/* * sound/dmabuf.c * * The DMA buffer manager for digitized voice applications */ /* * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ #include #define BE_CONSERVATIVE #include "sound_config.h" #if defined(CONFIG_AUDIO) || defined(CONFIG_GUSHW) static struct wait_queue *in_sleeper[MAX_AUDIO_DEV] = {NULL}; static volatile struct snd_wait in_sleep_flag[MAX_AUDIO_DEV] = { {0}}; static struct wait_queue *out_sleeper[MAX_AUDIO_DEV] = {NULL}; static volatile struct snd_wait out_sleep_flag[MAX_AUDIO_DEV] = { {0}}; static int ndmaps = 0; #define MAX_DMAP (MAX_AUDIO_DEV*2) static struct dma_buffparms dmaps[MAX_DMAP] = { {0}}; static void dma_reset_output(int dev); static void dma_reset_input(int dev); static int local_start_dma(int dev, unsigned long physaddr, int count, int dma_mode); static void dma_init_buffers(int dev, struct dma_buffparms *dmap) { dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; dmap->byte_counter = 0; dmap->max_byte_counter = 8000 * 60 * 60; dmap->bytes_in_use = dmap->buffsize; dmap->dma_mode = DMODE_NONE; dmap->mapping_flags = 0; dmap->neutral_byte = 0x80; dmap->data_rate = 8000; dmap->cfrag = -1; dmap->closing = 0; dmap->nbufs = 1; dmap->flags = DMA_BUSY; /* Other flags off */ } static int open_dmap(int dev, int mode, struct dma_buffparms *dmap, int chan) { if (dmap->flags & DMA_BUSY) return -EBUSY; { int err; if ((err = sound_alloc_dmap(dev, dmap, chan)) < 0) return err; } if (dmap->raw_buf == NULL) { printk("Sound: DMA buffers not available\n"); return -ENOSPC; /* Memory allocation failed during boot */ } if (sound_open_dma(chan, audio_devs[dev]->name)) { printk("Unable to grab(2) DMA%d for the audio driver\n", chan); return -EBUSY; } dma_init_buffers(dev, dmap); dmap->open_mode = mode; dmap->subdivision = dmap->underrun_count = 0; dmap->fragment_size = 0; dmap->max_fragments = 65536; /* Just a large value */ dmap->byte_counter = 0; dmap->max_byte_counter = 8000 * 60 * 60; dmap->applic_profile = APF_NORMAL; dmap->needs_reorg = 1; dmap->audio_callback = NULL; dmap->callback_parm = 0; if (dmap->dma_mode & DMODE_OUTPUT) { out_sleep_flag[dev].opts = WK_NONE; } else { in_sleep_flag[dev].opts = WK_NONE; } return 0; } static void close_dmap(int dev, struct dma_buffparms *dmap, int chan) { sound_close_dma(chan); if (dmap->flags & DMA_BUSY) dmap->dma_mode = DMODE_NONE; dmap->flags &= ~DMA_BUSY; disable_dma(dmap->dma); } static unsigned int default_set_bits(int dev, unsigned int bits) { return audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_SETFMT, (caddr_t) & bits); } static int default_set_speed(int dev, int speed) { return audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_SPEED, (caddr_t) & speed); } static short default_set_channels(int dev, short channels) { int c = channels; return audio_devs[dev]->d->ioctl(dev, SNDCTL_DSP_CHANNELS, (caddr_t) & c); } static void check_driver(struct audio_driver *d) { if (d->set_speed == NULL) d->set_speed = default_set_speed; if (d->set_bits == NULL) d->set_bits = default_set_bits; if (d->set_channels == NULL) d->set_channels = default_set_channels; } int DMAbuf_open(int dev, int mode) { int retval; struct dma_buffparms *dmap_in = NULL; struct dma_buffparms *dmap_out = NULL; if (dev >= num_audiodevs || audio_devs[dev] == NULL) { return -ENXIO; } if (!audio_devs[dev]) { return -ENXIO; } if (!(audio_devs[dev]->flags & DMA_DUPLEX)) { audio_devs[dev]->dmap_in = audio_devs[dev]->dmap_out; audio_devs[dev]->dmap_in->dma = audio_devs[dev]->dmap_out->dma; } check_driver(audio_devs[dev]->d); if ((retval = audio_devs[dev]->d->open(dev, mode)) < 0) return retval; dmap_out = audio_devs[dev]->dmap_out; dmap_in = audio_devs[dev]->dmap_in; if (dmap_in == dmap_out) audio_devs[dev]->flags &= ~DMA_DUPLEX; if (mode & OPEN_WRITE) { if ((retval = open_dmap(dev, mode, dmap_out, audio_devs[dev]->dmap_out->dma)) < 0) { audio_devs[dev]->d->close(dev); return retval; } } audio_devs[dev]->enable_bits = mode; if (mode == OPEN_READ || (mode != OPEN_WRITE && audio_devs[dev]->flags & DMA_DUPLEX)) { if ((retval = open_dmap(dev, mode, dmap_in, audio_devs[dev]->dmap_in->dma)) < 0) { audio_devs[dev]->d->close(dev); if (mode & OPEN_WRITE) { close_dmap(dev, dmap_out, audio_devs[dev]->dmap_out->dma); } return retval; } } audio_devs[dev]->open_mode = mode; audio_devs[dev]->go = 1; if (mode & OPEN_READ) in_sleep_flag[dev].opts = WK_NONE; if (mode & OPEN_WRITE) out_sleep_flag[dev].opts = WK_NONE; audio_devs[dev]->d->set_bits(dev, 8); audio_devs[dev]->d->set_channels(dev, 1); audio_devs[dev]->d->set_speed(dev, DSP_DEFAULT_SPEED); if (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT) { memset(audio_devs[dev]->dmap_out->raw_buf, audio_devs[dev]->dmap_out->neutral_byte, audio_devs[dev]->dmap_out->bytes_in_use); } return 0; } void DMAbuf_reset(int dev) { if (audio_devs[dev]->open_mode & OPEN_WRITE) dma_reset_output(dev); if (audio_devs[dev]->open_mode & OPEN_READ) dma_reset_input(dev); } static void dma_reset_output(int dev) { unsigned long flags; int tmout; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; if (!(dmap->flags & DMA_STARTED)) /* DMA is not active */ return; /* * First wait until the current fragment has been played completely */ save_flags(flags); cli(); tmout = (dmap->fragment_size * HZ) / dmap->data_rate; tmout += HZ / 5; /* Some safety distance */ if (tmout < (HZ / 2)) tmout = HZ / 2; if (tmout > 20 * HZ) tmout = 20 * HZ; audio_devs[dev]->dmap_out->flags |= DMA_SYNCING; audio_devs[dev]->dmap_out->underrun_count = 0; if (!(current->signal & ~current->blocked) && audio_devs[dev]->dmap_out->qlen && audio_devs[dev]->dmap_out->underrun_count == 0) { { unsigned long tlimit; if (tmout) current->timeout = tlimit = jiffies + (tmout); else tlimit = (unsigned long) -1; out_sleep_flag[dev].opts = WK_SLEEP; interruptible_sleep_on(&out_sleeper[dev]); if (!(out_sleep_flag[dev].opts & WK_WAKEUP)) { if (jiffies >= tlimit) out_sleep_flag[dev].opts |= WK_TIMEOUT; } out_sleep_flag[dev].opts &= ~WK_SLEEP; }; } audio_devs[dev]->dmap_out->flags &= ~(DMA_SYNCING | DMA_ACTIVE); /* * Finally shut the device off */ if (!(audio_devs[dev]->flags & DMA_DUPLEX) || !audio_devs[dev]->d->halt_output) audio_devs[dev]->d->halt_io(dev); else audio_devs[dev]->d->halt_output(dev); audio_devs[dev]->dmap_out->flags &= ~DMA_STARTED; restore_flags(flags); clear_dma_ff(dmap->dma); disable_dma(dmap->dma); dmap->byte_counter = 0; reorganize_buffers(dev, audio_devs[dev]->dmap_out, 0); dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; } static void dma_reset_input(int dev) { unsigned long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; save_flags(flags); cli(); if (!(audio_devs[dev]->flags & DMA_DUPLEX) || !audio_devs[dev]->d->halt_input) audio_devs[dev]->d->halt_io(dev); else audio_devs[dev]->d->halt_input(dev); audio_devs[dev]->dmap_in->flags &= ~DMA_STARTED; restore_flags(flags); dmap->qlen = dmap->qhead = dmap->qtail = dmap->user_counter = 0; dmap->byte_counter = 0; reorganize_buffers(dev, audio_devs[dev]->dmap_in, 1); } void DMAbuf_launch_output(int dev, struct dma_buffparms *dmap) { if (!((audio_devs[dev]->enable_bits * audio_devs[dev]->go) & PCM_ENABLE_OUTPUT)) return; /* Don't start DMA yet */ dmap->dma_mode = DMODE_OUTPUT; if (!(dmap->flags & DMA_ACTIVE) || !(audio_devs[dev]->flags & DMA_AUTOMODE) || dmap->flags & DMA_NODMA) { if (!(dmap->flags & DMA_STARTED)) { reorganize_buffers(dev, dmap, 0); if (audio_devs[dev]->d->prepare_for_output(dev, dmap->fragment_size, dmap->nbufs)) return; if (!