dw(AWE_PTRX(voice), temp); awe_poke_dw(AWE_CPF(voice), ptarget << 16); /* turn on envelope */ awe_poke(AWE_DCYSUSV(voice), FX_COMB(fx, fx_lay, AWE_FX_ENV2_SUSTAIN, AWE_FX_ENV2_DECAY, vp->parm.voldcysus)); voices[voice].state = AWE_ST_ON; /* clear voice position for the next note on this channel */ if (SINGLE_LAYER_MODE()) { FX_UNSET(fx, AWE_FX_SAMPLE_START); FX_UNSET(fx, AWE_FX_COARSE_SAMPLE_START); } } /* turn off the voice */ static void awe_note_off(int voice) { awe_voice_info *vp; unsigned short tmp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if ((vp = voices[voice].sample) == NULL) { voices[voice].state = AWE_ST_OFF; return; } tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV1_RELEASE, (unsigned char)vp->parm.modrelease); awe_poke(AWE_DCYSUS(voice), tmp); tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV2_RELEASE, (unsigned char)vp->parm.volrelease); awe_poke(AWE_DCYSUSV(voice), tmp); voices[voice].state = AWE_ST_RELEASED; } /* force to terminate the voice (no releasing echo) */ static void awe_terminate(int voice) { awe_poke(AWE_DCYSUSV(voice), 0x807F); awe_tweak_voice(voice); voices[voice].state = AWE_ST_OFF; } /* turn off other voices with the same exclusive class (for drums) */ static void awe_exclusive_off(int voice) { int i, exclass; if (voices[voice].sample == NULL) return; if ((exclass = voices[voice].sample->exclusiveClass) == 0) return; /* not exclusive */ /* turn off voices with the same class */ for (i = 0; i < awe_max_voices; i++) { if (i != voice && IS_PLAYING(i) && voices[i].sample && voices[i].ch == voices[voice].ch && voices[i].sample->exclusiveClass == exclass) { DEBUG(4,printk("AWE32: [exoff(%d)]\n", i)); awe_terminate(i); awe_voice_init(i, TRUE); } } } /* * change the parameters of an audible voice */ /* change pitch */ static void awe_set_pitch(int voice, int forced) { if (IS_NO_EFFECT(voice) && !forced) return; awe_poke(AWE_IP(voice), voices[voice].apitch); DEBUG(3,printk("AWE32: [-- pitch=%x]\n", voices[voice].apitch)); } /* calculate & change pitch */ static void awe_set_voice_pitch(int voice, int forced) { awe_calc_pitch(voice); awe_set_pitch(voice, forced); } /* change volume & cutoff */ static void awe_set_volume(int voice, int forced) { awe_voice_info *vp; unsigned short tmp2; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (!IS_PLAYING(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; tmp2 = FX_BYTE(fx, fx_lay, AWE_FX_CUTOFF, (unsigned char)voices[voice].acutoff); tmp2 = (tmp2 << 8); tmp2 |= FX_BYTE(fx, fx_lay, AWE_FX_ATTEN, (unsigned char)voices[voice].avol); awe_poke(AWE_IFATN(voice), tmp2); } /* calculate & change volume */ static void awe_set_voice_vol(int voice, int forced) { if (IS_EMPTY(voice)) return; awe_calc_volume(voice); awe_set_volume(voice, forced); } /* change pan; this could make a click noise.. */ static void awe_set_pan(int voice, int forced) { unsigned int temp; int addr; awe_voice_info *vp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (IS_NO_EFFECT(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; /* pan & loop start (pan 8bit, MSB, 0:right, 0xff:left) */ if (vp->fixpan > 0) /* 0-127 */ temp = 255 - (int)vp->fixpan * 2; else { int pos = 0; if (vp->pan >= 0) /* 0-127 */ pos = (int)vp->pan * 2 - 128; pos += voices[voice].cinfo->panning; /* -128 - 127 */ temp = 127 - pos; } limitvalue(temp, 0, 255); if (ctrls[AWE_MD_PAN_EXCHANGE]) { temp = 255 - temp; } if (forced || temp != voices[voice].apan) { voices[voice].apan = temp; if (temp == 0) voices[voice].aaux = 0xff; else voices[voice].aaux = (-temp) & 0xff; addr = vp->loopstart - 1; addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_START, AWE_FX_COARSE_LOOP_START, vp->mode); temp = (temp<<24) | (unsigned int)addr; awe_poke_dw(AWE_PSST(voice), temp); DEBUG(4,printk("AWE32: [-- loopstart=%x/%x]\n", vp->loopstart, addr)); } } /* effects change during playing */ static void awe_fx_fmmod(int voice, int forced) { awe_voice_info *vp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (IS_NO_EFFECT(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; awe_poke(AWE_FMMOD(voice), FX_COMB(fx, fx_lay, AWE_FX_LFO1_PITCH, AWE_FX_LFO1_CUTOFF, vp->parm.fmmod)); } /* set tremolo (lfo1) volume & frequency */ static void awe_fx_tremfrq(int voice, int forced) { awe_voice_info *vp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (IS_NO_EFFECT(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; awe_poke(AWE_TREMFRQ(voice), FX_COMB(fx, fx_lay, AWE_FX_LFO1_VOLUME, AWE_FX_LFO1_FREQ, vp->parm.tremfrq)); } /* set lfo2 pitch & frequency */ static void awe_fx_fm2frq2(int voice, int forced) { awe_voice_info *vp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (IS_NO_EFFECT(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; awe_poke(AWE_FM2FRQ2(voice), FX_COMB(fx, fx_lay, AWE_FX_LFO2_PITCH, AWE_FX_LFO2_FREQ, vp->parm.fm2frq2)); } /* Q & current address (Q 4bit value, MSB) */ static void awe_fx_filterQ(int voice, int forced) { unsigned int addr; awe_voice_info *vp; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; if (IS_NO_EFFECT(voice) && !forced) return; if ((vp = voices[voice].sample) == NULL || vp->index == 0) return; addr = awe_peek_dw(AWE_CCCA(voice)) & 0xffffff; addr |= (FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ) << 28); awe_poke_dw(AWE_CCCA(voice), addr); } /* * calculate pitch offset * * 0xE000 is no pitch offset at 44100Hz sample. * Every 4096 is one octave. */ static void awe_calc_pitch(int voice) { voice_info *vp = &voices[voice]; awe_voice_info *ap; awe_chan_info *cp = voices[voice].cinfo; int offset; /* search voice information */ if ((ap = vp->sample) == NULL) return; if (ap->index == 0) { DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample)); if (awe_set_sample((awe_voice_list*)ap) == 0) return; } /* calculate offset */ if (ap->fixkey >= 0) { DEBUG(3,printk("AWE32: p-> fixkey(%d) tune(%d)\n", ap->fixkey, ap->tune)); offset = (ap->fixkey - ap->root) * 4096 / 12; } else { DEBUG(3,printk("AWE32: p(%d)-> root(%d) tune(%d)\n", vp->note, ap->root, ap->tune)); offset = (vp->note - ap->root) * 4096 / 12; DEBUG(4,printk("AWE32: p-> ofs=%d\n", offset)); } offset = (offset * ap->scaleTuning) / 100; DEBUG(4,printk("AWE32: p-> scale* ofs=%d\n", offset)); offset += ap->tune * 4096 / 1200; DEBUG(4,printk("AWE32: p-> tune+ ofs=%d\n", offset)); if (cp->bender != 0) { DEBUG(3,printk("AWE32: p-> bend(%d) %d\n", voice, cp->bender)); /* (819200: 1 semitone) ==> (4096: 12 semitones) */ offset += cp->bender * cp->bender_range / 2400; } /* add initial pitch correction */ if (FX_ON(&cp->fx_layer[vp->layer], AWE_FX_INIT_PITCH)) offset += cp->fx_layer[vp->layer].val[AWE_FX_INIT_PITCH]; else if (FX_ON(&cp->fx, AWE_FX_INIT_PITCH)) offset += cp->fx.val[AWE_FX_INIT_PITCH]; /* 0xe000: root pitch */ vp->apitch = 0xe000 + ap->rate_offset + offset; DEBUG(4,printk("AWE32: p-> sum aofs=%x, rate_ofs=%d\n", vp->apitch, ap->rate_offset)); if (vp->apitch > 0xffff) vp->apitch = 0xffff; if (vp->apitch < 0) vp->apitch = 0; } #ifdef AWE_HAS_GUS_COMPATIBILITY /* calculate MIDI key and semitone from the specified frequency */ static void awe_calc_pitch_from_freq(int voice, int freq) { voice_info *vp = &voices[voice]; awe_voice_info *ap; FX_Rec *fx = &voices[voice].cinfo->fx; FX_Rec *fx_lay = NULL; int offset; int note; if (voices[voice].layer < MAX_LAYERS) fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer]; /* search voice information */ if ((ap = vp->sample) == NULL) return; if (ap->index == 0) { DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample)); if (awe_set_sample((awe_voice_list*)ap) == 0) return; } note = freq_to_note(freq); offset = (note - ap->root * 100 + ap->tune) * 4096 / 1200; offset = (offset * ap->scaleTuning) / 100; if (fx_lay && FX_ON(fx_lay, AWE_FX_INIT_PITCH)) offset += fx_lay->val[AWE_FX_INIT_PITCH]; else if (FX_ON(fx, AWE_FX_INIT_PITCH)) offset += fx->val[AWE_FX_INIT_PITCH]; vp->apitch = 0xe000 + ap->rate_offset + offset; if (vp->apitch > 0xffff) vp->apitch = 0xffff; if (vp->apitch < 0) vp->apitch = 0; } #endif /* AWE_HAS_GUS_COMPATIBILITY */ /* * calculate volume attenuation * * Voice volume is controlled by volume attenuation parameter. * So volume becomes maximum when avol is 0 (no attenuation), and * minimum when 255 (-96dB or silence). */ static int vol_table[128] = { 255,111,95,86,79,74,70,66,63,61,58,56,54,52,50,49, 47,46,45,43,42,41,40,39,38,37,36,35,34,34,33,32, 31,31,30,29,29,28,27,27,26,26,25,24,24,23,23,22, 22,21,21,21,20,20,19,19,18,18,18,17,17,16,16,16, 15,15,15,14,14,14,13,13,13,12,12,12,11,11,11,10, 10,10,10,9,9,9,8,8,8,8,7,7,7,7,6,6, 6,6,5,5,5,5,5,4,4,4,4,3,3,3,3,3, 2,2,2,2,2,1,1,1,1,1,0,0,0,0,0,0, }; /* tables for volume->attenuation calculation */ static unsigned char voltab1[128] = { 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x2b, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1c, 0x1b, 0x1b, 0x1a, 0x19, 0x19, 0x18, 0x17, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14, 0x14, 0x13, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x11, 0x10, 0x10, 0x10, 0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0b, 0x0b, 0x0b, 0x0b, 0x0a, 0x0a, 0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09, 0x09, 0x08, 0x08, 0x08, 0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static unsigned char voltab2[128] = { 0x32, 0x31, 0x30, 0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x24, 0x23, 0x22, 0x21, 0x21, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1c, 0x1c, 0x1b, 0x1a, 0x1a, 0x19, 0x19, 0x18, 0x18, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14, 0x14, 0x13, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10, 0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c, 0x0c, 0x0b, 0x0b, 0x0b, 0x0b, 0x0a, 0x0a, 0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09, 0x09, 0x08, 0x08, 0x08, 0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; static unsigned char expressiontab[128] = { 0x7f, 0x6c, 0x62, 0x5a, 0x54, 0x50, 0x4b, 0x48, 0x45, 0x42, 0x40, 0x3d, 0x3b, 0x39, 0x38, 0x36, 0x34, 0x33, 0x31, 0x30, 0x2f, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x24, 0x23, 0x22, 0x21, 0x21, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1d, 0x1c, 0x1b, 0x1b, 0x1a, 0x1a, 0x19, 0x18, 0x18, 0x17, 0x17, 0x16, 0x16, 0x15, 0x15, 0x15, 0x14, 0x14, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x11, 0x10, 0x10, 0x0f, 0x0f, 0x0f, 0x0e, 0x0e, 0x0e, 0x0d, 0x0d, 0x0d, 0x0c, 0x0c, 0x0c, 0x0b, 0x0b, 0x0b, 0x0a, 0x0a, 0x0a, 0x09, 0x09, 0x09, 0x09, 0x08, 0x08, 0x08, 0x07, 0x07, 0x07, 0x07, 0x06, 0x06, 0x06, 0x06, 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static void awe_calc_volume(int voice) { voice_info *vp = &voices[voice]; awe_voice_info *ap; awe_chan_info *cp = voices[voice].cinfo; int vol; /* search voice information */ if ((ap = vp->sample) == NULL) return; ap = vp->sample; if (ap->index == 0) { DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample)); if (awe_set_sample((awe_voice_list*)ap) == 0) return; } if (ctrls[AWE_MD_NEW_VOLUME_CALC]) { int main_vol = cp->main_vol * ap->amplitude / 127; limitvalue(vp->velocity, 0, 127); limitvalue(main_vol, 0, 127); limitvalue(cp->expression_vol, 0, 127); vol = voltab1[main_vol] + voltab2[vp->velocity]; vol = (vol * 8) / 3; vol += ap->attenuation; if (cp->expression_vol < 127) vol += ((0x100 - vol) * expressiontab[cp->expression_vol])/128; vol += atten_offset; if (atten_relative) vol += ctrls[AWE_MD_ZERO_ATTEN]; limitvalue(vol, 0, 255); vp->avol = vol; } else { /* 0 - 127 */ vol = (vp->velocity * cp->main_vol * cp->expression_vol) / (127*127); vol = vol * ap->amplitude / 127; if (vol < 0) vol = 0; if (vol > 127) vol = 127; /* calc to attenuation */ vol = vol_table[vol]; vol += (int)ap->attenuation; vol += atten_offset; if (atten_relative) vol += ctrls[AWE_MD_ZERO_ATTEN]; if (vol > 255) vol = 255; vp->avol = vol; } if (cp->bank != AWE_DRUM_BANK && ((awe_voice_parm_block*)(&ap->parm))->volatk < 0x7d) { int atten; if (vp->velocity < 70) atten = 70; else atten = vp->velocity; vp->acutoff = (atten * ap->parm.cutoff + 0xa0) >> 7; } else { vp->acutoff = ap->parm.cutoff; } DEBUG(3,printk("AWE32: [-- voice(%d) vol=%x]\n", voice, vol)); } /* change master volume */ static void awe_change_master_volume(short val) { limitvalue(val, 0, 127); atten_offset = vol_table[val]; atten_relative = TRUE; awe_update_volume(); } /* update volumes of all available channels */ static void awe_update_volume(void) { int i; for (i = 0; i < awe_max_voices; i++) awe_set_voice_vol(i, TRUE); } /* set sostenuto on */ static void awe_sostenuto_on(int voice, int forced) { if (IS_NO_EFFECT(voice) && !forced) return; voices[voice].sostenuto = 127; } /* drop sustain */ static void awe_sustain_off(int voice, int forced) { if (voices[voice].state == AWE_ST_SUSTAINED) { awe_note_off(voice); awe_fx_init(voices[voice].ch); awe_voice_init(voice, FALSE); } } /* terminate and initialize voice */ static void awe_terminate_and_init(int voice, int forced) { awe_terminate(voice); awe_fx_init(voices[voice].ch); awe_voice_init(voice, TRUE); } /* * synth operation routines */ #define AWE_VOICE_KEY(v) (0x8000 | (v)) #define AWE_CHAN_KEY(c,n) (((c) << 8) | ((n) + 1)) #define KEY_CHAN_MATCH(key,c) (((key) >> 8) == (c)) /* initialize the voice */ static void awe_voice_init(int voice, int init_all) { voice_info *vp = &voices[voice]; /* reset voice search key */ if (playing_mode == AWE_PLAY_DIRECT) vp->key = AWE_VOICE_KEY(voice); else vp->key = 0; /* clear voice mapping */ voice_alloc->map[voice] = 0; /* touch the timing flag */ vp->time = current_alloc_time; /* initialize other parameters if necessary */ if (init_all) { vp->note = -1; vp->velocity = 0; vp->sostenuto = 0; vp->sample = NULL; vp->cinfo = &channels[voice]; vp->ch = voice; vp->state = AWE_ST_OFF; /* emu8000 