/*****************************************************************************/ /* * esssolo1.c -- ESS Technology Solo1 (ES1946) audio driver. * * Copyright (C) 1998-2000 Thomas Sailer (sailer@ife.ee.ethz.ch) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Module command line parameters: * none so far * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * Revision history * 10.11.1998 0.1 Initial release (without any hardware) * 22.03.1999 0.2 cinfo.blocks should be reset after GETxPTR ioctl. * reported by Johan Maes * return EAGAIN instead of EBUSY when O_NONBLOCK * read/write cannot be executed * 07.04.1999 0.3 implemented the following ioctl's: SOUND_PCM_READ_RATE, * SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS; * Alpha fixes reported by Peter Jones * 15.06.1999 0.4 Fix bad allocation bug. * Thanks to Deti Fliegl * 28.06.1999 0.5 Add pci_set_master * 12.08.1999 0.6 Fix MIDI UART crashing the driver * Changed mixer semantics from OSS documented * behaviour to OSS "code behaviour". * Recording might actually work now. * The real DDMA controller address register is at PCI config * 0x60, while the register at 0x18 is used as a placeholder * register for BIOS address allocation. This register * is supposed to be copied into 0x60, according * to the Solo1 datasheet. When I do that, I can access * the DDMA registers except the mask bit, which * is stuck at 1. When I copy the contents of 0x18 +0x10 * to the DDMA base register, everything seems to work. * The fun part is that the Windows Solo1 driver doesn't * seem to do these tricks. * Bugs remaining: plops and clicks when starting/stopping playback * 31.08.1999 0.7 add spin_lock_init * replaced current->state = x with set_current_state(x) * 03.09.1999 0.8 change read semantics for MIDI to match * OSS more closely; remove possible wakeup race * 07.10.1999 0.9 Fix initialization; complain if sequencer writes time out * Revised resource grabbing for the FM synthesizer * 28.10.1999 0.10 More waitqueue races fixed * 09.12.1999 0.11 Work around stupid Alpha port issue (virt_to_bus(kmalloc(GFP_DMA)) > 16M) * Disabling recording on Alpha * 12.01.2000 0.12 Prevent some ioctl's from returning bad count values on underrun/overrun; * Tim Janik's BSE (Bedevilled Sound Engine) found this * Integrated (aka redid 8-)) APM support patch by Zach Brown * 07.02.2000 0.13 Use pci_alloc_consistent and pci_register_driver * 19.02.2000 0.14 Use pci_dma_supported to determine if recording should be disabled * 13.03.2000 0.15 Reintroduce initialization of a couple of PCI config space registers */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dm.h" /* --------------------------------------------------------------------- */ #undef OSS_DOCUMENTED_MIXER_SEMANTICS /* --------------------------------------------------------------------- */ #ifndef PCI_VENDOR_ID_ESS #define PCI_VENDOR_ID_ESS 0x125d #endif #ifndef PCI_DEVICE_ID_ESS_SOLO1 #define PCI_DEVICE_ID_ESS_SOLO1 0x1969 #endif #define SOLO1_MAGIC ((PCI_VENDOR_ID_ESS<<16)|PCI_DEVICE_ID_ESS_SOLO1) #define DDMABASE_OFFSET 0 /* chip bug workaround kludge */ #define DDMABASE_EXTENT 16 #define IOBASE_EXTENT 16 #define SBBASE_EXTENT 16 #define VCBASE_EXTENT (DDMABASE_EXTENT+DDMABASE_OFFSET) #define MPUBASE_EXTENT 4 #define GPBASE_EXTENT 4 #define FMSYNTH_EXTENT 4 /* MIDI buffer sizes */ #define MIDIINBUF 256 #define MIDIOUTBUF 256 #define FMODE_MIDI_SHIFT 3 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT) #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT) #define FMODE_DMFM 0x10 /* --------------------------------------------------------------------- */ struct solo1_state { /* magic */ unsigned int magic; /* list of esssolo1 devices */ struct list_head devs; /* the corresponding pci_dev structure */ struct pci_dev *dev; /* soundcore stuff */ int dev_audio; int dev_mixer; int dev_midi; int dev_dmfm; /* hardware resources */ unsigned long iobase, sbbase, vcbase, ddmabase, mpubase, gpbase; /* long for SPARC */ unsigned int irq; /* mixer registers */ struct { unsigned short vol[10]; unsigned int recsrc; unsigned int modcnt; unsigned short micpreamp; } mix; /* wave stuff */ unsigned fmt; unsigned channels; unsigned rate; unsigned char clkdiv; unsigned ena; spinlock_t lock; struct semaphore open_sem; mode_t open_mode; wait_queue_head_t open_wait; struct dmabuf { void *rawbuf; dma_addr_t dmaaddr; unsigned buforder; unsigned numfrag; unsigned fragshift; unsigned hwptr, swptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ wait_queue_head_t wait; /* redundant, but makes calculations easier */ unsigned fragsize; unsigned dmasize; unsigned fragsamples; /* OSS stuff */ unsigned mapped:1; unsigned ready:1; unsigned endcleared:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; /* midi stuff */ struct { unsigned ird, iwr, icnt; unsigned ord, owr, ocnt; wait_queue_head_t iwait; wait_queue_head_t owait; struct timer_list timer; unsigned char ibuf[MIDIINBUF]; unsigned char obuf[MIDIOUTBUF]; } midi; }; /* --------------------------------------------------------------------- */ static LIST_HEAD(devs); /* --------------------------------------------------------------------- */ extern inline void write_seq(struct solo1_state *s, unsigned char data) { int i; unsigned long flags; /* the __cli stunt is to send the data within the command window */ for (i = 0; i < 0xffff; i++) { __save_flags(flags); __cli(); if (!