/* Marc.Hoffman@analog.com This is a pss driver. it is based on Greg.Yukna@analog.com @file{host} for DOG Unfortunately I can't distribute the ld file needed to make the pss card to emulate the SB stuff. I have provided a simple interface to the PSS unlike the DOG version. to download a new algorithm just cat it to /dev/pss 14,9. You really need to rebuild this with the synth.ld file get the .ld from your dos directory maybe voyetra\dsp001.ld ld2inc < synth.ld > synth-ld.h (make config does the same). rebuild Okay if you blow things away no problem just main(){ioctl(open("/dev/pss"),SNDCTL_PSS_RESET)}; and everything will be okay. At first I was going to worry about applications that were using the sound stuff and disallow the use of /dev/pss. But for now I figured it doesn't matter. And if you change algos all the other applications running die off due to DMA problems. Yeah just pull the plug and watch em die. If the registers get hosed main(){ioctl(open("/dev/pss"),SNDCTL_PSS_SETUP_REGISTERS)}; Probably everything else can be done via mmap Oh if you want to develop code for the ADSP-21xx or Program the 1848 just send me mail and I will hook you up. marc.hoffman@analog.com */ #include "sound_config.h" #if defined(CONFIGURE_SOUNDCARD) && !defined(EXCLUDE_PSS) #ifndef PSS_MSS_BASE #define PSS_MSS_BASE 0 #endif #ifndef PSS_MPU_BASE #define PSS_MPU_BASE 0 #endif #ifndef PSS_MPU_IRQ #define PSS_MPU_IRQ 0 #endif #undef DEB #define DEB(x) x #include "pss.h" static int pss_ok = 0; static int sb_ok = 0; static int pss_base; static int pss_irq; static int pss_dma; static int gamePort = 0; static int sbInt; static int cdPol; static int cdAddr = 0; /* 0x340; */ static int cdInt = 10; /* Define these by hand in local.h */ static int wssAddr = PSS_MSS_BASE; static int midiAddr = PSS_MPU_BASE; static int midiInt = PSS_MPU_IRQ; static int SoundPortAddress; static int SoundPortData; static int speaker = 1; static struct pss_speaker default_speaker = {0, 0, 0, PSS_STEREO}; DEFINE_WAIT_QUEUE (pss_sleeper, pss_sleep_flag); #include "synth-ld.h" static int pss_download_boot (unsigned char *block, int size); static int pss_reset_dsp (void); static inline void pss_outpw (unsigned short port, unsigned short value) { __asm__ __volatile__ ("outw %w0, %w1" : /* no outputs */ :"a" (value), "d" (port)); } static inline unsigned int pss_inpw (unsigned short port) { unsigned int _v; __asm__ __volatile__ ("inw %w1,%w0" :"=a" (_v):"d" (port), "0" (0)); return _v; } static void PSS_write (int data) { int i, limit; limit = GET_TIME () + 10; /* The timeout is 0.1 seconds */ /* * Note! the i<5000000 is an emergency exit. The dsp_command() is sometimes * called while interrupts are disabled. This means that the timer is * disabled also. However the timeout situation is a abnormal condition. * Normally the DSP should be ready to accept commands after just couple of * loops. */ for (i = 0; i < 5000000 && GET_TIME () < limit; i++) { if (pss_inpw (pss_base + PSS_STATUS) & PSS_WRITE_EMPTY) { pss_outpw (pss_base + PSS_DATA, data); return; } } printk ("PSS: DSP Command (%04x) Timeout.\n", data); printk ("IRQ conflict???