parameters */ vp->apitch = 0; vp->avol = 255; vp->apan = -1; } } /* clear effects */ static void awe_fx_init(int ch) { if (SINGLE_LAYER_MODE() && !ctrls[AWE_MD_KEEP_EFFECT]) { memset(&channels[ch].fx, 0, sizeof(channels[ch].fx)); memset(&channels[ch].fx_layer, 0, sizeof(&channels[ch].fx_layer)); } } /* initialize channel info */ static void awe_channel_init(int ch, int init_all) { awe_chan_info *cp = &channels[ch]; cp->channel = ch; if (init_all) { cp->panning = 0; /* zero center */ cp->bender_range = 200; /* sense * 100 */ cp->main_vol = 127; if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(ch)) { cp->instr = ctrls[AWE_MD_DEF_DRUM]; cp->bank = AWE_DRUM_BANK; } else { cp->instr = ctrls[AWE_MD_DEF_PRESET]; cp->bank = ctrls[AWE_MD_DEF_BANK]; } } cp->bender = 0; /* zero tune skew */ cp->expression_vol = 127; cp->chan_press = 0; cp->sustained = 0; if (! ctrls[AWE_MD_KEEP_EFFECT]) { memset(&cp->fx, 0, sizeof(cp->fx)); memset(&cp->fx_layer, 0, sizeof(cp->fx_layer)); } } /* change the voice parameters; voice = channel */ static void awe_voice_change(int voice, fx_affect_func func) { int i; switch (playing_mode) { case AWE_PLAY_DIRECT: func(voice, FALSE); break; case AWE_PLAY_INDIRECT: for (i = 0; i < awe_max_voices; i++) if (voices[i].key == AWE_VOICE_KEY(voice)) func(i, FALSE); break; default: for (i = 0; i < awe_max_voices; i++) if (KEY_CHAN_MATCH(voices[i].key, voice)) func(i, FALSE); break; } } /* * device open / close */ /* open device: * reset status of all voices, and clear sample position flag */ static int awe_open(int dev, int mode) { if (awe_busy) return -EBUSY; awe_busy = TRUE; /* set default mode */ awe_init_ctrl_parms(FALSE); atten_relative = TRUE; atten_offset = 0; drum_flags = DEFAULT_DRUM_FLAGS; playing_mode = AWE_PLAY_INDIRECT; /* reset voices & channels */ awe_reset(dev); patch_opened = 0; return 0; } /* close device: * reset all voices again (terminate sounds) */ static void awe_close(int dev) { awe_reset(dev); awe_busy = FALSE; } /* set miscellaneous mode parameters */ static void awe_init_ctrl_parms(int init_all) { int i; for (i = 0; i < AWE_MD_END; i++) { if (init_all || ctrl_parms[i].init_each_time) ctrls[i] = ctrl_parms[i].value; } } /* sequencer I/O control: */ static int awe_ioctl(int dev, unsigned int cmd, caddr_t arg) { switch (cmd) { case SNDCTL_SYNTH_INFO: if (playing_mode == AWE_PLAY_DIRECT) awe_info.nr_voices = awe_max_voices; else awe_info.nr_voices = AWE_MAX_CHANNELS; memcpy((char*)arg, &awe_info, sizeof(awe_info)); return 0; break; case SNDCTL_SEQ_RESETSAMPLES: awe_reset(dev); awe_reset_samples(); return 0; break; case SNDCTL_SEQ_PERCMODE: /* what's this? */ return 0; break; case SNDCTL_SYNTH_MEMAVL: return memsize - awe_free_mem_ptr() * 2; default: printk(KERN_WARNING "AWE32: unsupported ioctl %d\n", cmd); return -EINVAL; } } static int voice_in_range(int voice) { if (playing_mode == AWE_PLAY_DIRECT) { if (voice < 0 || voice >= awe_max_voices) return FALSE; } else { if (voice < 0 || voice >= AWE_MAX_CHANNELS) return FALSE; } return TRUE; } static void release_voice(int voice, int do_sustain) { if (IS_NO_SOUND(voice)) return; if (do_sustain && (voices[voice].cinfo->sustained == 127 || voices[voice].sostenuto == 127)) voices[voice].state = AWE_ST_SUSTAINED; else { awe_note_off(voice); awe_fx_init(voices[voice].ch); awe_voice_init(voice, FALSE); } } /* release all notes */ static void awe_note_off_all(int do_sustain) { int i; for (i = 0; i < awe_max_voices; i++) release_voice(i, do_sustain); } /* kill a voice: * not terminate, just release the voice. */ static int awe_kill_note(int dev, int voice, int note, int velocity) { int i, v2, key; DEBUG(2,printk("AWE32: [off(%d) nt=%d vl=%d]\n", voice, note, velocity)); if (! voice_in_range(voice)) return -EINVAL; switch (playing_mode) { case AWE_PLAY_DIRECT: case AWE_PLAY_INDIRECT: key = AWE_VOICE_KEY(voice); break; case AWE_PLAY_MULTI2: v2 = voice_alloc->map[voice] >> 8; voice_alloc->map[voice] = 0; voice = v2; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return -EINVAL; /* continue to below */ default: key = AWE_CHAN_KEY(voice, note); break; } for (i = 0; i < awe_max_voices; i++) { if (voices[i].key == key) release_voice(i, TRUE); } return 0; } static void start_or_volume_change(int voice, int velocity) { voices[voice].velocity = velocity; awe_calc_volume(voice); if (voices[voice].state == AWE_ST_STANDBY) awe_note_on(voice); else if (voices[voice].state == AWE_ST_ON) awe_set_volume(voice, FALSE); } static void set_and_start_voice(int voice, int state) { /* calculate pitch & volume parameters */ voices[voice].state = state; awe_calc_pitch(voice); awe_calc_volume(voice); if (state == AWE_ST_ON) awe_note_on(voice); } /* start a voice: * if note is 255, identical with aftertouch function. * Otherwise, start a voice with specified not and volume. */ static int awe_start_note(int dev, int voice, int note, int velocity) { int i, key, state, volonly; DEBUG(2,printk("AWE32: [on(%d) nt=%d vl=%d]\n", voice, note, velocity)); if (! voice_in_range(voice)) return -EINVAL; if (velocity == 0) state = AWE_ST_STANDBY; /* stand by for playing */ else state = AWE_ST_ON; /* really play */ volonly = FALSE; switch (playing_mode) { case AWE_PLAY_DIRECT: case AWE_PLAY_INDIRECT: key = AWE_VOICE_KEY(voice); if (note == 255) volonly = TRUE; break; case AWE_PLAY_MULTI2: voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return -EINVAL; /* continue to below */ default: if (note >= 128) { /* key volume mode */ note -= 128; volonly = TRUE; } key = AWE_CHAN_KEY(voice, note); break; } /* dynamic volume change */ if (volonly) { for (i = 0; i < awe_max_voices; i++) { if (voices[i].key == key) start_or_volume_change(i, velocity); } return 0; } /* if the same note still playing, stop it */ if (playing_mode != AWE_PLAY_DIRECT || ctrls[AWE_MD_EXCLUSIVE_SOUND]) { for (i = 0; i < awe_max_voices; i++) if (voices[i].key == key) { if (voices[i].state == AWE_ST_ON) { awe_note_off(i); awe_voice_init(i, FALSE); } else if (voices[i].state == AWE_ST_STANDBY) awe_voice_init(i, TRUE); } } /* allocate voices */ if (playing_mode == AWE_PLAY_DIRECT) awe_alloc_one_voice(voice, note, velocity); else awe_alloc_multi_voices(voice, note, velocity, key); /* turn off other voices exlusively (for drums) */ for (i = 0; i < awe_max_voices; i++) if (voices[i].key == key) awe_exclusive_off(i); /* set up pitch and volume parameters */ for (i = 0; i < awe_max_voices; i++) { if (voices[i].key == key && voices[i].state == AWE_ST_OFF) set_and_start_voice(i, state); } return 0; } /* calculate hash key */ static int awe_search_key(int bank, int preset, int note) { unsigned int key; #if 1 /* new hash table */ if (bank == AWE_DRUM_BANK) key = preset + note + 128; else key = bank + preset; #else key = preset; #endif key %= AWE_MAX_PRESETS; return (int)key; } /* search instrument from hash table */ static awe_voice_list * awe_search_instr(int bank, int preset, int note) { awe_voice_list *p; int key, key2; key = awe_search_key(bank, preset, note); for (p = preset_table[key]; p; p = p->next_bank) { if (p->instr == preset && p->bank == bank) return p; } key2 = awe_search_key(bank, preset, 0); /* search default */ if (key == key2) return NULL; for (p = preset_table[key2]; p; p = p->next_bank) { if (p->instr == preset && p->bank == bank) return p; } return NULL; } /* assign the instrument to a voice */ static int awe_set_instr_2(int dev, int voice, int instr_no) { if (playing_mode == AWE_PLAY_MULTI2) { voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return -EINVAL; } return awe_set_instr(dev, voice, instr_no); } /* assign the instrument to a channel; voice is the channel number */ static int awe_set_instr(int dev, int voice, int instr_no) { awe_chan_info *cinfo; if (! voice_in_range(voice)) return -EINVAL; if (instr_no < 0 || instr_no >= AWE_MAX_PRESETS) return -EINVAL; cinfo = &channels[voice]; cinfo->instr = instr_no; DEBUG(2,printk("AWE32: [program(%d) %d]\n", voice, instr_no)); return 0; } /* reset all voices; terminate sounds and initialize parameters */ static void awe_reset(int dev) { int i; current_alloc_time = 0; /* don't turn off voice 31 and 32. they are used also for FM voices */ for (i = 0; i < awe_max_voices; i++) { awe_terminate(i); awe_voice_init(i, TRUE); } for (i = 0; i < AWE_MAX_CHANNELS; i++) awe_channel_init(i, TRUE); for (i = 0; i < 16; i++) { awe_operations.chn_info[i].controllers[CTL_MAIN_VOLUME] = 127; awe_operations.chn_info[i].controllers[CTL_EXPRESSION] = 127; } awe_init_fm(); awe_tweak(); } /* hardware specific control: * GUS specific and AWE32 specific controls are available. */ static void awe_hw_control(int dev, unsigned char *event) { int cmd = event[2]; if (cmd & _AWE_MODE_FLAG) awe_hw_awe_control(dev, cmd & _AWE_MODE_VALUE_MASK, event); #ifdef AWE_HAS_GUS_COMPATIBILITY else awe_hw_gus_control(dev, cmd & _AWE_MODE_VALUE_MASK, event); #endif } #ifdef AWE_HAS_GUS_COMPATIBILITY /* GUS compatible controls */ static void awe_hw_gus_control(int dev, int cmd, unsigned char *event) { int voice, i, key; unsigned short p1; short p2; int plong; if (MULTI_LAYER_MODE()) return; if (cmd == _GUS_NUMVOICES) return; voice = event[3]; if (! voice_in_range(voice)) return; p1 = *(unsigned short *) &event[4]; p2 = *(short *) &event[6]; plong = *(int*) &event[4]; switch (cmd) { case _GUS_VOICESAMPLE: awe_set_instr(dev, voice, p1); return; case _GUS_VOICEBALA: /* 0 to 15 --> -128 to 127 */ awe_panning(dev, voice, ((int)p1 << 4) - 128); return; case _GUS_VOICEVOL: case _GUS_VOICEVOL2: /* not supported yet */ return; case _GUS_RAMPRANGE: case _GUS_RAMPRATE: case _GUS_RAMPMODE: case _GUS_RAMPON: case _GUS_RAMPOFF: /* volume ramping not supported */ return; case _GUS_VOLUME_SCALE: return; case _GUS_VOICE_POS: FX_SET(&channels[voice].fx, AWE_FX_SAMPLE_START, (short)(plong & 0x7fff)); FX_SET(&channels[voice].fx, AWE_FX_COARSE_SAMPLE_START, (plong >> 15) & 0xffff); return; } key = AWE_VOICE_KEY(voice); for (i = 0; i < awe_max_voices; i++) { if (voices[i].key == key) { switch (cmd) { case _GUS_VOICEON: awe_note_on(i); break; case _GUS_VOICEOFF: awe_terminate(i); awe_fx_init(voices[i].ch); awe_voice_init(i, TRUE); break; case _GUS_VOICEFADE: awe_note_off(i); awe_fx_init(voices[i].ch); awe_voice_init(i, FALSE); break; case _GUS_VOICEFREQ: awe_calc_pitch_from_freq(i, plong); break; } } } } #endif /* gus_compat */ /* AWE32 specific controls */ static void awe_hw_awe_control(int dev, int cmd, unsigned char *event) { int voice; unsigned short p1; short p2; int i; voice = event[3]; if (! voice_in_range(voice)) return; if (playing_mode == AWE_PLAY_MULTI2) { voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return; } p1 = *(unsigned short *) &event[4]; p2 = *(short *) &event[6]; switch (cmd) { case _AWE_DEBUG_MODE: ctrls[AWE_MD_DEBUG_MODE] = p1; printk(KERN_DEBUG "AWE32: debug mode = %d\n", ctrls[AWE_MD_DEBUG_MODE]); break; case _AWE_REVERB_MODE: ctrls[AWE_MD_REVERB_MODE] = p1; awe_update_reverb_mode(); break; case _AWE_CHORUS_MODE: ctrls[AWE_MD_CHORUS_MODE] = p1; awe_update_chorus_mode(); break; case _AWE_REMOVE_LAST_SAMPLES: DEBUG(0,printk("AWE32: remove last samples\n")); awe_reset(0); if (locked_sf_id > 0) awe_remove_samples(locked_sf_id); break; case _AWE_INITIALIZE_CHIP: awe_initialize(); break; case _AWE_SEND_EFFECT: i = -1; if (p1 >= 0x100) { i = (p1 >> 8); if (i < 0 || i >= MAX_LAYERS) break; } awe_send_effect(voice, i, p1, p2); break; case _AWE_RESET_CHANNEL: awe_channel_init(voice, !p1); break; case _AWE_TERMINATE_ALL: awe_reset(0); break; case _AWE_TERMINATE_CHANNEL: awe_voice_change(voice, awe_terminate_and_init); break; case _AWE_RELEASE_ALL: awe_note_off_all(FALSE); break; case _AWE_NOTEOFF_ALL: awe_note_off_all(TRUE); break; case _AWE_INITIAL_VOLUME: DEBUG(0,printk("AWE32: init attenuation %d\n", p1)); atten_relative = (char)p2; atten_offset = (short)p1; awe_update_volume(); break; case _AWE_CHN_PRESSURE: channels[voice].chan_press = p1; awe_modwheel_change(voice, p1); break; case _AWE_CHANNEL_MODE: DEBUG(0,printk("AWE32: channel mode = %d\n", p1)); playing_mode = p1; awe_reset(0); break; case _AWE_DRUM_CHANNELS: DEBUG(0,printk("AWE32: drum flags = %x\n", p1)); drum_flags = *(unsigned int*)&event[4]; break; case _AWE_MISC_MODE: DEBUG(0,printk("AWE32: ctrl parms = %d %d\n", p1, p2)); if (p1 > AWE_MD_VERSION && p1 < AWE_MD_END) { ctrls[p1] = p2; if (ctrl_parms[p1].update) ctrl_parms[p1].update(); } break; case _AWE_EQUALIZER: ctrls[AWE_MD_BASS_LEVEL] = p1; ctrls[AWE_MD_TREBLE_LEVEL] = p2; awe_update_equalizer(); break; default: DEBUG(0,printk("AWE32: hw control cmd=%d voice=%d\n", cmd, voice)); break; } } /* change effects */ static void awe_send_effect(int voice, int layer, int type, int val) { awe_chan_info *cinfo; FX_Rec *fx; int mode; cinfo = &channels[voice]; if (layer >= 0 && layer < MAX_LAYERS) fx = &cinfo->fx_layer[layer]; else fx = &cinfo->fx; if (type & 0x40) mode = FX_FLAG_OFF; else if (type & 0x80) mode = FX_FLAG_ADD; else mode = FX_FLAG_SET; type &= 0x3f; if (type >= 0 && type < AWE_FX_END) { DEBUG(2,printk("AWE32: effects (%d) %d %d\n", voice, type, val)); if (mode == FX_FLAG_SET) FX_SET(fx, type, val); else if (mode == FX_FLAG_ADD) FX_ADD(fx, type, val); else FX_UNSET(fx, type); if (mode != FX_FLAG_OFF && parm_defs[type].realtime) { DEBUG(2,printk("AWE32: fx_realtime (%d)\n", voice)); awe_voice_change(voice, parm_defs[type].realtime); } } } /* change modulation wheel; voice is already mapped on multi2 mode */ static void awe_modwheel_change(int voice, int value) { int i; awe_chan_info *cinfo; cinfo = &channels[voice]; i = value * ctrls[AWE_MD_MOD_SENSE] / 1200; FX_ADD(&cinfo->fx, AWE_FX_LFO1_PITCH, i); awe_voice_change(voice, awe_fx_fmmod); FX_ADD(&cinfo->fx, AWE_FX_LFO2_PITCH, i); awe_voice_change(voice, awe_fx_fm2frq2); } /* voice pressure