/* * sound/dmabuf.c * * The DMA buffer manager for digitized voice applications */ /* * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. * * Thomas Sailer : moved several static variables into struct audio_operations * (which is grossly misnamed btw.) because they have the same * lifetime as the rest in there and dynamic allocation saves * 12k or so * Thomas Sailer : remove {in,out}_sleep_flag. It was used for the sleeper to * determine if it was woken up by the expiring timeout or by * an explicit wake_up. current->timeout can be used instead; * if 0, the wakeup was due to the timeout. */ #include #define BE_CONSERVATIVE #define SAMPLE_ROUNDUP 0 #include "sound_config.h" #if defined(CONFIG_AUDIO) || defined(CONFIG_GUS) static void dma_reset_output(int dev); static void dma_reset_input(int dev); static int local_start_dma(struct audio_operations *adev, unsigned long physaddr, int count, int dma_mode); static int debugmem = 0; /* switched off by default */ static int dma_buffsize = DSP_BUFFSIZE; static void dmabuf_set_timeout(struct dma_buffparms *dmap) { unsigned long tmout; tmout = (dmap->fragment_size * HZ) / dmap->data_rate; tmout += HZ / 5; /* Some safety distance */ if (tmout < (HZ / 2)) tmout = HZ / 2; if (tmout > 20 * HZ) tmout = 20 * HZ; current->timeout = jiffies + tmout; } static int sound_alloc_dmap(struct dma_buffparms *dmap) { char *start_addr, *end_addr; int i, dma_pagesize; int sz, size; dmap->mapping_flags &= ~DMA_MAP_MAPPED; if (dmap->raw_buf != NULL) return 0; /* Already done */ if (dma_buffsize < 4096) dma_buffsize = 4096; dma_pagesize = (dmap->dma < 4) ? (64 * 1024) : (128 * 1024); dmap->raw_buf = NULL; dmap->buffsize = dma_buffsize; if (dmap->buffsize > dma_pagesize) dmap->buffsize = dma_pagesize; start_addr = NULL; /* * Now loop until we get a free buffer. Try to get smaller buffer if * it fails. Don't accept smaller than 8k buffer for performance * reasons. */ while (start_addr == NULL && dmap->buffsize > PAGE_SIZE) { for (sz = 0, size = PAGE_SIZE; size < dmap->buffsize; sz++, size <<= 1); dmap->buffsize = PAGE_SIZE * (1 << sz); start_addr = (char *) __get_free_pages(GFP_ATOMIC|GFP_DMA, sz); if (start_addr == NULL) dmap->buffsize /= 2; } if (start_addr == NULL) { printk(KERN_WARNING "Sound error: Couldn't allocate DMA buffer\n"); return -ENOMEM; } else { /* make some checks */ end_addr = start_addr + dmap->buffsize - 1; if (debugmem) printk(KERN_DEBUG "sound: start 0x%lx, end 0x%lx\n", (long) start_addr, (long) end_addr); /* now check if it fits into the same dma-pagesize */ if (((long) start_addr & ~(dma_pagesize - 1)) != ((long) end_addr & ~(dma_pagesize - 1)) || end_addr >= (char *) (MAX_DMA_ADDRESS)) { printk(KERN_ERR "sound: Got invalid address 0x%lx for %db DMA-buffer\n", (long) start_addr, dmap->buffsize); return -EFAULT; } } dmap->raw_buf = start_addr; dmap->raw_buf_phys = virt_to_bus(start_addr); for (i = MAP_NR(start_addr); i <= MAP_NR(end_addr); i++) set_bit(PG_reserved, &mem_map[i].flags);; return 0; } static void sound_free_dmap(struct dma_buffparms *dmap) { int sz, size, i; unsigned long start_addr, end_addr; if (dmap->raw_buf == NULL) return; if (dmap->mapping_flags & DMA_MAP_MAPPED) return; /* Don't free mmapped buffer. Will use it next time */ for (sz = 0, size = PAGE_SIZE; size < dmap->buffsize; sz++, size <<= 1); start_addr = (unsigned long) dmap->raw_buf; end_addr = start_addr + dmap->buffsize; for (i = MAP_NR(start_addr); i <= MAP_NR(end_addr); i++) clear_bit(PG_reserved, &mem_map[i].flags);; free_pages((unsigned long) dmap->raw_buf, sz); dmap->raw_buf = NULL; } /* Intel version !!!!!!!!! */ static int sound_start_dma(struct dma_buffparms *dmap, unsigned long physaddr, int count, int dma_mode) { unsigned long flags; int chan = dmap->dma; /* printk( "Start DMA%d %d, %d\n", chan, (int)(physaddr-dmap->raw_buf_phys), count); */ save_flags(flags); cli(); disable_dma(chan); clear_dma_ff(chan); set_dma_mode(chan, dma_mode); set_dma_addr(chan, physaddr); set_dma_count(chan, count); enable_dma(chan); restore_flags(flags); return 0; } static void dma_init_buffers(struct dma_buffparms *dmap) { dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; dmap->byte_counter = 0; dmap->max_byte_counter = 8000 * 60 * 60; dmap->bytes_in_use = dmap->buffsize; dmap->dma_mode = DMODE_NONE; dmap->mapping_flags = 0; dmap->neutral_byte = 0x80; dmap->data_rate = 8000; dmap->cfrag = -1; dmap->closing = 0; dmap->nbufs = 1; dmap->flags = DMA_BUSY; /* Other flags off */ } static int open_dmap(struct audio_operations *adev, int mode, struct dma_buffparms *dmap) { int err; if (dmap->flags & DMA_BUSY) return -EBUSY; if ((err = sound_alloc_dmap(dmap)) < 0) return err; if (dmap->raw_buf == NULL) { printk(KERN_WARNING "Sound: DMA buffers not available\n"); return -ENOSPC; /* Memory allocation failed during boot */ } if (sound_open_dma(dmap->dma, adev->name)) { printk(KERN_WARNING "Unable to grab(2) DMA%d for the audio driver\n", dmap->dma); return -EBUSY; } dma_init_buffers(dmap); dmap->open_mode = mode; dmap->subdivision = dmap->underrun_count = 0; dmap->fragment_size = 0; dmap->max_fragments = 65536; /* Just a large value */ dmap->byte_counter = 0; dmap->max_byte_counter = 8000 * 60 * 60; dmap->applic_profile = APF_NORMAL; dmap->needs_reorg = 1; dmap->audio_callback = NULL; dmap->callback_parm = 0; return 0; } static void close_dmap(struct audio_operations *adev, struct dma_buffparms *dmap) { sound_close_dma(dmap->dma); if (dmap->flags & DMA_BUSY) dmap->dma_mode = DMODE_NONE; dmap->flags &= ~DMA_BUSY; disable_dma(dmap->dma); } static unsigned int default_set_bits(int dev, unsigned int bits) { mm_segment_t fs = get_fs(); set_fs(get_ds()); audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_SETFMT, (caddr_t)&bits); set_fs(fs); return bits; } static int default_set_speed(int dev, int speed) { mm_segment_t fs = get_fs(); set_fs(get_ds()); audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_SPEED, (caddr_t)&speed); set_fs(fs); return speed; } static short default_set_channels(int dev, short channels) { int c = channels; mm_segment_t fs = get_fs(); set_fs(get_ds()); audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_CHANNELS, (caddr_t)&c); set_fs(fs); return c; } static void check_driver(struct audio_driver *d) { if (d->set_speed == NULL) d->set_speed = default_set_speed; if (d->set_bits == NULL) d->set_bits = default_set_bits; if (d->set_channels == NULL) d->set_channels = default_set_channels; } int DMAbuf_open(int dev, int mode) { struct audio_operations *adev = audio_devs[dev]; int retval; struct dma_buffparms *dmap_in = NULL; struct dma_buffparms *dmap_out = NULL; if (!adev) return -ENXIO; if (!(adev->flags & DMA_DUPLEX)) adev->dmap_in = adev->dmap_out; check_driver(adev->d); if ((retval = adev->d->open(dev, mode)) < 0) return retval; dmap_out = adev->dmap_out; dmap_in = adev->dmap_in; if (dmap_in == dmap_out) adev->flags &= ~DMA_DUPLEX; if (mode & OPEN_WRITE) { if ((retval = open_dmap(adev, mode, dmap_out)) < 0) { adev->d->close(dev); return retval; } } adev->enable_bits = mode; if (mode == OPEN_READ || (mode != OPEN_WRITE && adev->flags & DMA_DUPLEX)) { if ((retval = open_dmap(adev, mode, dmap_in)) < 0) { adev->d->close(dev); if (mode & OPEN_WRITE) close_dmap(adev, dmap_out); return retval; } } adev->open_mode = mode; adev->go = 1; adev->d->set_bits(dev, 8); adev->d->set_channels(dev, 1); adev->d->set_speed(dev, DSP_DEFAULT_SPEED); if (adev->dmap_out->dma_mode == DMODE_OUTPUT) memset(adev->dmap_out->raw_buf, adev->dmap_out->neutral_byte, adev->dmap_out->bytes_in_use); return 0; } void DMAbuf_reset(int dev) { if (audio_devs[dev]->open_mode & OPEN_WRITE) dma_reset_output(dev); if (audio_devs[dev]->open_mode & OPEN_READ) dma_reset_input(dev); } static void dma_reset_output(int dev) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; struct dma_buffparms *dmap = adev->dmap_out; if (!