(inb(s->sbbase+0xc) & 0x80)) { outb(data, s->sbbase+0xc); __restore_flags(flags); return; } __restore_flags(flags); } printk(KERN_ERR "esssolo1: write_seq timeout\n"); outb(data, s->sbbase+0xc); } extern inline int read_seq(struct solo1_state *s, unsigned char *data) { int i; if (!data) return 0; for (i = 0; i < 0xffff; i++) if (inb(s->sbbase+0xe) & 0x80) { *data = inb(s->sbbase+0xa); return 1; } printk(KERN_ERR "esssolo1: read_seq timeout\n"); return 0; } static int inline reset_ctrl(struct solo1_state *s) { int i; outb(3, s->sbbase+6); /* clear sequencer and FIFO */ udelay(10); outb(0, s->sbbase+6); for (i = 0; i < 0xffff; i++) if (inb(s->sbbase+0xe) & 0x80) if (inb(s->sbbase+0xa) == 0xaa) { write_seq(s, 0xc6); /* enter enhanced mode */ return 1; } return 0; } static void write_ctrl(struct solo1_state *s, unsigned char reg, unsigned char data) { write_seq(s, reg); write_seq(s, data); } #if 0 /* unused */ static unsigned char read_ctrl(struct solo1_state *s, unsigned char reg) { unsigned char r; write_seq(s, 0xc0); write_seq(s, reg); read_seq(s, &r); return r; } #endif /* unused */ static void write_mixer(struct solo1_state *s, unsigned char reg, unsigned char data) { outb(reg, s->sbbase+4); outb(data, s->sbbase+5); } static unsigned char read_mixer(struct solo1_state *s, unsigned char reg) { outb(reg, s->sbbase+4); return inb(s->sbbase+5); } /* --------------------------------------------------------------------- */ extern inline unsigned ld2(unsigned int x) { unsigned r = 0; if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 4) { x >>= 2; r += 2; } if (x >= 2) r++; return r; } /* --------------------------------------------------------------------- */ extern inline void stop_dac(struct solo1_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_WRITE; write_mixer(s, 0x78, 0x10); spin_unlock_irqrestore(&s->lock, flags); } static void start_dac(struct solo1_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { s->ena |= FMODE_WRITE; write_mixer(s, 0x78, 0x12); udelay(10); write_mixer(s, 0x78, 0x13); } spin_unlock_irqrestore(&s->lock, flags); } extern inline void stop_adc(struct solo1_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); s->ena &= ~FMODE_READ; write_ctrl(s, 0xb8, 0xe); spin_unlock_irqrestore(&s->lock, flags); } static void start_adc(struct solo1_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) && s->dma_adc.ready) { s->ena |= FMODE_READ; write_ctrl(s, 0xb8, 0xf); #if 0 printk(KERN_DEBUG "solo1: DMAbuffer: 0x%08lx\n", (long)s->dma_adc.rawbuf); printk(KERN_DEBUG "solo1: DMA: mask: 0x%02x cnt: 0x%04x addr: 0x%08x stat: 0x%02x\n", inb(s->ddmabase+0xf), inw(s->ddmabase+4), inl(s->ddmabase), inb(s->ddmabase+8)); #endif outb(0, s->ddmabase+0xd); /* master reset */ outb(1, s->ddmabase+0xf); /* mask */ outb(0x54/*0x14*/, s->ddmabase+0xb); /* DMA_MODE_READ | DMA_MODE_AUTOINIT */ outl(virt_to_bus(s->dma_adc.rawbuf), s->ddmabase); outw(s->dma_adc.dmasize-1, s->ddmabase+4); outb(0, s->ddmabase+0xf); } spin_unlock_irqrestore(&s->lock, flags); #if 0 printk(KERN_DEBUG "solo1: start DMA: reg B8: 0x%02x SBstat: 0x%02x\n" KERN_DEBUG "solo1: DMA: stat: 0x%02x cnt: 0x%04x mask: 0x%02x\n", read_ctrl(s, 0xb8), inb(s->sbbase+0xc), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->ddmabase+0xf)); printk(KERN_DEBUG "solo1: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n" KERN_DEBUG "solo1: B1: 0x%02x B2: 0x%02x B4: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n", read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb4), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9)); #endif } /* --------------------------------------------------------------------- */ #define DMABUF_DEFAULTORDER (15-PAGE_SHIFT) #define DMABUF_MINORDER 1 extern inline void dealloc_dmabuf(struct solo1_state *s, struct dmabuf *db) { unsigned long map, mapend; if (db->rawbuf) { /* undo marking the pages as reserved */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) clear_bit(PG_reserved, &mem_map[map].flags); pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr); } db->rawbuf = NULL; db->mapped = db->ready = 0; } static int prog_dmabuf(struct solo1_state *s, struct dmabuf *db) { int order; unsigned bytespersec; unsigned bufs, sample_shift = 0; unsigned long map, mapend; db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr))) break; if (!db->rawbuf) return -ENOMEM; db->buforder = order; /* now mark the pages as reserved; otherwise remap_page_range doesn't do what we want */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) set_bit(PG_reserved, &mem_map[map].flags); } if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE)) sample_shift++; if (s->channels > 1) sample_shift++; bytespersec = s->rate << sample_shift; bufs = PAGE_SIZE << db->buforder; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytespersec) db->fragshift = ld2(bytespersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytespersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; db->fragsamples = db->fragsize >> sample_shift; db->dmasize = db->numfrag << db->fragshift; return 0; } extern inline int prog_dmabuf_adc(struct solo1_state *s) { unsigned long va; int c; stop_adc(s); /* check if PCI implementation supports 24bit busmaster DMA */ if (s->dev->dma_mask > 0xffffff) return -EIO; if ((c = prog_dmabuf(s, &s->dma_adc))) return c; va = s->dma_adc.dmaaddr; if ((va & ~((1<<24)-1))) panic("solo1: buffer above 16M boundary"); outb(0, s->ddmabase+0xd); /* clear */ outb(1, s->ddmabase+0xf); /* mask */ /*outb(0, s->ddmabase+8);*/ /* enable (enable is active low!) */ outb(0x54, s->ddmabase+0xb); /* DMA_MODE_READ | DMA_MODE_AUTOINIT */ outl(va, s->ddmabase); outw(s->dma_adc.dmasize-1, s->ddmabase+4); c = - s->dma_adc.fragsamples; write_ctrl(s, 0xa4, c); write_ctrl(s, 0xa5, c >> 8); outb(0, s->ddmabase+0xf); s->dma_adc.ready = 1; return 0; } extern inline int prog_dmabuf_dac(struct solo1_state *s) { unsigned long va; int c; stop_dac(s); if ((c = prog_dmabuf(s, &s->dma_dac))) return c; memset(s->dma_dac.rawbuf, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80, s->dma_dac.dmasize); /* almost correct for U16 */ va = s->dma_dac.dmaaddr; if ((va ^ (va + s->dma_dac.dmasize - 1)) & ~((1<<20)-1)) panic("solo1: buffer crosses 1M boundary"); outl(va, s->iobase); /* warning: s->dma_dac.dmasize & 0xffff must not be zero! i.e. this limits us to a 32k buffer */ outw(s->dma_dac.dmasize, s->iobase+4); c = - s->dma_dac.fragsamples; write_mixer(s, 0x74, c); write_mixer(s, 0x76, c >> 8); outb(0xa, s->iobase+6); s->dma_dac.ready = 1; return 0; } extern inline void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c) { if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(((char *)buf) + bptr, c, x); bptr = 0; len -= x; } memset(((char *)buf) + bptr, c, len); } /* call with spinlock held! */ static void solo1_update_ptr(struct solo1_state *s) { int diff; unsigned hwptr; /* update ADC pointer */ if (s->ena & FMODE_READ) { hwptr = (s->dma_adc.dmasize - 1 - inw(s->ddmabase+4)) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; #if 0 printk(KERN_DEBUG "solo1: rd: hwptr %u swptr %u dmasize %u count %u\n", s->dma_adc.hwptr, s->dma_adc.swptr, s->dma_adc.dmasize, s->dma_adc.count); #endif if (s->dma_adc.mapped) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); } else { if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) { s->ena &= ~FMODE_READ; write_ctrl(s, 0xb8, 0xe); s->dma_adc.error++; } if (s->dma_adc.count > 0) wake_up(&s->dma_adc.wait); } } /* update DAC pointer */ if (s->ena & FMODE_WRITE) { hwptr = (s->dma_dac.dmasize - inw(s->iobase+4)) % s->dma_dac.dmasize; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; #if 0 printk(KERN_DEBUG "solo1: wr: hwptr %u swptr %u dmasize %u count %u\n", s->dma_dac.hwptr, s->dma_dac.swptr, s->dma_dac.dmasize, s->dma_dac.count); #endif if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) wake_up(&s->dma_dac.wait); } else { s->dma_dac.count -= diff; if (s->dma_dac.count <= 0) { s->ena &= ~FMODE_WRITE; write_mixer(s, 0x78, 0x12); s->dma_dac.error++; } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s->dma_dac.rawbuf, s->dma_dac.dmasize, s->dma_dac.swptr, s->dma_dac.fragsize, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80); s->dma_dac.endcleared = 1; } if (s->dma_dac.count < (signed)s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } } } /* --------------------------------------------------------------------- */ static void prog_codec(struct solo1_state *s) { unsigned long flags; int fdiv, filter; unsigned char c; reset_ctrl(s); write_seq(s, 0xd3); /* program sampling rates */ filter = s->rate * 9 / 20; /* Set filter roll-off to 90% of rate/2 */ fdiv = 256 - 7160000 / (filter * 82); spin_lock_irqsave(&s->lock, flags); write_ctrl(s, 0xa1, s->clkdiv); write_ctrl(s, 0xa2, fdiv); write_mixer(s, 0x70, s->clkdiv); write_mixer(s, 0x72, fdiv); /* program ADC parameters */ write_ctrl(s, 0xb8, 0xe); write_ctrl(s, 0xb9, /*0x1*/0); write_ctrl(s, 0xa8, (s->channels > 1) ? 0x11 : 0x12); c = 0xd0; if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE)) c |= 0x04; if (s->fmt & (AFMT_S16_LE | AFMT_S8)) c |= 0x20; if (s->channels > 1) c ^= 0x48; write_ctrl(s, 0xb7, (c & 0x70) | 1); write_ctrl(s, 0xb7, c); write_ctrl(s, 0xb1, 0x50); write_ctrl(s, 0xb2, 0x50); /* program DAC parameters */ c = 0x40; if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE)) c |= 1; if (s->fmt & (AFMT_S16_LE | AFMT_S8)) c |= 4; if (s->channels > 1) c |= 2; write_mixer(s, 0x7a, c); write_mixer(s, 0x78, 0x10); s->ena = 0; spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ static const char invalid_magic[] = KERN_CRIT "solo1: invalid magic value\n"; #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != SOLO1_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) /* --------------------------------------------------------------------- */ static int mixer_ioctl(struct solo1_state *s, unsigned int cmd, unsigned long arg) { static const unsigned int mixer_src[8] = { SOUND_MASK_MIC, SOUND_MASK_MIC, SOUND_MASK_CD, SOUND_MASK_VOLUME, SOUND_MASK_MIC, 0, SOUND_MASK_LINE, 0 }; static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = 1, /* voice */ [SOUND_MIXER_SYNTH] = 2, /* FM */ [SOUND_MIXER_CD] = 3, /* CD */ [SOUND_MIXER_LINE] = 4, /* Line */ [SOUND_MIXER_LINE1] = 5, /* AUX */ [SOUND_MIXER_MIC] = 6, /* Mic */ [SOUND_MIXER_LINE2] = 7, /* Mono in */ [SOUND_MIXER_SPEAKER] = 8, /* Speaker */ [SOUND_MIXER_RECLEV] = 9, /* Recording level */ [SOUND_MIXER_VOLUME] = 10 /* Master Volume */ }; static const unsigned char mixreg[] = { 0x7c, /* voice */ 0x36, /* FM */ 0x38, /* CD */ 0x3e, /* Line */ 0x3a, /* AUX */ 0x1a, /* Mic */ 0x6d /* Mono in */ }; unsigned char l, r, rl, rr, vidx; int i, val; VALIDATE_STATE(s); if (cmd == SOUND_MIXER_PRIVATE1) { /* enable/disable/query mixer preamp */ get_user_ret(val, (int *)arg, -EFAULT); if (val != -1) { val = val ? 0xff : 0xf7; write_mixer(s, 0x7d, (read_mixer(s, 0x7d) | 0x08) & val); } val = (read_mixer(s, 0x7d) & 0x08) ? 1 : 0; return put_user(val, (int *)arg); } if (cmd == SOUND_MIXER_PRIVATE2) { /* enable/disable/query spatializer */ get_user_ret(val, (int *)arg, -EFAULT); if (val != -1) { val &= 0x3f; write_mixer(s, 0x52, val); write_mixer(s, 0x50, val ? 0x08 : 0); } return put_user(read_mixer(s, 0x52), (int *)arg); } if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, "Solo1", sizeof(info.id)); strncpy(info.name, "ESS Solo1", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, "Solo1", sizeof(info.id)); strncpy(info.name, "ESS Solo1", sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_src[read_mixer(s, 0x1c) & 7], (int *)arg); case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC | SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV | SOUND_MASK_SPEAKER, (int *)arg); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_VOLUME, (int *)arg); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC | SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV, (int *)arg); case SOUND_MIXER_CAPS: return put_user(SOUND_CAP_EXCL_INPUT, (int *)arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; return put_user(s->mix.vol[vidx-1], (int *)arg); } } if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE)) return -EINVAL; s->mix.modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ #if 0 { static const unsigned char regs[] = { 0x1c, 0x1a, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 0x60, 0x62, 0x6d, 0x7c }; int i; for (i = 0; i < sizeof(regs); i++) printk(KERN_DEBUG "solo1: mixer reg 0x%02x: 0x%02x\n", regs[i], read_mixer(s, regs[i])); printk(KERN_DEBUG "solo1: ctrl reg 0x%02x: 0x%02x\n", 0xb4, read_ctrl(s, 0xb4)); } #endif get_user_ret(val, (int *)arg, -EFAULT); i = hweight32(val); if (i == 0) return 0; else if (i > 1) val &= ~mixer_src[read_mixer(s, 0x1c) & 7]; for (i = 0; i < 8; i++) { if (mixer_src[i] & val) break; } if (i > 7) return 0; write_mixer(s, 0x1c, i); return 0; case SOUND_MIXER_VOLUME: get_user_ret(val, (int *)arg, -EFAULT); l = val & 0xff; if (l > 100) l = 100; r = (val >> 8) & 0xff; if (r > 100) r = 100; if (l < 6) { rl = 0x40; l = 0; } else { rl = (l * 2 - 11) / 3; l = (rl * 3 + 11) / 2; } if (r < 6) { rr = 0x40; r = 0; } else { rr = (r * 2 - 