//***************************************************************************** // // "cs4281.c" -- Cirrus Logic-Crystal CS4281 linux audio driver. // // Copyright (C) 2000 Cirrus Logic Corp. // -- adapted from drivers by Thomas Sailer, // -- but don't bug him; Problems should go to: // -- gw boynton (wesb@crystal.cirrus.com) or // -- tom woller (twoller@crystal.cirrus.com). // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // Module command line parameters: // none // // Supported devices: // /dev/dsp standard /dev/dsp device, (mostly) OSS compatible // /dev/mixer standard /dev/mixer device, (mostly) OSS compatible // /dev/midi simple MIDI UART interface, no ioctl // // Modification History // 08/20/00 trw - silence and no stopping DAC until release // 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop. // 09/18/00 trw - added 16bit only record with conversion // 09/24/00 trw - added Enhanced Full duplex (separate simultaneous // capture/playback rates) // 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin // libOSSm.so) // 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal) // 11/03/00 trw - fixed interrupt loss/stutter, added debug. // 11/10/00 bkz - added __devinit to cs4281_hw_init() // // ***************************************************************************** #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include #include "dm.h" #include "cs4281_hwdefs.h" EXPORT_NO_SYMBOLS; #undef OSS_DOCUMENTED_MIXER_SEMANTICS // --------------------------------------------------------------------- #ifndef PCI_VENDOR_ID_CIRRUS #define PCI_VENDOR_ID_CIRRUS 0x1013 #endif #ifndef PCI_DEVICE_ID_CRYSTAL_CS4281 #define PCI_DEVICE_ID_CRYSTAL_CS4281 0x6005 #endif #define CS4281_MAGIC ((PCI_DEVICE_ID_CRYSTAL_CS4281<<16) | PCI_VENDOR_ID_CIRRUS) // Turn on/off debugging compilation by using 1/0 respectively for CSDEBUG // #define CSDEBUG_INTERFACE 1 #define CSDEBUG 1 // // CSDEBUG is usual mode is set to 1, then use the // cs_debuglevel and cs_debugmask to turn on or off debugging. // Debug level of 1 has been defined to be kernel errors and info // that should be printed on any released driver. // #if CSDEBUG extern unsigned long cs_debugmask; extern unsigned long cs_debuglevel; #define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;} #else #define CS_DBGOUT(mask,level,x) #endif // // cs_debugmask areas // #define CS_INIT 0x00000001 // initialization and probe functions #define CS_ERROR 0x00000002 // tmp debugging bit placeholder #define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other) #define CS_FUNCTION 0x00000008 // enter/leave functions #define CS_WAVE_WRITE 0x00000010 // write information for wave #define CS_WAVE_READ 0x00000020 // read information for wave #define CS_MIDI_WRITE 0x00000040 // write information for midi #define CS_MIDI_READ 0x00000080 // read information for midi #define CS_MPU401_WRITE 0x00000100 // write information for mpu401 #define CS_MPU401_READ 0x00000200 // read information for mpu401 #define CS_OPEN 0x00000400 // all open functions in the driver #define CS_RELEASE 0x00000800 // all release functions in the driver #define CS_PARMS 0x00001000 // functional and operational parameters #define CS_IOCTL 0x00002000 // ioctl (non-mixer) #define CS_TMP 0x10000000 // tmp debug mask bit #if CSDEBUG static unsigned long cs_debuglevel = 1; // levels range from 1-9 static unsigned long cs_debugmask = CS_INIT | CS_ERROR; // use CS_DBGOUT with various mask values #if MODULE MODULE_PARM(cs_debuglevel, "i"); MODULE_PARM(cs_debugmask, "i"); #endif #endif // MIDI buffer sizes #define MIDIINBUF 500 #define MIDIOUTBUF 500 #define FMODE_MIDI_SHIFT 3 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT) #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT) #define RSRCISIOREGION(dev,num) ((dev)->resource[(num)].start != 0 && \ ((dev)->resource[(num)].flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) #define RSRCISMEMORYREGION(dev,num) ((dev)->resource[(num)].start != 0 && \ ((dev)->resource[(num)].flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_MEMORY) #define RSRCADDRESS(dev,num) ((dev)->resource[(num)].start) #define CS4281_MAJOR_VERSION 1 #define CS4281_MINOR_VERSION 1 #ifdef __ia64__ #define CS4281_ARCH 64 //architecture key #else #define CS4281_ARCH 32 //architecture key #endif #define CS_TYPE_ADC 0 #define CS_TYPE_DAC 1 struct cs4281_state { // magic unsigned int magic; // we keep the cards in a linked list struct cs4281_state *next; // pcidev is needed to turn off the DDMA controller at driver shutdown struct pci_dev *pcidev; // soundcore stuff int dev_audio; int dev_mixer; int dev_midi; // hardware resources unsigned int pBA0phys, pBA1phys; char *pBA0, *pBA1; unsigned int irq; // mixer registers struct { unsigned short vol[10]; unsigned int recsrc; unsigned int modcnt; unsigned short micpreamp; } mix; // wave stuff struct properties { unsigned fmt; unsigned fmt_original; // original requested format unsigned channels; unsigned rate; unsigned char clkdiv; } prop_dac, prop_adc; unsigned conversion:1; // conversion from 16 to 8 bit in progress void *tmpbuff; // tmp buffer for sample conversions unsigned ena; spinlock_t lock; struct semaphore open_sem; struct semaphore open_sem_adc; struct semaphore open_sem_dac; mode_t open_mode; wait_queue_head_t open_wait; wait_queue_head_t open_wait_adc; wait_queue_head_t open_wait_dac; dma_addr_t dmaaddr_tmpbuff; unsigned buforder_tmpbuff; // Log base 2 of 'rawbuf' size in bytes.. struct dmabuf { void *rawbuf; // Physical address of dma_addr_t dmaaddr; unsigned buforder; // Log base 2 of 'rawbuf' size in bytes.. unsigned numfrag; // # of 'fragments' in the buffer. unsigned fragshift; // Log base 2 of fragment size. unsigned hwptr, swptr; unsigned total_bytes; // # bytes process since open. unsigned blocks; // last returned blocks value GETOPTR unsigned wakeup; // interrupt occurred on block int count; unsigned error; // over/underrun wait_queue_head_t wait; // redundant, but makes calculations easier unsigned fragsize; // 2**fragshift.. unsigned dmasize; // 2**buforder. unsigned fragsamples; // OSS stuff unsigned mapped:1; // Buffer mapped in cs4281_mmap()? unsigned ready:1; // prog_dmabuf_dac()/adc() successful? unsigned endcleared:1; unsigned type:1; // adc or dac buffer (CS_TYPE_XXX) unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; // midi stuff struct { unsigned ird, iwr, icnt; unsigned ord, owr, ocnt; wait_queue_head_t iwait; wait_queue_head_t owait; struct timer_list timer; unsigned char ibuf[MIDIINBUF]; unsigned char obuf[MIDIOUTBUF]; } midi; }; #if CSDEBUG // DEBUG ROUTINES #define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int) #define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int) #define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int) #define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int) #define SNDCTL_DSP_CS_GETDBGLEVEL _SIOWR('P', 50, int) #define SNDCTL_DSP_CS_SETDBGLEVEL _SIOWR('P', 51, int) #define SNDCTL_DSP_CS_GETDBGMASK _SIOWR('P', 52, int) #define SNDCTL_DSP_CS_SETDBGMASK _SIOWR('P', 53, int) static void printioctl(unsigned int x) { unsigned int i; unsigned char vidx; // Index of mixtable1[] member is Device ID // and must be <= SOUND_MIXER_NRDEVICES. // Value of array member is index into s->mix.vol[] static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = 1, // voice [SOUND_MIXER_LINE1] = 2, // AUX [SOUND_MIXER_CD] = 3, // CD [SOUND_MIXER_LINE] = 4, // Line [SOUND_MIXER_SYNTH] = 5, // FM [SOUND_MIXER_MIC] = 6, // Mic [SOUND_MIXER_SPEAKER] = 7, // Speaker [SOUND_MIXER_RECLEV] = 8, // Recording level [SOUND_MIXER_VOLUME] = 9 // Master Volume }; switch (x) { case SOUND_MIXER_CS_GETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGMASK:\n")); break; case SOUND_MIXER_CS_GETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGLEVEL:\n")); break; case SOUND_MIXER_CS_SETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGMASK:\n")); break; case SOUND_MIXER_CS_SETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGLEVEL:\n")); break; case OSS_GETVERSION: CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n")); break; case SNDCTL_DSP_SYNC: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n")); break; case SNDCTL_DSP_SETDUPLEX: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n")); break; case SNDCTL_DSP_GETCAPS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n")); break; case SNDCTL_DSP_RESET: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n")); break; case SNDCTL_DSP_SPEED: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n")); break; case SNDCTL_DSP_STEREO: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n")); break; case SNDCTL_DSP_CHANNELS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n")); break; case SNDCTL_DSP_GETFMTS: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n")); break; case SNDCTL_DSP_SETFMT: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n")); break; case SNDCTL_DSP_POST: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n")); break; case SNDCTL_DSP_GETTRIGGER: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n")); break; case SNDCTL_DSP_SETTRIGGER: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n")); break; case SNDCTL_DSP_GETOSPACE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n")); break; case SNDCTL_DSP_GETISPACE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n")); break; case SNDCTL_DSP_NONBLOCK: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n")); break; case SNDCTL_DSP_GETODELAY: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n")); break; case SNDCTL_DSP_GETIPTR: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n")); break; case SNDCTL_DSP_GETOPTR: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n")); break; case SNDCTL_DSP_GETBLKSIZE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n")); break; case SNDCTL_DSP_SETFRAGMENT: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFRAGMENT:\n")); break; case SNDCTL_DSP_SUBDIVIDE: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n")); break; case SOUND_PCM_READ_RATE: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n")); break; case SOUND_PCM_READ_CHANNELS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_CHANNELS:\n")); break; case SOUND_PCM_READ_BITS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n")); break; case SOUND_PCM_WRITE_FILTER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_WRITE_FILTER:\n")); break; case SNDCTL_DSP_SETSYNCRO: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n")); break; case SOUND_PCM_READ_FILTER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n")); break; case SNDCTL_DSP_CS_GETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CS_GETDBGMASK:\n")); break; case SNDCTL_DSP_CS_GETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CS_GETDBGLEVEL:\n")); break; case SNDCTL_DSP_CS_SETDBGMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CS_SETDBGMASK:\n")); break; case SNDCTL_DSP_CS_SETDBGLEVEL: CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CS_SETDBGLEVEL:\n")); break; case SOUND_MIXER_PRIVATE1: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n")); break; case SOUND_MIXER_PRIVATE2: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n")); break; case SOUND_MIXER_PRIVATE3: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n")); break; case