(dmap->flags & DMA_STARTED)) /* DMA is not active */ return; /* * First wait until the current fragment has been played completely */ save_flags(flags); cli(); adev->dmap_out->flags |= DMA_SYNCING; adev->dmap_out->underrun_count = 0; if (!signal_pending(current) && adev->dmap_out->qlen && adev->dmap_out->underrun_count == 0) { dmabuf_set_timeout(dmap); interruptible_sleep_on(&adev->out_sleeper); current->timeout = 0; } adev->dmap_out->flags &= ~(DMA_SYNCING | DMA_ACTIVE); /* * Finally shut the device off */ if (!(adev->flags & DMA_DUPLEX) || !adev->d->halt_output) adev->d->halt_io(dev); else adev->d->halt_output(dev); adev->dmap_out->flags &= ~DMA_STARTED; clear_dma_ff(dmap->dma); disable_dma(dmap->dma); restore_flags(flags); dmap->byte_counter = 0; reorganize_buffers(dev, adev->dmap_out, 0); dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; } static void dma_reset_input(int dev) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; struct dma_buffparms *dmap = adev->dmap_in; save_flags(flags); cli(); if (!(adev->flags & DMA_DUPLEX) || !adev->d->halt_input) adev->d->halt_io(dev); else adev->d->halt_input(dev); adev->dmap_in->flags &= ~DMA_STARTED; restore_flags(flags); dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; dmap->byte_counter = 0; reorganize_buffers(dev, adev->dmap_in, 1); } void DMAbuf_launch_output(int dev, struct dma_buffparms *dmap) { struct audio_operations *adev = audio_devs[dev]; if (!((adev->enable_bits * adev->go) & PCM_ENABLE_OUTPUT)) return; /* Don't start DMA yet */ dmap->dma_mode = DMODE_OUTPUT; if (!(dmap->flags & DMA_ACTIVE) || !(adev->flags & DMA_AUTOMODE) || dmap->flags & DMA_NODMA) { if (!(dmap->flags & DMA_STARTED)) { reorganize_buffers(dev, dmap, 0); if (adev->d->prepare_for_output(dev, dmap->fragment_size, dmap->nbufs)) return; if (!(dmap->flags & DMA_NODMA)) local_start_dma(adev, dmap->raw_buf_phys, dmap->bytes_in_use,DMA_MODE_WRITE); dmap->flags |= DMA_STARTED; } if (dmap->counts[dmap->qhead] == 0) dmap->counts[dmap->qhead] = dmap->fragment_size; dmap->dma_mode = DMODE_OUTPUT; adev->d->output_block(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1); if (adev->d->trigger) adev->d->trigger(dev,adev->enable_bits * adev->go); } dmap->flags |= DMA_ACTIVE; } int DMAbuf_sync(int dev) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; int n = 0; struct dma_buffparms *dmap; if (!adev->go && (!adev->enable_bits & PCM_ENABLE_OUTPUT)) return 0; if (adev->dmap_out->dma_mode == DMODE_OUTPUT) { dmap = adev->dmap_out; save_flags(flags); cli(); if (dmap->qlen > 0 && !(dmap->flags & DMA_ACTIVE)) DMAbuf_launch_output(dev, dmap); adev->dmap_out->flags |= DMA_SYNCING; adev->dmap_out->underrun_count = 0; while (!signal_pending(current) && n++ <= adev->dmap_out->nbufs && adev->dmap_out->qlen && adev->dmap_out->underrun_count == 0) { dmabuf_set_timeout(dmap); interruptible_sleep_on(&adev->out_sleeper); if (!current->timeout) { adev->dmap_out->flags &= ~DMA_SYNCING; restore_flags(flags); return adev->dmap_out->qlen; } current->timeout = 0; } adev->dmap_out->flags &= ~(DMA_SYNCING | DMA_ACTIVE); restore_flags(flags); /* * Some devices such as GUS have huge amount of on board RAM for the * audio data. We have to wait until the device has finished playing. */ save_flags(flags); cli(); if (adev->d->local_qlen) { /* Device has hidden buffers */ while (!signal_pending(current) && adev->d->local_qlen(dev)) { dmabuf_set_timeout(dmap); interruptible_sleep_on(&adev->out_sleeper); current->timeout = 0; } } restore_flags(flags); } adev->dmap_out->dma_mode = DMODE_NONE; return adev->dmap_out->qlen; } int DMAbuf_release(int dev, int mode) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; if (adev->open_mode & OPEN_WRITE) adev->dmap_out->closing = 1; if (adev->open_mode & OPEN_READ) adev->dmap_in->closing = 1; if (adev->open_mode & OPEN_WRITE) if (!