(dmap->flags & DMA_NODMA)) { local_start_dma(dev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_WRITE); } dmap->flags |= DMA_STARTED; } if (dmap->counts[dmap->qhead] == 0) dmap->counts[dmap->qhead] = dmap->fragment_size; dmap->dma_mode = DMODE_OUTPUT; audio_devs[dev]->d->output_block(dev, dmap->raw_buf_phys + dmap->qhead * dmap->fragment_size, dmap->counts[dmap->qhead], 1); if (audio_devs[dev]->d->trigger) audio_devs[dev]->d->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } dmap->flags |= DMA_ACTIVE; } int DMAbuf_sync(int dev) { unsigned long flags; int tmout, n = 0; if (!audio_devs[dev]->go && (!audio_devs[dev]->enable_bits & PCM_ENABLE_OUTPUT)) return 0; if (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; save_flags(flags); cli(); tmout = (dmap->fragment_size * HZ) / dmap->data_rate; tmout += HZ / 5; /* Some safety distance */ if (tmout < (HZ / 2)) tmout = HZ / 2; if (tmout > 20 * HZ) tmout = 20 * HZ; ; if (dmap->qlen > 0) if (!(dmap->flags & DMA_ACTIVE)) DMAbuf_launch_output(dev, dmap); ; audio_devs[dev]->dmap_out->flags |= DMA_SYNCING; audio_devs[dev]->dmap_out->underrun_count = 0; while (!(current->signal & ~current->blocked) && n++ <= audio_devs[dev]->dmap_out->nbufs && audio_devs[dev]->dmap_out->qlen && audio_devs[dev]->dmap_out->underrun_count == 0) { { unsigned long tlimit; if (tmout) current->timeout = tlimit = jiffies + (tmout); else tlimit = (unsigned long) -1; out_sleep_flag[dev].opts = WK_SLEEP; interruptible_sleep_on(&out_sleeper[dev]); if (!(out_sleep_flag[dev].opts & WK_WAKEUP)) { if (jiffies >= tlimit) out_sleep_flag[dev].opts |= WK_TIMEOUT; } out_sleep_flag[dev].opts &= ~WK_SLEEP; }; if ((out_sleep_flag[dev].opts & WK_TIMEOUT)) { audio_devs[dev]->dmap_out->flags &= ~DMA_SYNCING; restore_flags(flags); return audio_devs[dev]->dmap_out->qlen; } } audio_devs[dev]->dmap_out->flags &= ~(DMA_SYNCING | DMA_ACTIVE); restore_flags(flags); /* * Some devices such as GUS have huge amount of on board RAM for the * audio data. We have to wait until the device has finished playing. */ save_flags(flags); cli(); if (audio_devs[dev]->d->local_qlen) /* Device has hidden buffers */ { while (!((current->signal & ~current->blocked)) && audio_devs[dev]->d->local_qlen(dev)) { { unsigned long tlimit; if (tmout) current->timeout = tlimit = jiffies + (tmout); else tlimit = (unsigned long) -1; out_sleep_flag[dev].opts = WK_SLEEP; interruptible_sleep_on(&out_sleeper[dev]); if (!(out_sleep_flag[dev].opts & WK_WAKEUP)) { if (jiffies >= tlimit) out_sleep_flag[dev].opts |= WK_TIMEOUT; } out_sleep_flag[dev].opts &= ~WK_SLEEP; }; } } restore_flags(flags); } audio_devs[dev]->dmap_out->dma_mode = DMODE_NONE; return audio_devs[dev]->dmap_out->qlen; } int DMAbuf_release(int dev, int mode) { unsigned long flags; if (audio_devs[dev]->open_mode & OPEN_WRITE) audio_devs[dev]->dmap_out->closing = 1; if (audio_devs[dev]->open_mode & OPEN_READ) audio_devs[dev]->dmap_in->closing = 1; if (audio_devs[dev]->open_mode & OPEN_WRITE) if (!(audio_devs[dev]->dmap_in->mapping_flags & DMA_MAP_MAPPED)) if (!((current->signal & ~current->blocked)) && (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT)) { DMAbuf_sync(dev); } if (audio_devs[dev]->dmap_out->dma_mode == DMODE_OUTPUT) { memset(audio_devs[dev]->dmap_out->raw_buf, audio_devs[dev]->dmap_out->neutral_byte, audio_devs[dev]->dmap_out->bytes_in_use); } save_flags(flags); cli(); DMAbuf_reset(dev); audio_devs[dev]->d->close(dev); if (audio_devs[dev]->open_mode & OPEN_WRITE) close_dmap(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmap_out->dma); if (audio_devs[dev]->open_mode == OPEN_READ || (audio_devs[dev]->open_mode != OPEN_WRITE && audio_devs[dev]->flags & DMA_DUPLEX)) close_dmap(dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmap_in->dma); audio_devs[dev]->open_mode = 0; restore_flags(flags); return 0; } int DMAbuf_activate_recording(int dev, struct dma_buffparms *dmap) { if (!(audio_devs[dev]->open_mode & OPEN_READ)) return 0; if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT)) return 0; if (dmap->dma_mode == DMODE_OUTPUT) /* Direction change */ { DMAbuf_sync(dev); DMAbuf_reset(dev); dmap->dma_mode = DMODE_NONE; } if (!dmap->dma_mode) { int err; reorganize_buffers(dev, dmap, 1); if ((err = audio_devs[dev]->d->prepare_for_input(dev, dmap->fragment_size, dmap->nbufs)) < 0) { return err; } dmap->dma_mode = DMODE_INPUT; } if (!