\n"); } static void pss_setaddr (int addr, int configAddr) { int val; val = pss_inpw (configAddr); val &= ADDR_MASK; val |= (addr << 4); pss_outpw (configAddr, val); } /*_____ pss_checkint This function tests an interrupt number to see if it is available. It takes the interrupt button as its argument and returns TRUE if the interrupt is ok. */ static int pss_checkint (int intNum) { int val; int ret; int i; /*_____ Set the interrupt bits */ switch (intNum) { case 3: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_3_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 5: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_5_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 7: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_7_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 9: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_9_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 10: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_10_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 11: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_11_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; case 12: val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_MASK; val |= INT_12_BITS; pss_outpw (pss_base + PSS_CONFIG, val); break; default: printk ("unknown interrupt selected. %d\n", intNum); return 0; } /*_____ Set the interrupt test bit */ val = pss_inpw (pss_base + PSS_CONFIG); val |= INT_TEST_BIT; pss_outpw (pss_base + PSS_CONFIG, val); /*_____ Check if the interrupt is in use */ /*_____ Do it a few times in case there is a delay */ ret = 0; for (i = 0; i < 5; i++) { val = pss_inpw (pss_base + PSS_CONFIG); if (val & INT_TEST_PASS) { ret = 1; break; } } /*_____ Clear the Test bit and the interrupt bits */ val = pss_inpw (pss_base + PSS_CONFIG); val &= INT_TEST_BIT_MASK; val &= INT_MASK; pss_outpw (pss_base + PSS_CONFIG, val); return (ret); } /*____ pss_setint This function sets the correct bits in the configuration register to enable the chosen interrupt. */ static void pss_setint (int intNum, int configAddress) { int val; switch (intNum) { case 0: val = pss_inpw (configAddress); val &= INT_MASK; pss_outpw (configAddress, val); break; case 3: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_3_BITS; pss_outpw (configAddress, val); break; case 5: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_5_BITS; pss_outpw (configAddress, val); break; case 7: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_7_BITS; pss_outpw (configAddress, val); break; case 9: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_9_BITS; pss_outpw (configAddress, val); break; case 10: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_10_BITS; pss_outpw (configAddress, val); break; case 11: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_11_BITS; pss_outpw (configAddress, val); break; case 12: val = pss_inpw (configAddress); val &= INT_MASK; val |= INT_12_BITS; pss_outpw (configAddress, val); break; default: printk ("pss_setint unknown int\n"); } } /*____ pss_setsbint This function sets the correct bits in the SoundBlaster configuration PSS register to enable the chosen interrupt. It takes a interrupt button as its argument. */ static void pss_setsbint (int intNum) { int val; int sbConfigAddress; sbConfigAddress = pss_base + SB_CONFIG; switch (intNum) { case 3: val = pss_inpw (sbConfigAddress); val &= INT_MASK; val |= INT_3_BITS; pss_outpw (sbConfigAddress, val); break; case 5: val = pss_inpw (sbConfigAddress); val &= INT_MASK; val |= INT_5_BITS; pss_outpw (sbConfigAddress, val); break; case 7: val = pss_inpw (sbConfigAddress); val &= INT_MASK; val |= INT_7_BITS; pss_outpw (sbConfigAddress, val); break; default: printk ("pss_setsbint: unknown_int\n"); } } /*____ pss_setsbdma This function sets the correct bits in the SoundBlaster configuration PSS register to enable the chosen DMA channel. It takes a DMA button as its argument. */ static void pss_setsbdma (int dmaNum) { int val; int sbConfigAddress; sbConfigAddress = pss_base + SB_CONFIG; switch (dmaNum) { case 1: val = pss_inpw (sbConfigAddress); val &= DMA_MASK; val |= DMA_1_BITS; pss_outpw (sbConfigAddress, val); break; default: printk ("Personal Sound System ERROR! pss_setsbdma: unknown_dma\n"); } } /*____ pss_setwssdma This function sets the correct bits in the WSS configuration PSS register to enable the chosen DMA channel. It takes a DMA button as its argument. */ static void pss_setwssdma (int dmaNum) { int val; int wssConfigAddress; wssConfigAddress = pss_base + PSS_WSS_CONFIG; switch (dmaNum) { case 0: val = pss_inpw (wssConfigAddress); val &= DMA_MASK; val |= DMA_0_BITS; pss_outpw (wssConfigAddress, val); break; case 1: val = pss_inpw (wssConfigAddress); val &= DMA_MASK; val |= DMA_1_BITS; pss_outpw (wssConfigAddress, val); break; case 3: val = pss_inpw (wssConfigAddress); val &= DMA_MASK; val |= DMA_3_BITS; pss_outpw (wssConfigAddress, val); break; default: printk ("Personal Sound System ERROR! pss_setwssdma: unknown_dma\n"); } } /*_____ SetSpeakerOut This function sets the Volume, Bass, Treble and Mode of the speaker out channel. */ void pss_setspeaker (struct pss_speaker *spk) { PSS_write (SET_MASTER_COMMAND); if (spk->volume > PHILLIPS_VOL_MAX) spk->volume = PHILLIPS_VOL_MAX; if (spk->volume < PHILLIPS_VOL_MIN) spk->volume = PHILLIPS_VOL_MIN; PSS_write (MASTER_VOLUME_LEFT | (PHILLIPS_VOL_CONSTANT + spk->volume / PHILLIPS_VOL_STEP)); PSS_write (SET_MASTER_COMMAND); PSS_write (MASTER_VOLUME_RIGHT | (PHILLIPS_VOL_CONSTANT + spk->volume / PHILLIPS_VOL_STEP)); if (spk->bass > PHILLIPS_BASS_MAX) spk->bass = PHILLIPS_BASS_MAX; if (spk->bass < PHILLIPS_BASS_MIN) spk->bass = PHILLIPS_BASS_MIN; PSS_write (SET_MASTER_COMMAND); PSS_write (MASTER_BASS | (PHILLIPS_BASS_CONSTANT + spk->bass / PHILLIPS_BASS_STEP)); if (spk->treb > PHILLIPS_TREBLE_MAX) spk->treb = PHILLIPS_TREBLE_MAX; if (spk->treb < PHILLIPS_TREBLE_MIN) spk->treb = PHILLIPS_TREBLE_MIN; PSS_write (SET_MASTER_COMMAND); PSS_write (MASTER_TREBLE | (PHILLIPS_TREBLE_CONSTANT + spk->treb / PHILLIPS_TREBLE_STEP)); PSS_write (SET_MASTER_COMMAND); PSS_write (MASTER_SWITCH | spk->mode); } static void pss_init1848 (void) { /*_____ Wait for 1848 to init */ while (INB (SoundPortAddress) & SP_IN_INIT); /*_____ Wait for 1848 to autocal */ OUTB (SoundPortAddress, SP_TEST_AND_INIT); while (INB (SoundPortData) & AUTO_CAL_IN_PROG); } static int pss_configure_registers_to_look_like_sb (void) { pss_setaddr (wssAddr, pss_base + PSS_WSS_CONFIG); SoundPortAddress = wssAddr + 4; SoundPortData = wssAddr + 5; DEB (printk ("Turning Game Port %s.\n", gamePort ? "On" : "Off")); /*_____ Turn on the Game port */ if (gamePort) pss_outpw (pss_base + PSS_STATUS, pss_inpw (pss_base + PSS_STATUS) | GAME_BIT); else pss_outpw (pss_base + PSS_STATUS, pss_inpw (pss_base + PSS_STATUS) & GAME_BIT_MASK); DEB (printk ("PSS attaching base %x irq %d dma %d\n", pss_base, pss_irq, pss_dma)); /* Check if sb is enabled if it is check the interrupt */ pss_outpw (pss_base + SB_CONFIG, 0); if (pss_irq != 0) { DEB (printk ("PSS Emulating Sound Blaster ADDR %04x\n", pss_base)); DEB (printk ("PSS SBC: attaching base %x irq %d dma %d\n", SBC_BASE, SBC_IRQ, SBC_DMA)); if (pss_checkint (SBC_IRQ) == 0) { printk ("PSS! attach: int_error\n"); return 0; } pss_setsbint (SBC_IRQ); pss_setsbdma (SBC_DMA); sb_ok = 1; } else { sb_ok = 0; printk ("PSS: sound blaster error init\n"); } /* Check if cd is enabled if it is check the interrupt */ pss_outpw (pss_base + CD_CONFIG, 0); if (cdAddr != 0) { DEB (printk ("PSS:CD drive %x irq: %d", cdAddr, cdInt)); if (cdInt != 0) { if (pss_checkint (cdInt) == 0) { printk ("Can't allocate cdInt %d\n", cdInt); } else { int val; printk ("CD poll "); pss_setaddr (cdAddr, pss_base + CD_CONFIG); pss_setint (cdInt, pss_base + CD_CONFIG); /* set the correct bit in the configuration register to set the irq polarity for the CD-Rom. NOTE: This bit is in the address config field, It must be configured after setting the CD-ROM ADDRESS!!! */ val = pss_inpw (pss_base + CD_CONFIG); pss_outpw (pss_base + CD_CONFIG, 0); val &= CD_POL_MASK; if (cdPol) val |= CD_POL_BIT; pss_outpw (pss_base + CD_CONFIG, val); } } } /* Check if midi is enabled if it is check the interrupt */ pss_outpw (pss_base + MIDI_CONFIG, 0); if (midiAddr != 0) { printk ("midi init %x %d\n", midiAddr, midiInt); if (pss_checkint (midiInt) == 0) { printk ("midi init int error %x %d\n", midiAddr, midiInt); } else { pss_setaddr (midiAddr, pss_base + MIDI_CONFIG); pss_setint (midiInt, pss_base + MIDI_CONFIG); } } return 1; } long attach_pss (long mem_start, struct address_info *hw_config) { if (pss_ok) { if (hw_config) { printk (" "); } return mem_start; } pss_ok = 1; if (pss_configure_registers_to_look_like_sb () == 0) return mem_start; if (sb_ok) if (pss_synthLen && pss_download_boot (pss_synth, pss_synthLen)) { if (speaker) pss_setspeaker (&default_speaker); pss_ok = 1; } else pss_reset_dsp (); return mem_start; } int probe_pss (struct address_info *hw_config) { pss_base = hw_config->io_base; pss_irq = hw_config->irq; pss_dma = hw_config->dma; if ((pss_inpw (pss_base + 4) & 0xff00) == 0x4500) { attach_pss (0, hw_config); return 1; } printk (" fail base %x irq %d dma %d\n", pss_base, pss_irq, pss_dma); return 0; } static int pss_reattach (void) { pss_ok = 0; attach_pss (0, 0); return 1; } static int pss_reset_dsp () { unsigned long i, limit = GET_TIME () + 10; pss_outpw (pss_base + PSS_CONTROL, 0x2000); for (i = 0; i < 32768 && GET_TIME () < limit; i++) pss_inpw (pss_base + PSS_CONTROL); pss_outpw (pss_base + PSS_CONTROL, 0x0000); return 1; } static int pss_download_boot (unsigned char *block, int size) { int i, limit, val, count; printk ("PSS: downloading boot code synth.ld... "); /*_____ Warn DSP software that a boot is coming */ pss_outpw (pss_base + PSS_DATA, 0x00fe); limit = GET_TIME () + 10; for (i = 0; i < 32768 && GET_TIME () < limit; i++) if (pss_inpw (pss_base + PSS_DATA) == 0x5500) break; pss_outpw (pss_base + PSS_DATA, *block++); pss_reset_dsp (); printk ("start "); count = 1; while (1) { int j; for (j = 0; j < 327670; j++) { /*_____ Wait for BG to appear */ if (pss_inpw (pss_base + PSS_STATUS) & PSS_FLAG3) break; } if (j == 327670) { /* It's ok we timed out when the file was empty */ if (count >= size) break; else { printk ("\nPSS: DownLoad timeout problems, byte %d=%d\n", count, size); return 0; } } /*_____ Send the next byte */ pss_outpw (pss_base + PSS_DATA, *block++); count++; } /*_____ Why */ pss_outpw (pss_base + PSS_DATA, 0); limit = GET_TIME () + 10; for (i = 0; i < 32768 && GET_TIME () < limit; i++) val = pss_inpw (pss_base + PSS_STATUS); printk ("downloaded\n"); limit = GET_TIME () + 10; for (i = 0; i < 32768 && GET_TIME () < limit; i++) { val = pss_inpw (pss_base + PSS_STATUS); if (val & 0x4000) break; } /* now read the version */ for (i = 0; i < 32000; i++) { val = pss_inpw (pss_base + PSS_STATUS_REG); if (val & PSS_READ_FULL) break; } if (i == 32000) return 0; val = pss_inpw (pss_base + PSS_DATA_REG); return 1; } /* The following is a simple device driver for the pss. All I really care about is communication to and from the pss. The ability to reinitialize the This will be default when release is chosen. SNDCTL_PSS_DOWNLOAD: Okay we need to creat new minor numbers for the DOWNLOAD functionality. 