(adev->dmap_in->mapping_flags & DMA_MAP_MAPPED)) if (!signal_pending(current) && (adev->dmap_out->dma_mode == DMODE_OUTPUT)) DMAbuf_sync(dev); if (adev->dmap_out->dma_mode == DMODE_OUTPUT) memset(adev->dmap_out->raw_buf, adev->dmap_out->neutral_byte, adev->dmap_out->bytes_in_use); save_flags(flags); cli(); DMAbuf_reset(dev); adev->d->close(dev); if (adev->open_mode & OPEN_WRITE) close_dmap(adev, adev->dmap_out); if (adev->open_mode == OPEN_READ || (adev->open_mode != OPEN_WRITE && adev->flags & DMA_DUPLEX)) close_dmap(adev, adev->dmap_in); adev->open_mode = 0; restore_flags(flags); return 0; } int DMAbuf_activate_recording(int dev, struct dma_buffparms *dmap) { struct audio_operations *adev = audio_devs[dev]; int err; if (!(adev->open_mode & OPEN_READ)) return 0; if (!(adev->enable_bits & PCM_ENABLE_INPUT)) return 0; if (dmap->dma_mode == DMODE_OUTPUT) { /* Direction change */ DMAbuf_sync(dev); DMAbuf_reset(dev); dmap->dma_mode = DMODE_NONE; } if (!dmap->dma_mode) { reorganize_buffers(dev, dmap, 1); if ((err = adev->d->prepare_for_input(dev, dmap->fragment_size, dmap->nbufs)) < 0) return err; dmap->dma_mode = DMODE_INPUT; } if (!(dmap->flags & DMA_ACTIVE)) { if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); local_start_dma(adev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_READ); adev->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 0); dmap->flags |= DMA_ACTIVE; if (adev->d->trigger) adev->d->trigger(dev, adev->enable_bits * adev->go); } return 0; } int DMAbuf_getrdbuffer(int dev, char **buf, int *len, int dontblock) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; int err = 0, n = 0; struct dma_buffparms *dmap = adev->dmap_in; int go; if (!(adev->open_mode & OPEN_READ)) return -EIO; if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); save_flags(flags); cli(); if (adev->dmap_in->mapping_flags & DMA_MAP_MAPPED) { /* printk(KERN_WARNING "Sound: Can't read from mmapped device (1)\n");*/ restore_flags(flags); return -EINVAL; } else while (dmap->qlen <= 0 && n++ < 10) { if (!(adev->enable_bits & PCM_ENABLE_INPUT) || !adev->go) { restore_flags(flags); return -EAGAIN; } if ((err = DMAbuf_activate_recording(dev, dmap)) < 0) { restore_flags(flags); return err; } /* Wait for the next block */ if (dontblock) { restore_flags(flags); return -EAGAIN; } if (!(go = adev->go)) current->timeout = 0; else dmabuf_set_timeout(dmap); interruptible_sleep_on(&adev->in_sleeper); if (go && !current->timeout) { /* FIXME: include device name */ err = -EIO; printk(KERN_WARNING "Sound: DMA (input) timed out - IRQ/DRQ config error?\n"); dma_reset_input(dev); } else err = -EINTR; current->timeout = 0; } restore_flags(flags); if (dmap->qlen <= 0) return err ? err : -EINTR; *buf = &dmap->raw_buf[dmap->qhead * dmap->fragment_size + dmap->counts[dmap->qhead]]; *len = dmap->fragment_size - dmap->counts[dmap->qhead]; return dmap->qhead; } int DMAbuf_rmchars(int dev, int buff_no, int c) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_in; int p = dmap->counts[dmap->qhead] + c; if (dmap->mapping_flags & DMA_MAP_MAPPED) { /* printk("Sound: Can't read from mmapped device (2)\n");*/ return -EINVAL; } else if (dmap->qlen <= 0) return -EIO; else if (p >= dmap->fragment_size) { /* This buffer is completely empty */ dmap->counts[dmap->qhead] = 0; dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; } else dmap->counts[dmap->qhead] = p; return 0; } int DMAbuf_get_buffer_pointer(int dev, struct dma_buffparms *dmap, int direction) { /* * Try to approximate the active byte position of the DMA pointer within the * buffer area as well as possible. */ int pos; unsigned long flags; save_flags(flags); cli(); if (!