(dmap->flags & DMA_ACTIVE)) { if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); local_start_dma(dev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_READ); audio_devs[dev]->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 0); dmap->flags |= DMA_ACTIVE; if (audio_devs[dev]->d->trigger) audio_devs[dev]->d->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } return 0; } int DMAbuf_getrdbuffer(int dev, char **buf, int *len, int dontblock) { unsigned long flags; int err = 0, n = 0; struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; if (!(audio_devs[dev]->open_mode & OPEN_READ)) return -EIO; if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); save_flags(flags); cli(); if (audio_devs[dev]->dmap_in->mapping_flags & DMA_MAP_MAPPED) { printk("Sound: Can't read from mmapped device (1)\n"); restore_flags(flags); return -EINVAL; } else while (dmap->qlen <= 0 && n++ < 10) { int tmout; if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT) || !audio_devs[dev]->go) { restore_flags(flags); return -EAGAIN; } if ((err = DMAbuf_activate_recording(dev, dmap)) < 0) { restore_flags(flags); return err; } /* Wait for the next block */ if (dontblock) { restore_flags(flags); return -EAGAIN; } if (!audio_devs[dev]->go) tmout = 0; else { tmout = (dmap->fragment_size * HZ) / dmap->data_rate; tmout += HZ / 5; /* Some safety distance */ if (tmout < (HZ / 2)) tmout = HZ / 2; if (tmout > 20 * HZ) tmout = 20 * HZ; } { unsigned long tlimit; if (tmout) current->timeout = tlimit = jiffies + (tmout); else tlimit = (unsigned long) -1; in_sleep_flag[dev].opts = WK_SLEEP; interruptible_sleep_on(&in_sleeper[dev]); if (!(in_sleep_flag[dev].opts & WK_WAKEUP)) { if (jiffies >= tlimit) in_sleep_flag[dev].opts |= WK_TIMEOUT; } in_sleep_flag[dev].opts &= ~WK_SLEEP; }; if ((in_sleep_flag[dev].opts & WK_TIMEOUT)) { err = -EIO; printk("Sound: DMA (input) timed out - IRQ/DRQ config error?\n"); dma_reset_input(dev); ; } else err = -EINTR; } restore_flags(flags); if (dmap->qlen <= 0) { if (err == 0) err = -EINTR; return err; } *buf = &dmap->raw_buf[dmap->qhead * dmap->fragment_size + dmap->counts[dmap->qhead]]; *len = dmap->fragment_size - dmap->counts[dmap->qhead]; return dmap->qhead; } int DMAbuf_rmchars(int dev, int buff_no, int c) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; int p = dmap->counts[dmap->qhead] + c; if (dmap->mapping_flags & DMA_MAP_MAPPED) { printk("Sound: Can't read from mmapped device (2)\n"); return -EINVAL; } else if (dmap->qlen <= 0) return -EIO; else if (p >= dmap->fragment_size) { /* This buffer is completely empty */ dmap->counts[dmap->qhead] = 0; dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; } else dmap->counts[dmap->qhead] = p; return 0; } int DMAbuf_get_buffer_pointer(int dev, struct dma_buffparms *dmap, int direction) { /* * Try to approximate the active byte position of the DMA pointer within the * buffer area as well as possible. */ int pos; unsigned long flags; save_flags(flags); cli(); if (!(dmap->flags & DMA_ACTIVE)) pos = 0; else { int chan = dmap->dma; clear_dma_ff(chan); disable_dma(dmap->dma); pos = get_dma_residue(chan); pos = dmap->bytes_in_use - pos; if (!(dmap->mapping_flags & DMA_MAP_MAPPED)) if (direction == DMODE_OUTPUT) { if (dmap->qhead == 0) if (pos > dmap->fragment_size) pos = 0; } else { if (dmap->qtail == 0) if (pos > dmap->fragment_size) pos = 0; } if (pos < 0) pos = 0; if (pos >= dmap->bytes_in_use) pos = 0; enable_dma(dmap->dma); } restore_flags(flags); /* printk( "%04x ", pos); */ return pos; } /* * DMAbuf_start_devices() is called by the /dev/music driver to start * one or more audio devices at desired moment. */ static void DMAbuf_start_device(int dev) { if (audio_devs[dev]->open_mode != 0) if (!audio_devs[dev]->go) { /* OK to start the device */ audio_devs[dev]->go = 1; if (audio_devs[dev]->d->trigger) audio_devs[dev]->d->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } } void DMAbuf_start_devices(unsigned int devmask) { int dev; for (dev = 0; dev < num_audiodevs; dev++) if ((devmask & (1 << dev)) && audio_devs[dev] != NULL) DMAbuf_start_device(dev); } int DMAbuf_space_in_queue(int dev) { int len, max, tmp; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; int lim = dmap->nbufs; if (lim < 2) lim = 2; if (dmap->qlen >= lim) /* No space at all */ return 0; /* * Verify that there are no more pending buffers than the limit * defined by the process. */ max = dmap->max_fragments; if (max > lim) max = lim; len = dmap->qlen; if (audio_devs[dev]->d->local_qlen) { tmp = audio_devs[dev]->d->local_qlen(dev); if (tmp && len) tmp--; /* * This buffer has been counted twice */ len += tmp; } if (dmap->byte_counter % dmap->fragment_size) /* There is a partial fragment */ len = len + 1; if (len >= max) return 0; return max - len; } static int output_sleep(int dev, int dontblock) { int tmout; int err = 0; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; if (dontblock) { return -EAGAIN; } if (!(audio_devs[dev]->enable_bits & PCM_ENABLE_OUTPUT)) { return -EAGAIN; } /* * Wait for free space */ if (!audio_devs[dev]->go || dmap->flags & DMA_NOTIMEOUT) tmout = 0; else { tmout = (dmap->fragment_size * HZ) / dmap->data_rate; tmout += HZ / 5; /* Some safety distance */ if (tmout < (HZ / 2)) tmout = HZ / 2; if (tmout > 20 * HZ) tmout = 20 * HZ; } if ((current->signal & ~current->blocked)) return -EIO; { unsigned long tlimit; if (tmout) current->timeout = tlimit = jiffies + (tmout); else tlimit = (unsigned long) -1; out_sleep_flag[dev].opts = WK_SLEEP; interruptible_sleep_on(&out_sleeper[dev]); if (!(out_sleep_flag[dev].opts & WK_WAKEUP)) { if (jiffies >= tlimit) out_sleep_flag[dev].opts |= WK_TIMEOUT; } out_sleep_flag[dev].opts &= ~WK_SLEEP; }; if ((out_sleep_flag[dev].opts & WK_TIMEOUT)) { printk("Sound: DMA (output) timed out - IRQ/DRQ config error?\n"); ; dma_reset_output(dev); } else if ((current->signal & ~current->blocked)) { err = -EINTR; } return err; } static int find_output_space(int dev, char **buf, int *size) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; unsigned long flags; unsigned long active_offs; long len, offs; int maxfrags; int occupied_bytes = (dmap->user_counter % dmap->fragment_size); *buf = dmap->raw_buf; if (!(maxfrags = DMAbuf_space_in_queue(dev)) && !occupied_bytes) { return 0; } save_flags(flags); cli(); #ifdef BE_CONSERVATIVE active_offs = dmap->byte_counter + dmap->qhead * dmap->fragment_size; #else active_offs = DMAbuf_get_buffer_pointer(dev, dmap, DMODE_OUTPUT); /* Check for pointer wrapping situation */ if (active_offs < 0 || active_offs >= dmap->bytes_in_use) active_offs = 0; active_offs += dmap->byte_counter; #endif offs = (dmap->user_counter % dmap->bytes_in_use) & ~3; if (offs < 0 || offs >= dmap->bytes_in_use) { printk("OSS: Got unexpected offs %ld. Giving up.\n", offs); printk("Counter = %ld, bytes=%d\n", dmap->user_counter, dmap->bytes_in_use); return 0; } *buf = dmap->raw_buf + offs; len = active_offs + dmap->bytes_in_use - dmap->user_counter; /* Number of unused bytes in buffer */ if ((offs + len) > dmap->bytes_in_use) { len = dmap->bytes_in_use - offs; } if (len < 0) { restore_flags(flags); return 0; } if (len > ((maxfrags * dmap->fragment_size) - occupied_bytes)) { len = (maxfrags * dmap->fragment_size) - occupied_bytes; } *size = len & ~3; restore_flags(flags); return (len > 0); } int DMAbuf_getwrbuffer(int dev, char **buf, int *size, int dontblock) { unsigned long flags; int err = -EIO; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); if (dmap->mapping_flags & DMA_MAP_MAPPED) { printk("Sound: Can't write to mmapped device (3)\n"); return -EINVAL; } if (dmap->dma_mode == DMODE_INPUT) /* Direction change */ { DMAbuf_reset(dev); dmap->dma_mode = DMODE_NONE; } dmap->dma_mode = DMODE_OUTPUT; save_flags(flags); cli(); while (find_output_space(dev, buf, size) <= 