change */ static void awe_aftertouch(int dev, int voice, int pressure) { int note; DEBUG(2,printk("AWE32: [after(%d) %d]\n", voice, pressure)); if (! voice_in_range(voice)) return; switch (playing_mode) { case AWE_PLAY_DIRECT: case AWE_PLAY_INDIRECT: awe_start_note(dev, voice, 255, pressure); break; case AWE_PLAY_MULTI2: note = (voice_alloc->map[voice] & 0xff) - 1; awe_key_pressure(dev, voice, note + 0x80, pressure); break; } } /* voice control change */ static void awe_controller(int dev, int voice, int ctrl_num, int value) { awe_chan_info *cinfo; if (! voice_in_range(voice)) return; if (playing_mode == AWE_PLAY_MULTI2) { voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return; } cinfo = &channels[voice]; switch (ctrl_num) { case CTL_BANK_SELECT: /* MIDI control #0 */ DEBUG(2,printk("AWE32: [bank(%d) %d]\n", voice, value)); if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice) && !ctrls[AWE_MD_TOGGLE_DRUM_BANK]) break; if (value < 0 || value > 255) break; cinfo->bank = value; if (cinfo->bank == AWE_DRUM_BANK) DRUM_CHANNEL_ON(cinfo->channel); else DRUM_CHANNEL_OFF(cinfo->channel); awe_set_instr(dev, voice, cinfo->instr); break; case CTL_MODWHEEL: /* MIDI control #1 */ DEBUG(2,printk("AWE32: [modwheel(%d) %d]\n", voice, value)); awe_modwheel_change(voice, value); break; case CTRL_PITCH_BENDER: /* SEQ1 V2 contorl */ DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, value)); /* zero centered */ cinfo->bender = value; awe_voice_change(voice, awe_set_voice_pitch); break; case CTRL_PITCH_BENDER_RANGE: /* SEQ1 V2 control */ DEBUG(2,printk("AWE32: [range(%d) %d]\n", voice, value)); /* value = sense x 100 */ cinfo->bender_range = value; /* no audible pitch change yet.. */ break; case CTL_EXPRESSION: /* MIDI control #11 */ if (SINGLE_LAYER_MODE()) value /= 128; case CTRL_EXPRESSION: /* SEQ1 V2 control */ DEBUG(2,printk("AWE32: [expr(%d) %d]\n", voice, value)); /* 0 - 127 */ cinfo->expression_vol = value; awe_voice_change(voice, awe_set_voice_vol); break; case CTL_PAN: /* MIDI control #10 */ DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, value)); /* (0-127) -> signed 8bit */ cinfo->panning = value * 2 - 128; if (ctrls[AWE_MD_REALTIME_PAN]) awe_voice_change(voice, awe_set_pan); break; case CTL_MAIN_VOLUME: /* MIDI control #7 */ if (SINGLE_LAYER_MODE()) value = (value * 100) / 16383; case CTRL_MAIN_VOLUME: /* SEQ1 V2 control */ DEBUG(2,printk("AWE32: [mainvol(%d) %d]\n", voice, value)); /* 0 - 127 */ cinfo->main_vol = value; awe_voice_change(voice, awe_set_voice_vol); break; case CTL_EXT_EFF_DEPTH: /* reverb effects: 0-127 */ DEBUG(2,printk("AWE32: [reverb(%d) %d]\n", voice, value)); FX_SET(&cinfo->fx, AWE_FX_REVERB, value * 2); break; case CTL_CHORUS_DEPTH: /* chorus effects: 0-127 */ DEBUG(2,printk("AWE32: [chorus(%d) %d]\n", voice, value)); FX_SET(&cinfo->fx, AWE_FX_CHORUS, value * 2); break; case 120: /* all sounds off */ awe_note_off_all(FALSE); break; case 123: /* all notes off */ awe_note_off_all(TRUE); break; case CTL_SUSTAIN: /* MIDI control #64 */ cinfo->sustained = value; if (value != 127) awe_voice_change(voice, awe_sustain_off); break; case CTL_SOSTENUTO: /* MIDI control #66 */ if (value == 127) awe_voice_change(voice, awe_sostenuto_on); else awe_voice_change(voice, awe_sustain_off); break; default: DEBUG(0,printk("AWE32: [control(%d) ctrl=%d val=%d]\n", voice, ctrl_num, value)); break; } } /* voice pan change (value = -128 - 127) */ static void awe_panning(int dev, int voice, int value) { awe_chan_info *cinfo; if (! voice_in_range(voice)) return; if (playing_mode == AWE_PLAY_MULTI2) { voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return; } cinfo = &channels[voice]; cinfo->panning = value; DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, cinfo->panning)); if (ctrls[AWE_MD_REALTIME_PAN]) awe_voice_change(voice, awe_set_pan); } /* volume mode change */ static void awe_volume_method(int dev, int mode) { /* not impremented */ DEBUG(0,printk("AWE32: [volmethod mode=%d]\n", mode)); } /* pitch wheel change: 0-16384 */ static void awe_bender(int dev, int voice, int value) { awe_chan_info *cinfo; if (! voice_in_range(voice)) return; if (playing_mode == AWE_PLAY_MULTI2) { voice = voice_alloc->map[voice] >> 8; if (voice < 0 || voice >= AWE_MAX_CHANNELS) return; } /* convert to zero centered value */ cinfo = &channels[voice]; cinfo->bender = value - 8192; DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, cinfo->bender)); awe_voice_change(voice, awe_set_voice_pitch); } /* * load a sound patch: * three types of patches are accepted: AWE, GUS, and SYSEX. */ static int awe_load_patch(int dev, int format, const char *addr, int offs, int count, int pmgr_flag) { awe_patch_info patch; int rc = 0; #ifdef AWE_HAS_GUS_COMPATIBILITY if (format == GUS_PATCH) { return awe_load_guspatch(addr, offs, count, pmgr_flag); } else #endif if (format == SYSEX_PATCH) { /* no system exclusive message supported yet */ return 0; } else if (format != AWE_PATCH) { printk(KERN_WARNING "AWE32 Error: Invalid patch format (key) 0x%x\n", format); return -EINVAL; } if (count < AWE_PATCH_INFO_SIZE) { printk(KERN_WARNING "AWE32 Error: Patch header too short\n"); return -EINVAL; } if (copy_from_user(((char*)&patch) + offs, addr + offs, AWE_PATCH_INFO_SIZE - offs)) return -EFAULT; count -= AWE_PATCH_INFO_SIZE; if (count < patch.len) { printk(KERN_WARNING "AWE32: sample: Patch record too short (%d<%d)\n", count, patch.len); return -EINVAL; } switch (patch.type) { case AWE_LOAD_INFO: rc = awe_load_info(&patch, addr, count); break; case AWE_LOAD_DATA: rc = awe_load_data(&patch, addr, count); break; case AWE_OPEN_PATCH: rc = awe_open_patch(&patch, addr, count); break; case AWE_CLOSE_PATCH: rc = awe_close_patch(&patch, addr, count); break; case AWE_UNLOAD_PATCH: rc = awe_unload_patch(&patch, addr, count); break; case AWE_REPLACE_DATA: rc = awe_replace_data(&patch, addr, count); break; case AWE_MAP_PRESET: rc = awe_load_map(&patch, addr, count); break; /* case AWE_PROBE_INFO: rc = awe_probe_info(&patch, addr, count); break;*/ case AWE_PROBE_DATA: rc = awe_probe_data(&patch, addr, count); break; case AWE_REMOVE_INFO: rc = awe_remove_info(&patch, addr, count); break; case AWE_LOAD_CHORUS_FX: rc = awe_load_chorus_fx(&patch, addr, count); break; case AWE_LOAD_REVERB_FX: rc = awe_load_reverb_fx(&patch, addr, count); break; default: printk(KERN_WARNING "AWE32 Error: unknown patch format type %d\n", patch.type); rc = -EINVAL; } return rc; } /* create an sf list record */ static int awe_create_sf(int type, char *name) { sf_list *rec; /* terminate sounds */ awe_reset(0); rec = (sf_list *)kmalloc(sizeof(*rec), GFP_KERNEL); if (rec == NULL) return 1; /* no memory */ rec->sf_id = current_sf_id + 1; rec->type = type; if (/*current_sf_id == 0 ||*/ (type & AWE_PAT_LOCKED) != 0) locked_sf_id = current_sf_id + 1; rec->num_info = awe_free_info(); rec->num_sample = awe_free_sample(); rec->mem_ptr = awe_free_mem_ptr(); rec->infos = rec->last_infos = NULL; rec->samples = rec->last_samples = NULL; /* add to linked-list */ rec->next = NULL; rec->prev = sftail; if (sftail) sftail->next = rec; else sfhead = rec; sftail = rec; current_sf_id++; #ifdef AWE_ALLOW_SAMPLE_SHARING rec->shared = NULL; if (name) memcpy(rec->name, name, AWE_PATCH_NAME_LEN); else strcpy(rec->name, "*TEMPORARY*"); if (current_sf_id > 1 && name && (type & AWE_PAT_SHARED) != 0) { /* is the current font really a shared font? */ if (is_shared_sf(rec->name)) { /* check if the shared font is already installed */ sf_list *p; for (p = rec->prev; p; p = p->prev) { if (is_identical_name(rec->name, p)) { rec->shared = p; break; } } } } #endif /* allow sharing */ return 0; } #ifdef AWE_ALLOW_SAMPLE_SHARING /* check if the given name is a valid shared name */ #define ASC_TO_KEY(c) ((c) - 'A' + 1) static int is_shared_sf(unsigned char *name) { static unsigned char id_head[4] = { ASC_TO_KEY('A'), ASC_TO_KEY('W'), ASC_TO_KEY('E'), AWE_MAJOR_VERSION, }; if (memcmp(name, id_head, 4) == 0) return TRUE; return FALSE; } /* check if the given name matches to the existing list */ static int is_identical_name(unsigned char *name, sf_list *p) { char *id = p->name; if (is_shared_sf(id) && memcmp(id, name, AWE_PATCH_NAME_LEN) == 0) return TRUE; return FALSE; } /* check if the given voice info exists */ static int info_duplicated(sf_list *sf, awe_voice_list *rec) { /* search for all sharing lists */ for (; sf; sf = sf->shared) { awe_voice_list *p; for (p = sf->infos; p; p = p->next) { if (p->type == V_ST_NORMAL && p->bank == rec->bank && p->instr == rec->instr && p->v.low == rec->v.low && p->v.high == rec->v.high && p->v.sample == rec->v.sample) return TRUE; } } return FALSE; } #endif /* AWE_ALLOW_SAMPLE_SHARING */ /* free sf_list record */ /* linked-list in this function is not cared */ static void awe_free_sf(sf_list *sf) { if (sf->infos) { awe_voice_list *p, *next; for (p = sf->infos; p; p = next) { next = p->next; kfree(p); } } if (sf->samples) { awe_sample_list *p, *next; for (p = sf->samples; p; p = next) { next = p->next; kfree(p); } } kfree(sf); } /* open patch; create sf list and set opened flag */ static int awe_open_patch(awe_patch_info *patch, const char *addr, int count) { awe_open_parm parm; int shared; if (copy_from_user(&parm, addr + AWE_PATCH_INFO_SIZE, sizeof(parm))) return -EFAULT; shared = FALSE; #ifdef AWE_ALLOW_SAMPLE_SHARING if (sftail && (parm.type & AWE_PAT_SHARED) != 0) { /* is the previous font the same font? */ if (is_identical_name(parm.name, sftail)) { /* then append to the previous */ shared = TRUE; awe_reset(0); if (parm.type & AWE_PAT_LOCKED) locked_sf_id = current_sf_id; } } #endif /* allow sharing */ if (! shared) { if (awe_create_sf(parm.type, parm.name)) { printk(KERN_ERR "AWE32: can't open: failed to alloc new list\n"); return -ENOMEM; } } patch_opened = TRUE; return current_sf_id; } /* check if the patch is already opened */ static sf_list * check_patch_opened(int type, char *name) { if (! patch_opened) { if (awe_create_sf(type, name)) { printk(KERN_ERR "AWE32: failed to alloc new list\n"); return NULL; } patch_opened = TRUE; return sftail; } return sftail; } /* close the patch; if no voice is loaded, remove the patch */ static int awe_close_patch(awe_patch_info *patch, const char *addr, int count) { if (patch_opened && sftail) { /* if no voice is loaded, release the current patch */ if (sftail->infos == NULL) { awe_reset(0); awe_remove_samples(current_sf_id - 1); } } patch_opened = 0; return 0; } /* remove the latest patch */ static int awe_unload_patch(awe_patch_info *patch, const char *addr, int count) { if (current_sf_id > 0 && current_sf_id > locked_sf_id) { awe_reset(0); awe_remove_samples(current_sf_id - 1); } return 0; } /* allocate voice info list records */ static awe_voice_list * alloc_new_info(void) { awe_voice_list *newlist; newlist = (awe_voice_list *)kmalloc(sizeof(*newlist), GFP_KERNEL); if (newlist == NULL) { printk(KERN_ERR "AWE32: can't alloc info table\n"); return NULL; } return newlist; } /* allocate sample info list records */ static awe_sample_list * alloc_new_sample(void) { awe_sample_list *newlist; newlist = (awe_sample_list *)kmalloc(sizeof(*newlist), GFP_KERNEL); if (newlist == NULL) { printk(KERN_ERR "AWE32: can't alloc sample table\n"); return NULL; } return newlist; } /* load voice map */ static int awe_load_map(awe_patch_info *patch, const char *addr, int count) { awe_voice_map map; awe_voice_list *rec, *p; sf_list *sf; /* get the link info */ if (count < sizeof(map)) { printk(KERN_WARNING "AWE32 Error: invalid patch info length\n"); return -EINVAL; } if (copy_from_user(&map, addr + AWE_PATCH_INFO_SIZE, sizeof(map))) return -EFAULT; /* check if the identical mapping already exists */ p = awe_search_instr(map.map_bank, map.map_instr, map.map_key); for (; p; p = p->next_instr) { if (p->type == V_ST_MAPPED && p->v.start == map.src_instr && p->v.end == map.src_bank && p->v.fixkey == map.src_key) return 0; /* already present! */ } if ((sf = check_patch_opened(AWE_PAT_TYPE_MAP, NULL)) == NULL) return -ENOMEM; if ((rec = alloc_new_info()) == NULL) return -ENOMEM; rec->bank = map.map_bank; rec->instr = map.map_instr; rec->type = V_ST_MAPPED; rec->disabled = FALSE; awe_init_voice_info(&rec->v); if (map.map_key >= 0) { rec->v.low = map.map_key; rec->v.high = map.map_key; } rec->v.start = map.src_instr; rec->v.end = map.src_bank; rec->v.fixkey = map.src_key; add_sf_info(sf, rec); add_info_list(rec); return 0; } #if 0 /* probe preset in the current list -- nothing to be loaded */ static int awe_probe_info(awe_patch_info *patch, const char *addr, int count) { #ifdef AWE_ALLOW_SAMPLE_SHARING awe_voice_map map; awe_voice_list *p; if (! patch_opened) return -EINVAL; /* get the link info */ if (count < sizeof(map)) { printk(KERN_WARNING "AWE32 Error: invalid patch info length\n"); return -EINVAL; } if (copy_from_user(&map, addr + AWE_PATCH_INFO_SIZE, sizeof(map))) return -EFAULT; /* check if the identical mapping already exists */ if (sftail == NULL) return -EINVAL; p = awe_search_instr(map.src_bank, map.src_instr, map.src_key); for (; p; p = p->next_instr) { if (p->type == V_ST_NORMAL && is_identical_holder(p->holder, sftail) && p->v.low <= map.src_key && p->v.high >= map.src_key) return 0; /* already present! */ } #endif /* allow sharing */ return -EINVAL; } #endif /* probe sample in the current list -- nothing to be loaded */ static int awe_probe_data(awe_patch_info *patch, const char *addr, int count) { #ifdef AWE_ALLOW_SAMPLE_SHARING if (! patch_opened) return -EINVAL; /* search the specified sample by optarg */ if (search_sample_index(sftail, patch->optarg) != NULL) return 0; #endif /* allow sharing */ return -EINVAL; } /* remove the present instrument layers */ static int remove_info(sf_list *sf, int bank, int