SOUND_MIXER_PRIVATE4: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n")); break; case SOUND_MIXER_PRIVATE5: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n")); break; case SOUND_MIXER_INFO: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n")); break; case SOUND_OLD_MIXER_INFO: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n")); break; default: switch (_IOC_NR(x)) { case SOUND_MIXER_VOLUME: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_VOLUME:\n")); break; case SOUND_MIXER_SPEAKER: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SPEAKER:\n")); break; case SOUND_MIXER_RECLEV: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECLEV:\n")); break; case SOUND_MIXER_MIC: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_MIC:\n")); break; case SOUND_MIXER_SYNTH: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SYNTH:\n")); break; case SOUND_MIXER_RECSRC: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECSRC:\n")); break; case SOUND_MIXER_DEVMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_DEVMASK:\n")); break; case SOUND_MIXER_RECMASK: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECMASK:\n")); break; case SOUND_MIXER_STEREODEVS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_STEREODEVS:\n")); break; case SOUND_MIXER_CAPS: CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n")); break; default: i = _IOC_NR(x); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) { CS_DBGOUT(CS_IOCTL, 4, printk ("UNKNOWN IOCTL: 0x%.8x NR=%d\n", x, i)); } else { CS_DBGOUT(CS_IOCTL, 4, printk ("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n", x, i)); } break; } } } #endif static int prog_dmabuf_adc(struct cs4281_state *s); static void prog_codec(struct cs4281_state *s, unsigned type); static struct cs4281_state *devs = NULL; // --------------------------------------------------------------------- // // Hardware Interfaces For the CS4281 // //****************************************************************************** // "delayus()-- Delay for the specified # of microseconds. //****************************************************************************** static void delayus(u32 delay) { u32 j; if (delay > 9999) { j = (delay * HZ) / 1000000; /* calculate delay in jiffies */ if (j < 1) j = 1; /* minimum one jiffy. */ current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(j); } else udelay(delay); return; } //****************************************************************************** // "cs4281_read_ac97" -- Reads a word from the specified location in the // CS4281's address space(based on the BA0 register). // // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 register, // 0h for reads. // 3. Write ACCTL = Control Register = 460h for initiating the write // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h // 5. if DCV not cleared, break and return error // 6. Read ACSTS = Status Register = 464h, check VSTS bit //**************************************************************************** static int cs4281_read_ac97(struct cs4281_state *card, u32 offset, u32 * value) { u32 count, status; // Make sure that there is not data sitting // around from a previous uncompleted access. // ACSDA = Status Data Register = 47Ch status = readl(card->pBA0 + BA0_ACSDA); // Setup the AC97 control registers on the CS4281 to send the // appropriate command to the AC97 to perform the read. // ACCAD = Command Address Register = 46Ch // ACCDA = Command Data Register = 470h // ACCTL = Control Register = 460h // bit DCV - will clear when process completed // bit CRW - Read command // bit VFRM - valid frame enabled // bit ESYN - ASYNC generation enabled // Get the actual AC97 register from the offset writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD); writel(0, card->pBA0 + BA0_ACCDA); writel(ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // Wait for the read to occur. for (count = 0; count < 10; count++) { // First, we want to wait for a short time. udelay(25); // Now, check to see if the read has completed. // ACCTL = 460h, DCV should be reset by now and 460h = 17h if (!(readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV)) break; } // Make sure the read completed. if (readl(card->pBA0 + BA0_ACCTL) & ACCTL_DCV) return 1; // Wait for the valid status bit to go active. for (count = 0; count < 10; count++) { // Read the AC97 status register. // ACSTS = Status Register = 464h status = readl(card->pBA0 + BA0_ACSTS); // See if we have valid status. // VSTS - Valid Status if (status & ACSTS_VSTS) break; // Wait for a short while. udelay(25); } // Make sure we got valid status. if (!(status & ACSTS_VSTS)) return 1; // Read the data returned from the AC97 register. // ACSDA = Status Data Register = 474h *value = readl(card->pBA0 + BA0_ACSDA); // Success. return (0); } //**************************************************************************** // // "cs4281_write_ac97()"-- writes a word to the specified location in the // CS461x's address space (based on the part's base address zero register). // // 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address // 2. Write ACCDA = Command Data Register = 470h for data to write to AC97 reg. // 3. Write ACCTL = Control Register = 460h for initiating the write // 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h // 5. if DCV not cleared, break and return error // //**************************************************************************** static int cs4281_write_ac97(struct cs4281_state *card, u32 offset, u32 value) { u32 count, status; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs_4281_write_ac97()+ \n")); // Setup the AC97 control registers on the CS4281 to send the // appropriate command to the AC97 to perform the read. // ACCAD = Command Address Register = 46Ch // ACCDA = Command Data Register = 470h // ACCTL = Control Register = 460h // set DCV - will clear when process completed // reset CRW - Write command // set VFRM - valid frame enabled // set ESYN - ASYNC generation enabled // set RSTN - ARST# inactive, AC97 codec not reset // Get the actual AC97 register from the offset writel(offset - BA0_AC97_RESET, card->pBA0 + BA0_ACCAD); writel(value, card->pBA0 + BA0_ACCDA); writel(ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // Wait for the write to occur. for (count = 0; count < 10; count++) { // First, we want to wait for a short time. udelay(25); // Now, check to see if the write has completed. // ACCTL = 460h, DCV should be reset by now and 460h = 07h status = readl(card->pBA0 + BA0_ACCTL); if (!(status & ACCTL_DCV)) break; } // Make sure the write completed. if (status & ACCTL_DCV) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO "cs4281: cs_4281_write_ac97()- unable to write. ACCTL_DCV active\n")); return 1; } CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs_4281_write_ac97()- 0\n")); // Success. return 0; } //****************************************************************************** // "Init4281()" -- Bring up the part. //****************************************************************************** static int __devinit cs4281_hw_init(struct cs4281_state *card) { u32 ac97_slotid; u32 temp1, temp2; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs4281_hw_init()+ \n")); //***************************************7 // Set up the Sound System Configuration //*************************************** // Set the 'Configuration Write Protect' register // to 4281h. Allows vendor-defined configuration // space between 0e4h and 0ffh to be written. writel(0x4281, card->pBA0 + BA0_CWPR); // (3e0h) // (0), Blast the clock control register to zero so that the // PLL starts out in a known state, and blast the master serial // port control register to zero so that the serial ports also // start out in a known state. writel(0, card->pBA0 + BA0_CLKCR1); // (400h) writel(0, card->pBA0 + BA0_SERMC); // (420h) // (1), Make ESYN go to zero to turn off // the Sync pulse on the AC97 link. writel(0, card->pBA0 + BA0_ACCTL); udelay(50); // (2) Drive the ARST# pin low for a minimum of 1uS (as defined in // the AC97 spec) and then drive it high. This is done for non // AC97 modes since there might be logic external to the CS461x // that uses the ARST# line for a reset. writel(0, card->pBA0 + BA0_SPMC); // (3ech) udelay(100); writel(SPMC_RSTN, card->pBA0 + BA0_SPMC); delayus(50000); // Wait 50 ms for ABITCLK to become stable. // (3) Turn on the Sound System Clocks. writel(CLKCR1_PLLP, card->pBA0 + BA0_CLKCR1); // (400h) delayus(50000); // Wait for the PLL to stabilize. // Turn on clocking of the core (CLKCR1(400h) = 0x00000030) writel(CLKCR1_PLLP | CLKCR1_SWCE, card->pBA0 + BA0_CLKCR1); // (4) Power on everything for now.. writel(0x7E, card->pBA0 + BA0_SSPM); // (740h) // (5) Wait for clock stabilization. for (temp1 = 0; temp1 < 1000; temp1++) { udelay(1000); if (readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY) break; } if (!(readl(card->pBA0 + BA0_CLKCR1) & CLKCR1_DLLRDY)) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: DLLRDY failed!\n")); return -EIO; } // (6) Enable ASYNC generation. writel(ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h) // Now wait 'for a short while' to allow the AC97 // part to start generating bit clock. (so we don't // Try to start the PLL without an input clock.) delayus(50000); // Set the serial port timing configuration, so that the // clock control circuit gets its clock from the right place. writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2. // (7) Wait for the codec ready signal from the AC97 codec. for (temp1 = 0; temp1 < 1000; temp1++) { // Delay a mil to let things settle out and // to prevent retrying the read too quickly. udelay(1000); if (readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY) // If ready, (464h) break; // exit the 'for' loop. } if (!(readl(card->pBA0 + BA0_ACSTS) & ACSTS_CRDY)) // If never came ready, { CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR "cs4281: ACSTS never came ready!\n")); return -EIO; // exit initialization. } // (8) Assert the 'valid frame' signal so we can // begin sending commands to the AC97 codec. writel(ACCTL_VFRM | ACCTL_ESYN, card->pBA0 + BA0_ACCTL); // (460h) // (9), Wait until CODEC calibration is finished. // Print an error message if it doesn't. for (temp1 = 0; temp1 < 1000; temp1++) { delayus(10000); // Read the AC97 Powerdown Control/Status Register. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp2); if ((temp2 & 0x0000000F) == 0x0000000F) break; } if ((temp2 & 0x0000000F) != 0x0000000F) { CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR "cs4281: Codec failed to calibrate. Status = %.8x.\n", temp2)); return -EIO; } // (10), Set the serial port timing configuration, so that the // clock control circuit gets its clock from the right place. writel(SERMC_PTC_AC97, card->pBA0 + BA0_SERMC); // (420h)=2. // (11) Wait until we've sampled input slots 3 & 4 as valid, meaning // that the codec is pumping ADC data across the AC link. for (temp1 = 0; temp1 < 1000; temp1++) { // Delay a mil to let things settle out and // to prevent retrying the read too quickly. delayus(1000); //(test) // Read the input slot valid register; See // if input slots 3 and 4 are valid yet. if ( (readl(card->pBA0 + BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4)) break; // Exit the 'for' if slots are valid. } // If we never got valid data, exit initialization. if ((readl(card->pBA0 + BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) { CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR "cs4281: Never got valid data!