0) { if ((err = output_sleep(dev, dontblock)) < 0) { restore_flags(flags); return err; } } restore_flags(flags); return 0; } int DMAbuf_move_wrpointer(int dev, int l) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; unsigned long ptr = (dmap->user_counter / dmap->fragment_size) * dmap->fragment_size; unsigned long end_ptr, p; int post = (dmap->flags & DMA_POST); ; dmap->flags &= ~DMA_POST; dmap->cfrag = -1; dmap->user_counter += l; dmap->flags |= DMA_DIRTY; if (dmap->user_counter >= dmap->max_byte_counter) { /* Wrap the byte counters */ long decr = dmap->user_counter; dmap->user_counter = (dmap->user_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->user_counter; dmap->byte_counter -= decr; } end_ptr = (dmap->user_counter / dmap->fragment_size) * dmap->fragment_size; p = (dmap->user_counter - 1) % dmap->bytes_in_use; dmap->neutral_byte = dmap->raw_buf[p]; /* Update the fragment based bookkeeping too */ while (ptr < end_ptr) { dmap->counts[dmap->qtail] = dmap->fragment_size; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; dmap->qlen++; ptr += dmap->fragment_size; } dmap->counts[dmap->qtail] = dmap->user_counter - ptr; /* * Let the low level driver to perform some postprocessing to * the written data. */ if (audio_devs[dev]->d->postprocess_write) audio_devs[dev]->d->postprocess_write(dev); if (!(dmap->flags & DMA_ACTIVE)) if (dmap->qlen > 1 || (dmap->qlen > 0 && (post || dmap->qlen >= dmap->nbufs - 1))) { DMAbuf_launch_output(dev, dmap); }; return 0; } int DMAbuf_start_dma(int dev, unsigned long physaddr, int count, int dma_mode) { int chan; struct dma_buffparms *dmap; if (dma_mode == DMA_MODE_WRITE) { chan = audio_devs[dev]->dmap_out->dma; dmap = audio_devs[dev]->dmap_out; } else { chan = audio_devs[dev]->dmap_in->dma; dmap = audio_devs[dev]->dmap_in; } if (dmap->raw_buf == NULL) { printk("sound: DMA buffer(1) == NULL\n"); printk("Device %d, chn=%s\n", dev, (dmap == audio_devs[dev]->dmap_out) ? "out" : "in"); return 0; } if (chan < 0) return 0; sound_start_dma(dev, dmap, chan, physaddr, count, dma_mode, 0); return count; } static int local_start_dma(int dev, unsigned long physaddr, int count, int dma_mode) { int chan; struct dma_buffparms *dmap; if (dma_mode == DMA_MODE_WRITE) { chan = audio_devs[dev]->dmap_out->dma; dmap = audio_devs[dev]->dmap_out; } else { chan = audio_devs[dev]->dmap_in->dma; dmap = audio_devs[dev]->dmap_in; } if (dmap->raw_buf == NULL) { printk("sound: DMA buffer(2) == NULL\n"); printk("Device %d, chn=%s\n", dev, (dmap == audio_devs[dev]->dmap_out) ? "out" : "in"); return 0; } if (dmap->flags & DMA_NODMA) { return 1; } if (chan < 0) return 0; sound_start_dma(dev, dmap, chan, dmap->raw_buf_phys, dmap->bytes_in_use, dma_mode, 1); dmap->flags |= DMA_STARTED; return count; } static void finish_output_interrupt(int dev, struct dma_buffparms *dmap) { unsigned long flags; if (dmap->audio_callback != NULL) dmap->audio_callback(dev, dmap->callback_parm); save_flags(flags); cli(); if ((out_sleep_flag[dev].opts & WK_SLEEP)) { { out_sleep_flag[dev].opts = WK_WAKEUP; wake_up(&out_sleeper[dev]); }; } restore_flags(flags); } static void do_outputintr(int dev, int dummy) { unsigned long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; int this_fragment; #ifdef OS_DMA_INTR if (audio_devs[dev]->dmap_out->dma >= 0) sound_dma_intr(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmap_out->dma); #endif if (dmap->raw_buf == NULL) { printk("Sound: Fatal error. Audio interrupt (%d) after freeing buffers.\n", dev); return; } if (dmap->mapping_flags & DMA_MAP_MAPPED) /* Virtual memory mapped access */ { /* mmapped access */ dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; if (dmap->qhead == 0) /* Wrapped */ { dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) /* Overflow */ { long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } dmap->qlen++; /* Yes increment it (don't decrement) */ if (!