11) / 3; r = (rr * 3 + 11) / 2; } write_mixer(s, 0x60, rl); write_mixer(s, 0x62, rr); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[9] = ((unsigned int)r << 8) | l; #else s->mix.vol[9] = val; #endif return put_user(s->mix.vol[9], (int *)arg); case SOUND_MIXER_SPEAKER: get_user_ret(val, (int *)arg, -EFAULT); l = val & 0xff; if (l > 100) l = 100; else if (l < 2) l = 2; rl = (l - 2) / 14; l = rl * 14 + 2; write_mixer(s, 0x3c, rl); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[7] = l * 0x101; #else s->mix.vol[7] = val; #endif return put_user(s->mix.vol[7], (int *)arg); case SOUND_MIXER_RECLEV: get_user_ret(val, (int *)arg, -EFAULT); l = (val << 1) & 0x1fe; if (l > 200) l = 200; else if (l < 5) l = 5; r = (val >> 7) & 0x1fe; if (r > 200) r = 200; else if (r < 5) r = 5; rl = (l - 5) / 13; rr = (r - 5) / 13; r = (rl * 13 + 5) / 2; l = (rr * 13 + 5) / 2; write_ctrl(s, 0xb4, (rl << 4) | rr); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[8] = ((unsigned int)r << 8) | l; #else s->mix.vol[8] = val; #endif return put_user(s->mix.vol[8], (int *)arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); l = (val << 1) & 0x1fe; if (l > 200) l = 200; else if (l < 5) l = 5; r = (val >> 7) & 0x1fe; if (r > 200) r = 200; else if (r < 5) r = 5; rl = (l - 5) / 13; rr = (r - 5) / 13; r = (rl * 13 + 5) / 2; l = (rr * 13 + 5) / 2; write_mixer(s, mixreg[vidx-1], (rl << 4) | rr); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS s->mix.vol[vidx-1] = ((unsigned int)r << 8) | l; #else s->mix.vol[vidx-1] = val; #endif return put_user(s->mix.vol[vidx-1], (int *)arg); } } /* --------------------------------------------------------------------- */ static loff_t solo1_llseek(struct file *file, loff_t offset, int origin) { return -ESPIPE; } /* --------------------------------------------------------------------- */ static int solo1_open_mixdev(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct list_head *list; struct solo1_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct solo1_state, devs); if (s->dev_mixer == minor) break; } VALIDATE_STATE(s); file->private_data = s; return 0; } static int solo1_release_mixdev(struct inode *inode, struct file *file) { struct solo1_state *s = (struct solo1_state *)file->private_data; VALIDATE_STATE(s); return 0; } static int solo1_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct solo1_state *)file->private_data, cmd, arg); } static /*const*/ struct file_operations solo1_mixer_fops = { owner: THIS_MODULE, llseek: solo1_llseek, ioctl: solo1_ioctl_mixdev, open: solo1_open_mixdev, release: solo1_release_mixdev, }; /* --------------------------------------------------------------------- */ static int drain_dac(struct solo1_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count; unsigned tmo; if (s->dma_dac.mapped) return 0; add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->rate; if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE)) tmo >>= 1; if (s->channels > 1) tmo >>= 1; if (!schedule_timeout(tmo + 1)) printk(KERN_DEBUG "solo1: dma timed out??\n"); } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t solo1_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct solo1_state *s = (struct solo1_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; add_wait_queue(&s->dma_adc.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); swptr = s->dma_adc.swptr; cnt = s->dma_adc.dmasize-swptr; if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; #ifdef DEBUGREC printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x DMAstat: 0x%02x DMAcnt: 0x%04x SBstat: 0x%02x cnt: %u\n", read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc), cnt); #endif if (cnt <= 0) { start_adc(s); #ifdef DEBUGREC printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n" KERN_DEBUG "solo1_read: regs: B1: 0x%02x B2: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n" KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n" KERN_DEBUG "solo1_read: SBstat: 0x%02x cnt: %u\n", read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9), inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt); #endif if (inb(s->ddmabase+15) & 1) printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n"); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); #ifdef DEBUGREC printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n" KERN_DEBUG "solo1_read: regs: B1: 0x%02x B2: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n" KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n" KERN_DEBUG "solo1_read: SBstat: 0x%02x cnt: %u\n", read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8), read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9), inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt); #endif if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) { if (!ret) ret = -EFAULT; break; } swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_adc(s); #ifdef DEBUGREC printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x DMAstat: 0x%02x DMAcnt: 0x%04x SBstat: 0x%02x\n", read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc)); #endif } remove_wait_queue(&s->dma_adc.wait, &wait); set_current_state(TASK_RUNNING); return ret; } static ssize_t solo1_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct solo1_state *s = (struct solo1_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; #if 0 printk(KERN_DEBUG "solo1_write: reg 70: 0x%02x 71: 0x%02x 72: 0x%02x 74: 0x%02x 76: 0x%02x 78: 0x%02x 7A: 0x%02x\n" KERN_DEBUG "solo1_write: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x SBstat: 0x%02x\n", read_mixer(s, 0x70), read_mixer(s, 0x71), read_mixer(s, 0x72), read_mixer(s, 0x74), read_mixer(s, 0x76), read_mixer(s, 0x78), read_mixer(s, 0x7a), inl(s->iobase), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc)); printk(KERN_DEBUG "solo1_write: reg 78: 0x%02x reg 7A: 0x%02x DMAcnt: 0x%04x DMAstat: 0x%02x SBstat: 0x%02x\n", read_mixer(s, 0x78), read_mixer(s, 0x7a), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc)); #endif ret = 0; add_wait_queue(&s->dma_dac.