/* * drivers/sgi/audio/hal2.h * * Copyright (C) 1998 Ulf Carlsson (ulfc@bun.falkenberg.se) * */ #define H2_HAL2_BASE (HPC3_CHIP0_PBASE + 0x58000) #define H2_CTRL_PIO (H2_HAL2_BASE + 0 * 0x200) #define H2_AES_PIO (H2_HAL2_BASE + 1 * 0x200) #define H2_VOLUME_PIO (H2_HAL2_BASE + 2 * 0x200) #define H2_SYNTH_PIO (H2_HAL2_BASE + 3 * 0x200) typedef volatile unsigned int hal_reg; struct hal2_ctrl_regs { hal_reg _unused0[4]; hal_reg isr; /* 0x10 Status Register */ hal_reg _unused1[3]; hal_reg rev; /* 0x20 Revision Register */ hal_reg _unused2[3]; hal_reg iar; /* 0x30 Indirect Address Register */ hal_reg _unused3[3]; hal_reg idr0; /* 0x40 Indirect Data Register 0 */ hal_reg _unused4[3]; hal_reg idr1; /* 0x50 Indirect Data Register 1 */ hal_reg _unused5[3]; hal_reg idr2; /* 0x60 Indirect Data Register 2 */ hal_reg _unused6[3]; hal_reg idr3; /* 0x70 Indirect Data Register 3 */ } volatile *h2_ctrl = (struct hal2_ctrl_regs *) KSEG1ADDR(H2_CTRL_PIO); struct hal2_vol_regs { hal_reg right; /* 0x00 Right volume */ hal_reg left; /* 0x04 Left volume */ } volatile *h2_vol = (struct hal2_vol_regs *) KSEG1ADDR(H2_VOLUME_PIO); /* AES and synth regs should end up here if we ever support them */ /* Indirect status register */ #define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */ #define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */ #define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */ #define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */ #define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */ /* Revision register */ #define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */ #define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */ #define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */ #define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */ /* Indirect address register */ /* * Address of indirect internal register to be accessed. A write to this * register initiates read or write access to the indirect registers in the * HAL2. Note that there af four indirect data registers for write access to * registers larger than 16 byte. */ #define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */ /* block the register resides in */ /* 1=DMA Port */ /* 9=Global DMA Control */ /* 2=Bresenham */ /* 3=Unix Timer */ #define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */ /* blockin which the indirect */ /* register resides */ /* If IAR_TYPE_M=DMA Port: */ /* 1=Synth In */ /* 2=AES In */ /* 3=AES Out */ /* 4=DAC Out */ /* 5=ADC Out */ /* 6=Synth Control */ /* If IAR_TYPE_M=Global DMA Control: */ /* 1=Control */ /* If IAR_TYPE_M=Bresenham: */ /* 1=Bresenham Clock Gen 1 */ /* 2=Bresenham Clock Gen 2 */ /* 3=Bresenham Clock Gen 3 */ /* If IAR_TYPE_M=Unix Timer: */ /* 1=Unix Timer */ #define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */ #define H2_IAR_PARAM 0x000C /* Parameter Select */ #define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */ /* 00:word0 */ /* 01:word1 */ /* 10:word2 */ /* 11:word3 */ /* * HAL2 internal addressing * * The HAL2 has "indirect registers" (idr) which are accessed by writing to the * Indirect Data registers. Write the address to the Indirect Address register * to transfer the data. * * We define the H2IR_* to the read address and H2IW_* to the write address and * H2I_* to be fields in whatever register is referred to. * * When we write to indirect registers which are larger than one word (16 bit) * we have to fill more than one indirect register before writing. When we read * back however we have to read several times, each time with different Read * Back Indexes (there are defs for doing this easily). */ /* * Relay Control */ #define H2I_RELAY_C 0x9100 #define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */ /* DMA port enable */ #define H2I_DMA_PORT_EN 0x9104 #define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */ #define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */ #define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */ #define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */ #define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */ #define H2I_DMA_END 0x9108 /* global dma endian select */ #define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */ #define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */ #define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */ #define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */ #define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */ /* 0=b_end 1=l_end */ #define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */ #define H2I_SYNTH_C 0x1104 /* Synth DMA control */ #define H2I_AESRX_C 0x1204 /* AES RX dma control */ #define H2I_AESRX_C_TS_EN 0x20 /* timestamp enable */ #define H2I_AESRX_C_TS_FMT 0x40 /* timestamp format */ #define H2I_AESRX_C_NAUDIO 0x80 /* PBUS DMA data format */ /* AESRX CTRL, 16 bit */ #define H2I_AESTX_C 0x1304 /* AES TX DMA control */ #define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */ #define H2I_AESTX_C_CLKID_M 0x18 #define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */ #define H2I_AESTX_C_DATAT_M 0x300 /* DAC CTRL1, 16 bit */ #define H2I_DAC_C1 0x1404 /* DAC dma control */ #define H2I_DAC_C1_DMA_SHIFT 0 /* DMA channel */ #define H2I_DAC_C1_DMA_M 0x7 #define H2I_DAC_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */ #define H2I_DAC_C1_CLKID_M 0x18 #define H2I_DAC_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */ #define H2I_DAC_C1_DATAT_M 0x300 /* DAC CTRL2, 32 bit */ #define H2I_DAC_C2 0x1408 #define H2I_DAC_C2_RGAIN_SHIFT 0 /* right a/d input gain */ #define H2I_DAC_C2_R_GAIN_M 0xf #define H2I_DAC_C2_L_GAIN_SHIFT 4 /* left a/d input gain */ #define H2I_DAC_C2_L_GAIN_M 0xf0 #define H2I_DAC_C2_R_SEL 0x100 /* right input select */ #define H2I_DAC_C2_L_SEL 0x200 /* left input select */ #define H2I_DAC_C2_MUTE 0x400 /* mute */ #define H2I_DAC_C2_DO1 0x10000 /* digital output port bit 0 */ #define H2I_DAC_C2_DO2 0x20000 /* digital output port bit 1 */ #define H2I_DAC_C2_R_ATT_SHIFT 18 /* right a/d output - */ #define H2I_DAC_C2_R_ATT_M 0x7c0000 /* attenuation */ #define H2I_DAC_C2_L_ATT_SHIFT 23 /* left a/d output - */ #define H2I_DAC_C2_L_ATT_M 0x0000f80 /* attenuation */ /* ADC CTRL1, 16 bit */ #define H2I_ADC_C1 0x1504 /* DAC dma control */ #define H2I_ADC_C1_DMA_SHIFT 0 /* DMA channel */ #define H2I_ADC_C1_DMA_M 0x7 #define H2I_ADC_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */ #define H2I_ADC_C1_CLKID_M 0x18 #define H2I_ADC_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */ #define H2I_ADC_C1_DATAT_M 0x300 /* ADC CTRL2, 32 bit */ #define H2I_ADC_C2 0x1508 #define H2I_ADC_C2_RGAIN_SHIFT 0 /* right a/d input gain */ #define H2I_ADC_C2_R_GAIN_M 0xf #define H2I_ADC_C2_L_GAIN_SHIFT 4 /* left a/d input gain */ #define H2I_ADC_C2_L_GAIN_M 0xf0 #define H2I_ADC_C2_R_SEL 0x100 /* right input select */ #define H2I_ADC_C2_L_SEL 0x200 /* left input select */ #define H2I_ADC_C2_MUTE 0x400 /* mute */ #define H2I_ADC_C2_DO1 0x10000 /* digital output port bit 0 */ #define H2I_ADC_C2_DO2 0x20000 /* digital output port bit 1 */ #define H2I_ADC_C2_R_ATT_SHIFT 18 /* right a/d output - */ #define H2I_ADC_C2_R_ATT_M 0x7c0000 /* attenuation */ #define H2I_ADC_C2_L_ATT_SHIFT 23 /* left a/d output - */ #define H2I_ADC_C2_L_ATT_M 0x0000f80 /* attenuation */ #define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */ /* Clock generator 1 CTRL 1, 16 bit */ #define H2I_BRES1_C1 0x2104 #define H2I_BRES1_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */ #define H2I_BRES1_C1_M 0x03 /* Clock generator 1 CTRL 2, 32 bit */ #define H2I_BRES1_C2 0x2108 #define H2I_BRES1_C2_INC_SHIFT 0 /* increment value */ #define H2I_BRES1_C2_INC_M 0xffff #define H2I_BRES1_C2_MOD_SHIFT 16 /* modcontrol value */ #define H2I_BRES1_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */ /* Clock generator 2 CTRL 1, 16 bit */ #define H2I_BRES2_C1 0x2204 #define H2I_BRES2_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */ #define H2I_BRES2_C1_M 0x03 /* Clock generator 2 CTRL 2, 32 bit */ #define H2I_BRES2_C2 0x2208 #define H2I_BRES2_C2_INC_SHIFT 0 /* increment value */ #define H2I_BRES2_C2_INC_M 0xffff #define H2I_BRES2_C2_MOD_SHIFT 16 /* modcontrol value */ #define H2I_BRES2_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */ /* Clock generator 3 CTRL 1, 16 bit */ #define H2I_BRES3_C1 0x2304 #define H2I_BRES3_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */ #define H2I_BRES3_C1_M 0x03 /* Clock generator 3 CTRL 2, 32 bit */ #define H2I_BRES3_C2 0x2308 #define H2I_BRES3_C2_INC_SHIFT 0 /* increment value */ #define H2I_BRES3_C2_INC_M 0xffff #define H2I_BRES3_C2_MOD_SHIFT 16 /* modcontrol value */ #define H2I_BRES3_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */ /* Unix timer, 64 bit */ #if 0 #define H2I_UTIME 0x3104 #define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */ #define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */ #define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */ #define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */ #define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */ #endif