(audio_devs[dev]->flags & DMA_AUTOMODE)) dmap->flags &= ~DMA_ACTIVE; dmap->counts[dmap->qhead] = dmap->fragment_size; DMAbuf_launch_output(dev, dmap); finish_output_interrupt(dev, dmap); return; } save_flags(flags); cli(); dmap->qlen--; this_fragment = dmap->qhead; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; if (dmap->qhead == 0) /* Wrapped */ { dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) /* Overflow */ { long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } if (!(audio_devs[dev]->flags & DMA_AUTOMODE)) dmap->flags &= ~DMA_ACTIVE; while (dmap->qlen < 0) { dmap->underrun_count++; dmap->qlen++; if (dmap->flags & DMA_DIRTY && dmap->applic_profile != APF_CPUINTENS) { dmap->flags &= ~DMA_DIRTY; memset(audio_devs[dev]->dmap_out->raw_buf, audio_devs[dev]->dmap_out->neutral_byte, audio_devs[dev]->dmap_out->buffsize); } dmap->user_counter += dmap->fragment_size; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } if (dmap->qlen > 0) DMAbuf_launch_output(dev, dmap); restore_flags(flags); finish_output_interrupt(dev, dmap); } void DMAbuf_outputintr(int dev, int notify_only) { unsigned long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap_out; save_flags(flags); cli(); if (!(dmap->flags & DMA_NODMA)) { int chan = dmap->dma, pos, n; clear_dma_ff(chan); disable_dma(dmap->dma); pos = dmap->bytes_in_use - get_dma_residue(chan); enable_dma(dmap->dma); pos = pos / dmap->fragment_size; /* Actual qhead */ if (pos < 0 || pos >= dmap->nbufs) pos = 0; n = 0; while (dmap->qhead != pos && n++ < dmap->nbufs) { do_outputintr(dev, notify_only); } } else do_outputintr(dev, notify_only); restore_flags(flags); } static void do_inputintr(int dev) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; unsigned long flags; #ifdef OS_DMA_INTR if (audio_devs[dev]->dmap_in->dma >= 0) sound_dma_intr(dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmap_in->dma); #endif if (dmap->raw_buf == NULL) { printk("Sound: Fatal error. Audio interrupt after freeing buffers.\n"); return; } if (dmap->mapping_flags & DMA_MAP_MAPPED) { dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; if (dmap->qtail == 0) /* Wrapped */ { dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) /* Overflow */ { long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } dmap->qlen++; if (!(audio_devs[dev]->flags & DMA_AUTOMODE)) { if (dmap->needs_reorg) reorganize_buffers(dev, dmap, 0); local_start_dma(dev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_READ); audio_devs[dev]->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1); if (audio_devs[dev]->d->trigger) audio_devs[dev]->d->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } dmap->flags |= DMA_ACTIVE; } else if (dmap->qlen >= (dmap->nbufs - 1)) { printk("Sound: Recording overrun\n"); dmap->underrun_count++; /* Just throw away the oldest fragment but keep the engine running */ dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; } else if (dmap->qlen >= 0 && dmap->qlen < dmap->nbufs) { dmap->qlen++; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; if (dmap->qtail == 0) /* Wrapped */ { dmap->byte_counter += dmap->bytes_in_use; if (dmap->byte_counter >= dmap->max_byte_counter) /* Overflow */ { long decr = dmap->byte_counter; dmap->byte_counter = (dmap->byte_counter % dmap->bytes_in_use) + dmap->bytes_in_use; decr -= dmap->byte_counter; dmap->user_counter -= decr; } } } if (!(audio_devs[dev]->flags & DMA_AUTOMODE) || dmap->flags & DMA_NODMA) { local_start_dma(dev, dmap->raw_buf_phys, dmap->bytes_in_use, DMA_MODE_READ); audio_devs[dev]->d->start_input(dev, dmap->raw_buf_phys + dmap->qtail * dmap->fragment_size, dmap->fragment_size, 1); if (audio_devs[dev]->d->trigger) audio_devs[dev]->d->trigger(dev, audio_devs[dev]->enable_bits * audio_devs[dev]->go); } dmap->flags |= DMA_ACTIVE; save_flags(flags); cli(); if (dmap->qlen > 0) if ((in_sleep_flag[dev].opts & WK_SLEEP)) { { in_sleep_flag[dev].opts = WK_WAKEUP; wake_up(&in_sleeper[dev]); }; } restore_flags(flags); } void DMAbuf_inputintr(int dev) { struct dma_buffparms *dmap = audio_devs[dev]->dmap_in; unsigned long flags; save_flags(flags); cli(); if (!