(dmap->flags & DMA_ACTIVE)) pos = 0; else { int chan = dmap->dma; clear_dma_ff(chan); disable_dma(dmap->dma); pos = get_dma_residue(chan); pos = dmap->bytes_in_use - pos; if (!(dmap->mapping_flags & DMA_MAP_MAPPED)) { if (direction == DMODE_OUTPUT) { if (dmap->qhead == 0) if (pos > dmap->fragment_size) pos = 0; } else { if (dmap->qtail == 0) if (pos > dmap->fragment_size) pos = 0; } } if (pos < 0) pos = 0; if (pos >= dmap->bytes_in_use) pos = 0; enable_dma(dmap->dma); } restore_flags(flags); /* printk( "%04x ", pos); */ return pos; } /* * DMAbuf_start_devices() is called by the /dev/music driver to start * one or more audio devices at desired moment. */ void DMAbuf_start_devices(unsigned int devmask) { struct audio_operations *adev; int dev; for (dev = 0; dev < num_audiodevs; dev++) { if (!(devmask & (1 << dev))) continue; if (!(adev = audio_devs[dev])) continue; if (adev->open_mode == 0) continue; if (adev->go) continue; /* OK to start the device */ adev->go = 1; if (adev->d->trigger) adev->d->trigger(dev,adev->enable_bits * adev->go); } } int DMAbuf_space_in_queue(int dev) { struct audio_operations *adev = audio_devs[dev]; int len, max, tmp; struct dma_buffparms *dmap = adev->dmap_out; int lim = dmap->nbufs; if (lim < 2) lim = 2; if (dmap->qlen >= lim) /* No space at all */ return 0; /* * Verify that there are no more pending buffers than the limit * defined by the process. */ max = dmap->max_fragments; if (max > lim) max = lim; len = dmap->qlen; if (adev->d->local_qlen) { tmp = adev->d->local_qlen(dev); if (tmp && len) tmp--; /* This buffer has been counted twice */ len += tmp; } if (dmap->byte_counter % dmap->fragment_size) /* There is a partial fragment */ len = len + 1; if (len >= max) return 0; return max - len; } static int output_sleep(int dev, int dontblock) { struct audio_operations *adev = audio_devs[dev]; int err = 0; struct dma_buffparms *dmap = adev->dmap_out; int timeout; if (dontblock) return -EAGAIN; if (!(adev->enable_bits & PCM_ENABLE_OUTPUT)) return -EAGAIN; /* * Wait for free space */ if (signal_pending(current)) return -EIO; timeout = (adev->go && !(dmap->flags & DMA_NOTIMEOUT)); if (timeout) dmabuf_set_timeout(dmap); else current->timeout = 0; interruptible_sleep_on(&adev->out_sleeper); if (timeout && !current->timeout) { printk(KERN_WARNING "Sound: DMA (output) timed out - IRQ/DRQ config error?\n"); dma_reset_output(dev); } else { current->timeout = 0; if (signal_pending(current)) err = -EINTR; } return err; } static int find_output_space(int dev, char **buf, int *size) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_out; unsigned long flags; unsigned long active_offs; long len, offs; int maxfrags; int occupied_bytes = (dmap->user_counter % dmap->fragment_size); *buf = dmap->raw_buf; if (!(maxfrags = DMAbuf_space_in_queue(dev)) && !occupied_bytes) return 0; save_flags(flags); cli(); #ifdef BE_CONSERVATIVE active_offs = dmap->byte_counter + dmap->qhead * dmap->fragment_size; #else active_offs = DMAbuf_get_buffer_pointer(dev, dmap, DMODE_OUTPUT); /* Check for pointer wrapping situation */ if (active_offs < 0 || active_offs >= dmap->bytes_in_use) active_offs = 0; active_offs += dmap->byte_counter; #endif offs = (dmap->user_counter % dmap->bytes_in_use) & ~SAMPLE_ROUNDUP; if (offs < 0 || offs >= dmap->bytes_in_use) { restore_flags(flags); printk(KERN_ERR "Sound: Got unexpected offs %ld. Giving up.