instr) { awe_voice_list *prev, *next, *p; int removed = 0; prev = NULL; for (p = sf->infos; p; p = next) { next = p->next; if (p->type == V_ST_NORMAL && p->bank == bank && p->instr == instr) { /* remove this layer */ if (prev) prev->next = next; else sf->infos = next; if (p == sf->last_infos) sf->last_infos = prev; sf->num_info--; removed++; kfree(p); } else prev = p; } if (removed) rebuild_preset_list(); return removed; } /* load voice information data */ static int awe_load_info(awe_patch_info *patch, const char *addr, int count) { int offset; awe_voice_rec_hdr hdr; int i; int total_size; sf_list *sf; awe_voice_list *rec; if (count < AWE_VOICE_REC_SIZE) { printk(KERN_WARNING "AWE32 Error: invalid patch info length\n"); return -EINVAL; } offset = AWE_PATCH_INFO_SIZE; if (copy_from_user((char*)&hdr, addr + offset, AWE_VOICE_REC_SIZE)) return -EFAULT; offset += AWE_VOICE_REC_SIZE; if (hdr.nvoices <= 0 || hdr.nvoices >= 100) { printk(KERN_WARNING "AWE32 Error: Invalid voice number %d\n", hdr.nvoices); return -EINVAL; } total_size = AWE_VOICE_REC_SIZE + AWE_VOICE_INFO_SIZE * hdr.nvoices; if (count < total_size) { printk(KERN_WARNING "AWE32 Error: patch length(%d) is smaller than nvoices(%d)\n", count, hdr.nvoices); return -EINVAL; } if ((sf = check_patch_opened(AWE_PAT_TYPE_MISC, NULL)) == NULL) return -ENOMEM; switch (hdr.write_mode) { case AWE_WR_EXCLUSIVE: /* exclusive mode - if the instrument already exists, return error */ for (rec = sf->infos; rec; rec = rec->next) { if (rec->type == V_ST_NORMAL && rec->bank == hdr.bank && rec->instr == hdr.instr) return -EINVAL; } break; case AWE_WR_REPLACE: /* replace mode - remove the instrument if it already exists */ remove_info(sf, hdr.bank, hdr.instr); break; } /* append new layers */ for (i = 0; i < hdr.nvoices; i++) { rec = alloc_new_info(); if (rec == NULL) return -ENOMEM; rec->bank = hdr.bank; rec->instr = hdr.instr; rec->type = V_ST_NORMAL; rec->disabled = FALSE; /* copy awe_voice_info parameters */ if (copy_from_user(&rec->v, addr + offset, AWE_VOICE_INFO_SIZE)) { kfree(rec); return -EFAULT; } offset += AWE_VOICE_INFO_SIZE; #ifdef AWE_ALLOW_SAMPLE_SHARING if (sf && sf->shared) { if (info_duplicated(sf, rec)) { kfree(rec); continue; } } #endif /* allow sharing */ if (rec->v.mode & AWE_MODE_INIT_PARM) awe_init_voice_parm(&rec->v.parm); add_sf_info(sf, rec); awe_set_sample(rec); add_info_list(rec); } return 0; } /* remove instrument layers */ static int awe_remove_info(awe_patch_info *patch, const char *addr, int count) { unsigned char bank, instr; sf_list *sf; if (! patch_opened || (sf = sftail) == NULL) { printk(KERN_WARNING "AWE32: remove_info: patch not opened\n"); return -EINVAL; } bank = ((unsigned short)patch->optarg >> 8) & 0xff; instr = (unsigned short)patch->optarg & 0xff; if (! remove_info(sf, bank, instr)) return -EINVAL; return 0; } /* load wave sample data */ static int awe_load_data(awe_patch_info *patch, const char *addr, int count) { int offset, size; int rc; awe_sample_info tmprec; awe_sample_list *rec; sf_list *sf; if ((sf = check_patch_opened(AWE_PAT_TYPE_MISC, NULL)) == NULL) return -ENOMEM; size = (count - AWE_SAMPLE_INFO_SIZE) / 2; offset = AWE_PATCH_INFO_SIZE; if (copy_from_user(&tmprec, addr + offset, AWE_SAMPLE_INFO_SIZE)) return -EFAULT; offset += AWE_SAMPLE_INFO_SIZE; if (size != tmprec.size) { printk(KERN_WARNING "AWE32: load: sample size differed (%d != %d)\n", tmprec.size, size); return -EINVAL; } if (search_sample_index(sf, tmprec.sample) != NULL) { #ifdef AWE_ALLOW_SAMPLE_SHARING /* if shared sample, skip this data */ if (sf->type & AWE_PAT_SHARED) return 0; #endif /* allow sharing */ DEBUG(1,printk("AWE32: sample data %d already present\n", tmprec.sample)); return -EINVAL; } if ((rec = alloc_new_sample()) == NULL) return -ENOMEM; memcpy(&rec->v, &tmprec, sizeof(tmprec)); if (rec->v.size > 0) { if ((rc = awe_write_wave_data(addr, offset, rec, -1)) < 0) { kfree(rec); return rc; } sf->mem_ptr += rc; } add_sf_sample(sf, rec); return 0; } /* replace wave sample data */ static int awe_replace_data(awe_patch_info *patch, const char *addr, int count) { int offset; int size; int rc; int channels; awe_sample_info cursmp; int save_mem_ptr; sf_list *sf; awe_sample_list *rec; if (! patch_opened || (sf = sftail) == NULL) { printk(KERN_WARNING "AWE32: replace: patch not opened\n"); return -EINVAL; } size = (count - AWE_SAMPLE_INFO_SIZE) / 2; offset = AWE_PATCH_INFO_SIZE; if (copy_from_user(&cursmp, addr + offset, AWE_SAMPLE_INFO_SIZE)) return -EFAULT; offset += AWE_SAMPLE_INFO_SIZE; if (cursmp.size == 0 || size != cursmp.size) { printk(KERN_WARNING "AWE32: replace: invalid sample size (%d!=%d)\n", cursmp.size, size); return -EINVAL; } channels = patch->optarg; if (channels <= 0 || channels > AWE_NORMAL_VOICES) { printk(KERN_WARNING "AWE32: replace: invalid channels %d\n", channels); return -EINVAL; } for (rec = sf->samples; rec; rec = rec->next) { if (rec->v.sample == cursmp.sample) break; } if (rec == NULL) { printk(KERN_WARNING "AWE32: replace: cannot find existing sample data %d\n", cursmp.sample); return -EINVAL; } if (rec->v.size != cursmp.size) { printk(KERN_WARNING "AWE32: replace: exiting size differed (%d!=%d)\n", rec->v.size, cursmp.size); return -EINVAL; } save_mem_ptr = awe_free_mem_ptr(); sftail->mem_ptr = rec->v.start - awe_mem_start; memcpy(&rec->v, &cursmp, sizeof(cursmp)); rec->v.sf_id = current_sf_id; if ((rc = awe_write_wave_data(addr, offset, rec, channels)) < 0) return rc; sftail->mem_ptr = save_mem_ptr; return 0; } /*----------------------------------------------------------------*/ static const char *readbuf_addr; static int readbuf_offs; static int readbuf_flags; /* initialize read buffer */ static int readbuf_init(const char *addr, int offset, awe_sample_info *sp) { readbuf_addr = addr; readbuf_offs = offset; readbuf_flags = sp->mode_flags; return 0; } /* read directly from user buffer */ static unsigned short readbuf_word(int pos) { unsigned short c; /* read from user buffer */ if (readbuf_flags & AWE_SAMPLE_8BITS) { unsigned char cc; get_user(cc, (unsigned char*)(readbuf_addr + readbuf_offs + pos)); c = (unsigned short)cc << 8; /* convert 8bit -> 16bit */ } else { get_user(c, (unsigned short*)(readbuf_addr + readbuf_offs + pos * 2)); } if (readbuf_flags & AWE_SAMPLE_UNSIGNED) c ^= 0x8000; /* unsigned -> signed */ return c; } #define readbuf_word_cache readbuf_word #define readbuf_end() /**/ /*----------------------------------------------------------------*/ #define BLANK_LOOP_START 8 #define BLANK_LOOP_END 40 #define BLANK_LOOP_SIZE 48 /* loading onto memory - return the actual written size */ static int awe_write_wave_data(const char *addr, int offset, awe_sample_list *list, int channels) { int i, truesize, dram_offset; awe_sample_info *sp = &list->v; int rc; /* be sure loop points start < end */ if (sp->loopstart > sp->loopend) { int tmp = sp->loopstart; sp->loopstart = sp->loopend; sp->loopend = tmp; } /* compute true data size to be loaded */ truesize = sp->size; if (sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP)) truesize += sp->loopend - sp->loopstart; if (sp->mode_flags & AWE_SAMPLE_NO_BLANK) truesize += BLANK_LOOP_SIZE; if (awe_free_mem_ptr() + truesize >= memsize/2) { DEBUG(-1,printk("AWE32 Error: Sample memory full\n")); return -ENOSPC; } /* recalculate address offset */ sp->end -= sp->start; sp->loopstart -= sp->start; sp->loopend -= sp->start; dram_offset = awe_free_mem_ptr() + awe_mem_start; sp->start = dram_offset; sp->end += dram_offset; sp->loopstart += dram_offset; sp->loopend += dram_offset; /* set the total size (store onto obsolete checksum value) */ if (sp->size == 0) sp->checksum = 0; else sp->checksum = truesize; if ((rc = awe_open_dram_for_write(dram_offset, channels)) != 0) return rc; if (readbuf_init(addr, offset, sp) < 0) return -ENOSPC; for (i = 0; i < sp->size; i++) { unsigned short c; c = readbuf_word(i); awe_write_dram(c); if (i == sp->loopend && (sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP))) { int looplen = sp->loopend - sp->loopstart; /* copy reverse loop */ int k; for (k = 1; k <= looplen; k++) { c = readbuf_word_cache(i - k); awe_write_dram(c); } if (sp->mode_flags & AWE_SAMPLE_BIDIR_LOOP) { sp->end += looplen; } else { sp->start += looplen; sp->end += looplen; } } } readbuf_end(); /* if no blank loop is attached in the sample, add it */ if (sp->mode_flags & AWE_SAMPLE_NO_BLANK) { for (i = 0; i < BLANK_LOOP_SIZE; i++) awe_write_dram(0); if (sp->mode_flags & AWE_SAMPLE_SINGLESHOT) { sp->loopstart = sp->end + BLANK_LOOP_START; sp->loopend = sp->end + BLANK_LOOP_END; } } awe_close_dram(); /* initialize FM */ awe_init_fm(); return truesize; } /*----------------------------------------------------------------*/ #ifdef AWE_HAS_GUS_COMPATIBILITY /* calculate GUS envelope time: * is this correct? i have no idea.. */ static int calc_gus_envelope_time(int rate, int start, int end) { int r, p, t; r = (3 - ((rate >> 6) & 3)) * 3; p = rate & 0x3f; t = end - start; if (t < 0) t = -t; if (13 > r) t = t << (13 - r); else t = t >> (r - 13); return (t * 10) / (p * 441); } #define calc_gus_sustain(val) (0x7f - vol_table[(val)/2]) #define calc_gus_attenuation(val) vol_table[(val)/2] /* load GUS patch */ static int awe_load_guspatch(const char *addr, int offs, int size, int pmgr_flag) { struct patch_info patch; awe_voice_info *rec; awe_sample_info *smp; awe_voice_list *vrec; awe_sample_list *smprec; int sizeof_patch; int note, rc; sf_list *sf; sizeof_patch = (int)((long)&patch.data[0] - (long)&patch); /* header size */ if (size < sizeof_patch) { printk(KERN_WARNING "AWE32 Error: Patch header too short\n"); return -EINVAL; } if (copy_from_user(((char*)&patch) + offs, addr + offs, sizeof_patch - offs)) return -EFAULT; size -= sizeof_patch; if (size < patch.len) { printk(KERN_WARNING "AWE32 Error: Patch record too short (%d<%d)\n", size, patch.len); return -EINVAL; } if ((sf = check_patch_opened(AWE_PAT_TYPE_GUS, NULL)) == NULL) return -ENOMEM; if ((smprec = alloc_new_sample()) == NULL) return -ENOMEM; if ((vrec = alloc_new_info()) == NULL) { kfree(smprec); return -ENOMEM; } smp = &smprec->v; smp->sample = sf->num_sample; smp->start = 0; smp->end = patch.len; smp->loopstart = patch.loop_start; smp->loopend = patch.loop_end; smp->size = patch.len; /* set up mode flags */ smp->mode_flags = 0; if (!(patch.mode & WAVE_16_BITS)) smp->mode_flags |= AWE_SAMPLE_8BITS; if (patch.mode & WAVE_UNSIGNED) smp->mode_flags |= AWE_SAMPLE_UNSIGNED; smp->mode_flags |= AWE_SAMPLE_NO_BLANK; if (!(patch.mode & (WAVE_LOOPING|WAVE_BIDIR_LOOP|WAVE_LOOP_BACK))) smp->mode_flags |= AWE_SAMPLE_SINGLESHOT; if (patch.mode & WAVE_BIDIR_LOOP) smp->mode_flags |= AWE_SAMPLE_BIDIR_LOOP; if (patch.mode & WAVE_LOOP_BACK) smp->mode_flags |= AWE_SAMPLE_REVERSE_LOOP; DEBUG(0,printk("AWE32: [sample %d mode %x]\n", patch.instr_no, smp->mode_flags)); if (patch.mode & WAVE_16_BITS) { /* convert to word offsets */ smp->size /= 2; smp->end /= 2; smp->loopstart /= 2; smp->loopend /= 2; } smp->checksum_flag = 0; smp->checksum = 0; if ((rc = awe_write_wave_data(addr, sizeof_patch, smprec, -1)) < 0) return rc; sf->mem_ptr += rc; add_sf_sample(sf, smprec); /* set up voice info */ rec = &vrec->v; awe_init_voice_info(rec); rec->sample = sf->num_info; /* the last sample */ rec->rate_offset = calc_rate_offset(patch.base_freq); note = freq_to_note(patch.base_note); rec->root = note / 100; rec->tune = -(note % 100); rec->low = freq_to_note(patch.low_note) / 100; rec->high = freq_to_note(patch.high_note) / 100; DEBUG(1,printk("AWE32: [gus base offset=%d, note=%d, range=%d-%d(%d-%d)]\n", rec->rate_offset, note, rec->low, rec->high, patch.low_note, patch.high_note)); /* panning position; -128 - 127 => 0-127 */ rec->pan = (patch.panning + 128) / 2; /* detuning is ignored */ /* 6points volume envelope */ if (patch.mode & WAVE_ENVELOPES) { int attack, hold, decay, release; attack = calc_gus_envelope_time (patch.env_rate[0], 0, patch.env_offset[0]); hold = calc_gus_envelope_time (patch.env_rate[1], patch.env_offset[0], patch.env_offset[1]); decay = calc_gus_envelope_time (patch.env_rate[2], patch.env_offset[1], patch.env_offset[2]); release = calc_gus_envelope_time (patch.env_rate[3], patch.env_offset[1], patch.env_offset[4]); release += calc_gus_envelope_time (patch.env_rate[4], patch.env_offset[3], patch.env_offset[4]); release += calc_gus_envelope_time (patch.env_rate[5], patch.env_offset[4], patch.env_offset[5]); rec->parm.volatkhld = (calc_parm_hold(hold) << 8) | calc_parm_attack(attack); rec->parm.voldcysus = (calc_gus_sustain(patch.env_offset[2]) << 8) | calc_parm_decay(decay); rec->parm.volrelease = 0x8000 | calc_parm_decay(release); DEBUG(2,printk("AWE32: [gusenv atk=%d, hld=%d, dcy=%d, rel=%d]\n", attack, hold, decay, release)); rec->attenuation = calc_gus_attenuation(patch.env_offset[0]); } /* tremolo effect */ if (patch.mode & WAVE_TREMOLO) { int rate = (patch.tremolo_rate * 1000 / 38) / 42; rec->parm.tremfrq = ((patch.tremolo_depth / 2) << 8) | rate; DEBUG(2,printk("AWE32: [gusenv tremolo rate=%d, dep=%d, tremfrq=%x]\n", patch.tremolo_rate, patch.tremolo_depth, rec->parm.tremfrq)); } /* vibrato effect */ if (patch.mode & WAVE_VIBRATO) { int rate = (patch.vibrato_rate * 1000 / 38) / 42; rec->parm.fm2frq2 = ((patch.vibrato_depth / 6) << 8) | rate; DEBUG(2,printk("AWE32: [gusenv vibrato rate=%d, dep=%d, tremfrq=%x]\n", patch.tremolo_rate, patch.tremolo_depth, rec->parm.tremfrq)); } /* scale_freq, scale_factor, volume, and fractions not implemented */ /* append to the tail of the list */ vrec->bank = ctrls[AWE_MD_GUS_BANK]; vrec->instr = patch.instr_no; vrec->disabled = FALSE; vrec->type = V_ST_NORMAL; add_sf_info(sf, vrec); add_info_list(vrec); /* set the voice index */ awe_set_sample(vrec); return 0; } #endif /* AWE_HAS_GUS_COMPATIBILITY */ /* * sample and voice list handlers */ /* append this to the current sf list */ static void add_sf_info(sf_list *sf, awe_voice_list *rec) { if (sf == NULL) return; rec->holder = sf; rec->v.sf_id = sf->sf_id; if (sf->last_infos) sf->last_infos->next = rec; else sf->infos = rec; sf->last_infos = rec; rec->next = NULL; sf->num_info++; } /* prepend this sample to sf list */ static void add_sf_sample(sf_list *sf, awe_sample_list *rec) { if (sf == NULL) return; rec->holder = sf; rec->v.sf_id = sf->sf_id; if (sf->last_samples) sf->last_samples->next = rec; else sf->samples = rec; sf->last_samples = rec; rec->next = NULL; sf->num_sample++; } /* purge the old records which don't belong with the same file id */ static void purge_old_list(awe_voice_list *rec, awe_voice_list *next) { rec->next_instr = next; if (rec->bank == AWE_DRUM_BANK) { /* remove samples with the same note range */ awe_voice_list *cur, *prev = rec; int low = rec->v.low; int high = rec->v.high; for (cur = next; cur; cur = cur->next_instr) { if (cur->v.low == low && cur->v.high == high && ! is_identical_holder(cur->holder, rec->holder)) prev->next_instr = cur->next_instr; else prev = cur; } } else { if (! is_identical_holder(next->holder, rec->holder)) /* remove all samples */ rec->next_instr = NULL; } } /* prepend to top of the preset table */ static void add_info_list(awe_voice_list *rec) { awe_voice_list *prev, *cur; int key; if (rec->disabled) return; key = awe_search_key(rec->bank, rec->instr, rec->v.low); prev = NULL; for (cur = preset_table[key]; cur; cur = cur->next_bank) { /* search the first record with the same bank number */ if (cur->instr == rec->instr && cur->bank == rec->bank) { /* replace the list with the new record */ rec->next_bank = cur->next_bank; if (prev) prev->next_bank = rec; else preset_table[key] = rec; purge_old_list(rec, cur); return; } prev = cur; } /* this is the first bank record.. just add this */ rec->next_instr = NULL; rec->next_bank = preset_table[key]; preset_table[key] = rec; } /* remove samples later than the specified sf_id */ static void awe_remove_samples(int sf_id) { sf_list *p, *prev; if (sf_id <= 0) { awe_reset_samples(); return; } /* already removed? */ if (current_sf_id <= sf_id) return; for (p = sftail; p; p = prev) { if (p->sf_id <= sf_id) break; prev = p->prev; awe_free_sf(p); } sftail = p; if (sftail) { sf_id = sftail->sf_id; sftail->next = NULL; } else { sf_id = 0; sfhead = NULL; } current_sf_id = sf_id; if (locked_sf_id > sf_id) locked_sf_id = sf_id; rebuild_preset_list(); } /* rebuild preset search list */ static void rebuild_preset_list(void) { sf_list *p; awe_voice_list *rec; memset(preset_table, 0, sizeof(preset_table)); for (p = sfhead; p; p = p->next) { for (rec = p->infos; rec; rec = rec->next) add_info_list(rec); } } /* compare the given sf_id pair */ static int is_identical_holder(sf_list *sf1, sf_list *sf2) { if (sf1 == NULL || sf2 == NULL) return FALSE; if (sf1 == sf2) return TRUE; #ifdef AWE_ALLOW_SAMPLE_SHARING { /* compare with the sharing id */ sf_list *p; int counter = 0; if (sf1->sf_id < sf2->sf_id) { /* make sure id1 > id2 */ sf_list *tmp; tmp = sf1; sf1 = sf2; sf2 = tmp; } for (p = sf1->shared; p; p = p->shared) { if (counter++ > current_sf_id) break; /* strange sharing loop.. quit */ if (p == sf2) return TRUE; } } #endif /* allow sharing */ return FALSE; } /* search the sample index matching with the given sample id */ static awe_sample_list * search_sample_index(sf_list *sf, int sample) { awe_sample_list *p; #ifdef AWE_ALLOW_SAMPLE_SHARING int counter = 0; while (sf) { for (p = sf->samples; p; p = p->next) { if (p->v.sample == sample) return p; } sf = sf->shared; if (counter++ > current_sf_id) break; /* strange sharing loop.. quit */ } #else if (sf) { for (p = sf->samples; p; p = p->next) { if (p->v.sample == sample) return p; } } #endif return NULL; } /* search the specified sample */ /* non-zero = found */ static short awe_set_sample(awe_voice_list *rec) { awe_sample_list *smp; awe_voice_info *vp = &rec->v; vp->index = 0; if ((smp = search_sample_index(rec->holder, vp->sample)) == NULL) return 0; /* set the actual sample offsets */ vp->start += smp->v.start; vp->end += smp->v.end; vp->loopstart += smp->v.loopstart; vp->loopend += smp->v.loopend; /* copy mode flags */ vp->mode = smp->v.mode_flags; /* set flag */ vp->index = 1; return 1; } /* * voice allocation */ /* look for all voices associated with the specified note & velocity */ static int awe_search_multi_voices(awe_voice_list *rec, int note, int velocity, awe_voice_info **vlist) { int nvoices; nvoices = 0; for (; rec; rec = rec->next_instr) { if (note >= rec->v.low && note <= rec->v.high && velocity >= rec->v.vellow && velocity <= rec->v.velhigh) { if (rec->type == V_ST_MAPPED) { /* mapper */ vlist[0] = &rec->v; return -1; } vlist[nvoices++] = &rec->v; if (nvoices >= AWE_MAX_VOICES) break; } } return nvoices; } /* store the voice list from the specified note and velocity. if the preset is mapped, seek for the destination preset, and rewrite the note number if necessary. */ static int really_alloc_voices(int bank, int instr, int *note, int velocity, awe_voice_info **vlist) { int nvoices; awe_voice_list *vrec; int level = 0; for (;;) { vrec = awe_search_instr(bank, instr, *note); nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist); if (nvoices == 0) { if (bank == AWE_DRUM_BANK) /* search default drumset */ vrec = awe_search_instr(bank, ctrls[AWE_MD_DEF_DRUM], *note); else /* search default preset */ vrec = awe_search_instr(ctrls[AWE_MD_DEF_BANK], instr, *note); nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist); } if (nvoices == 0) { if (bank == AWE_DRUM_BANK && ctrls[AWE_MD_DEF_DRUM] != 0) /* search default drumset */ vrec = awe_search_instr(bank, 0, *note); else if (bank != AWE_DRUM_BANK && ctrls[AWE_MD_DEF_BANK] != 0) /* search default preset */ vrec = awe_search_instr(0, instr, *note); nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist); } if (nvoices < 0) { /* mapping */ int key = vlist[0]->fixkey; instr = vlist[0]->start; bank = vlist[0]->end; if (level++ > 5) { printk(KERN_ERR "AWE32: too deep mapping level\n"); return 0; } if (key >= 0) *note = key; } else break; } return nvoices; } /* allocate voices corresponding note and velocity; supports multiple insts. */ static void awe_alloc_multi_voices(int ch, int note, int velocity, int key) { int i, v, nvoices, bank; awe_voice_info *vlist[AWE_MAX_VOICES]; if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(ch)) bank = AWE_DRUM_BANK; /* always search drumset */ else bank = channels[ch].bank; /* check the possible voices; note may be changeable if mapped */ nvoices = really_alloc_voices(bank, channels[ch].instr, ¬e, velocity, vlist); /* set the voices */ current_alloc_time++; for (i = 0; i < nvoices; i++) { v = awe_clear_voice(); voices[v].key = key; voices[v].ch = ch; voices[v].note = note; voices[v].velocity = velocity; voices[v].time = current_alloc_time; voices[v].cinfo = &channels[ch]; voices[v].sample = vlist[i]; voices[v].state = AWE_ST_MARK; voices[v].layer = nvoices - i - 1; /* in reverse order */ } /* clear the mark in allocated voices */ for (i = 0; i < awe_max_voices; i++) { if (voices[i].state == AWE_ST_MARK) voices[i].state = AWE_ST_OFF; } } /* search an empty voice. if no empty voice is found, at least terminate a voice */ static int awe_clear_voice(void) { enum { OFF=0, RELEASED, SUSTAINED, PLAYING, END }; struct voice_candidate_t { int best; int time; int vtarget; } candidate[END]; int i, type, vtarget; vtarget = 0xffff; for (type = OFF; type < END; type++) { candidate[type].best = -1; candidate[type].time = current_alloc_time + 1; candidate[type].vtarget = vtarget; } for (i = 0; i < awe_max_voices; i++) { if (voices[i].state & AWE_ST_OFF) type = OFF; else if (voices[i].state & AWE_ST_RELEASED) type = RELEASED; else if (voices[i].state & AWE_ST_SUSTAINED) type = SUSTAINED; else if (voices[i].state & ~AWE_ST_MARK) type = PLAYING; else continue; #ifdef AWE_CHECK_VTARGET /* get current volume */ vtarget = (awe_peek_dw(AWE_VTFT(i)) >> 16) & 0xffff; #endif if (candidate[type].best < 0 || vtarget < candidate[type].vtarget || (vtarget == candidate[type].vtarget && voices[i].time < candidate[type].time)) { candidate[type].best = i; candidate[type].time = voices[i].time; candidate[type].vtarget = vtarget; } } for (type = OFF; type < END; type++) { if ((i = candidate[type].best) >= 0) { if (voices[i].state != AWE_ST_OFF) awe_terminate(i); awe_voice_init(i, TRUE); return i; } } return 0; } /* search sample for the specified note & velocity and set it on the voice; * note that voice is the voice index (not channel index) */ static void awe_alloc_one_voice(int voice, int note, int velocity) { int ch, nvoices, bank; awe_voice_info *vlist[AWE_MAX_VOICES]; ch = voices[voice].ch; if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice)) bank = AWE_DRUM_BANK; /* always search drumset */ else bank = voices[voice].cinfo->bank; nvoices = really_alloc_voices(bank, voices[voice].cinfo->instr, ¬e, velocity, vlist); if (nvoices > 0) { voices[voice].time = ++current_alloc_time; voices[voice].sample = vlist[0]; /* use the first one */ voices[voice].layer = 0; voices[voice].note = note; voices[voice].velocity = velocity; } } /* * sequencer2 functions */ /* search an empty voice; used by sequencer2 */ static int awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc) { playing_mode = AWE_PLAY_MULTI2; awe_info.nr_voices = AWE_MAX_CHANNELS; return awe_clear_voice(); } /* set up voice; used by sequencer2 */ static void awe_setup_voice(int dev, int voice, int chn) { struct channel_info *info; if (synth_devs[dev] == NULL || (info = &synth_devs[dev]->chn_info[chn]) == NULL) return; if (voice < 0 || voice >= awe_max_voices) return; DEBUG(2,printk("AWE32: [setup(%d) ch=%d]\n", voice, chn)); channels[chn].expression_vol = info->controllers[CTL_EXPRESSION]; channels[chn].main_vol = info->controllers[CTL_MAIN_VOLUME]; channels[chn].panning = info->controllers[CTL_PAN] * 2 - 128; /* signed 8bit */ channels[chn].bender = info->bender_value; /* zero center */ channels[chn].bank = info->controllers[CTL_BANK_SELECT]; channels[chn].sustained = info->controllers[CTL_SUSTAIN]; if (info->controllers[CTL_EXT_EFF_DEPTH]) { FX_SET(&channels[chn].fx, AWE_FX_REVERB, info->controllers[CTL_EXT_EFF_DEPTH] * 2); } if (info->controllers[CTL_CHORUS_DEPTH]) { FX_SET(&channels[chn].fx, AWE_FX_CHORUS, info->controllers[CTL_CHORUS_DEPTH] * 2); } awe_set_instr(dev, chn, info->pgm_num); } #ifdef CONFIG_AWE32_MIXER /* * AWE32 mixer device control */ static int awe_mixer_ioctl(int dev, unsigned int cmd, caddr_t arg); static int my_mixerdev = -1; static struct mixer_operations awe_mixer_operations = { owner: THIS_MODULE, id: "AWE", name: "AWE32 Equalizer", ioctl: awe_mixer_ioctl, }; static void __init attach_mixer(void) { if ((my_mixerdev = sound_alloc_mixerdev()) >= 0) { mixer_devs[my_mixerdev] = &awe_mixer_operations; } } static void __exit unload_mixer(void) { if (my_mixerdev >= 0) sound_unload_mixerdev(my_mixerdev); } static int awe_mixer_ioctl(int dev, unsigned int cmd, caddr_t arg) { int i, level, value; if (((cmd >> 8) & 0xff) != 'M') return -EINVAL; level = *(int*)arg; level = ((level & 0xff) + (level >> 8)) / 2; DEBUG(0,printk("AWEMix: cmd=%x val=%d\n", cmd & 0xff, level)); if (_SIOC_DIR(cmd) & _IOC_WRITE) { switch (cmd & 0xff) { case SOUND_MIXER_BASS: value = level * 12 / 100; if (value >= 12) value = 11; ctrls[AWE_MD_BASS_LEVEL] = value; awe_update_equalizer(); break; case SOUND_MIXER_TREBLE: value = level * 12 / 100; if (value >= 12) value = 11; ctrls[AWE_MD_TREBLE_LEVEL] = value; awe_update_equalizer(); break; case SOUND_MIXER_VOLUME: level = level * 127 / 100; if (level >= 128) level = 127; atten_relative = FALSE; atten_offset = vol_table[level]; awe_update_volume(); break; } } switch (cmd & 0xff) { case SOUND_MIXER_BASS: level = ctrls[AWE_MD_BASS_LEVEL] * 100 / 24; level = (level << 8) | level; break; case SOUND_MIXER_TREBLE: level = ctrls[AWE_MD_TREBLE_LEVEL] * 100 / 24; level = (level << 8) | level; break; case SOUND_MIXER_VOLUME: value = atten_offset; if (atten_relative) value += ctrls[AWE_MD_ZERO_ATTEN]; for (i = 127; i > 0; i--) { if (value <= vol_table[i]) break; } level = i * 100 / 127; level = (level << 8) | level; break; case SOUND_MIXER_DEVMASK: level = SOUND_MASK_BASS|SOUND_MASK_TREBLE|SOUND_MASK_VOLUME; break; default: level = 0; break; } return *(int*)arg = level; } #endif /* CONFIG_AWE32_MIXER */ /* * initialization of Emu8000 */ /* intiailize audio channels */ static void awe_init_audio(void) { int ch; /* turn off envelope engines */ for (ch = 0; ch < AWE_MAX_VOICES; ch++) { awe_poke(AWE_DCYSUSV(ch), 0x80); } /* reset all other parameters to zero */ for (ch = 0; ch < AWE_MAX_VOICES; ch++) { awe_poke(AWE_ENVVOL(ch), 0); awe_poke(AWE_ENVVAL(ch), 0); awe_poke(AWE_DCYSUS(ch), 0); awe_poke(AWE_ATKHLDV(ch), 0); awe_poke(AWE_LFO1VAL(ch), 0); awe_poke(AWE_ATKHLD(ch), 0); awe_poke(AWE_LFO2VAL(ch), 0); awe_poke(AWE_IP(ch), 0); awe_poke(AWE_IFATN(ch), 0); awe_poke(AWE_PEFE(ch), 0); awe_poke(AWE_FMMOD(ch), 0); awe_poke(AWE_TREMFRQ(ch), 0); awe_poke(AWE_FM2FRQ2(ch), 0); awe_poke_dw(AWE_PTRX(ch), 0); awe_poke_dw(AWE_VTFT(ch), 0); awe_poke_dw(AWE_PSST(ch), 0); awe_poke_dw(AWE_CSL(ch), 0); awe_poke_dw(AWE_CCCA(ch), 0); } for (ch = 0; ch < AWE_MAX_VOICES; ch++) { awe_poke_dw(AWE_CPF(ch), 0); awe_poke_dw(AWE_CVCF(ch), 0); } } /* initialize DMA address */ static void awe_init_dma(void) { awe_poke_dw(AWE_SMALR, 0); awe_poke_dw(AWE_SMARR, 0); awe_poke_dw(AWE_SMALW, 0); awe_poke_dw(AWE_SMARW, 0); } /* initialization arrays; from ADIP */ static unsigned short init1[128] = { 0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330, 