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) { if (!ret) ret = -EFAULT; break; } swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return ret; } /* No kernel lock - we have our own spinlock */ static unsigned int solo1_poll(struct file *file, struct poll_table_struct *wait) { struct solo1_state *s = (struct solo1_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->dma_dac.wait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->dma_adc.wait, wait); spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.mapped) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } else { if (s->dma_adc.count > 0) mask |= POLLIN | POLLRDNORM; } } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize > s->dma_dac.count) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int solo1_mmap(struct file *file, struct vm_area_struct *vma) { struct solo1_state *s = (struct solo1_state *)file->private_data; struct dmabuf *db; int ret = -EINVAL; unsigned long size; VALIDATE_STATE(s); lock_kernel(); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf_dac(s)) != 0) goto out; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf_adc(s)) != 0) goto out; db = &s->dma_adc; } else goto out; ret = -EINVAL; if (vma->vm_pgoff != 0) goto out; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) goto out; ret = -EAGAIN; if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) goto out; db->mapped = 1; ret = 0; out: unlock_kernel(); return ret; } static int solo1_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct solo1_state *s = (struct solo1_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret, count; int div1, div2; unsigned rate1, rate2; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } prog_codec(s); return 0; case SNDCTL_DSP_SPEED: get_user_ret(val, (int *)arg, -EFAULT); if (val >= 0) { stop_adc(s); stop_dac(s); s->dma_adc.ready = s->dma_dac.ready = 0; /* program sampling rates */ if (val > 48000) val = 48000; if (val < 6300) val = 6300; div1 = (768000 + val / 2) / val; rate1 = (768000 + div1 / 2) / div1; div1 = -div1; div2 = (793800 + val / 2) / val; rate2 = (793800 + div2 / 2) / div2; div2 = (-div2) & 0x7f; if (abs(val - rate2) < abs(val - rate1)) { rate1 = rate2; div1 = div2; } s->rate = rate1; s->clkdiv = div1; prog_codec(s); } return put_user(s->rate, (int *)arg); case SNDCTL_DSP_STEREO: get_user_ret(val, (int *)arg, -EFAULT); stop_adc(s); stop_dac(s); s->dma_adc.ready = s->dma_dac.ready = 0; /* program channels */ s->channels = val ? 2 : 1; prog_codec(s); return 0; case SNDCTL_DSP_CHANNELS: get_user_ret(val, (int *)arg, -EFAULT); if (val != 0) { stop_adc(s); stop_dac(s); s->dma_adc.ready = s->dma_dac.ready = 0; /* program channels */ s->channels = (val >= 2) ? 2 : 1; prog_codec(s); } return put_user(s->channels, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_LE|AFMT_U16_LE|AFMT_S8|AFMT_U8, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ get_user_ret(val, (int *)arg, -EFAULT); if (val != AFMT_QUERY) { stop_adc(s); stop_dac(s); s->dma_adc.ready = s->dma_dac.ready = 0; /* program format */ if (val != AFMT_S16_LE && val != AFMT_U16_LE && val != AFMT_S8 && val != AFMT_U8) val = AFMT_U8; s->fmt = val; prog_codec(s); } return put_user(s->fmt, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & s->ena & FMODE_READ) val |= PCM_ENABLE_INPUT; if (file->f_mode & s->ena & FMODE_WRITE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); case SNDCTL_DSP_SETTRIGGER: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s))) return ret; start_adc(s); if (inb(s->ddmabase+15) & 1) printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n"); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s))) return ret; start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->ena & FMODE_WRITE) && (val = prog_dmabuf_dac(s)) != 0) return val; spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; count = s->dma_dac.count; if (count < 0) count = 0; abinfo.bytes = s->dma_dac.dmasize - count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(s->ena & FMODE_READ) && (val = prog_dmabuf_adc(s)) != 0) return val; spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count < 0) count = 0; return put_user(count, (int *)arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift; cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); solo1_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; count = s->dma_dac.count; if (count < 0) count = 0; cinfo.blocks = count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); #if 0 printk(KERN_DEBUG "esssolo1: GETOPTR: bytes %u blocks %u ptr %u, buforder %u numfrag %u fragshift %u\n" KERN_DEBUG "esssolo1: swptr %u count %u fragsize %u dmasize %u fragsamples %u\n", cinfo.bytes, cinfo.blocks, cinfo.ptr, s->dma_dac.buforder, s->dma_dac.numfrag, s->dma_dac.fragshift, s->dma_dac.swptr, s->dma_dac.count, s->dma_dac.fragsize, s->dma_dac.dmasize, s->dma_dac.fragsamples); #endif return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf_dac(s))) return val; return put_user(s->dma_dac.fragsize, (int *)arg); } if ((val = prog_dmabuf_adc(s))) return val; return put_user(s->dma_adc.fragsize, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { s->dma_adc.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_adc.ossfragshift < 4) s->dma_adc.ossfragshift = 4; if (s->dma_adc.ossfragshift > 15) s->dma_adc.ossfragshift = 15; if (s->dma_adc.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { s->dma_dac.ossfragshift = val & 0xffff; s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_dac.ossmaxfrags = 4; } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; if (file->f_mode & FMODE_WRITE) s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: return put_user(s->rate, (int *)arg); case SOUND_PCM_READ_CHANNELS: return put_user(s->channels, (int *)arg); case SOUND_PCM_READ_BITS: return put_user((s->fmt & (AFMT_S8|AFMT_U8)) ? 8 : 16, (int *)arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: case SOUND_PCM_READ_FILTER: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static int solo1_release(struct inode *inode, struct file *file) { struct solo1_state *s = (struct solo1_state *)file->private_data; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem); if (file->f_mode & FMODE_WRITE) { stop_dac(s); outb(0, s->iobase+6); /* disable DMA */ dealloc_dmabuf(s, &s->dma_dac); } if (file->f_mode & FMODE_READ) { stop_adc(s); outb(1, s->ddmabase+0xf); /* mask DMA channel */ outb(0, s->ddmabase+0xd); /* DMA master clear */ dealloc_dmabuf(s, &s->dma_adc); } s->open_mode &= ~(FMODE_READ | FMODE_WRITE); wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static int solo1_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); struct list_head *list; struct solo1_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct solo1_state, devs); if (!