\n")); return -EIO; // If no valid data, exit initialization. } // (12), Start digital data transfer of audio data to the codec. writel(ACOSV_SLV3 | ACOSV_SLV4, card->pBA0 + BA0_ACOSV); // (468h) //************************************** // Unmute the Master and Alternate // (headphone) volumes. Set to max. //************************************** cs4281_write_ac97(card, BA0_AC97_HEADPHONE_VOLUME, 0); cs4281_write_ac97(card, BA0_AC97_MASTER_VOLUME, 0); //****************************************** // Power on the DAC(AddDACUser()from main()) //****************************************** cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1); cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfdff); // Wait until we sample a DAC ready state. for (temp2 = 0; temp2 < 32; temp2++) { // Let's wait a mil to let things settle. delayus(1000); // Read the current state of the power control reg. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1); // If the DAC ready state bit is set, stop waiting. if (temp1 & 0x2) break; } //****************************************** // Power on the ADC(AddADCUser()from main()) //****************************************** cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1); cs4281_write_ac97(card, BA0_AC97_POWERDOWN, temp1 &= 0xfeff); // Wait until we sample ADC ready state. for (temp2 = 0; temp2 < 32; temp2++) { // Let's wait a mil to let things settle. delayus(1000); // Read the current state of the power control reg. cs4281_read_ac97(card, BA0_AC97_POWERDOWN, &temp1); // If the ADC ready state bit is set, stop waiting. if (temp1 & 0x1) break; } // Set up 4281 Register contents that // don't change for boot duration. // For playback, we map AC97 slot 3 and 4(Left // & Right PCM playback) to DMA Channel 0. // Set the fifo to be 15 bytes at offset zero. ac97_slotid = 0x01000f00; // FCR0.RS[4:0]=1(=>slot4, right PCM playback). // FCR0.LS[4:0]=0(=>slot3, left PCM playback). // FCR0.SZ[6-0]=15; FCR0.OF[6-0]=0. writel(ac97_slotid, card->pBA0 + BA0_FCR0); // (180h) writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR0); // Turn on FIFO Enable. // For capture, we map AC97 slot 10 and 11(Left // and Right PCM Record) to DMA Channel 1. // Set the fifo to be 15 bytes at offset sixteen. ac97_slotid = 0x0B0A0f10; // FCR1.RS[4:0]=11(=>slot11, right PCM record). // FCR1.LS[4:0]=10(=>slot10, left PCM record). // FCR1.SZ[6-0]=15; FCR1.OF[6-0]=16. writel(ac97_slotid | FCRn_PSH, card->pBA0 + BA0_FCR1); // (184h) writel(ac97_slotid | FCRn_FEN, card->pBA0 + BA0_FCR1); // Turn on FIFO Enable. // Map the Playback SRC to the same AC97 slots(3 & 4-- // --Playback left & right)as DMA channel 0. // Map the record SRC to the same AC97 slots(10 & 11-- // -- Record left & right) as DMA channel 1. ac97_slotid = 0x0b0a0100; // SCRSA.PRSS[4:0]=1(=>slot4, right PCM playback). // SCRSA.PLSS[4:0]=0(=>slot3, left PCM playback). // SCRSA.CRSS[4:0]=11(=>slot11, right PCM record) // SCRSA.CLSS[4:0]=10(=>slot10, left PCM record). writel(ac97_slotid, card->pBA0 + BA0_SRCSA); // (75ch) // Set 'Half Terminal Count Interrupt Enable' and 'Terminal // Count Interrupt Enable' in DMA Control Registers 0 & 1. // Set 'MSK' flag to 1 to keep the DMA engines paused. temp1 = (DCRn_HTCIE | DCRn_TCIE | DCRn_MSK); // (00030001h) writel(temp1, card->pBA0 + BA0_DCR0); // (154h writel(temp1, card->pBA0 + BA0_DCR1); // (15ch) // Set 'Auto-Initialize Control' to 'enabled'; For playback, // set 'Transfer Type Control'(TR[1:0]) to 'read transfer', // for record, set Transfer Type Control to 'write transfer'. // All other bits set to zero; Some will be changed @ transfer start. temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_READ); // (20000018h) writel(temp1, card->pBA0 + BA0_DMR0); // (150h) temp1 = (DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE); // (20000014h) writel(temp1, card->pBA0 + BA0_DMR1); // (158h) // Enable DMA interrupts generally, and // DMA0 & DMA1 interrupts specifically. temp1 = readl(card->pBA0 + BA0_HIMR) & 0xfffbfcff; writel(temp1, card->pBA0 + BA0_HIMR); CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs4281_hw_init()- 0\n")); return 0; } //****************************************************************************** // "cs4281_play_rate()" -- //****************************************************************************** static void cs4281_play_rate(struct cs4281_state *card, u32 playrate) { u32 DACSRvalue = 1; // Based on the sample rate, program the DACSR register. if (playrate == 8000) DACSRvalue = 5; if (playrate == 11025) DACSRvalue = 4; else if (playrate == 22050) DACSRvalue = 2; else if (playrate == 44100) DACSRvalue = 1; else if ((playrate <= 48000) && (playrate >= 6023)) DACSRvalue = 24576000 / (playrate * 16); else if (playrate < 6023) // Not allowed by open. return; else if (playrate > 48000) // Not allowed by open. return; CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 2, printk(KERN_INFO "cs4281: cs4281_play_rate(): DACSRvalue=0x%.8x playrate=%d\n", DACSRvalue, playrate)); // Write the 'sample rate select code' // to the 'DAC Sample Rate' register. writel(DACSRvalue, card->pBA0 + BA0_DACSR); // (744h) } //****************************************************************************** // "cs4281_record_rate()" -- Initialize the record sample rate converter. //****************************************************************************** static void cs4281_record_rate(struct cs4281_state *card, u32 outrate) { u32 ADCSRvalue = 1; // // Based on the sample rate, program the ADCSR register // if (outrate == 8000) ADCSRvalue = 5; if (outrate == 11025) ADCSRvalue = 4; else if (outrate == 22050) ADCSRvalue = 2; else if (outrate == 44100) ADCSRvalue = 1; else if ((outrate <= 48000) && (outrate >= 6023)) ADCSRvalue = 24576000 / (outrate * 16); else if (outrate < 6023) { // Not allowed by open. return; } else if (outrate > 48000) { // Not allowed by open. return; } CS_DBGOUT(CS_WAVE_READ | CS_PARMS, 2, printk(KERN_INFO "cs4281: cs4281_record_rate(): ADCSRvalue=0x%.8x outrate=%d\n", ADCSRvalue, outrate)); // Write the 'sample rate select code // to the 'ADC Sample Rate' register. writel(ADCSRvalue, card->pBA0 + BA0_ADCSR); // (748h) } static void stop_dac(struct cs4281_state *s) { unsigned long flags; unsigned temp1; CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4281: stop_dac():\n")); spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_WRITE; temp1 = readl(s->pBA0 + BA0_DCR0) | DCRn_MSK; writel(temp1, s->pBA0 + BA0_DCR0); spin_unlock_irqrestore(&s->lock, flags); } static void start_dac(struct cs4281_state *s) { unsigned long flags; unsigned temp1; CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: start_dac()+\n")); spin_lock_irqsave(&s->lock, flags); if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { s->ena |= FMODE_WRITE; temp1 = readl(s->pBA0 + BA0_DCR0) & ~DCRn_MSK; // Clear DMA0 channel mask. writel(temp1, s->pBA0 + BA0_DCR0); // Start DMA'ing. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts. writel(7, s->pBA0 + BA0_PPRVC); writel(7, s->pBA0 + BA0_PPLVC); CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO "cs4281: start_dac(): writel 0x%x start dma\n", temp1)); } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: start_dac()-\n")); } static void stop_adc(struct cs4281_state *s) { unsigned long flags; unsigned temp1; CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: stop_adc()+\n")); spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_READ; if (s->conversion == 1) { s->conversion = 0; s->prop_adc.fmt = s->prop_adc.fmt_original; } temp1 = readl(s->pBA0 + BA0_DCR1) | DCRn_MSK; writel(temp1, s->pBA0 + BA0_DCR1); spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4281: stop_adc()-\n")); } static void start_adc(struct cs4281_state *s) { unsigned long flags; unsigned temp1; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: start_adc()+\n")); spin_lock_irqsave(&s->lock, flags); if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped || s->dma_adc.count <= (signed) (s->dma_adc.dmasize - 2 * s->dma_adc.fragsize)) && s->dma_adc.ready) { if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) { // // now only use 16 bit capture, due to truncation issue // in the chip, noticable distortion occurs. // allocate buffer and then convert from 16 bit to // 8 bit for the user buffer. // s->prop_adc.fmt_original = s->prop_adc.fmt; if (s->prop_adc.fmt & AFMT_S8) { s->prop_adc.fmt &= ~AFMT_S8; s->prop_adc.fmt |= AFMT_S16_LE; } if (s->prop_adc.fmt & AFMT_U8) { s->prop_adc.fmt &= ~AFMT_U8; s->prop_adc.fmt |= AFMT_U16_LE; } // // prog_dmabuf_adc performs a stop_adc() but that is // ok since we really haven't started the DMA yet. // prog_codec(s, CS_TYPE_ADC); if (prog_dmabuf_adc(s) != 0) { CS_DBGOUT(CS_ERROR, 3, printk(KERN_INFO "cs4281: start_adc(): error in prog_dmabuf_adc\n")); } s->conversion = 1; } s->ena |= FMODE_READ; temp1 = readl(s->pBA0 + BA0_DCR1) & ~DCRn_MSK; // Clear DMA1 channel mask bit. writel(temp1, s->pBA0 + BA0_DCR1); // Start recording writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts. CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO "cs4281: start_adc(): writel 0x%x \n", temp1)); } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: start_adc()-\n")); } // --------------------------------------------------------------------- // use 64k (+1) rather than 32k as some of the higher frequencies need a larger buffer. // comments reflect 32k. #define DMABUF_DEFAULTORDER (15-PAGE_SHIFT+1) // == 3(for PC), = log base 2( buff sz = 32k). #define DMABUF_MINORDER 1 // ==> min buffer size = 8K. extern void dealloc_dmabuf(struct cs4281_state *s, struct dmabuf *db) { struct page *map, *mapend; if (db->rawbuf) { // Undo prog_dmabuf()'s marking the pages as reserved mapend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = virt_to_page(db->rawbuf); map <= mapend; map++) mem_map_unreserve(map); pci_free_consistent(s->pcidev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr); } if (s->tmpbuff && (db->type == CS_TYPE_ADC)) { // Undo prog_dmabuf()'s marking the pages as reserved mapend = virt_to_page(s->tmpbuff + (PAGE_SIZE << s->buforder_tmpbuff) - 1); for (map = virt_to_page(s->tmpbuff); map <= mapend; map++) mem_map_unreserve(map); pci_free_consistent(s->pcidev, PAGE_SIZE << s->buforder_tmpbuff, s->tmpbuff, s->dmaaddr_tmpbuff); } s->tmpbuff = NULL; db->rawbuf = NULL; db->mapped = db->ready = 0; } static int prog_dmabuf(struct cs4281_state *s, struct dmabuf *db) { int order; unsigned bytespersec, temp1; unsigned bufs, sample_shift = 0; struct page *map, *mapend; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: prog_dmabuf()+\n")); db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = db->blocks = db->wakeup = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ( (db->rawbuf = (void *) pci_alloc_consistent(s->pcidev, PAGE_SIZE << order, &db-> dmaaddr))) break; if (!db->rawbuf) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: prog_dmabuf(): unable to allocate rawbuf\n")); return -ENOMEM; } db->buforder = order; // Now mark the pages as reserved; otherwise the // remap_page_range() in cs4281_mmap doesn't work. // 1. get index to last page in mem_map array for rawbuf. mapend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); // 2. mark each physical page in range as 'reserved'. for (map = virt_to_page(db->rawbuf); map <= mapend; map++) mem_map_reserve(map); } if (!s->tmpbuff && (db->type == CS_TYPE_ADC)) { for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ( (s->tmpbuff = (void *) pci_alloc_consistent(s->pcidev, PAGE_SIZE << order, &s-> dmaaddr_tmpbuff))) break; if (!s->tmpbuff) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: prog_dmabuf(): unable to allocate tmpbuff\n")); return -ENOMEM; } s->buforder_tmpbuff = order; // Now mark the pages as reserved; otherwise the // remap_page_range() in cs4281_mmap doesn't work. // 1. get index to last page in mem_map array for rawbuf. mapend = virt_to_page(s->tmpbuff + (PAGE_SIZE << s->buforder_tmpbuff) - 1); // 2. mark each physical page in range as 'reserved'. for (map = virt_to_page(s->tmpbuff); map <= mapend; map++) mem_map_reserve(map); } if (db->type == CS_TYPE_DAC) { if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE)) sample_shift++; if (s->prop_dac.channels > 1) sample_shift++; bytespersec = s->prop_dac.rate << sample_shift; } else // CS_TYPE_ADC { if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE)) sample_shift++; if (s->prop_adc.channels > 1) sample_shift++; bytespersec = s->prop_adc.rate << sample_shift; } bufs = PAGE_SIZE << db->buforder; #define INTERRUPT_RATE_MS 100 // Interrupt rate in milliseconds. db->numfrag = 2; temp1 = bytespersec / (1000 / INTERRUPT_RATE_MS); // Nominal frag size(bytes/interrupt) db->fragshift = 8; // Min 256 bytes. while (1 << db->fragshift < temp1) // Calc power of 2 frag size. db->fragshift += 1; db->fragsize = 1 << db->fragshift; db->dmasize = db->fragsize * 2; db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment. // If the calculated size is larger than the allocated // buffer, divide the allocated buffer into 2 fragments. if (db->dmasize > bufs) { db->numfrag = 2; // Two fragments. db->fragsize = bufs >> 1; // Each 1/2 the alloc'ed buffer. db->fragsamples = db->fragsize >> sample_shift; // # samples/fragment. db->dmasize = bufs; // Use all the alloc'ed buffer. db->fragshift = 0; // Calculate 'fragshift'. temp1 = db->fragsize; // update_ptr() uses it while ((temp1 >>= 1) > 1) // to calc 'total-bytes' db->fragshift += 1; // returned in DSP_GETI/OPTR. } CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: prog_dmabuf()-\n")); CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO "cs4281: prog_dmabuf(): numfrag=%d fragsize=%d fragsamples=%d fragshift=%d bufs=%d fmt=0x%x ch=%d\n", db->numfrag, db->fragsize, db->fragsamples, db->fragshift, bufs, (db->type == CS_TYPE_DAC) ? s->prop_dac.fmt : s->prop_adc.fmt, (db->type == CS_TYPE_DAC) ? s->prop_dac.channels : s-> prop_adc.channels)); return 0; } static int prog_dmabuf_adc(struct cs4281_state *s) { unsigned long va; unsigned count; int c; stop_adc(s); s->dma_adc.type = CS_TYPE_ADC; if ((c = prog_dmabuf(s, &s->dma_adc))) return c; if (s->dma_adc.rawbuf) { memset(s->dma_adc.rawbuf, (s->prop_adc. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, s->dma_adc.dmasize); } if (s->tmpbuff) { memset(s->tmpbuff, (s->prop_adc. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, PAGE_SIZE << s->buforder_tmpbuff); } va = virt_to_bus(s->dma_adc.rawbuf); count = s->dma_adc.dmasize; if (s->prop_adc. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) count /= 2; // 16-bit. if (s->prop_adc.channels > 1) count /= 2; // Assume stereo. CS_DBGOUT(CS_WAVE_READ, 3, printk(KERN_INFO "cs4281: prog_dmabuf_adc(): count=%d va=0x%.8x\n", count, (unsigned) va)); writel(va, s->pBA0 + BA0_DBA1); // Set buffer start address. writel(count - 1, s->pBA0 + BA0_DBC1); // Set count. s->dma_adc.ready = 1; return 0; } static int prog_dmabuf_dac(struct cs4281_state *s) { unsigned long va; unsigned count; int c; stop_dac(s); s->dma_dac.type = CS_TYPE_DAC; if ((c = prog_dmabuf(s, &s->dma_dac))) return c; memset(s->dma_dac.rawbuf, (s->prop_dac.fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, s->dma_dac.dmasize); va = virt_to_bus(s->dma_dac.rawbuf); count = s->dma_dac.dmasize; if (s->prop_dac. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) count /= 2; // 16-bit. if (s->prop_dac.channels > 1) count /= 2; // Assume stereo. writel(va, s->pBA0 + BA0_DBA0); // Set buffer start address. writel(count - 1, s->pBA0 + BA0_DBC0); // Set count. CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4281: prog_dmabuf_dac(): count=%d va=0x%.8x\n", count, (unsigned) va)); s->dma_dac.ready = 1; return 0; } static void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c) { if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(((char *) buf) + bptr, c, x); bptr = 0; len -= x; } CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO "cs4281: clear_advance(): memset %d at 0x%.8x for %d size \n", (unsigned) c, (unsigned) ((char *) buf) + bptr, len)); memset(((char *) buf) + bptr, c, len); } // call with spinlock held! static void cs4281_update_ptr(struct cs4281_state *s) { int diff; unsigned hwptr, va; // update ADC pointer if (s->ena & FMODE_READ) { hwptr = readl(s->pBA0 + BA0_DCA1); // Read capture DMA address. va = virt_to_bus(s->dma_adc.rawbuf); hwptr -= (unsigned) va; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; if (s->dma_adc.count > s->dma_adc.dmasize) s->dma_adc.count = s->dma_adc.dmasize; if (s->dma_adc.mapped) { if (s->dma_adc.count >= (signed) s->dma_adc.fragsize) wake_up(&s-> dma_adc. wait); } else { if (s->dma_adc.count > 0) wake_up(&s->dma_adc.wait); } CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO "cs4281: cs4281_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n", (unsigned) s, s->dma_adc.hwptr, s->dma_adc.total_bytes, s->dma_adc.count)); } // update DAC pointer // // check for end of buffer, means that we are going to wait for another interrupt // to allow silence to fill the fifos on the part, to keep pops down to a minimum. // if (s->ena & FMODE_WRITE) { hwptr = readl(s->pBA0 + BA0_DCA0); // Read play DMA address. va = virt_to_bus(s->dma_dac.rawbuf); hwptr -= (unsigned) va; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->dma_dac.count >= s->dma_dac.fragsize) { s->dma_dac.wakeup = 1; wake_up(&s->dma_dac.wait); if (s->dma_dac.count > s->dma_dac.dmasize) s->dma_dac.count &= s->dma_dac.dmasize - 1; } } else { s->dma_dac.count -= diff; if (s->dma_dac.count <= 0) { // // fill with silence, and do not shut down the DAC. // Continue to play silence until the _release. // CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO "cs4281: cs4281_update_ptr(): memset %d at 0x%.8x for %d size \n", (unsigned) (s->prop_dac. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, (unsigned) s->dma_dac. rawbuf, s->dma_dac.dmasize)); memset(s->dma_dac.rawbuf, (s->prop_dac. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, s->dma_dac.dmasize); } else if (s->dma_dac.count <= (signed) s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s->dma_dac.rawbuf, s->dma_dac.dmasize, s->dma_dac.swptr, s->dma_dac.fragsize, (s->prop_dac. fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0); s->dma_dac.endcleared = 1; } if (s->dma_dac.count < (signed) s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO "cs4281: cs4281_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n", (unsigned) s, s->dma_dac.hwptr, s->dma_dac.total_bytes, s->dma_dac.count)); } } // --------------------------------------------------------------------- static void prog_codec(struct cs4281_state *s, unsigned type) { unsigned long flags; unsigned temp1, format; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: prog_codec()+ \n")); spin_lock_irqsave(&s->lock, flags); if (type == CS_TYPE_ADC) { temp1 = readl(s->pBA0 + BA0_DCR1); writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR1); // Stop capture DMA, if active. // program sampling rates // Note, for CS4281, capture & play rates can be set independently. cs4281_record_rate(s, s->prop_adc.rate); // program ADC parameters format = DMRn_DMA | DMRn_AUTO | DMRn_TR_WRITE; if (s->prop_adc. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit if (s->prop_adc.fmt & (AFMT_S16_BE | AFMT_U16_BE)) // Big-endian? format |= DMRn_BEND; if (s->prop_adc.fmt & (AFMT_U16_LE | AFMT_U16_BE)) format |= DMRn_USIGN; // Unsigned. } else format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned if (s->prop_adc.channels < 2) format |= DMRn_MONO; writel(format, s->pBA0 + BA0_DMR1); CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO "cs4281: prog_codec(): adc %s %s %s rate=%d DMR0 format=0x%.8x\n", (format & DMRn_SIZE8) ? "8" : "16", (format & DMRn_USIGN) ? "Unsigned" : "Signed", (format & DMRn_MONO) ? "Mono" : "Stereo", s->prop_adc.rate, format)); s->ena &= ~FMODE_READ; // not capturing data yet } if (type == CS_TYPE_DAC) { temp1 = readl(s->pBA0 + BA0_DCR0); writel(temp1 | DCRn_MSK, s->pBA0 + BA0_DCR0); // Stop play DMA, if active. // program sampling rates // Note, for CS4281, capture & play rates can be set independently. cs4281_play_rate(s, s->prop_dac.rate); // program DAC parameters format = DMRn_DMA | DMRn_AUTO | DMRn_TR_READ; if (s->prop_dac. fmt & (AFMT_S16_LE | AFMT_U16_LE | AFMT_S16_BE | AFMT_U16_BE)) { // 16-bit if (s->prop_dac.fmt & (AFMT_S16_BE | AFMT_U16_BE)) format |= DMRn_BEND; // Big Endian. if (s->prop_dac.fmt & (AFMT_U16_LE | AFMT_U16_BE)) format |= DMRn_USIGN; // Unsigned. } else format |= DMRn_SIZE8 | DMRn_USIGN; // 8-bit, unsigned if (s->prop_dac.channels < 2) format |= DMRn_MONO; writel(format, s->pBA0 + BA0_DMR0); CS_DBGOUT(CS_PARMS, 2, printk(KERN_INFO "cs4281: prog_codec(): dac %s %s %s rate=%d DMR0 format=0x%.8x\n", (format & DMRn_SIZE8) ? "8" : "16", (format & DMRn_USIGN) ? "Unsigned" : "Signed", (format & DMRn_MONO) ? "Mono" : "Stereo", s->prop_dac.rate, format)); s->ena &= ~FMODE_WRITE; // not capturing data yet } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: prog_codec()- \n")); } // --------------------------------------------------------------------- static const char invalid_magic[] = KERN_CRIT "cs4281: invalid magic value\n"; #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != CS4281_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) // --------------------------------------------------------------------- static int mixer_ioctl(struct cs4281_state *s, unsigned int cmd, unsigned long arg) { // Index to mixer_src[] is value of AC97 Input Mux Select Reg. // Value of array member is recording source Device ID Mask. static const unsigned int mixer_src[8] = { SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1, SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0 }; // Index of mixtable1[] member is Device ID // and must be <= SOUND_MIXER_NRDEVICES. // Value of array member is index into s->mix.vol[] static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = 1, // voice [SOUND_MIXER_LINE1] = 2, // AUX [SOUND_MIXER_CD] = 3, // CD [SOUND_MIXER_LINE] = 4, // Line [SOUND_MIXER_SYNTH] = 5, // FM [SOUND_MIXER_MIC] = 6, // Mic [SOUND_MIXER_SPEAKER] = 7, // Speaker [SOUND_MIXER_RECLEV] = 8, // Recording level [SOUND_MIXER_VOLUME] = 9 // Master Volume }; static const unsigned mixreg[] = { BA0_AC97_PCM_OUT_VOLUME, BA0_AC97_AUX_VOLUME, BA0_AC97_CD_VOLUME, BA0_AC97_LINE_IN_VOLUME }; unsigned char l, r, rl, rr, vidx; unsigned char attentbl[11] = { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 }; unsigned temp1; int i, val; VALIDATE_STATE(s); CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs4281: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n", (unsigned) s, cmd)); #if CSDEBUG printioctl(cmd); #endif #if CSDEBUG_INTERFACE if ((cmd == SOUND_MIXER_CS_GETDBGMASK) || (cmd == SOUND_MIXER_CS_SETDBGMASK) || (cmd == SOUND_MIXER_CS_GETDBGLEVEL) || (cmd == SOUND_MIXER_CS_SETDBGLEVEL)) { switch (cmd) { case SOUND_MIXER_CS_GETDBGMASK: return put_user(cs_debugmask, (unsigned long *) arg); case SOUND_MIXER_CS_GETDBGLEVEL: return put_user(cs_debuglevel, (unsigned long *) arg); case SOUND_MIXER_CS_SETDBGMASK: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debugmask = val; return 0; case SOUND_MIXER_CS_SETDBGLEVEL: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debuglevel = val; return 0; default: CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO "cs4281: mixer_ioctl(): ERROR unknown debug cmd\n")); return 0; } } #endif if (cmd == SOUND_MIXER_PRIVATE1) { // enable/disable/query mixer preamp if (get_user(val, (int *) arg)) return -EFAULT; if (val != -1) { cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1); temp1 = val ? (temp1 | 0x40) : (temp1 & 0xffbf); cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1); } cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1); val = (temp1 & 0x40) ? 1 : 0; return put_user(val, (int *) arg); } if (cmd == SOUND_MIXER_PRIVATE2) { // enable/disable/query spatializer if (get_user(val, (int *) arg)) return -EFAULT; if (val != -1) { temp1 = (val & 0x3f) >> 2; cs4281_write_ac97(s, BA0_AC97_3D_CONTROL, temp1); cs4281_read_ac97(s, BA0_AC97_GENERAL_PURPOSE, &temp1); cs4281_write_ac97(s, BA0_AC97_GENERAL_PURPOSE, temp1 | 0x2000); } cs4281_read_ac97(s, BA0_AC97_3D_CONTROL, &temp1); return put_user((temp1 << 2) | 3, (int *) arg); } if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, "CS4281", sizeof(info.id)); strncpy(info.name, "Crystal CS4281", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *) arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, "CS4281", sizeof(info.id)); strncpy(info.name, "Crystal CS4281", sizeof(info.name)); if (copy_to_user((void *) arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *) arg); if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int)) return -EINVAL; // If ioctl has only the SIOC_READ bit(bit 31) // on, process the only-read commands. if (_SIOC_DIR(cmd) == _SIOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source cs4281_read_ac97(s, BA0_AC97_RECORD_SELECT, &temp1); return put_user(mixer_src[temp1 & 7], (int *) arg); case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV | SOUND_MASK_SPEAKER, (int *) arg); case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_VOLUME | SOUND_MASK_LINE1, (int *) arg); case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV, (int *) arg); case SOUND_MIXER_CAPS: return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; return put_user(s->mix.vol[vidx - 1], (int *) arg); } } // If ioctl doesn't have both the SIOC_READ and // the SIOC_WRITE bit set, return invalid. if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE)) return -EINVAL; // Increment the count of volume writes. s->mix.modcnt++; // Isolate the command; it must be a write. switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source if (get_user(val, (int *) arg)) return -EFAULT; i = hweight32(val); // i = # bits on in val. if (i != 1) // One & only 1 bit must be on. return 0; for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) { if (val == mixer_src[i]) { temp1 = (i << 8) | i; cs4281_write_ac97(s, BA0_AC97_RECORD_SELECT, temp1); return 0; } } return 0; case SOUND_MIXER_VOLUME: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; // Max soundcard.h vol is 100. if (l < 6) { rl = 63; l = 0; } else rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten. r = (val >> 8) & 0xff; if (r > 100) r = 100; // Max right volume is 100, too if (r < 6) { rr = 63; r = 0; } else rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation. if ((rl > 60) && (rr > 60)) // If both l & r are 'low', temp1 = 0x8000; // turn on the mute bit. else temp1 = 0; temp1 |= (rl << 8) | rr; cs4281_write_ac97(s, BA0_AC97_MASTER_VOLUME, temp1); cs4281_write_ac97(s, BA0_AC97_HEADPHONE_VOLUME, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[8] = ((unsigned int) r << 8) | l; #else s->mix.vol[8] = val; #endif return put_user(s->mix.vol[8], (int *) arg); case SOUND_MIXER_SPEAKER: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 3) { rl = 0; l = 0; } else { rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15. l = (rl * 13 + 5) / 2; } if (rl < 3) { temp1 = 0x8000; rl = 0; } else temp1 = 0; rl = 15 - rl; // Convert volume to attenuation. temp1 |= rl << 1; cs4281_write_ac97(s, BA0_AC97_PC_BEEP_VOLUME, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[6] = l << 8; #else s->mix.vol[6] = val; #endif return put_user(s->mix.vol[6], (int *) arg); case SOUND_MIXER_RECLEV: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; r = (val >> 8) & 0xff; if (r > 100) r = 100; rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15. rr = (r * 2 - 5) / 13; if (rl < 3 && rr < 3) temp1 = 0x8000; else temp1 = 0; temp1 = temp1 | (rl << 8) | rr; cs4281_write_ac97(s, BA0_AC97_RECORD_GAIN, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[7] = ((unsigned int) r << 8) | l; #else s->mix.vol[7] = val; #endif return put_user(s->mix.vol[7], (int *) arg); case SOUND_MIXER_MIC: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 1) { l = 0; rl = 0; } else { rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31. l = (rl * 16 + 4) / 5; } cs4281_read_ac97(s, BA0_AC97_MIC_VOLUME, &temp1); temp1 &= 0x40; // Isolate 20db gain bit. if (rl < 3) { temp1 |= 0x8000; rl = 0; } rl = 31 - rl; // Convert volume to attenuation. temp1 |= rl; cs4281_write_ac97(s, BA0_AC97_MIC_VOLUME, temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[5] = val << 8; #else s->mix.vol[5] = val; #endif return put_user(s->mix.vol[5], (int *) arg); case SOUND_MIXER_SYNTH: if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (get_user(val, (int *) arg)) return -EFAULT; r = (val >> 8) & 0xff; if (r > 100) r = 100; rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63. rr = (r * 2 - 11) / 3; if (rl < 3) // If l is low, turn on temp1 = 0x0080; // the mute bit. else temp1 = 0; rl = 63 - rl; // Convert vol to attenuation. writel(temp1 | rl, s->pBA0 + BA0_FMLVC); if (rr < 3) // If rr is low, turn on temp1 = 0x0080; // the mute bit. else temp1 = 0; rr = 63 - rr; // Convert vol to attenuation. writel(temp1 | rr, s->pBA0 + BA0_FMRVC); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[4] = (r << 8) | l; #else s->mix.vol[4] = val; #endif return put_user(s->mix.vol[4], (int *) arg); default: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4281: mixer_ioctl(): default\n")); i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; if (get_user(val, (int *) arg)) return -EFAULT; l = val & 0xff; if (l > 100) l = 100; if (l < 1) { l = 0; rl = 31; } else rl = (attentbl[(l * 10) / 100]) >> 1; r = (val >> 8) & 0xff; if (r > 100) r = 100; if (r < 1) { r = 0; rr = 31; } else rr = (attentbl[(r * 10) / 100]) >> 1; if ((rl > 30) && (rr > 30)) temp1 = 0x8000; else temp1 = 0; temp1 = temp1 | (rl << 8) | rr; cs4281_write_ac97(s, mixreg[vidx - 1], temp1); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l; #else s->mix.vol[vidx - 1] = val; #endif return put_user(s->mix.vol[vidx - 1], (int *) arg); } } // --------------------------------------------------------------------- static loff_t cs4281_llseek(struct file *file, loff_t offset, int origin) { return -ESPIPE; } // --------------------------------------------------------------------- static int cs4281_open_mixdev(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cs4281_state *s = devs; while (s && s->dev_mixer != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; MOD_INC_USE_COUNT; return 0; } static int cs4281_release_mixdev(struct inode *inode, struct file *file) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; VALIDATE_STATE(s); MOD_DEC_USE_COUNT; return 0; } static int cs4281_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct cs4281_state *) file->private_data, cmd, arg); } // ****************************************************************************************** // Mixer file operations struct. // ****************************************************************************************** static /*const */ struct file_operations cs4281_mixer_fops = { llseek:cs4281_llseek, ioctl:cs4281_ioctl_mixdev, open:cs4281_open_mixdev, release:cs4281_release_mixdev, }; // --------------------------------------------------------------------- static int drain_adc(struct cs4281_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count; unsigned tmo; if (s->dma_adc.mapped) return 0; add_wait_queue(&s->dma_adc.wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->dma_adc.count; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: drain_adc() %d\n", count)); spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) { CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: drain_adc() count<0\n")); break; } if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_adc.wait, &wait); current->state = TASK_RUNNING; return -EBUSY; } tmo = 3 * HZ * (count + s->dma_adc.fragsize) / 2 / s->prop_adc.rate; if (s->prop_adc.fmt & (AFMT_S16_LE | AFMT_U16_LE)) tmo >>= 1; if (s->prop_adc.channels > 1) tmo >>= 1; if (!schedule_timeout(tmo + 1)) printk(KERN_DEBUG "cs4281: dma timed out??\n"); } remove_wait_queue(&s->dma_adc.wait, &wait); current->state = TASK_RUNNING; if (signal_pending(current)) return -ERESTARTSYS; return 0; } static int drain_dac(struct cs4281_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count; unsigned tmo; if (s->dma_dac.mapped) return 0; add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); current->state = TASK_RUNNING; return -EBUSY; } tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->prop_dac.rate; if (s->prop_dac.fmt & (AFMT_S16_LE | AFMT_U16_LE)) tmo >>= 1; if (s->prop_dac.channels > 1) tmo >>= 1; if (!schedule_timeout(tmo + 1)) printk(KERN_DEBUG "cs4281: dma timed out??