14,0x19 -- /dev/pssld where a read operation would output the current ld to user space where a write operation would effectively download a new ld. 14,0x09 -- /dev/psecho would open up a communication path to the esc614 asic. Given the ability to send messages to the asic and receive messages too. All messages would get read and written in the same manner. It would be up to the application and the ld to maintain a relationship of what the messages mean. for this device we need to implement select. */ #define CODE_BUFFER_LEN (64*1024) static char *code_buffer; static int code_length; static int lock_pss = 0; int pss_open (int dev, struct fileinfo *file) { int mode; DEB (printk ("pss_open\n")); if (pss_ok == 0) return RET_ERROR (EIO); if (lock_pss) return 0; lock_pss = 1; dev = dev >> 4; mode = file->mode & O_ACCMODE; if (mode == O_WRONLY) { printk ("pss-open for WRONLY\n"); code_length = 0; } RESET_WAIT_QUEUE (pss_sleeper, pss_sleep_flag); return 1; } void pss_release (int dev, struct fileinfo *file) { int mode; DEB (printk ("pss_release\n")); if (pss_ok == 0) return RET_ERROR (EIO); dev = dev >> 4; mode = file->mode & O_ACCMODE; if (mode == O_WRONLY && code_length > 0) { #ifdef linux /* This just allows interrupts while the conversion is running */ __asm__ ("sti"); #endif if (!pss_download_boot (code_buffer, code_length)) { pss_reattach (); } } lock_pss = 0; } int pss_read (int dev, struct fileinfo *file, snd_rw_buf * buf, int count) { int c, p; DEB (printk ("pss_read\n")); if (pss_ok == 0) return RET_ERROR (EIO); dev = dev >> 4; p = 0; c = count; return count - c; } int pss_write (int dev, struct fileinfo *file, snd_rw_buf * buf, int count) { DEB (printk ("pss_write\n")); if (pss_ok == 0) return RET_ERROR (EIO); dev = dev >> 4; if (count) /* Flush output */ { COPY_FROM_USER (&code_buffer[code_length], buf, 0, count); code_length += count; } return count; } int pss_ioctl (int dev, struct fileinfo *file, unsigned int cmd, unsigned int arg) { DEB (printk ("pss_ioctl dev=%d cmd=%x\n", dev, cmd)); if (pss_ok == 0) return RET_ERROR (EIO); dev = dev >> 4; switch (cmd) { case SNDCTL_PSS_RESET: pss_reattach (); return 1; case SNDCTL_PSS_SETUP_REGISTERS: pss_configure_registers_to_look_like_sb (); return 1; case SNDCTL_PSS_SPEAKER: { struct pss_speaker params; COPY_FROM_USER (¶ms, (char *) arg, 0, sizeof (struct pss_speaker)); pss_setspeaker (¶ms); return 0; } default: return RET_ERROR (EIO); } } /* This is going to be used to implement waiting on messages sent from the DSP and to the DSP when communication is used via the pss directly. We need to find out if the pss can generate a different interrupt other than the one it has been setup for. This way we can carry on a conversation with the pss on a separate channel. This would be useful for debugging. */ pss_select (int dev, struct fileinfo * file, int sel_type, select_table * wait) { return 0; if (pss_ok == 0) return RET_ERROR (EIO); dev = dev >> 4; switch (sel_type) { case SEL_IN: select_wait (&pss_sleeper, wait); return 0; break; case SEL_OUT: select_wait (&pss_sleeper, wait); return 0; break; case SEL_EX: return 0; } return 0; } long pss_init (long mem_start) { DEB (printk ("pss_init\n")); if (pss_ok) { code_buffer = mem_start; mem_start += CODE_BUFFER_LEN; } return mem_start; } #endif