0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730, 0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30, 0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30, 0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330, 0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730, 0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30, 0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30, 0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330, 0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730, 0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30, 0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30, 0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330, 0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730, 0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30, 0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30, }; static unsigned short init2[128] = { 0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330, 0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730, 0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30, 0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30, 0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330, 0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730, 0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30, 0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30, 0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330, 0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730, 0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30, 0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30, 0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330, 0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730, 0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30, 0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30, }; static unsigned short init3[128] = { 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5, 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254, 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234, 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224, 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254, 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264, 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294, 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3, 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287, 0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7, 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386, 0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55, 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308, 0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F, 0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319, 0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570, }; static unsigned short init4[128] = { 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5, 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254, 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234, 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224, 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254, 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264, 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294, 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3, 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287, 0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7, 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386, 0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55, 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308, 0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F, 0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319, 0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570, }; /* send initialization arrays to start up */ static void awe_init_array(void) { awe_send_array(init1); awe_wait(1024); awe_send_array(init2); awe_send_array(init3); awe_poke_dw(AWE_HWCF4, 0); awe_poke_dw(AWE_HWCF5, 0x83); awe_poke_dw(AWE_HWCF6, 0x8000); awe_send_array(init4); } /* send an initialization array */ static void awe_send_array(unsigned short *data) { int i; unsigned short *p; p = data; for (i = 0; i < AWE_MAX_VOICES; i++, p++) awe_poke(AWE_INIT1(i), *p); for (i = 0; i < AWE_MAX_VOICES; i++, p++) awe_poke(AWE_INIT2(i), *p); for (i = 0; i < AWE_MAX_VOICES; i++, p++) awe_poke(AWE_INIT3(i), *p); for (i = 0; i < AWE_MAX_VOICES; i++, p++) awe_poke(AWE_INIT4(i), *p); } /* * set up awe32 channels to some known state. */ /* set the envelope & LFO parameters to the default values; see ADIP */ static void awe_tweak_voice(int i) { /* set all mod/vol envelope shape to minimum */ awe_poke(AWE_ENVVOL(i), 0x8000); awe_poke(AWE_ENVVAL(i), 0x8000); awe_poke(AWE_DCYSUS(i), 0x7F7F); awe_poke(AWE_ATKHLDV(i), 0x7F7F); awe_poke(AWE_ATKHLD(i), 0x7F7F); awe_poke(AWE_PEFE(i), 0); /* mod envelope height to zero */ awe_poke(AWE_LFO1VAL(i), 0x8000); /* no delay for LFO1 */ awe_poke(AWE_LFO2VAL(i), 0x8000); awe_poke(AWE_IP(i), 0xE000); /* no pitch shift */ awe_poke(AWE_IFATN(i), 0xFF00); /* volume to minimum */ awe_poke(AWE_FMMOD(i), 0); awe_poke(AWE_TREMFRQ(i), 0); awe_poke(AWE_FM2FRQ2(i), 0); } static void awe_tweak(void) { int i; /* reset all channels */ for (i = 0; i < awe_max_voices; i++) awe_tweak_voice(i); } /* * initializes the FM section of AWE32; * see Vince Vu's unofficial AWE32 programming guide */ static void awe_init_fm(void) { #ifndef AWE_ALWAYS_INIT_FM /* if no extended memory is on board.. */ if (memsize <= 0) return; #endif DEBUG(3,printk("AWE32: initializing FM\n")); /* Initialize the last two channels for DRAM refresh and producing the reverb and chorus effects for Yamaha OPL-3 synthesizer */ /* 31: FM left channel, 0xffffe0-0xffffe8 */ awe_poke(AWE_DCYSUSV(30), 0x80); awe_poke_dw(AWE_PSST(30), 0xFFFFFFE0); /* full left */ awe_poke_dw(AWE_CSL(30), 0x00FFFFE8 | (DEF_FM_CHORUS_DEPTH << 24)); awe_poke_dw(AWE_PTRX(30), (DEF_FM_REVERB_DEPTH << 8)); awe_poke_dw(AWE_CPF(30), 0); awe_poke_dw(AWE_CCCA(30), 0x00FFFFE3); /* 32: FM right channel, 0xfffff0-0xfffff8 */ awe_poke(AWE_DCYSUSV(31), 0x80); awe_poke_dw(AWE_PSST(31), 0x00FFFFF0); /* full right */ awe_poke_dw(AWE_CSL(31), 0x00FFFFF8 | (DEF_FM_CHORUS_DEPTH << 24)); awe_poke_dw(AWE_PTRX(31), (DEF_FM_REVERB_DEPTH << 8)); awe_poke_dw(AWE_CPF(31), 0x8000); awe_poke_dw(AWE_CCCA(31), 0x00FFFFF3); /* skew volume & cutoff */ awe_poke_dw(AWE_VTFT(30), 0x8000FFFF); awe_poke_dw(AWE_VTFT(31), 0x8000FFFF); voices[30].state = AWE_ST_FM; voices[31].state = AWE_ST_FM; /* change maximum channels to 30 */ awe_max_voices = AWE_NORMAL_VOICES; if (playing_mode == AWE_PLAY_DIRECT) awe_info.nr_voices = awe_max_voices; else awe_info.nr_voices = AWE_MAX_CHANNELS; voice_alloc->max_voice = awe_max_voices; } /* * AWE32 DRAM access routines */ /* open DRAM write accessing mode */ static int awe_open_dram_for_write(int offset, int channels) { int vidx[AWE_NORMAL_VOICES]; int i; if (channels < 0 || channels >= AWE_NORMAL_VOICES) { channels = AWE_NORMAL_VOICES; for (i = 0; i < AWE_NORMAL_VOICES; i++) vidx[i] = i; } else { for (i = 0; i < channels; i++) { vidx[i] = awe_clear_voice(); voices[vidx[i]].state = AWE_ST_MARK; } } /* use all channels for DMA transfer */ for (i = 0; i < channels; i++) { if (vidx[i] < 0) continue; awe_poke(AWE_DCYSUSV(vidx[i]), 0x80); awe_poke_dw(AWE_VTFT(vidx[i]), 0); awe_poke_dw(AWE_CVCF(vidx[i]), 0); awe_poke_dw(AWE_PTRX(vidx[i]), 0x40000000); awe_poke_dw(AWE_CPF(vidx[i]), 0x40000000); awe_poke_dw(AWE_PSST(vidx[i]), 0); awe_poke_dw(AWE_CSL(vidx[i]), 0); awe_poke_dw(AWE_CCCA(vidx[i]), 0x06000000); voices[vidx[i]].state = AWE_ST_DRAM; } /* point channels 31 & 32 to ROM samples for DRAM refresh */ awe_poke_dw(AWE_VTFT(30), 0); awe_poke_dw(AWE_PSST(30), 0x1d8); awe_poke_dw(AWE_CSL(30), 0x1e0); awe_poke_dw(AWE_CCCA(30), 0x1d8); awe_poke_dw(AWE_VTFT(31), 0); awe_poke_dw(AWE_PSST(31), 0x1d8); awe_poke_dw(AWE_CSL(31), 0x1e0); awe_poke_dw(AWE_CCCA(31), 0x1d8); voices[30].state = AWE_ST_FM; voices[31].state = AWE_ST_FM; /* if full bit is on, not ready to write on */ if (awe_peek_dw(AWE_SMALW) & 0x80000000) { for (i = 0; i < channels; i++) { awe_poke_dw(AWE_CCCA(vidx[i]), 0); voices[vidx[i]].state = AWE_ST_OFF; } printk("awe: not ready to write..\n"); return -EPERM; } /* set address to write */ awe_poke_dw(AWE_SMALW, offset); return 0; } /* open DRAM for RAM size detection */ static void awe_open_dram_for_check(void) { int i; for (i = 0; i < AWE_NORMAL_VOICES; i++) { awe_poke(AWE_DCYSUSV(i), 0x80); awe_poke_dw(AWE_VTFT(i), 0); awe_poke_dw(AWE_CVCF(i), 0); awe_poke_dw(AWE_PTRX(i), 0x40000000); awe_poke_dw(AWE_CPF(i), 0x40000000); awe_poke_dw(AWE_PSST(i), 0); awe_poke_dw(AWE_CSL(i), 0); if (i & 1) /* DMA write */ awe_poke_dw(AWE_CCCA(i), 0x06000000); else /* DMA read */ awe_poke_dw(AWE_CCCA(i), 0x04000000); voices[i].state = AWE_ST_DRAM; } } /* close dram access */ static void awe_close_dram(void) { int i; /* wait until FULL bit in SMAxW register be false */ for (i = 0; i < 10000; i++) { if (!(awe_peek_dw(AWE_SMALW) & 0x80000000)) break; awe_wait(10); } for (i = 0; i < AWE_NORMAL_VOICES; i++) { if (voices[i].state == AWE_ST_DRAM) { awe_poke_dw(AWE_CCCA(i), 0); awe_poke(AWE_DCYSUSV(i), 0x807F); voices[i].state = AWE_ST_OFF; } } } /* * detect presence of AWE32 and check memory size */ /* detect emu8000 chip on the specified address; from VV's guide */ static int __init awe_detect_base(int addr) { setup_ports(addr, 0, 0); if ((awe_peek(AWE_U1) & 0x000F) != 0x000C) return 0; if ((awe_peek(AWE_HWCF1) & 0x007E) != 0x0058) return 0; if ((awe_peek(AWE_HWCF2) & 0x0003) != 0x0003) return 0; DEBUG(0,printk("AWE32 found at %x\n", addr)); return 1; } #if defined CONFIG_ISAPNP || defined CONFIG_ISAPNP_MODULE static struct { unsigned short vendor; unsigned short function; char *name; } isapnp_awe_list[] __initdata = { {ISAPNP_VENDOR('C','T','L'), ISAPNP_FUNCTION(0x0021), "AWE32 WaveTable"}, {ISAPNP_VENDOR('C','T','L'), ISAPNP_FUNCTION(0x0022), "AWE64 WaveTable"}, {ISAPNP_VENDOR('C','T','L'), ISAPNP_FUNCTION(0x0023), "AWE64 Gold WaveTable"}, {0,} }; static struct pci_dev *idev = NULL; static int __init awe_probe_isapnp(int *port) { int i; for (i = 0; isapnp_awe_list[i].vendor != 0; i++) { while ((idev = isapnp_find_dev(NULL, isapnp_awe_list[i].vendor, isapnp_awe_list[i].function, idev))) { if (idev->prepare(idev) < 0) continue; if (idev->activate(idev) < 0 || !idev->resource[0].start) { idev->deactivate(idev); idev->deactivate(idev); continue; } *port = idev->resource[0].start; break; } if (!idev) continue; printk(KERN_INFO "ISAPnP reports %s at i/o %#x\n", isapnp_awe_list[i].name, *port); return 0; } return -ENODEV; } static void __exit awe_deactivate_isapnp(void) { #if 1 if (idev) { idev->deactivate(idev); idev = NULL; } #endif } #endif static int __init awe_detect(void) { int base; #if defined CONFIG_ISAPNP || defined CONFIG_ISAPNP_MODULE if (isapnp) { if (awe_probe_isapnp(&io) < 0) { printk(KERN_ERR "AWE32: No ISAPnP cards found\n"); return 0; } setup_ports(io, 0, 0); return 1; } #endif /* isapnp */ if (io) /* use default i/o port value */ setup_ports(io, 0, 0); else { /* probe it */ for (base = 0x620; base <= 0x680; base += 0x20) if (awe_detect_base(base)) return 1; DEBUG(0,printk("AWE32 not found\n")); return 0; } return 1; } /* * check dram size on AWE board */ /* any three numbers you like */ #define UNIQUE_ID1 0x1234 #define UNIQUE_ID2 0x4321 #define UNIQUE_ID3 0xFFFF static void __init awe_check_dram(void) { if (awe_present) /* already initialized */ return; if (memsize >= 0) { /* given by config file or module option */ memsize *= 1024; /* convert to Kbytes */ return; } awe_open_dram_for_check(); memsize = 0; /* set up unique two id numbers */ awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET); awe_poke(AWE_SMLD, UNIQUE_ID1); awe_poke(AWE_SMLD, UNIQUE_ID2); while (memsize < AWE_MAX_DRAM_SIZE) { awe_wait(5); /* read a data on the DRAM start address */ awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET); awe_peek(AWE_SMLD); /* discard stale data */ if (awe_peek(AWE_SMLD) != UNIQUE_ID1) break; if (awe_peek(AWE_SMLD) != UNIQUE_ID2) break; memsize += 512; /* increment 512kbytes */ /* Write a unique data on the test address; * if the address is out of range, the data is written on * 0x200000(=AWE_DRAM_OFFSET). Then the two id words are * broken by this data. */ awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET + memsize*512L); awe_poke(AWE_SMLD, UNIQUE_ID3); awe_wait(5); /* read a data on the just written DRAM address */ awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET + memsize*512L); awe_peek(AWE_SMLD); /* discard stale data */ if (awe_peek(AWE_SMLD) != UNIQUE_ID3) break; } awe_close_dram(); DEBUG(0,printk("AWE32: %d Kbytes memory detected\n", memsize)); /* convert to Kbytes */ memsize *= 1024; } /*----------------------------------------------------------------*/ /* * chorus and reverb controls; from VV's guide */ /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */ static char chorus_defined[AWE_CHORUS_NUMBERS]; static awe_chorus_fx_rec chorus_parm[AWE_CHORUS_NUMBERS] = { {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */ {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */ {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */ {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */ {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */ {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */ {0xE600, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay */ {0xE6C0, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay + feedback */ }; static int awe_load_chorus_fx(awe_patch_info *patch, const char *addr, int count) { if (patch->optarg < AWE_CHORUS_PREDEFINED || patch->optarg >= AWE_CHORUS_NUMBERS) { printk(KERN_WARNING "AWE32 Error: invalid chorus mode %d for uploading\n", patch->optarg); return -EINVAL; } if (count < sizeof(awe_chorus_fx_rec)) { printk(KERN_WARNING "AWE32 Error: too short chorus fx parameters\n"); return -EINVAL; } if (copy_from_user(&chorus_parm[patch->optarg], addr + AWE_PATCH_INFO_SIZE, sizeof(awe_chorus_fx_rec))) return -EFAULT; chorus_defined[patch->optarg] = TRUE; return 0; } static void awe_set_chorus_mode(int effect) { if (effect < 0 || effect >= AWE_CHORUS_NUMBERS || (effect >= AWE_CHORUS_PREDEFINED && !chorus_defined[effect])) return; awe_poke(AWE_INIT3(9), chorus_parm[effect].feedback); awe_poke(AWE_INIT3(12), chorus_parm[effect].delay_offset); awe_poke(AWE_INIT4(3), chorus_parm[effect].lfo_depth); awe_poke_dw(AWE_HWCF4, chorus_parm[effect].delay); awe_poke_dw(AWE_HWCF5, chorus_parm[effect].lfo_freq); awe_poke_dw(AWE_HWCF6, 0x8000); awe_poke_dw(AWE_HWCF7, 0x0000); } static void awe_update_chorus_mode(void) { awe_set_chorus_mode(ctrls[AWE_MD_CHORUS_MODE]); } /*----------------------------------------------------------------*/ /* reverb mode settings; write the following 28 data of 16 bit length * on the corresponding ports in the reverb_cmds array */ static char reverb_defined[AWE_CHORUS_NUMBERS]; static awe_reverb_fx_rec reverb_parm[AWE_REVERB_NUMBERS] = { {{ /* room 1 */ 0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4, 0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516, 0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* room 2 */ 0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548, 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* room 3 */ 0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516, 0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A, }}, {{ /* hall 1 */ 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284, 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548, 0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, }}, {{ /* hall 2 */ 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254, 0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3, 0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* plate */ 0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548, 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528, }}, {{ /* delay */ 0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204, 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500, 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, }}, {{ /* panning delay */ 0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204, 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500, 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, }}, }; static struct ReverbCmdPair { unsigned short cmd, port; } reverb_cmds[28] = { {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)}, {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)}, {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)}, {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)}, {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)}, {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)}, {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)}, }; static int awe_load_reverb_fx(awe_patch_info *patch, const char *addr, int count) { if (patch->optarg < AWE_REVERB_PREDEFINED || patch->optarg >= AWE_REVERB_NUMBERS) { printk(KERN_WARNING "AWE32 Error: invalid reverb mode %d for uploading\n", patch->optarg); return -EINVAL; } if (count < sizeof(awe_reverb_fx_rec)) { printk(KERN_WARNING "AWE32 Error: too short reverb fx parameters\n"); return -EINVAL; } if (copy_from_user(&reverb_parm[patch->optarg], addr + AWE_PATCH_INFO_SIZE, sizeof(awe_reverb_fx_rec))) return -EFAULT; reverb_defined[patch->optarg] = TRUE; return 0; } static void awe_set_reverb_mode(int effect) { int i; if (effect < 0 || effect >= AWE_REVERB_NUMBERS || (effect >= AWE_REVERB_PREDEFINED && !reverb_defined[effect])) return; for (i = 0; i < 28; i++) awe_poke(reverb_cmds[i].cmd, reverb_cmds[i].port, reverb_parm[effect].parms[i]); } static void awe_update_reverb_mode(void) { awe_set_reverb_mode(ctrls[AWE_MD_REVERB_MODE]); } /* * treble/bass equalizer control */ static unsigned short bass_parm[12][3] = { {0xD26A, 0xD36A, 0x0000}, /* -12 dB */ {0xD25B, 0xD35B, 0x0000}, /* -8 */ {0xD24C, 0xD34C, 0x0000}, /* -6 */ {0xD23D, 0xD33D, 0x0000}, /* -4 */ {0xD21F, 0xD31F, 0x0000}, /* -2 */ {0xC208, 0xC308, 0x0001}, /* 0 (HW default) */ {0xC219, 0xC319, 0x0001}, /* +2 */ {0xC22A, 0xC32A, 0x0001}, /* +4 */ {0xC24C, 0xC34C, 0x0001}, /* +6 */ {0xC26E, 0xC36E, 0x0001}, /* +8 */ {0xC248, 0xC348, 0x0002}, /* +10 */ {0xC26A, 0xC36A, 0x0002}, /* +12 dB */ }; static unsigned short treble_parm[12][9] = { {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */ {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002}, {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */ {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +12 dB */ }; /* * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB] */ static void awe_equalizer(int bass, int treble) { unsigned short w; if (bass < 0 || bass > 11 || treble < 0 || treble > 11) return; awe_poke(AWE_INIT4(0x01), bass_parm[bass][0]); awe_poke(AWE_INIT4(0x11), bass_parm[bass][1]); awe_poke(AWE_INIT3(0x11), treble_parm[treble][0]); awe_poke(AWE_INIT3(0x13), treble_parm[treble][1]); awe_poke(AWE_INIT3(0x1B), treble_parm[treble][2]); awe_poke(AWE_INIT4(0x07), treble_parm[treble][3]); awe_poke(AWE_INIT4(0x0B), treble_parm[treble][4]); awe_poke(AWE_INIT4(0x0D), treble_parm[treble][5]); awe_poke(AWE_INIT4(0x17), treble_parm[treble][6]); awe_poke(AWE_INIT4(0x19), treble_parm[treble][7]); w = bass_parm[bass][2] + treble_parm[treble][8]; awe_poke(AWE_INIT4(0x15), (unsigned short)(w + 0x0262)); awe_poke(AWE_INIT4(0x1D), (unsigned short)(w + 0x8362)); } static void awe_update_equalizer(void) { awe_equalizer(ctrls[AWE_MD_BASS_LEVEL], ctrls[AWE_MD_TREBLE_LEVEL]); } /*----------------------------------------------------------------*/ #ifdef CONFIG_AWE32_MIDIEMU /* * Emu8000 MIDI Emulation */ /* * midi queue record */ /* queue type */ enum { Q_NONE, Q_VARLEN, Q_READ, Q_SYSEX, }; #define MAX_MIDIBUF 64 /* midi status */ typedef struct MidiStatus { int queue; /* queue type */ int qlen; /* queue length */ int read; /* chars read */ int status; /* current status */ int chan; /* current channel */ unsigned char buf[MAX_MIDIBUF]; } MidiStatus; /* MIDI mode type */ enum { MODE_GM, MODE_GS, MODE_XG, }; /* NRPN / CC -> Emu8000 parameter converter */ typedef struct { int control; int awe_effect; unsigned short (*convert)(int val); } ConvTable; /* * prototypes */ static int awe_midi_open(int dev, int mode, void (*input)(int,unsigned char), void (*output)(int)); static void awe_midi_close(int dev); static int awe_midi_ioctl(int dev, unsigned cmd, caddr_t arg); static int awe_midi_outputc(int dev, unsigned char midi_byte); static void init_midi_status(MidiStatus *st); static void clear_rpn(void); static void get_midi_char(MidiStatus *st, int c); /*static void queue_varlen(MidiStatus *st, int c);*/ static void special_event(MidiStatus *st, int c); static void queue_read(MidiStatus *st, int c); static void midi_note_on(MidiStatus *st); static void midi_note_off(MidiStatus *st); static void midi_key_pressure(MidiStatus *st); static void midi_channel_pressure(MidiStatus *st); static void midi_pitch_wheel(MidiStatus *st); static void midi_program_change(MidiStatus *st); static void midi_control_change(MidiStatus *st); static void midi_select_bank(MidiStatus *st, int val); static void midi_nrpn_event(MidiStatus *st); static void midi_rpn_event(MidiStatus *st); static void midi_detune(int chan, int coarse, int fine); static void midi_system_exclusive(MidiStatus *st); static int send_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val); static int add_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val); static int xg_control_change(MidiStatus *st, int cmd, int val); #define numberof(ary) (sizeof(ary)/sizeof(ary[0])) /* * OSS Midi device record */ static struct midi_operations awe_midi_operations = { owner: THIS_MODULE, info: {"AWE Midi Emu", 0, 0, SNDCARD_SB}, in_info: {0}, open: awe_midi_open, /*open*/ close: awe_midi_close, /*close*/ ioctl: awe_midi_ioctl, /*ioctl*/ outputc: awe_midi_outputc, /*outputc*/ }; static int my_mididev = -1; static void __init attach_midiemu(void) { if ((my_mididev = sound_alloc_mididev()) < 0) printk ("Sound: Too many midi devices detected\n"); else midi_devs[my_mididev] = &awe_midi_operations; } static void __exit unload_midiemu(void) { if (my_mididev >= 0) sound_unload_mididev(my_mididev); } /* * open/close midi device */ static int midi_opened = FALSE; static int midi_mode; static int coarsetune = 0, finetune = 0; static int xg_mapping = TRUE; static int xg_bankmode = 0; /* effect sensitivity */ #define FX_CUTOFF 0 #define FX_RESONANCE 1 #define FX_ATTACK 2 #define FX_RELEASE 3 #define FX_VIBRATE 4 #define FX_VIBDEPTH 5 #define FX_VIBDELAY 6 #define FX_NUMS 7 #define DEF_FX_CUTOFF 170 #define DEF_FX_RESONANCE 6 #define DEF_FX_ATTACK 50 #define DEF_FX_RELEASE 50 #define DEF_FX_VIBRATE 30 #define DEF_FX_VIBDEPTH 4 #define DEF_FX_VIBDELAY 1500 /* effect sense: */ static int gs_sense[] = { DEF_FX_CUTOFF, DEF_FX_RESONANCE, DEF_FX_ATTACK, DEF_FX_RELEASE, DEF_FX_VIBRATE, DEF_FX_VIBDEPTH, DEF_FX_VIBDELAY }; static int xg_sense[] = { DEF_FX_CUTOFF, DEF_FX_RESONANCE, DEF_FX_ATTACK, DEF_FX_RELEASE, DEF_FX_VIBRATE, DEF_FX_VIBDEPTH, DEF_FX_VIBDELAY }; /* current status */ static MidiStatus curst; static int awe_midi_open (int dev, int mode, void (*input)(int,unsigned char), void (*output)(int)) { if (midi_opened) return -EBUSY; midi_opened = TRUE; midi_mode = MODE_GM; curst.queue = Q_NONE; curst.qlen = 0; curst.read = 0; curst.status = 0; curst.chan = 0; memset(curst.buf, 0, sizeof(curst.buf)); init_midi_status(&curst); return 0; } static void awe_midi_close (int dev) { midi_opened = FALSE; } static int awe_midi_ioctl (int dev, unsigned cmd, caddr_t arg) { return -EPERM; } static int awe_midi_outputc (int dev, unsigned char midi_byte) { if (! midi_opened) return 1; /* force to change playing mode */ playing_mode = AWE_PLAY_MULTI; get_midi_char(&curst, midi_byte); return 1; } /* * initialize */ static void init_midi_status(MidiStatus *st) { clear_rpn(); coarsetune = 0; finetune = 0; } /* * RPN & NRPN */ #define MAX_MIDI_CHANNELS 16 /* RPN & NRPN */ static unsigned char nrpn[MAX_MIDI_CHANNELS]; /* current event is NRPN? */ static int msb_bit; /* current event is msb for RPN/NRPN */ /* RPN & NRPN indeces */ static unsigned char rpn_msb[MAX_MIDI_CHANNELS], rpn_lsb[MAX_MIDI_CHANNELS]; /* RPN & NRPN values */ static int rpn_val[MAX_MIDI_CHANNELS]; static void clear_rpn(void) { int i; for (i = 0; i < MAX_MIDI_CHANNELS; i++) { nrpn[i] = 0; rpn_msb[i] = 127; rpn_lsb[i] = 127; rpn_val[i] = 0; } msb_bit = 0; } /* * process midi queue */ /* status event types */ typedef void (*StatusEvent)(MidiStatus *st); static struct StatusEventList { StatusEvent process; int qlen; } status_event[8] = { {midi_note_off, 2}, {midi_note_on, 2}, {midi_key_pressure, 2}, {midi_control_change, 2}, {midi_program_change, 1}, {midi_channel_pressure, 1}, {midi_pitch_wheel, 2}, {NULL, 0}, }; /* read a char from fifo and process it */ static void get_midi_char(MidiStatus *st, int c) { if (c == 0xfe) { /* ignore active sense */ st->queue = Q_NONE; return; } switch (st->queue) { /* case Q_VARLEN: queue_varlen(st, c); break;*/ case Q_READ: case Q_SYSEX: queue_read(st, c); break; case Q_NONE: st->read = 0; if ((c & 0xf0) == 0xf0) { special_event(st, c); } else if (c & 0x80) { /* status change */ st->status = (c >> 4) & 0x07; st->chan = c & 0x0f; st->queue = Q_READ; st->qlen = status_event[st->status].qlen; if (st->qlen == 0) st->queue = Q_NONE; } break; } } /* 0xfx events */ static void special_event(MidiStatus *st, int c) { switch (c) { case 0xf0: /* system exclusive */ st->queue = Q_SYSEX; st->qlen = 0; break; case 0xf1: /* MTC quarter frame */ case 0xf3: /* song select */ st->queue = Q_READ; st->qlen = 1; break; case 0xf2: /* song position */ st->queue = Q_READ; st->qlen = 2; break; } } #if 0 /* read variable length value */ static void queue_varlen(MidiStatus *st, int c) { st->qlen += (c & 0x7f); if (c & 0x80) { st->qlen <<= 7; return; } if (st->qlen <= 0) { st->qlen = 0; st->queue = Q_NONE; } st->queue = Q_READ; st->read = 0; } #endif /* read a char */ static void queue_read(MidiStatus *st, int c) { if (st->read < MAX_MIDIBUF) { if (st->queue != Q_SYSEX) c &= 0x7f; st->buf[st->read] = (unsigned char)c; } st->read++; if (st->queue == Q_SYSEX && c == 0xf7) { midi_system_exclusive(st); st->queue = Q_NONE; } else if (st->queue == Q_READ && st->read >= st->qlen) { if (status_event[st->status].process) status_event[st->status].process(st); st->queue = Q_NONE; } } /* * status events */ /* note on */ static void midi_note_on(MidiStatus *st) { DEBUG(2,printk("midi: note_on (%d) %d %d\n", st->chan, st->buf[0], st->buf[1])); if (st->buf[1] == 0) midi_note_off(st); else awe_start_note(0, st->chan, st->buf[0], st->buf[1]); } /* note off */ static void midi_note_off(MidiStatus *st) { DEBUG(2,printk("midi: note_off (%d) %d %d\n", st->chan, st->buf[0], st->buf[1])); awe_kill_note(0, st->chan, st->buf[0], st->buf[1]); } /* key pressure change */ static void midi_key_pressure(MidiStatus *st) { awe_key_pressure(0, st->chan, st->buf[0], st->buf[1]); } /* channel pressure change */ static void midi_channel_pressure(MidiStatus *st) { channels[st->chan].chan_press = st->buf[0]; awe_modwheel_change(st->chan, st->buf[0]); } /* pitch wheel change */ static void midi_pitch_wheel(MidiStatus *st) { int val = (int)st->buf[1] * 128 + st->buf[0]; awe_bender(0, st->chan, val); } /* program change */ static void midi_program_change(MidiStatus *st) { int