\n"); } remove_wait_queue(&s->dma_dac.wait, &wait); current->state = TASK_RUNNING; if (signal_pending(current)) return -ERESTARTSYS; return 0; } //**************************************************************************** // // CopySamples copies 16-bit stereo samples from the source to the // destination, possibly converting down to either 8-bit or mono or both. // count specifies the number of output bytes to write. // // Arguments: // // dst - Pointer to a destination buffer. // src - Pointer to a source buffer // count - The number of bytes to copy into the destination buffer. // iChannels - Stereo - 2 // Mono - 1 // fmt - AFMT_xxx (soundcard.h formats) // // NOTES: only call this routine for conversion to 8bit from 16bit // //**************************************************************************** static void CopySamples(char *dst, char *src, int count, int iChannels, unsigned fmt) { unsigned short *psSrc; long lAudioSample; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: CopySamples()+ ")); CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO " dst=0x%x src=0x%x count=%d iChannels=%d fmt=0x%x\n", (unsigned) dst, (unsigned) src, (unsigned) count, (unsigned) iChannels, (unsigned) fmt)); // Gershwin does format conversion in hardware so normally // we don't do any host based coversion. The data formatter // truncates 16 bit data to 8 bit and that causes some hiss. // We have already forced the HW to do 16 bit sampling and // 2 channel so that we can use software to round instead // of truncate // // See if the data should be output as 8-bit unsigned stereo. // if ((iChannels == 2) && (fmt & AFMT_U8)) { // // Convert each 16-bit unsigned stereo sample to 8-bit unsigned // stereo using rounding. // psSrc = (unsigned short *) src; count = count / 2; while (count--) { lAudioSample = (long) psSrc[count] + (long) 0x80; if (lAudioSample > 0xffff) { lAudioSample = 0xffff; } dst[count] = (char) (lAudioSample >> 8); } } // // check for 8-bit signed stereo. // else if ((iChannels == 2) && (fmt & AFMT_S8)) { // // Convert each 16-bit stereo sample to 8-bit stereo using rounding. // psSrc = (short *) src; while (count--) { lAudioSample = (((long) psSrc[0] + (long) psSrc[1]) / 2); psSrc += 2; *dst++ = (char) ((short) lAudioSample >> 8); } } // // See if the data should be output at 8-bit unsigned mono. // else if ((iChannels == 1) && (fmt & AFMT_U8)) { // // Convert each 16-bit unsigned mono sample to 8-bit unsigned // mono using rounding. // psSrc = (short *) src; while (count--) { lAudioSample = (long) *psSrc++ + (long) 0x80; if (lAudioSample > 0x7fff) { lAudioSample = 0x7fff; } // // Convert Signed to Unsigned. // *dst++ = (unsigned char) (((short) lAudioSample + (short) 0x8000) >> 8); } } // // Otherwise, the data should be output as 8-bit signed mono. // else if ((iChannels == 1) && (fmt & AFMT_S8)) { // // Convert each 16-bit signed mono sample to 8-bit signed mono // using rounding. // psSrc = (short *) src; while (count--) { lAudioSample = (((long) psSrc[0] + (long) psSrc[1]) / 2); if (lAudioSample > 0x7fff) { lAudioSample = 0x7fff; } psSrc += 2; *dst++ = (char) ((short) lAudioSample >> 8); } } } // // cs_copy_to_user() // replacement for the standard copy_to_user, to allow for a conversion from // 16 bit to 8 bit if the record conversion is active. the cs4281 has some // issues with 8 bit capture, so the driver always captures data in 16 bit // and then if the user requested 8 bit, converts from 16 to 8 bit. // static unsigned cs_copy_to_user(struct cs4281_state *s, void *dest, unsigned *hwsrc, unsigned cnt, unsigned *copied) { void *src = hwsrc; //default to the standard destination buffer addr CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO "cs_copy_to_user()+ fmt=0x%x fmt_o=0x%x cnt=%d dest=0x%.8x\n", s->prop_adc.fmt, s->prop_adc.fmt_original, (unsigned) cnt, (unsigned) dest)); if (cnt > s->dma_adc.dmasize) { cnt = s->dma_adc.dmasize; } if (!cnt) { *copied = 0; return 0; } if (s->conversion) { if (!s->tmpbuff) { *copied = cnt / 2; return 0; } CopySamples(s->tmpbuff, (void *) hwsrc, cnt, (unsigned) s->prop_adc.channels, s->prop_adc.fmt_original); src = s->tmpbuff; cnt = cnt / 2; } if (copy_to_user(dest, src, cnt)) { *copied = 0; return -EFAULT; } *copied = cnt; CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs_copy_to_user()- copied bytes is %d \n", cnt)); return 0; } // --------------------------------------------------------------------- static ssize_t cs4281_read(struct file *file, char *buffer, size_t count, loff_t * ppos) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; unsigned copied = 0; CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2, printk(KERN_INFO "cs4281: cs4281_read()+ %d \n", count)); VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; // // "count" is the amount of bytes to read (from app), is decremented each loop // by the amount of bytes that have been returned to the user buffer. // "cnt" is the running total of each read from the buffer (changes each loop) // "buffer" points to the app's buffer // "ret" keeps a running total of the amount of bytes that have been copied // to the user buffer. // "copied" is the total bytes copied into the user buffer for each loop. // while (count > 0) { CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO "_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n", count, s->dma_adc.count, s->dma_adc.swptr, s->dma_adc.hwptr)); spin_lock_irqsave(&s->lock, flags); // get the current copy point of the sw buffer swptr = s->dma_adc.swptr; // cnt is the amount of unread bytes from the end of the // hw buffer to the current sw pointer cnt = s->dma_adc.dmasize - swptr; // dma_adc.count is the current total bytes that have not been read. // if the amount of unread bytes from the current sw pointer to the // end of the buffer is greater than the current total bytes that // have not been read, then set the "cnt" (unread bytes) to the // amount of unread bytes. if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; spin_unlock_irqrestore(&s->lock, flags); // // if we are converting from 8/16 then we need to copy // twice the number of 16 bit bytes then 8 bit bytes. // if (s->conversion) { if (cnt > (count * 2)) cnt = (count * 2); } else { if (cnt > count) cnt = count; } // // "cnt" NOW is the smaller of the amount that will be read, // and the amount that is requested in this read (or partial). // if there are no bytes in the buffer to read, then start the // ADC and wait for the interrupt handler to wake us up. // if (cnt <= 0) { // start up the dma engine and then continue back to the top of // the loop when wake up occurs. start_adc(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->dma_adc.wait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } // there are bytes in the buffer to read. // copy from the hw buffer over to the user buffer. // user buffer is designated by "buffer" // virtual address to copy from is rawbuf+swptr // the "cnt" is the number of bytes to read. CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO "_read() copy_to cnt=%d count=%d ", cnt, count)); CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO " .dmasize=%d .count=%d buffer=0x%.8x ret=%d\n", s->dma_adc.dmasize, s->dma_adc.count, (unsigned) buffer, ret)); if (cs_copy_to_user (s, buffer, s->dma_adc.rawbuf + swptr, cnt, &copied)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= copied; buffer += copied; ret += copied; start_adc(s); } CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2, printk(KERN_INFO "cs4281: cs4281_read()- %d\n", ret)); return ret; } static ssize_t cs4281_write(struct file *file, const char *buffer, size_t count, loff_t * ppos) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2, printk(KERN_INFO "cs4281: cs4281_write()+ count=%d\n", count)); VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize - swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->dma_dac.wait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2, printk(KERN_INFO "cs4281: cs4281_write()- %d\n", ret)); return ret; } static unsigned int cs4281_poll(struct file *file, struct poll_table_struct *wait) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; unsigned long flags; unsigned int mask = 0; CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4281: cs4281_poll()+\n")); VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4281: cs4281_poll() wait on FMODE_WRITE\n")); if (!s->dma_dac.ready && prog_dmabuf_dac(s)) return 0; poll_wait(file, &s->dma_dac.wait, wait); } if (file->f_mode & FMODE_READ) { CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4281: cs4281_poll() wait on FMODE_READ\n")); if (!s->dma_adc.ready && prog_dmabuf_adc(s)) return 0; poll_wait(file, &s->dma_adc.wait, wait); } spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed) s->dma_dac.fragsize) { if (s->dma_dac.wakeup) mask |= POLLOUT | POLLWRNORM; else mask = 0; s->dma_dac.wakeup = 0; } } else { if ((signed) s->dma_dac.dmasize > s->dma_dac.count) mask |= POLLOUT | POLLWRNORM; } } else if (file->f_mode & FMODE_READ) { if (s->dma_adc.mapped) { if (s->dma_adc.count >= (signed) s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } else { if (s->dma_adc.count > 0) mask |= POLLIN | POLLRDNORM; } } spin_unlock_irqrestore(&s->lock, flags); CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4, printk(KERN_INFO "cs4281: cs4281_poll()- 0x%.8x\n", mask)); return mask; } static int cs4281_mmap(struct file *file, struct vm_area_struct *vma) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; struct dmabuf *db; int ret; unsigned long size; CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4, printk(KERN_INFO "cs4281: cs4281_mmap()+\n")); VALIDATE_STATE(s); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf_dac(s)) != 0) return ret; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf_adc(s)) != 0) return ret; db = &s->dma_adc; } else return -EINVAL; // // only support PLAYBACK for now // db = &s->dma_dac; if (vma->vm_pgoff != 0) return -EINVAL; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) return -EINVAL; if (remap_page_range (vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) return -EAGAIN; db->mapped = 1; CS_DBGOUT(CS_FUNCTION | CS_PARMS | CS_OPEN, 4, printk(KERN_INFO "cs4281: cs4281_mmap()- 0 size=%d\n", (unsigned) size)); return 0; } static int cs4281_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): file=0x%.8x cmd=0x%.8x\n", (unsigned) file, cmd)); #if CSDEBUG printioctl(cmd); #endif VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): SOUND_VERSION=0x%.8x\n", SOUND_VERSION)); return put_user(SOUND_VERSION, (int *) arg); case SNDCTL_DSP_SYNC: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_SYNC\n")); if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0 /*file->f_flags & O_NONBLOCK */ ); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *) arg); case SNDCTL_DSP_RESET: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_RESET\n")); if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = s->dma_dac.blocks = s->dma_dac.wakeup = 0; prog_codec(s, CS_TYPE_DAC); } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = s->dma_adc.blocks = s->dma_dac.wakeup = 0; prog_codec(s, CS_TYPE_ADC); } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_SPEED val=%d\n", val)); // // support independent capture and playback channels // assume that the file mode bit determines the // direction of the data flow. // if (file->f_mode & FMODE_READ) { if (val >= 0) { stop_adc(s); s->dma_adc.ready = 0; // program sampling rates if (val > 48000) val = 48000; if (val < 6300) val = 6300; s->prop_adc.rate = val; prog_codec(s, CS_TYPE_ADC); } } if (file->f_mode & FMODE_WRITE) { if (val >= 0) { stop_dac(s); s->dma_dac.ready = 0; // program sampling rates if (val > 48000) val = 48000; if (val < 6300) val = 6300; s->prop_dac.rate = val; prog_codec(s, CS_TYPE_DAC); } } if (file->f_mode & FMODE_WRITE) val = s->prop_dac.rate; else if (file->f_mode & FMODE_READ) val = s->prop_adc.rate; return put_user(val, (int *) arg); case SNDCTL_DSP_STEREO: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_STEREO val=%d\n", val)); if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; s->prop_adc.channels = val ? 2 : 1; prog_codec(s, CS_TYPE_ADC); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; s->prop_dac.channels = val ? 