((s->dev_audio ^ minor) & ~0xf)) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & (FMODE_READ | FMODE_WRITE)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } s->fmt = AFMT_U8; s->channels = 1; s->rate = 8000; s->clkdiv = 96 | 0x80; s->ena = 0; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); up(&s->open_sem); prog_codec(s); return 0; } static /*const*/ struct file_operations solo1_audio_fops = { owner: THIS_MODULE, llseek: solo1_llseek, read: solo1_read, write: solo1_write, poll: solo1_poll, ioctl: solo1_ioctl, mmap: solo1_mmap, open: solo1_open, release: solo1_release, }; /* --------------------------------------------------------------------- */ /* hold spinlock for the following! */ static void solo1_handle_midi(struct solo1_state *s) { unsigned char ch; int wake; if (!(s->mpubase)) return; wake = 0; while (!(inb(s->mpubase+1) & 0x80)) { ch = inb(s->mpubase); if (s->midi.icnt < MIDIINBUF) { s->midi.ibuf[s->midi.iwr] = ch; s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF; s->midi.icnt++; } wake = 1; } if (wake) wake_up(&s->midi.iwait); wake = 0; while (!(inb(s->mpubase+1) & 0x40) && s->midi.ocnt > 0) { outb(s->midi.obuf[s->midi.ord], s->mpubase); s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF; s->midi.ocnt--; if (s->midi.ocnt < MIDIOUTBUF-16) wake = 1; } if (wake) wake_up(&s->midi.owait); } static void solo1_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct solo1_state *s = (struct solo1_state *)dev_id; unsigned int intsrc; /* fastpath out, to ease interrupt sharing */ intsrc = inb(s->iobase+7); /* get interrupt source(s) */ if (!intsrc) return; (void)inb(s->sbbase+0xe); /* clear interrupt */ spin_lock(&s->lock); /* clear audio interrupts first */ if (intsrc & 0x20) write_mixer(s, 0x7a, read_mixer(s, 0x7a) & 0x7f); solo1_update_ptr(s); solo1_handle_midi(s); spin_unlock(&s->lock); } static void solo1_midi_timer(unsigned long data) { struct solo1_state *s = (struct solo1_state *)data; unsigned long flags; spin_lock_irqsave(&s->lock, flags); solo1_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); s->midi.timer.expires = jiffies+1; add_timer(&s->midi.timer); } /* --------------------------------------------------------------------- */ static ssize_t solo1_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct solo1_state *s = (struct solo1_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; if (count == 0) return 0; ret = 0; add_wait_queue(&s->midi.iwait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.ird; cnt = MIDIINBUF - ptr; if (s->midi.icnt < cnt) cnt = s->midi.icnt; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIINBUF; spin_lock_irqsave(&s->lock, flags); s->midi.ird = ptr; s->midi.icnt -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; break; } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.iwait, &wait); return ret; } static ssize_t solo1_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct solo1_state *s = (struct solo1_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; if (count == 0) return 0; ret = 0; add_wait_queue(&s->midi.owait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.owr; cnt = MIDIOUTBUF - ptr; if (s->midi.ocnt + cnt > MIDIOUTBUF) cnt = MIDIOUTBUF - s->midi.ocnt; if (cnt <= 0) { __set_current_state(TASK_INTERRUPTIBLE); solo1_handle_midi(s); } spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIOUTBUF; spin_lock_irqsave(&s->lock, flags); s->midi.owr = ptr; s->midi.ocnt += cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; spin_lock_irqsave(&s->lock, flags); solo1_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.owait, &wait); return ret; } /* No kernel lock - we have our own spinlock */ static unsigned int solo1_midi_poll(struct file *file, struct poll_table_struct *wait) { struct solo1_state *s = (struct solo1_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_flags & FMODE_WRITE) poll_wait(file, &s->midi.owait, wait); if (file->f_flags & FMODE_READ) poll_wait(file, &s->midi.iwait, wait); spin_lock_irqsave(&s->lock, flags); if (file->f_flags & FMODE_READ) { if (s->midi.icnt > 0) mask |= POLLIN | POLLRDNORM; } if (file->f_flags & FMODE_WRITE) { if (s->midi.ocnt < MIDIOUTBUF) mask |= POLLOUT | POLLWRNORM; } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int solo1_midi_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); unsigned long flags; struct list_head *list; struct solo1_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct solo1_state, devs); if (s->dev_midi == minor) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; s->midi.ord = s->midi.owr = s->midi.ocnt = 0; outb(0xff, s->mpubase+1); /* reset command */ outb(0x3f, s->mpubase+1); /* uart command */ if (!(inb(s->mpubase+1) & 0x80)) inb(s->mpubase); s->midi.ird = s->midi.iwr = s->midi.icnt = 0; outb(0xb0, s->iobase + 7); /* enable A1, A2, MPU irq's */ init_timer(&s->midi.timer); s->midi.timer.expires = jiffies+1; s->midi.timer.data = (unsigned long)s; s->midi.timer.function = solo1_midi_timer; add_timer(&s->midi.timer); } if (file->f_mode & FMODE_READ) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; } if (file->f_mode & FMODE_WRITE) { s->midi.ord = s->midi.owr = s->midi.ocnt = 0; } spin_unlock_irqrestore(&s->lock, flags); s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); up(&s->open_sem); return 0; } static int solo1_midi_release(struct inode *inode, struct file *file) { struct solo1_state *s = (struct solo1_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned count, tmo; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) { add_wait_queue(&s->midi.owait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->midi.ocnt; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (file->f_flags & O_NONBLOCK) { remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = (count * HZ) / 3100; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "solo1: midi timed out??