preset; preset = st->buf[0]; if (midi_mode == MODE_GS && IS_DRUM_CHANNEL(st->chan) && preset == 127) preset = 0; else if (midi_mode == MODE_XG && xg_mapping && IS_DRUM_CHANNEL(st->chan)) preset += 64; awe_set_instr(0, st->chan, preset); } #define send_effect(chan,type,val) awe_send_effect(chan,-1,type,val) #define add_effect(chan,type,val) awe_send_effect(chan,-1,(type)|0x80,val) #define unset_effect(chan,type) awe_send_effect(chan,-1,(type)|0x40,0) /* midi control change */ static void midi_control_change(MidiStatus *st) { int cmd = st->buf[0]; int val = st->buf[1]; DEBUG(2,printk("midi: control (%d) %d %d\n", st->chan, cmd, val)); if (midi_mode == MODE_XG) { if (xg_control_change(st, cmd, val)) return; } /* controls #31 - #64 are LSB of #0 - #31 */ msb_bit = 1; if (cmd >= 0x20 && cmd < 0x40) { msb_bit = 0; cmd -= 0x20; } switch (cmd) { case CTL_SOFT_PEDAL: if (val == 127) add_effect(st->chan, AWE_FX_CUTOFF, -160); else unset_effect(st->chan, AWE_FX_CUTOFF); break; case CTL_BANK_SELECT: midi_select_bank(st, val); break; /* set RPN/NRPN parameter */ case CTL_REGIST_PARM_NUM_MSB: nrpn[st->chan]=0; rpn_msb[st->chan]=val; break; case CTL_REGIST_PARM_NUM_LSB: nrpn[st->chan]=0; rpn_lsb[st->chan]=val; break; case CTL_NONREG_PARM_NUM_MSB: nrpn[st->chan]=1; rpn_msb[st->chan]=val; break; case CTL_NONREG_PARM_NUM_LSB: nrpn[st->chan]=1; rpn_lsb[st->chan]=val; break; /* send RPN/NRPN entry */ case CTL_DATA_ENTRY: if (msb_bit) rpn_val[st->chan] = val * 128; else rpn_val[st->chan] |= val; if (nrpn[st->chan]) midi_nrpn_event(st); else midi_rpn_event(st); break; /* increase/decrease data entry */ case CTL_DATA_INCREMENT: rpn_val[st->chan]++; midi_rpn_event(st); break; case CTL_DATA_DECREMENT: rpn_val[st->chan]--; midi_rpn_event(st); break; /* default */ default: awe_controller(0, st->chan, cmd, val); break; } } /* tone bank change */ static void midi_select_bank(MidiStatus *st, int val) { if (midi_mode == MODE_XG && msb_bit) { xg_bankmode = val; /* XG MSB value; not normal bank selection */ switch (val) { case 127: /* remap to drum channel */ awe_controller(0, st->chan, CTL_BANK_SELECT, 128); break; default: /* remap to normal channel */ awe_controller(0, st->chan, CTL_BANK_SELECT, val); break; } return; } else if (midi_mode == MODE_GS && !msb_bit) /* ignore LSB bank in GS mode (used for mapping) */ return; /* normal bank controls; accept both MSB and LSB */ if (! IS_DRUM_CHANNEL(st->chan)) { if (midi_mode == MODE_XG) { if (xg_bankmode) return; if (val == 64 || val == 126) val = 0; } else if (midi_mode == MODE_GS && val == 127) val = 0; awe_controller(0, st->chan, CTL_BANK_SELECT, val); } } /* * RPN events */ static void midi_rpn_event(MidiStatus *st) { int type; type = (rpn_msb[st->chan]<<8) | rpn_lsb[st->chan]; switch (type) { case 0x0000: /* Pitch bend sensitivity */ /* MSB only / 1 semitone per 128 */ if (msb_bit) { channels[st->chan].bender_range = rpn_val[st->chan] * 100 / 128; } break; case 0x0001: /* fine tuning: */ /* MSB/LSB, 8192=center, 100/8192 cent step */ finetune = rpn_val[st->chan] - 8192; midi_detune(st->chan, coarsetune, finetune); break; case 0x0002: /* coarse tuning */ /* MSB only / 8192=center, 1 semitone per 128 */ if (msb_bit) { coarsetune = rpn_val[st->chan] - 8192; midi_detune(st->chan, coarsetune, finetune); } break; case 0x7F7F: /* "lock-in" RPN */ break; } } /* tuning: * coarse = -8192 to 8192 (100 cent per 128) * fine = -8192 to 8192 (max=100cent) */ static void midi_detune(int chan, int coarse, int fine) { /* 4096 = 1200 cents in AWE parameter */ int val; val = coarse * 4096 / (12 * 128); val += fine / 24; if (val) send_effect(chan, AWE_FX_INIT_PITCH, val); else unset_effect(chan, AWE_FX_INIT_PITCH); } /* * system exclusive message * GM/GS/XG macros are accepted */ static void midi_system_exclusive(MidiStatus *st) { /* GM on */ static unsigned char gm_on_macro[] = { 0x7e,0x7f,0x09,0x01, }; /* XG on */ static unsigned char xg_on_macro[] = { 0x43,0x10,0x4c,0x00,0x00,0x7e,0x00, }; /* GS prefix * drum channel: XX=0x1?(channel), YY=0x15, ZZ=on/off * reverb mode: XX=0x01, YY=0x30, ZZ=0-7 * chorus mode: XX=0x01, YY=0x38, ZZ=0-7 */ static unsigned char gs_pfx_macro[] = { 0x41,0x10,0x42,0x12,0x40,/*XX,YY,ZZ*/ }; #if 0 /* SC88 system mode set * single module mode: XX=1 * double module mode: XX=0 */ static unsigned char gs_mode_macro[] = { 0x41,0x10,0x42,0x12,0x00,0x00,0x7F,/*ZZ*/ }; /* SC88 display macro: XX=01:bitmap, 00:text */ static unsigned char gs_disp_macro[] = { 0x41,0x10,0x45,0x12,0x10,/*XX,00*/ }; #endif /* GM on */ if (memcmp(st->buf, gm_on_macro, sizeof(gm_on_macro)) == 0) { if (midi_mode != MODE_GS && midi_mode != MODE_XG) midi_mode = MODE_GM; init_midi_status(st); } /* GS macros */ else if (memcmp(st->buf, gs_pfx_macro, sizeof(gs_pfx_macro)) == 0) { if (midi_mode != MODE_GS && midi_mode != MODE_XG) midi_mode = MODE_GS; if (st->buf[5] == 0x00 && st->buf[6] == 0x7f && st->buf[7] == 0x00) { /* GS reset */ init_midi_status(st); } else if ((st->buf[5] & 0xf0) == 0x10 && st->buf[6] == 0x15) { /* drum pattern */ int p = st->buf[5] & 0x0f; if (p == 0) p = 9; else if (p < 10) p--; if (st->buf[7] == 0) DRUM_CHANNEL_OFF(p); else DRUM_CHANNEL_ON(p); } else if ((st->buf[5] & 0xf0) == 0x10 && st->buf[6] == 0x21) { /* program */ int p = st->buf[5] & 0x0f; if (p == 0) p = 9; else if (p < 10) p--; if (! IS_DRUM_CHANNEL(p)) awe_set_instr(0, p, st->buf[7]); } else if (st->buf[5] == 0x01 && st->buf[6] == 0x30) { /* reverb mode */ awe_set_reverb_mode(st->buf[7]); } else if (st->buf[5] == 0x01 && st->buf[6] == 0x38) { /* chorus mode */ awe_set_chorus_mode(st->buf[7]); } else if (st->buf[5] == 0x00 && st->buf[6] == 0x04) { /* master volume */ awe_change_master_volume(st->buf[7]); } } /* XG on */ else if (memcmp(st->buf, xg_on_macro, sizeof(xg_on_macro)) == 0) { midi_mode = MODE_XG; xg_mapping = TRUE; xg_bankmode = 0; } } /*----------------------------------------------------------------*/ /* * convert NRPN/control values */ static int send_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val) { int i, cval; for (i = 0; i < num_tables; i++) { if (table[i].control == type) { cval = table[i].convert(val); send_effect(st->chan, table[i].awe_effect, cval); return TRUE; } } return FALSE; } static int add_converted_effect(ConvTable *table, int num_tables, MidiStatus *st, int type, int val) { int i, cval; for (i = 0; i < num_tables; i++) { if (table[i].control == type) { cval = table[i].convert(val); add_effect(st->chan, table[i].awe_effect|0x80, cval); return TRUE; } } return FALSE; } /* * AWE32 NRPN effects */ static unsigned short fx_delay(int val); static unsigned short fx_attack(int val); static unsigned short fx_hold(int val); static unsigned short fx_decay(int val); static unsigned short fx_the_value(int val); static unsigned short fx_twice_value(int val); static unsigned short fx_conv_pitch(int val); static unsigned short fx_conv_Q(int val); /* function for each NRPN */ /* [range] units */ #define fx_env1_delay fx_delay /* [0,5900] 4msec */ #define fx_env1_attack fx_attack /* [0,5940] 1msec */ #define fx_env1_hold fx_hold /* [0,8191] 1msec */ #define fx_env1_decay fx_decay /* [0,5940] 4msec */ #define fx_env1_release fx_decay /* [0,5940] 4msec */ #define fx_env1_sustain fx_the_value /* [0,127] 0.75dB */ #define fx_env1_pitch fx_the_value /* [-127,127] 9.375cents */ #define fx_env1_cutoff fx_the_value /* [-127,127] 56.25cents */ #define fx_env2_delay fx_delay /* [0,5900] 4msec */ #define fx_env2_attack fx_attack /* [0,5940] 1msec */ #define fx_env2_hold fx_hold /* [0,8191] 1msec */ #define fx_env2_decay fx_decay /* [0,5940] 4msec */ #define fx_env2_release fx_decay /* [0,5940] 4msec */ #define fx_env2_sustain fx_the_value /* [0,127] 0.75dB */ #define fx_lfo1_delay fx_delay /* [0,5900] 4msec */ #define fx_lfo1_freq fx_twice_value /* [0,127] 84mHz */ #define fx_lfo1_volume fx_twice_value /* [0,127] 0.1875dB */ #define fx_lfo1_pitch fx_the_value /* [-127,127] 9.375cents */ #define fx_lfo1_cutoff fx_twice_value /* [-64,63] 56.25cents */ #define fx_lfo2_delay fx_delay /* [0,5900] 4msec */ #define fx_lfo2_freq fx_twice_value /* [0,127] 84mHz */ #define fx_lfo2_pitch fx_the_value /* [-127,127] 9.375cents */ #define fx_init_pitch fx_conv_pitch /* [-8192,8192] cents */ #define fx_chorus fx_the_value /* [0,255] -- */ #define fx_reverb fx_the_value /* [0,255] -- */ #define fx_cutoff fx_twice_value /* [0,127] 62Hz */ #define fx_filterQ fx_conv_Q /* [0,127] -- */ static unsigned short fx_delay(int val) { return (unsigned short)calc_parm_delay(val); } static unsigned short fx_attack(int val) { return (unsigned short)calc_parm_attack(val); } static unsigned short fx_hold(int val) { return (unsigned short)calc_parm_hold(val); } static unsigned short fx_decay(int val) { return (unsigned short)calc_parm_decay(val); } static unsigned short fx_the_value(int val) { return (unsigned short)(val & 0xff); } static unsigned short fx_twice_value(int val) { return (unsigned short)((val * 2) & 0xff); } static unsigned short fx_conv_pitch(int val) { return (short)(val * 4096 / 1200); } static unsigned short fx_conv_Q(int val) { return (unsigned short)((val / 8) & 0xff); } static ConvTable awe_effects[] = { { 0, AWE_FX_LFO1_DELAY, fx_lfo1_delay}, { 1, AWE_FX_LFO1_FREQ, fx_lfo1_freq}, { 2, AWE_FX_LFO2_DELAY, fx_lfo2_delay}, { 3, AWE_FX_LFO2_FREQ, fx_lfo2_freq}, { 4, AWE_FX_ENV1_DELAY, fx_env1_delay}, { 5, AWE_FX_ENV1_ATTACK,fx_env1_attack}, { 6, AWE_FX_ENV1_HOLD, fx_env1_hold}, { 7, AWE_FX_ENV1_DECAY, fx_env1_decay}, { 8, AWE_FX_ENV1_SUSTAIN, fx_env1_sustain}, { 9, AWE_FX_ENV1_RELEASE, fx_env1_release}, {10, AWE_FX_ENV2_DELAY, fx_env2_delay}, {11, AWE_FX_ENV2_ATTACK, fx_env2_attack}, {12, AWE_FX_ENV2_HOLD, fx_env2_hold}, {13, AWE_FX_ENV2_DECAY, fx_env2_decay}, {14, AWE_FX_ENV2_SUSTAIN, fx_env2_sustain}, {15, AWE_FX_ENV2_RELEASE, fx_env2_release}, {16, AWE_FX_INIT_PITCH, fx_init_pitch}, {17, AWE_FX_LFO1_PITCH, fx_lfo1_pitch}, {18, AWE_FX_LFO2_PITCH, fx_lfo2_pitch}, {19, AWE_FX_ENV1_PITCH, fx_env1_pitch}, {20, AWE_FX_LFO1_VOLUME, fx_lfo1_volume}, {21, AWE_FX_CUTOFF, fx_cutoff}, {22, AWE_FX_FILTERQ, fx_filterQ}, {23, AWE_FX_LFO1_CUTOFF, fx_lfo1_cutoff}, {24, AWE_FX_ENV1_CUTOFF, fx_env1_cutoff}, {25, AWE_FX_CHORUS, fx_chorus}, {26, AWE_FX_REVERB, fx_reverb}, }; static int num_awe_effects = numberof(awe_effects); /* * GS(SC88) NRPN effects; still experimental */ /* cutoff: quarter semitone step, max=255 */ static unsigned short gs_cutoff(int val) { return (val - 64) * gs_sense[FX_CUTOFF] / 50; } /* resonance: 0 to 15(max) */ static unsigned short gs_filterQ(int val) { return (val - 64) * gs_sense[FX_RESONANCE] / 50; } /* attack: */ static unsigned short gs_attack(int val) { return -(val - 64) * gs_sense[FX_ATTACK] / 50; } /* decay: */ static unsigned short gs_decay(int val) { return -(val - 64) * gs_sense[FX_RELEASE] / 50; } /* release: */ static unsigned short gs_release(int val) { return -(val - 64) * gs_sense[FX_RELEASE] / 50; } /* vibrato freq: 0.042Hz step, max=255 */ static unsigned short gs_vib_rate(int val) { return (val - 64) * gs_sense[FX_VIBRATE] / 50; } /* vibrato depth: max=127, 1 octave */ static unsigned short gs_vib_depth(int val) { return (val - 64) * gs_sense[FX_VIBDEPTH] / 50; } /* vibrato delay: -0.725msec step */ static unsigned short gs_vib_delay(int val) { return -(val - 64) * gs_sense[FX_VIBDELAY] / 50; } static ConvTable gs_effects[] = { {32, AWE_FX_CUTOFF, gs_cutoff}, {33, AWE_FX_FILTERQ, gs_filterQ}, {99, AWE_FX_ENV2_ATTACK, gs_attack}, {100, AWE_FX_ENV2_DECAY, gs_decay}, {102, AWE_FX_ENV2_RELEASE, gs_release}, {8, AWE_FX_LFO1_FREQ, gs_vib_rate}, {9, AWE_FX_LFO1_VOLUME, gs_vib_depth}, {10, AWE_FX_LFO1_DELAY, gs_vib_delay}, }; static int num_gs_effects = numberof(gs_effects); /* * NRPN events: accept as AWE32/SC88 specific controls */ static void midi_nrpn_event(MidiStatus *st) { if (rpn_msb[st->chan] == 127 && rpn_lsb[st->chan] <= 26) { if (! msb_bit) /* both MSB/LSB necessary */ send_converted_effect(awe_effects, num_awe_effects, st, rpn_lsb[st->chan], rpn_val[st->chan] - 8192); } else if (rpn_msb[st->chan] == 1) { if (msb_bit) /* only MSB is valid */ add_converted_effect(gs_effects, num_gs_effects, st, rpn_lsb[st->chan], rpn_val[st->chan] / 128); } } /* * XG control effects; still experimental */ /* cutoff: quarter semitone step, max=255 */ static unsigned short xg_cutoff(int val) { return (val - 64) * xg_sense[FX_CUTOFF] / 64; } /* resonance: 0(open) to 15(most nasal) */ static unsigned short xg_filterQ(int val) { return (val - 64) * xg_sense[FX_RESONANCE] / 64; } /* attack: */ static unsigned short xg_attack(int val) { return -(val - 64) * xg_sense[FX_ATTACK] / 64; } /* release: */ static unsigned short xg_release(int val) { return -(val - 64) * xg_sense[FX_RELEASE] / 64; } static ConvTable xg_effects[] = { {71, AWE_FX_CUTOFF, xg_cutoff}, {74, AWE_FX_FILTERQ, xg_filterQ}, {72, AWE_FX_ENV2_RELEASE, xg_release}, {73, AWE_FX_ENV2_ATTACK, xg_attack}, }; static int num_xg_effects = numberof(xg_effects); static int xg_control_change(MidiStatus *st, int cmd, int val) { return add_converted_effect(xg_effects, num_xg_effects, st, cmd, val); } #endif /* CONFIG_AWE32_MIDIEMU */ /*----------------------------------------------------------------*/ /* * device / lowlevel (module) interface */ int __init attach_awe(void) { return _attach_awe() ? 0 : -ENODEV; } void __exit unload_awe(void) { _unload_awe(); #if defined CONFIG_ISAPNP || defined CONFIG_ISAPNP_MODULE if (isapnp) awe_deactivate_isapnp(); #endif /* isapnp */ } module_init(attach_awe); module_exit(unload_awe); #ifndef MODULE static int __init setup_awe(char *str) { /* io, memsize, isapnp */ int ints[4]; str = get_options(str, ARRAY_SIZE(ints), ints); io = ints[1]; memsize = ints[2]; isapnp = ints[3]; return 1; } __setup("awe=", setup_awe); #endif