\n", offs); printk("Counter = %ld, bytes=%d\n", dmap->user_counter, dmap->bytes_in_use); return 0; } *buf = dmap->raw_buf + offs; len = active_offs + dmap->bytes_in_use - dmap->user_counter; /* Number of unused bytes in buffer */ if ((offs + len) > dmap->bytes_in_use) len = dmap->bytes_in_use - offs; if (len < 0) { restore_flags(flags); return 0; } if (len > ((maxfrags * dmap->fragment_size) - occupied_bytes)) len = (maxfrags * dmap->fragment_size) - occupied_bytes; *size = len & ~SAMPLE_ROUNDUP; restore_flags(flags); return (*size > 0); } int DMAbuf_getwrbuffer(int dev, char **buf, int *size, int dontblock) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; int err = -EIO; struct dma_buffparms *dmap = adev->dmap_out; if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); if (dmap->mapping_flags & DMA_MAP_MAPPED) { /* printk(KERN_DEBUG "Sound: Can't write to mmapped device (3)\n");*/ return -EINVAL; } if (dmap->dma_mode == DMODE_INPUT) { /* Direction change */ DMAbuf_reset(dev); dmap->dma_mode = DMODE_NONE; } dmap->dma_mode = DMODE_OUTPUT; save_flags(flags); cli(); while (find_output_space(dev, buf, size) <= 0) { if ((err = output_sleep(dev, dontblock)) < 0) { restore_flags(flags); return err; } } restore_flags(flags); return 0; } int DMAbuf_move_wrpointer(int dev, int l) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_out; unsigned long ptr = (dmap->user_counter / dmap->fragment_size) * dmap->fragment_size; unsigned long end_ptr, p; int post = (dmap->flags & DMA_POST); dmap->flags &= ~DMA_POST; dmap->cfrag = -1; dmap->user_counter += l; dmap->flags |= DMA_DIRTY; if (dmap->byte_counter >= dmap->max_byte_counter) { /* Wrap the byte counters */ long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use); decr -= dmap->byte_counter; dmap->user_counter -= decr; } end_ptr = (dmap->user_counter / dmap->fragment_size) * dmap->fragment_size; p = (dmap->user_counter - 1) % dmap->bytes_in_use; dmap->neutral_byte = dmap->raw_buf[p]; /* Update the fragment based bookkeeping too */ while (ptr < end_ptr) { dmap->counts[dmap->qtail] = dmap->fragment_size; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; dmap->qlen++; ptr += dmap->fragment_size; } dmap->counts[dmap->qtail] = dmap->user_counter - ptr; /* * Let the low level driver to perform some postprocessing to * the written data. */ if (adev->d->postprocess_write) adev->d->postprocess_write(dev); if (!(dmap->flags & DMA_ACTIVE)) if (dmap->qlen > 1 || (dmap->qlen > 0 && (post || dmap->qlen >= dmap->nbufs - 1))) DMAbuf_launch_output(dev, dmap); return 0; } int DMAbuf_start_dma(int dev, unsigned long physaddr, int count, int dma_mode) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = (dma_mode == DMA_MODE_WRITE) ? adev->dmap_out : adev->dmap_in; if (dmap->raw_buf == NULL) { printk(KERN_ERR "sound: DMA buffer(1) == NULL\n"); printk("Device %d, chn=%s\n", dev, (dmap == adev->dmap_out) ? "out" : "in"); return 0; } if (dmap->dma < 0) return 0; sound_start_dma(dmap, physaddr, count, dma_mode); return count; } static int local_start_dma(struct audio_operations *adev, unsigned long physaddr, int count, int dma_mode) { struct dma_buffparms *dmap = (dma_mode == DMA_MODE_WRITE) ? adev->dmap_out : adev->dmap_in; if (dmap->raw_buf == NULL) { printk(KERN_ERR "sound: DMA buffer(2) == NULL\n"); printk(KERN_ERR "Device %s, chn=%s\n", adev->name, (dmap == adev->dmap_out) ? "out" : "in"); return 0; } if (dmap->flags & DMA_NODMA) return 1; if (dmap->dma < 0) return 0; sound_start_dma(dmap, dmap->raw_buf_phys, dmap->bytes_in_use, dma_mode | DMA_AUTOINIT); dmap->flags |= DMA_STARTED; return count; } static void finish_output_interrupt(int dev, struct dma_buffparms *dmap) { struct audio_operations *adev = audio_devs[dev]; if (dmap->audio_callback != NULL) dmap->audio_callback(dev, dmap->callback_parm); wake_up(&adev->out_sleeper); } static void do_outputintr(int dev, int dummy) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; struct dma_buffparms *dmap = adev->dmap_out; int this_fragment; if (dmap->raw_buf == NULL) { printk(KERN_ERR "Sound: Error. Audio interrupt (%d) after freeing buffers.