(dmap->flags & DMA_NODMA)) { int chan = dmap->dma, pos, n; clear_dma_ff(chan); disable_dma(dmap->dma); pos = dmap->bytes_in_use - get_dma_residue(chan); enable_dma(dmap->dma); pos = pos / dmap->fragment_size; /* Actual qhead */ if (pos < 0 || pos >= dmap->nbufs) pos = 0; n = 0; while (dmap->qtail != pos && ++n < dmap->nbufs) { do_inputintr(dev); } } else do_inputintr(dev); restore_flags(flags); } int DMAbuf_open_dma(int dev) { /* * NOTE! This routine opens only the primary DMA channel (output). */ int chan = audio_devs[dev]->dmap_out->dma; int err; if ((err = open_dmap(dev, OPEN_READWRITE, audio_devs[dev]->dmap_out, chan)) < 0) { return -EBUSY; } dma_init_buffers(dev, audio_devs[dev]->dmap_out); out_sleep_flag[dev].opts = WK_NONE; audio_devs[dev]->dmap_out->flags |= DMA_ALLOC_DONE; audio_devs[dev]->dmap_out->fragment_size = audio_devs[dev]->dmap_out->buffsize; if (chan >= 0) { unsigned long flags; save_flags(flags); cli(); disable_dma(audio_devs[dev]->dmap_out->dma); clear_dma_ff(chan); restore_flags(flags); } return 0; } void DMAbuf_close_dma(int dev) { close_dmap(dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmap_out->dma); } void DMAbuf_init(int dev, int dma1, int dma2) { /* * NOTE! This routine could be called several times. */ if (audio_devs[dev] && audio_devs[dev]->dmap_out == NULL) { if (audio_devs[dev]->d == NULL) panic("OSS: audio_devs[%d]->d == NULL\n", dev); if (audio_devs[dev]->parent_dev) { /* Use DMA map of the parent dev */ int parent = audio_devs[dev]->parent_dev - 1; audio_devs[dev]->dmap_out = audio_devs[parent]->dmap_out; audio_devs[dev]->dmap_in = audio_devs[parent]->dmap_in; } else { audio_devs[dev]->dmap_out = audio_devs[dev]->dmap_in = &dmaps[ndmaps++]; audio_devs[dev]->dmap_out->dma = dma1; if (audio_devs[dev]->flags & DMA_DUPLEX) { audio_devs[dev]->dmap_in = &dmaps[ndmaps++]; audio_devs[dev]->dmap_in->dma = dma2; } } } } int DMAbuf_select(int dev, struct fileinfo *file, int sel_type, poll_table * wait) { struct dma_buffparms *dmap; unsigned long flags; switch (sel_type) { case SEL_IN: if (!(audio_devs[dev]->open_mode & OPEN_READ)) return 0; dmap = audio_devs[dev]->dmap_in; if (dmap->mapping_flags & DMA_MAP_MAPPED) { if (dmap->qlen) return 1; save_flags(flags); cli(); in_sleep_flag[dev].opts = WK_SLEEP; poll_wait(&in_sleeper[dev], wait); restore_flags(flags); return 0; } if (dmap->dma_mode != DMODE_INPUT) { if (dmap->dma_mode == DMODE_NONE && audio_devs[dev]->enable_bits & PCM_ENABLE_INPUT && !dmap->qlen && audio_devs[dev]->go) { unsigned long flags; save_flags(flags); cli(); DMAbuf_activate_recording(dev, dmap); restore_flags(flags); } return 0; } if (!dmap->qlen) { save_flags(flags); cli(); in_sleep_flag[dev].opts = WK_SLEEP; poll_wait(&in_sleeper[dev], wait); restore_flags(flags); return 0; } return 1; break; case SEL_OUT: dmap = audio_devs[dev]->dmap_out; if (!(audio_devs[dev]->open_mode & OPEN_WRITE)) return 0; if (dmap->mapping_flags & DMA_MAP_MAPPED) { if (dmap->qlen) return 1; save_flags(flags); cli(); out_sleep_flag[dev].opts = WK_SLEEP; poll_wait(&out_sleeper[dev], wait); restore_flags(flags); return 0; } if (dmap->dma_mode == DMODE_INPUT) { return 0; } if (dmap->dma_mode == DMODE_NONE) { return 1; } if (!DMAbuf_space_in_queue(dev)) { save_flags(flags); cli(); out_sleep_flag[dev].opts = WK_SLEEP; poll_wait(&out_sleeper[dev], wait); restore_flags(flags); return 0; } return 1; break; case SEL_EX: return 0; } return 0; } void DMAbuf_deinit(int dev) { /* This routine is called when driver is being unloaded */ #ifdef RUNTIME_DMA_ALLOC sound_free_dmap (dev, audio_devs[dev]->dmap_out, audio_devs[dev]->dmap_out->dma); if (audio_devs[dev]->flags & DMA_DUPLEX) sound_free_dmap (dev, audio_devs[dev]->dmap_in, audio_devs[dev]->dmap_in->dma); #endif } #endif