\n"); } remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); } down(&s->open_sem); s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE); spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { outb(0x30, s->iobase + 7); /* enable A1, A2 irq's */ del_timer(&s->midi.timer); } spin_unlock_irqrestore(&s->lock, flags); wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static /*const*/ struct file_operations solo1_midi_fops = { owner: THIS_MODULE, llseek: solo1_llseek, read: solo1_midi_read, write: solo1_midi_write, poll: solo1_midi_poll, open: solo1_midi_open, release: solo1_midi_release, }; /* --------------------------------------------------------------------- */ static int solo1_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { static const unsigned char op_offset[18] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15 }; struct solo1_state *s = (struct solo1_state *)file->private_data; struct dm_fm_voice v; struct dm_fm_note n; struct dm_fm_params p; unsigned int io; unsigned int regb; switch (cmd) { case FM_IOCTL_RESET: for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->sbbase); outb(0, s->sbbase+1); outb(regb, s->sbbase+2); outb(0, s->sbbase+3); } return 0; case FM_IOCTL_PLAY_NOTE: if (copy_from_user(&n, (void *)arg, sizeof(n))) return -EFAULT; if (n.voice >= 18) return -EINVAL; if (n.voice >= 9) { regb = n.voice - 9; io = s->sbbase+2; } else { regb = n.voice; io = s->sbbase; } outb(0xa0 + regb, io); outb(n.fnum & 0xff, io+1); outb(0xb0 + regb, io); outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1); return 0; case FM_IOCTL_SET_VOICE: if (copy_from_user(&v, (void *)arg, sizeof(v))) return -EFAULT; if (v.voice >= 18) return -EINVAL; regb = op_offset[v.voice]; io = s->sbbase + ((v.op & 1) << 1); outb(0x20 + regb, io); outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1); outb(0x40 + regb, io); outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1); outb(0x60 + regb, io); outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1); outb(0x80 + regb, io); outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1); outb(0xe0 + regb, io); outb(v.waveform & 0x7, io+1); if (n.voice >= 9) { regb = n.voice - 9; io = s->sbbase+2; } else { regb = n.voice; io = s->sbbase; } outb(0xc0 + regb, io); outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) | (v.connection & 1), io+1); return 0; case FM_IOCTL_SET_PARAMS: if (copy_from_user(&p, (void *)arg, sizeof(p))) return -EFAULT; outb(0x08, s->sbbase); outb((p.kbd_split & 1) << 6, s->sbbase+1); outb(0xbd, s->sbbase); outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) | ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->sbbase+1); return 0; case FM_IOCTL_SET_OPL: outb(4, s->sbbase+2); outb(arg, s->sbbase+3); return 0; case FM_IOCTL_SET_MODE: outb(5, s->sbbase+2); outb(arg & 1, s->sbbase+3); return 0; default: return -EINVAL; } } static int solo1_dmfm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); struct list_head *list; struct solo1_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct solo1_state, devs); if (s->dev_dmfm == minor) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & FMODE_DMFM) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } if (check_region(s->sbbase, FMSYNTH_EXTENT)) { up(&s->open_sem); printk(KERN_ERR "solo1: FM synth io ports in use, opl3 loaded?\n"); return -EBUSY; } request_region(s->sbbase, FMSYNTH_EXTENT, "ESS Solo1"); /* init the stuff */ outb(1, s->sbbase); outb(0x20, s->sbbase+1); /* enable waveforms */ outb(4, s->sbbase+2); outb(0, s->sbbase+3); /* no 4op enabled */ outb(5, s->sbbase+2); outb(1, s->sbbase+3); /* enable OPL3 */ s->open_mode |= FMODE_DMFM; up(&s->open_sem); return 0; } static int solo1_dmfm_release(struct inode *inode, struct file *file) { struct solo1_state *s = (struct solo1_state *)file->private_data; unsigned int regb; VALIDATE_STATE(s); lock_kernel(); down(&s->open_sem); s->open_mode &= ~FMODE_DMFM; for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->sbbase); outb(0, s->sbbase+1); outb(regb, s->sbbase+2); outb(0, s->sbbase+3); } release_region(s->sbbase, FMSYNTH_EXTENT); wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static /*const*/ struct file_operations solo1_dmfm_fops = { owner: THIS_MODULE, llseek: solo1_llseek, ioctl: solo1_dmfm_ioctl, open: solo1_dmfm_open, release: solo1_dmfm_release, }; /* --------------------------------------------------------------------- */ static struct initvol { int mixch; int vol; } initvol[] __initdata = { { SOUND_MIXER_WRITE_VOLUME, 0x4040 }, { SOUND_MIXER_WRITE_PCM, 0x4040 }, { SOUND_MIXER_WRITE_SYNTH, 0x4040 }, { SOUND_MIXER_WRITE_CD, 0x4040 }, { SOUND_MIXER_WRITE_LINE, 0x4040 }, { SOUND_MIXER_WRITE_LINE1, 0x4040 }, { SOUND_MIXER_WRITE_LINE2, 0x4040 }, { SOUND_MIXER_WRITE_RECLEV, 0x4040 }, { SOUND_MIXER_WRITE_SPEAKER, 0x4040 }, { SOUND_MIXER_WRITE_MIC, 0x4040 } }; static int setup_solo1(struct solo1_state *s) { struct pci_dev *pcidev = s->dev; mm_segment_t fs; int i, val; /* initialize DDMA base address */ printk(KERN_DEBUG "solo1: ddma base address: 0x%lx\n", s->ddmabase); pci_write_config_word(pcidev, 0x60, (s->ddmabase & (~0xf)) | 1); /* set DMA policy to DDMA, IRQ emulation off (CLKRUN disabled for now) */ pci_write_config_dword(pcidev, 0x50, 0); /* disable legacy audio address decode */ pci_write_config_word(pcidev, 0x40, 0x907f); /* initialize the chips */ if (!reset_ctrl(s)) { printk(KERN_ERR "esssolo1: cannot reset controller\n"); return -1; } outb(0xb0, s->iobase+7); /* enable A1, A2, MPU irq's */ /* initialize mixer regs */ write_mixer(s, 0x7f, 0); /* disable music digital recording */ write_mixer(s, 0x7d, 0x0c); /* enable mic preamp, MONO_OUT is 2nd DAC right channel */ write_mixer(s, 0x64, 0x45); /* volume control */ write_mixer(s, 0x48, 0x10); /* enable music DAC/ES6xx interface */ write_mixer(s, 0x50, 0); /* disable spatializer */ write_mixer(s, 0x52, 0); write_mixer(s, 0x14, 0); /* DAC1 minimum volume */ write_mixer(s, 0x71, 0x20); /* enable new 0xA1 reg format */ outb(0, s->ddmabase+0xd); /* DMA master clear */ outb(1, s->ddmabase+0xf); /* mask channel */ /*outb(0, s->ddmabase+0x8);*/ /* enable controller (enable is low active!!) */ pci_set_master(pcidev); /* enable bus mastering */ fs = get_fs(); set_fs(KERNEL_DS); val = SOUND_MASK_LINE; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val); for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val); } val = 1; /* enable mic preamp */ mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long)&val); set_fs(fs); return 0; } static int solo1_pm_callback(struct pm_dev *dev, pm_request_t rqst, void *data) { struct solo1_state *s = (struct solo1_state*) dev->data; if (s) { switch(rqst) { case PM_RESUME: setup_solo1(s); break; case PM_SUSPEND: outb(0, s->iobase+6); /* DMA master clear */ outb(0, s->ddmabase+0xd); /* reset sequencer and FIFO */ outb(3, s->sbbase+6); /* turn off DDMA controller address space */ pci_write_config_word(s->dev, 0x60, 0); break; } } return 0; } #define RSRCISIOREGION(dev,num) (pci_resource_start((dev), (num)) != 0 && \ (pci_resource_flags((dev), (num)) & IORESOURCE_IO)) static int __devinit solo1_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid) { struct solo1_state *s; struct pm_dev *pmdev; dma_addr_t dma_mask; if (!RSRCISIOREGION(pcidev, 0) || !RSRCISIOREGION(pcidev, 1) || !RSRCISIOREGION(pcidev, 2) || !RSRCISIOREGION(pcidev, 3)) return -1; if (pcidev->irq == 0) return -1; if (pci_dma_supported(pcidev, 0x00ffffff)) { dma_mask = 0x00ffffff; /* this enables playback and recording */ } else if (pci_dma_supported(pcidev, 0xffffffff)) { dma_mask = 0xffffffff; /* this enables only playback, as the recording BMDMA can handle only 24bits */ } else { printk(KERN_WARNING "solo1: architecture does not support 24bit or 32bit PCI busmaster DMA\n"); return -1; } if (!(s = kmalloc(sizeof(struct solo1_state), GFP_KERNEL))) { printk(KERN_WARNING "solo1: out of memory\n"); return -1; } memset(s, 0, sizeof(struct solo1_state)); init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->midi.iwait); init_waitqueue_head(&s->midi.owait); init_MUTEX(&s->open_sem); spin_lock_init(&s->lock); s->magic = SOLO1_MAGIC; s->dev = pcidev; s->iobase = pci_resource_start(pcidev, 0); s->sbbase = pci_resource_start(pcidev, 1); s->vcbase = pci_resource_start(pcidev, 2); s->ddmabase = s->vcbase + DDMABASE_OFFSET; s->mpubase = pci_resource_start(pcidev, 3); s->gpbase = pci_resource_start(pcidev, 4); s->irq = pcidev->irq; if (!request_region(s->iobase, IOBASE_EXTENT, "ESS Solo1")) { printk(KERN_ERR "solo1: io ports in use\n"); goto err_region1; } if (!request_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT, "ESS Solo1")) { printk(KERN_ERR "solo1: io ports in use\n"); goto err_region2; } if (!request_region(s->ddmabase, DDMABASE_EXTENT, "ESS Solo1")) { printk(KERN_ERR "solo1: io ports in use\n"); goto err_region3; } if (!request_region(s->mpubase, MPUBASE_EXTENT, "ESS Solo1")) { printk(KERN_ERR "solo1: io ports in use\n"); goto err_region4; } if (request_irq(s->irq, solo1_interrupt, SA_SHIRQ, "ESS Solo1", s)) { printk(KERN_ERR "solo1: irq %u in use\n", s->irq); goto err_irq; } if (pci_enable_device(pcidev)) goto err_irq; printk(KERN_INFO "solo1: joystick port at %#lx\n", s->gpbase+1); /* register devices */ if ((s->dev_audio = register_sound_dsp(&solo1_audio_fops, -1)) < 0) goto err_dev1; if ((s->dev_mixer = register_sound_mixer(&solo1_mixer_fops, -1)) < 0) goto err_dev2; if ((s->dev_midi = register_sound_midi(&solo1_midi_fops, -1)) < 0) goto err_dev3; if ((s->dev_dmfm = register_sound_special(&solo1_dmfm_fops, 15 /* ?? */)) < 0) goto err_dev4; if (setup_solo1(s)) goto err; /* store it in the driver field */ pcidev->driver_data = s; pcidev->dma_mask = dma_mask; /* put it into driver list */ list_add_tail(&s->devs, &devs); pmdev = pm_register(PM_PCI_DEV, PM_PCI_ID(pcidev), solo1_pm_callback); if (pmdev) pmdev->data = s; return 0; err: unregister_sound_dsp(s->dev_dmfm); err_dev4: unregister_sound_dsp(s->dev_midi); err_dev3: unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: printk(KERN_ERR "solo1: initialisation error\n"); free_irq(s->irq, s); err_irq: release_region(s->iobase, IOBASE_EXTENT); err_region4: release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT); err_region3: release_region(s->ddmabase, DDMABASE_EXTENT); err_region2: release_region(s->mpubase, MPUBASE_EXTENT); err_region1: kfree(s); return -1; } static void __devinit solo1_remove(struct pci_dev *dev) { struct solo1_state *s = (struct solo1_state *)dev->driver_data; if (!s) return; list_del(&s->devs); /* stop DMA controller */ outb(0, s->iobase+6); outb(0, s->ddmabase+0xd); /* DMA master clear */ outb(3, s->sbbase+6); /* reset sequencer and FIFO */ synchronize_irq(); pci_write_config_word(s->dev, 0x60, 0); /* turn off DDMA controller address space */ free_irq(s->irq, s); release_region(s->iobase, IOBASE_EXTENT); release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT); release_region(s->ddmabase, DDMABASE_EXTENT); release_region(s->mpubase, MPUBASE_EXTENT); unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); unregister_sound_midi(s->dev_midi); unregister_sound_special(s->dev_dmfm); kfree(s); dev->driver_data = NULL; } static struct pci_device_id id_table[] __devinitdata = { { PCI_VENDOR_ID_ESS, PCI_DEVICE_ID_ESS_SOLO1, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci, id_table); static struct pci_driver solo1_driver = { name: "ESS Solo1", id_table: id_table, probe: solo1_probe, remove: solo1_remove }; static int __init init_solo1(void) { if (!pci_present()) /* No PCI bus in this machine! */ return -ENODEV; printk(KERN_INFO "solo1: version v0.15 time " __TIME__ " " __DATE__ "\n"); if (!pci_register_driver(&solo1_driver)) { pci_unregister_driver(&solo1_driver); return -ENODEV; } return 0; } /* --------------------------------------------------------------------- */ MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu"); MODULE_DESCRIPTION("ESS Solo1 Driver"); static void __exit cleanup_solo1(void) { printk(KERN_INFO "solo1: unloading\n"); pci_unregister_driver(&solo1_driver); pm_unregister_all(solo1_pm_callback); } /* --------------------------------------------------------------------- */ module_init(init_solo1); module_exit(cleanup_solo1);