2 : 1; prog_codec(s, CS_TYPE_DAC); } return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_CHANNELS val=%d\n", val)); if (val != 0) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) s->prop_adc.channels = 2; else s->prop_adc.channels = 1; prog_codec(s, CS_TYPE_ADC); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) s->prop_dac.channels = 2; else s->prop_dac.channels = 1; prog_codec(s, CS_TYPE_DAC); } } if (file->f_mode & FMODE_WRITE) val = s->prop_dac.channels; else if (file->f_mode & FMODE_READ) val = s->prop_adc.channels; return put_user(val, (int *) arg); case SNDCTL_DSP_GETFMTS: // Returns a mask CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_GETFMT val=0x%.8x\n", AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 | AFMT_U8)); return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 | AFMT_U8, (int *) arg); case SNDCTL_DSP_SETFMT: if (get_user(val, (int *) arg)) return -EFAULT; CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_SETFMT val=0x%.8x\n", val)); if (val != AFMT_QUERY) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val != AFMT_S16_LE && val != AFMT_U16_LE && val != AFMT_S8 && val != AFMT_U8) val = AFMT_U8; s->prop_adc.fmt = val; s->prop_adc.fmt_original = s->prop_adc.fmt; prog_codec(s, CS_TYPE_ADC); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val != AFMT_S16_LE && val != AFMT_U16_LE && val != AFMT_S8 && val != AFMT_U8) val = AFMT_U8; s->prop_dac.fmt = val; s->prop_dac.fmt_original = s->prop_dac.fmt; prog_codec(s, CS_TYPE_DAC); } } else { if (file->f_mode & FMODE_WRITE) val = s->prop_dac.fmt_original; else if (file->f_mode & FMODE_READ) val = s->prop_adc.fmt_original; } CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_SETFMT return val=0x%.8x\n", val)); return put_user(val, (int *) arg); case SNDCTL_DSP_POST: CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): DSP_POST\n")); return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & s->ena & FMODE_READ) val |= PCM_ENABLE_INPUT; if (file->f_mode & s->ena & FMODE_WRITE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *) arg); case SNDCTL_DSP_SETTRIGGER: if (get_user(val, (int *) arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; start_adc(s); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; if (s->dma_dac.mapped) abinfo.bytes = s->dma_dac.dmasize; else abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO "cs4281: cs4281_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n", abinfo. fragsize, abinfo.bytes, abinfo. fragstotal, abinfo. fragments)); spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); if (s->conversion) { abinfo.fragsize = s->dma_adc.fragsize / 2; abinfo.bytes = s->dma_adc.count / 2; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> (s->dma_adc.fragshift - 1); } else { abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; } spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); val = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, (int *) arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; if (s->dma_adc.mapped) { cinfo.blocks = (cinfo.bytes >> s->dma_adc.fragshift) - s->dma_adc.blocks; s->dma_adc.blocks = cinfo.bytes >> s->dma_adc.fragshift; } else { if (s->conversion) { cinfo.blocks = s->dma_adc.count / 2 >> (s->dma_adc.fragshift - 1); } else cinfo.blocks = s->dma_adc.count >> s->dma_adc. fragshift; } if (s->conversion) cinfo.ptr = s->dma_adc.hwptr / 2; else cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize - 1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s))) return val; spin_lock_irqsave(&s->lock, flags); cs4281_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; if (s->dma_dac.mapped) { cinfo.blocks = (cinfo.bytes >> s->dma_dac.fragshift) - s->dma_dac.blocks; s->dma_dac.blocks = cinfo.bytes >> s->dma_dac.fragshift; } else { cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; } cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize - 1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf_dac(s))) return val; return put_user(s->dma_dac.fragsize, (int *) arg); } if ((val = prog_dmabuf_adc(s))) return val; if (s->conversion) return put_user(s->dma_adc.fragsize / 2, (int *) arg); else return put_user(s->dma_adc.fragsize, (int *) arg); case SNDCTL_DSP_SETFRAGMENT: if (get_user(val, (int *) arg)) return -EFAULT; return 0; // Say OK, but do nothing. case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; if (get_user(val, (int *) arg)) return -EFAULT; if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; else if (file->f_mode & FMODE_WRITE) s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: if (file->f_mode & FMODE_READ) return put_user(s->prop_adc.rate, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user(s->prop_dac.rate, (int *) arg); case SOUND_PCM_READ_CHANNELS: if (file->f_mode & FMODE_READ) return put_user(s->prop_adc.channels, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user(s->prop_dac.channels, (int *) arg); case SOUND_PCM_READ_BITS: if (file->f_mode & FMODE_READ) return put_user( (s->prop_adc. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16, (int *) arg); else if (file->f_mode & FMODE_WRITE) return put_user( (s->prop_dac. fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16, (int *) arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: case SOUND_PCM_READ_FILTER: return -EINVAL; #if CSDEBUG_INTERFACE case SNDCTL_DSP_CS_GETDBGMASK: return put_user(cs_debugmask, (unsigned long *) arg); case SNDCTL_DSP_CS_GETDBGLEVEL: return put_user(cs_debuglevel, (unsigned long *) arg); case SNDCTL_DSP_CS_SETDBGMASK: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debugmask = val; return 0; case SNDCTL_DSP_CS_SETDBGLEVEL: if (get_user(val, (unsigned long *) arg)) return -EFAULT; cs_debuglevel = val; return 0; #endif } return mixer_ioctl(s, cmd, arg); } static int cs4281_release(struct inode *inode, struct file *file) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO "cs4281: cs4281_release(): inode=0x%.8x file=0x%.8x f_mode=%d\n", (unsigned) inode, (unsigned) file, file->f_mode)); VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem_dac); stop_dac(s); dealloc_dmabuf(s, &s->dma_dac); s->open_mode &= ~FMODE_WRITE; up(&s->open_sem_dac); wake_up(&s->open_wait_dac); MOD_DEC_USE_COUNT; } if (file->f_mode & FMODE_READ) { drain_adc(s, file->f_flags & O_NONBLOCK); down(&s->open_sem_adc); stop_adc(s); dealloc_dmabuf(s, &s->dma_adc); s->open_mode &= ~FMODE_READ; up(&s->open_sem_adc); wake_up(&s->open_wait_adc); MOD_DEC_USE_COUNT; } return 0; } static int cs4281_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cs4281_state *s = devs; CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4281: cs4281_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n", (unsigned) inode, (unsigned) file, file->f_mode)); while (s && ((s->dev_audio ^ minor) & ~0xf)) s = s->next; if (!s) { CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4281: cs4281_open(): Error - unable to find audio state struct\n")); return -ENODEV; } VALIDATE_STATE(s); file->private_data = s; // wait for device to become free if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) { CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO "cs4281: cs4281_open(): Error - must open READ and/or WRITE\n")); return -ENODEV; } if (file->f_mode & FMODE_WRITE) { down(&s->open_sem_dac); while (s->open_mode & FMODE_WRITE) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem_dac); return -EBUSY; } up(&s->open_sem_dac); interruptible_sleep_on(&s->open_wait_dac); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem_dac); } } if (file->f_mode & FMODE_READ) { down(&s->open_sem_adc); while (s->open_mode & FMODE_READ) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem_adc); return -EBUSY; } up(&s->open_sem_adc); interruptible_sleep_on(&s->open_wait_adc); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem_adc); } } s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); if (file->f_mode & FMODE_READ) { s->prop_adc.fmt = AFMT_U8; s->prop_adc.fmt_original = s->prop_adc.fmt; s->prop_adc.channels = 1; s->prop_adc.rate = 8000; s->prop_adc.clkdiv = 96 | 0x80; s->conversion = 0; s->ena &= ~FMODE_READ; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; up(&s->open_sem_adc); MOD_INC_USE_COUNT; if (prog_dmabuf_adc(s)) { CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR "cs4281: adc Program dmabufs failed.\n")); cs4281_release(inode, file); return -ENOMEM; } prog_codec(s, CS_TYPE_ADC); } if (file->f_mode & FMODE_WRITE) { s->prop_dac.fmt = AFMT_U8; s->prop_dac.fmt_original = s->prop_dac.fmt; s->prop_dac.channels = 1; s->prop_dac.rate = 8000; s->prop_dac.clkdiv = 96 | 0x80; s->conversion = 0; s->ena &= ~FMODE_WRITE; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; up(&s->open_sem_dac); MOD_INC_USE_COUNT; if (prog_dmabuf_dac(s)) { CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR "cs4281: dac Program dmabufs failed.\n")); cs4281_release(inode, file); return -ENOMEM; } prog_codec(s, CS_TYPE_DAC); } CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO "cs4281: cs4281_open()- 0\n")); return 0; } // ****************************************************************************************** // Wave (audio) file operations struct. // ****************************************************************************************** static /*const */ struct file_operations cs4281_audio_fops = { llseek:cs4281_llseek, read:cs4281_read, write:cs4281_write, poll:cs4281_poll, ioctl:cs4281_ioctl, mmap:cs4281_mmap, open:cs4281_open, release:cs4281_release, }; // --------------------------------------------------------------------- // hold spinlock for the following! static void cs4281_handle_midi(struct cs4281_state *s) { unsigned char ch; int wake; unsigned temp1; wake = 0; while (!(readl(s->pBA0 + BA0_MIDSR) & 0x80)) { ch = readl(s->pBA0 + BA0_MIDRP); if (s->midi.icnt < MIDIINBUF) { s->midi.ibuf[s->midi.iwr] = ch; s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF; s->midi.icnt++; } wake = 1; } if (wake) wake_up(&s->midi.iwait); wake = 0; while (!(readl(s->pBA0 + BA0_MIDSR) & 0x40) && s->midi.ocnt > 0) { temp1 = (s->midi.obuf[s->midi.ord]) & 0x000000ff; writel(temp1, s->pBA0 + BA0_MIDWP); s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF; s->midi.ocnt--; if (s->midi.ocnt < MIDIOUTBUF - 16) wake = 1; } if (wake) wake_up(&s->midi.owait); } static void cs4281_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct cs4281_state *s = (struct cs4281_state *) dev_id; unsigned int temp1; // fastpath out, to ease interrupt sharing temp1 = readl(s->pBA0 + BA0_HISR); // Get Int Status reg. CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO "cs4281: cs4281_interrupt() BA0_HISR=0x%.8x\n", temp1)); if (!(temp1 & (HISR_DMA0 | HISR_DMA1 | HISR_MIDI))) { // If not DMA or MIDI int, writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // reenable interrupts CS_DBGOUT(CS_INTERRUPT, 4, printk(KERN_INFO "cs4281: cs4281_interrupt(): returning not cs4281 interrupt.