\n", dev); return; } if (dmap->mapping_flags & DMA_MAP_MAPPED) { /* Virtual memory mapped access */ /* mmapped access */ dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; if (dmap->qhead == 0) { /* Wrapped */ dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) { /* Overflow */ long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use); decr -= dmap->byte_counter; dmap->user_counter -= decr; } } dmap->qlen++; /* Yes increment it (don't decrement) */ if (!(adev->flags & DMA_AUTOMODE)) dmap->flags &= ~DMA_ACTIVE; dmap->counts[dmap->qhead] = dmap->fragment_size; DMAbuf_launch_output(dev, dmap); finish_output_interrupt(dev, dmap); return; } save_flags(flags); cli(); dmap->qlen--; this_fragment = dmap->qhead; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; if (dmap->qhead == 0) { /* Wrapped */ dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) { /* Overflow */ long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use); decr -= dmap->byte_counter; dmap->user_counter -= decr; } } if (!(adev->flags & DMA_AUTOMODE)) dmap->flags &= ~DMA_ACTIVE; while (dmap->qlen <= 0) { dmap->underrun_count++; dmap->qlen++; if (dmap->flags & DMA_DIRTY && dmap->applic_profile != APF_CPUINTENS) { dmap->flags &= ~DMA_DIRTY; memset(adev->dmap_out->raw_buf, adev->dmap_out->neutral_byte, adev->dmap_out->buffsize); } dmap->user_counter += dmap->fragment_size; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } if (dmap->qlen > 0) DMAbuf_launch_output(dev, dmap); restore_flags(flags); finish_output_interrupt(dev, dmap); } void DMAbuf_outputintr(int dev, int notify_only) { struct audio_operations *adev = audio_devs[dev]; unsigned long flags; struct dma_buffparms *dmap = adev->dmap_out; save_flags(flags); cli(); if (!(dmap->flags & DMA_NODMA)) { int chan = dmap->dma, pos, n; clear_dma_ff(chan); disable_dma(dmap->dma); pos = dmap->bytes_in_use - get_dma_residue(chan); enable_dma(dmap->dma); pos = pos / dmap->fragment_size; /* Actual qhead */ if (pos < 0 || pos >= dmap->nbufs) pos = 0; n = 0; while (dmap->qhead != pos && n++ < dmap->nbufs) do_outputintr(dev, notify_only); } else do_outputintr(dev, notify_only); restore_flags(flags); } static void do_inputintr(int dev) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_in; if (dmap->raw_buf == NULL) { printk(KERN_ERR "Sound: Fatal error. Audio interrupt after freeing buffers.\n"); return; } if (dmap->mapping_flags & DMA_MAP_MAPPED) { dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; if (dmap->qtail == 0) { /* Wrapped */ dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) { /* Overflow */ long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } dmap->qlen++; if (!(adev->flags & DMA_AUTOMODE)) { if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); local_start_dma(adev, dmap->raw_buf_phys, dmap->bytes_in_use,DMA_MODE_READ); adev->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1); if (adev->d->trigger) adev->d->trigger(dev, adev->enable_bits * adev->go); } dmap->flags |= DMA_ACTIVE; } else if (dmap->qlen >= (dmap->nbufs - 1)) { printk(KERN_WARNING "Sound: Recording overrun\n"); dmap->underrun_count++; /* Just throw away the oldest fragment but keep the engine running */ dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } else if (dmap->qlen >= 0 && dmap->qlen < dmap->nbufs) { dmap->qlen++; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; if (dmap->qtail == 0) { /* Wrapped */ dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) { /* Overflow */ long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } } if (!