\n")); return; // and return. } if (temp1 & HISR_DMA0) // If play interrupt, readl(s->pBA0 + BA0_HDSR0); // clear the source. if (temp1 & HISR_DMA1) // Same for play. readl(s->pBA0 + BA0_HDSR1); writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Local EOI spin_lock(&s->lock); cs4281_update_ptr(s); cs4281_handle_midi(s); spin_unlock(&s->lock); } // ************************************************************************** static void cs4281_midi_timer(unsigned long data) { struct cs4281_state *s = (struct cs4281_state *) data; unsigned long flags; spin_lock_irqsave(&s->lock, flags); cs4281_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); s->midi.timer.expires = jiffies + 1; add_timer(&s->midi.timer); } // --------------------------------------------------------------------- static ssize_t cs4281_midi_read(struct file *file, char *buffer, size_t count, loff_t * ppos) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.ird; cnt = MIDIINBUF - ptr; if (s->midi.icnt < cnt) cnt = s->midi.icnt; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->midi.iwait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) return ret ? ret : -EFAULT; ptr = (ptr + cnt) % MIDIINBUF; spin_lock_irqsave(&s->lock, flags); s->midi.ird = ptr; s->midi.icnt -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; } return ret; } static ssize_t cs4281_midi_write(struct file *file, const char *buffer, size_t count, loff_t * ppos) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.owr; cnt = MIDIOUTBUF - ptr; if (s->midi.ocnt + cnt > MIDIOUTBUF) cnt = MIDIOUTBUF - s->midi.ocnt; if (cnt <= 0) cs4281_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->midi.owait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) return ret ? ret : -EFAULT; ptr = (ptr + cnt) % MIDIOUTBUF; spin_lock_irqsave(&s->lock, flags); s->midi.owr = ptr; s->midi.ocnt += cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; spin_lock_irqsave(&s->lock, flags); cs4281_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); } return ret; } static unsigned int cs4281_midi_poll(struct file *file, struct poll_table_struct *wait) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_flags & FMODE_WRITE) poll_wait(file, &s->midi.owait, wait); if (file->f_flags & FMODE_READ) poll_wait(file, &s->midi.iwait, wait); spin_lock_irqsave(&s->lock, flags); if (file->f_flags & FMODE_READ) { if (s->midi.icnt > 0) mask |= POLLIN | POLLRDNORM; } if (file->f_flags & FMODE_WRITE) { if (s->midi.ocnt < MIDIOUTBUF) mask |= POLLOUT | POLLWRNORM; } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cs4281_midi_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cs4281_state *s = devs; unsigned long flags, temp1; while (s && s->dev_midi != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; // wait for device to become free down(&s->open_sem); while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; s->midi.ord = s->midi.owr = s->midi.ocnt = 0; writel(1, s->pBA0 + BA0_MIDCR); // Reset the interface. writel(0, s->pBA0 + BA0_MIDCR); // Return to normal mode. s->midi.ird = s->midi.iwr = s->midi.icnt = 0; writel(0x0000000f, s->pBA0 + BA0_MIDCR); // Enable transmit, record, ints. temp1 = readl(s->pBA0 + BA0_HIMR); writel(temp1 & 0xffbfffff, s->pBA0 + BA0_HIMR); // Enable midi int. recognition. writel(HICR_IEV | HICR_CHGM, s->pBA0 + BA0_HICR); // Enable interrupts init_timer(&s->midi.timer); s->midi.timer.expires = jiffies + 1; s->midi.timer.data = (unsigned long) s; s->midi.timer.function = cs4281_midi_timer; add_timer(&s->midi.timer); } if (file->f_mode & FMODE_READ) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; } if (file->f_mode & FMODE_WRITE) { s->midi.ord = s->midi.owr = s->midi.ocnt = 0; } spin_unlock_irqrestore(&s->lock, flags); s->open_mode |= (file-> f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cs4281_midi_release(struct inode *inode, struct file *file) { struct cs4281_state *s = (struct cs4281_state *) file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned count, tmo; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { add_wait_queue(&s->midi.owait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->midi.ocnt; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (file->f_flags & O_NONBLOCK) { remove_wait_queue(&s->midi.owait, &wait); current->state = TASK_RUNNING; return -EBUSY; } tmo = (count * HZ) / 3100; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "cs4281: midi timed out??\n"); } remove_wait_queue(&s->midi.owait, &wait); current->state = TASK_RUNNING; } down(&s->open_sem); s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { writel(0, s->pBA0 + BA0_MIDCR); // Disable Midi interrupts. del_timer(&s->midi.timer); } spin_unlock_irqrestore(&s->lock, flags); up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; return 0; } // ****************************************************************************************** // Midi file operations struct. // ****************************************************************************************** static /*const */ struct file_operations cs4281_midi_fops = { llseek:cs4281_llseek, read:cs4281_midi_read, write:cs4281_midi_write, poll:cs4281_midi_poll, open:cs4281_midi_open, release:cs4281_midi_release, }; // --------------------------------------------------------------------- // maximum number of devices #define NR_DEVICE 8 // Only eight devices supported currently. // --------------------------------------------------------------------- static struct initvol { int mixch; int vol; } initvol[] __initdata = { { SOUND_MIXER_WRITE_VOLUME, 0x4040}, { SOUND_MIXER_WRITE_PCM, 0x4040}, { SOUND_MIXER_WRITE_SYNTH, 0x4040}, { SOUND_MIXER_WRITE_CD, 0x4040}, { SOUND_MIXER_WRITE_LINE, 0x4040}, { SOUND_MIXER_WRITE_LINE1, 0x4040}, { SOUND_MIXER_WRITE_RECLEV, 0x0000}, { SOUND_MIXER_WRITE_SPEAKER, 0x4040}, { SOUND_MIXER_WRITE_MIC, 0x0000} }; static int __devinit cs4281_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid) { struct cs4281_state *s; dma_addr_t dma_mask; mm_segment_t fs; int i, val, index = 0; unsigned int temp1, temp2; CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO "cs4281: probe()+\n")); if (!RSRCISMEMORYREGION(pcidev, 0) || !RSRCISMEMORYREGION(pcidev, 1)) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: probe()- Memory region not assigned\n")); return -1; } if (pcidev->irq == 0) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() IRQ not assigned\n")); return -1; } if (!pci_dma_supported(pcidev, 0xffffffff)) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() architecture does not support 32bit PCI busmaster DMA\n")); return -1; } dma_mask = 0xffffffff; /* this enables playback and recording */ if (!(s = kmalloc(sizeof(struct cs4281_state), GFP_KERNEL))) { CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() no memory for state struct.\n")); return -1; } memset(s, 0, sizeof(struct cs4281_state)); init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->open_wait_adc); init_waitqueue_head(&s->open_wait_dac); init_waitqueue_head(&s->midi.iwait); init_waitqueue_head(&s->midi.owait); init_MUTEX(&s->open_sem); init_MUTEX(&s->open_sem_adc); init_MUTEX(&s->open_sem_dac); spin_lock_init(&s->lock); s->pBA0phys = RSRCADDRESS(pcidev, 0); s->pBA1phys = RSRCADDRESS(pcidev, 1); s->pBA0 = ioremap_nocache(s->pBA0phys, 4096); // Convert phys s->pBA1 = ioremap_nocache(s->pBA1phys, 65536); // to linear. temp1 = readl(s->pBA0 + BA0_PCICFG00); temp2 = readl(s->pBA0 + BA0_PCICFG04); CS_DBGOUT(CS_INIT, 2, printk(KERN_INFO "cs4281: probe() BA0=0x%.8x BA1=0x%.8x pBA0=0x%.8x pBA1=0x%.8x \n", (unsigned) temp1, (unsigned) temp2, (unsigned) s->pBA0, (unsigned) s->pBA1)); CS_DBGOUT(CS_INIT, 2, printk(KERN_INFO "cs4281: probe() pBA0phys=0x%.8x pBA1phys=0x%.8x\n", (unsigned) s->pBA0phys, (unsigned) s->pBA1phys)); temp1 = cs4281_hw_init(s); if (temp1) { CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_ERR "cs4281: cs4281_hw_init() failed. Skipping part.\n")); return -1; } s->magic = CS4281_MAGIC; s->pcidev = pcidev; s->irq = pcidev->irq; if (pci_enable_device(pcidev)) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4281: pci_enable_device() failed\n")); goto err_irq; } if (request_irq (s->irq, cs4281_interrupt, SA_SHIRQ, "Crystal CS4281", s)) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4281: irq %u in use\n", s->irq)); goto err_irq; } if ((s->dev_audio = register_sound_dsp(&cs4281_audio_fops, -1)) < 0) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() register_sound_dsp() failed.\n")); goto err_dev1; } if ((s->dev_mixer = register_sound_mixer(&cs4281_mixer_fops, -1)) < 0) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() register_sound_mixer() failed.\n")); goto err_dev2; } if ((s->dev_midi = register_sound_midi(&cs4281_midi_fops, -1)) < 0) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR "cs4281: probe() register_sound_midi() failed.\n")); goto err_dev3; } pci_set_master(pcidev); // enable bus mastering fs = get_fs(); set_fs(KERNEL_DS); val = SOUND_MASK_LINE; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val); for (i = 0; i < sizeof(initvol) / sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val); } val = 1; // enable mic preamp mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long) &val); set_fs(fs); // queue it for later freeing s->next = devs; pcidev->driver_data = s; pcidev->dma_mask = dma_mask; devs = s; index++; return 0; err_dev3: unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: free_irq(s->irq, s); err_irq: kfree(s); if (!devs) { CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO "cs4281: probe()- no device allocated\n")); return -ENODEV; } CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: probe()- device allocated successfully\n")); return 0; } // probe_cs4281 // --------------------------------------------------------------------- static void __devinit cs4281_remove(struct pci_dev *dev) { struct cs4281_state *s = (struct cs4281_state *) dev->driver_data; // stop DMA controller synchronize_irq(); free_irq(s->irq, s); unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); unregister_sound_midi(s->dev_midi); kfree(s); dev->driver_data = NULL; CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cs4281_remove(): remove successful\n")); } static struct pci_device_id id_table[] __devinitdata = { {PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CRYSTAL_CS4281, PCI_ANY_ID, PCI_ANY_ID, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, id_table); static struct pci_driver cs4281_driver = { name:"cs4281", id_table:id_table, probe:cs4281_probe, remove:cs4281_remove }; static int __init init_cs4281(void) { CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: init_cs4281()+ \n")); if (!pci_present()) { /* No PCI bus in this machine! */ CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: init_cs4281()- no pci bus found\n")); return -ENODEV; } printk(KERN_INFO "cs4281: version v%d.%02d.%d time " __TIME__ " " __DATE__ "\n", CS4281_MAJOR_VERSION, CS4281_MINOR_VERSION, CS4281_ARCH); if (!pci_register_driver(&cs4281_driver)) { pci_unregister_driver(&cs4281_driver); CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: init_cs4281()- unable to register pci device \n")); return -ENODEV; } CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: init_cs4281()- 0\n")); return 0; } // --------------------------------------------------------------------- MODULE_AUTHOR("gw boynton, wesb@crystal.cirrus.com"); MODULE_DESCRIPTION("Cirrus Logic CS4281 Driver"); static void __exit cleanup_cs4281(void) { pci_unregister_driver(&cs4281_driver); CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO "cs4281: cleanup_cs4281() finished\n")); } // --------------------------------------------------------------------- module_init(init_cs4281); module_exit(cleanup_cs4281);