(adev->flags & DMA_AUTOMODE) || dmap->flags & DMA_NODMA) { local_start_dma(adev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_READ); adev->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1); if (adev->d->trigger) adev->d->trigger(dev,adev->enable_bits * adev->go); } dmap->flags |= DMA_ACTIVE; if (dmap->qlen > 0) wake_up(&adev->in_sleeper); } void DMAbuf_inputintr(int dev) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_in; unsigned long flags; save_flags(flags); cli(); if (!(dmap->flags & DMA_NODMA)) { int chan = dmap->dma, pos, n; clear_dma_ff(chan); disable_dma(dmap->dma); pos = dmap->bytes_in_use - get_dma_residue(chan); enable_dma(dmap->dma); pos = pos / dmap->fragment_size; /* Actual qhead */ if (pos < 0 || pos >= dmap->nbufs) pos = 0; n = 0; while (dmap->qtail != pos && ++n < dmap->nbufs) do_inputintr(dev); } else do_inputintr(dev); restore_flags(flags); } int DMAbuf_open_dma(int dev) { /* * NOTE! This routine opens only the primary DMA channel (output). */ struct audio_operations *adev = audio_devs[dev]; int err; if ((err = open_dmap(adev, OPEN_READWRITE, adev->dmap_out)) < 0) return -EBUSY; dma_init_buffers(adev->dmap_out); adev->dmap_out->flags |= DMA_ALLOC_DONE; adev->dmap_out->fragment_size = adev->dmap_out->buffsize; if (adev->dmap_out->dma >= 0) { unsigned long flags; save_flags(flags); cli(); clear_dma_ff(adev->dmap_out->dma); disable_dma(adev->dmap_out->dma); restore_flags(flags); } return 0; } void DMAbuf_close_dma(int dev) { close_dmap(audio_devs[dev], audio_devs[dev]->dmap_out); } void DMAbuf_init(int dev, int dma1, int dma2) { struct audio_operations *adev = audio_devs[dev]; /* * NOTE! This routine could be called several times. */ /* drag in audio_syms.o */ { extern char audio_syms_symbol; audio_syms_symbol = 0; } if (adev && adev->dmap_out == NULL) { if (adev->d == NULL) panic("OSS: audio_devs[%d]->d == NULL\n", dev); if (adev->parent_dev) { /* Use DMA map of the parent dev */ int parent = adev->parent_dev - 1; adev->dmap_out = audio_devs[parent]->dmap_out; adev->dmap_in = audio_devs[parent]->dmap_in; } else { adev->dmap_out = adev->dmap_in = &adev->dmaps[0]; adev->dmap_out->dma = dma1; if (adev->flags & DMA_DUPLEX) { adev->dmap_in = &adev->dmaps[1]; adev->dmap_in->dma = dma2; } } } } static unsigned int poll_input(struct file * file, int dev, poll_table *wait) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_in; if (!(adev->open_mode & OPEN_READ)) return 0; if (dmap->mapping_flags & DMA_MAP_MAPPED) { poll_wait(file, &adev->in_sleeper, wait); if (dmap->qlen) return POLLIN | POLLRDNORM; return 0; } if (dmap->dma_mode != DMODE_INPUT) { if (dmap->dma_mode == DMODE_NONE && adev->enable_bits & PCM_ENABLE_INPUT && !dmap->qlen && adev->go) { unsigned long flags; poll_wait(file, &adev->in_sleeper, wait); save_flags(flags); cli(); DMAbuf_activate_recording(dev, dmap); restore_flags(flags); } return 0; } poll_wait(file, &adev->in_sleeper, wait); if (!dmap->qlen) return 0; return POLLIN | POLLRDNORM; } static unsigned int poll_output(struct file * file, int dev, poll_table *wait) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_out; if (!(adev->open_mode & OPEN_WRITE)) return 0; if (dmap->mapping_flags & DMA_MAP_MAPPED) { poll_wait(file, &adev->out_sleeper, wait); if (dmap->qlen) return POLLOUT | POLLWRNORM; return 0; } if (dmap->dma_mode == DMODE_INPUT) return 0; poll_wait(file, &adev->out_sleeper, wait); if (dmap->dma_mode == DMODE_NONE) return POLLOUT | POLLWRNORM; if (!DMAbuf_space_in_queue(dev)) return 0; return POLLOUT | POLLWRNORM; } unsigned int DMAbuf_poll(struct file * file, int dev, poll_table *wait) { return poll_input(file, dev, wait) | poll_output(file, dev, wait); } void DMAbuf_deinit(int dev) { struct audio_operations *adev = audio_devs[dev]; /* This routine is called when driver is being unloaded */ if (!adev) return; #ifdef RUNTIME_DMA_ALLOC sound_free_dmap(adev->dmap_out); if (adev->flags & DMA_DUPLEX) sound_free_dmap(adev->dmap_in); #endif } #endif