/*****************************************************************************/ /* * sonicvibes.c -- S3 Sonic Vibes audio driver. * * Copyright (C) 1998-2000 Thomas Sailer (sailer@ife.ee.ethz.ch) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Special thanks to David C. Niemi * * * Module command line parameters: * none so far * * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * The card has both an FM and a Wavetable synth, but I have to figure * out first how to drive them... * * Revision history * 06.05.1998 0.1 Initial release * 10.05.1998 0.2 Fixed many bugs, esp. ADC rate calculation * First stab at a simple midi interface (no bells&whistles) * 13.05.1998 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of * set_dac_rate in the FMODE_WRITE case in sv_open * Fix hwptr out of bounds (now mpg123 works) * 14.05.1998 0.4 Don't allow excessive interrupt rates * 08.06.1998 0.5 First release using Alan Cox' soundcore instead of miscdevice * 03.08.1998 0.6 Do not include modversions.h * Now mixer behaviour can basically be selected between * "OSS documented" and "OSS actual" behaviour * 31.08.1998 0.7 Fix realplayer problems - dac.count issues * 10.12.1998 0.8 Fix drain_dac trying to wait on not yet initialized DMA * 16.12.1998 0.9 Fix a few f_file & FMODE_ bugs * 06.01.1999 0.10 remove the silly SA_INTERRUPT flag. * hopefully killed the egcs section type conflict * 12.03.1999 0.11 cinfo.blocks should be reset after GETxPTR ioctl. * reported by Johan Maes * 22.03.1999 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK * read/write cannot be executed * 05.04.1999 0.13 added code to sv_read and sv_write which should detect * lockups of the sound chip and revive it. This is basically * an ugly hack, but at least applications using this driver * won't hang forever. I don't know why these lockups happen, * it might well be the motherboard chipset (an early 486 PCI * board with ALI chipset), since every busmastering 100MB * ethernet card I've tried (Realtek 8139 and Macronix tulip clone) * exhibit similar behaviour (they work for a couple of packets * and then lock up and can be revived by ifconfig down/up). * 07.04.1999 0.14 implemented the following ioctl's: SOUND_PCM_READ_RATE, * SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS; * Alpha fixes reported by Peter Jones * Note: dmaio hack might still be wrong on archs other than i386 * 15.06.1999 0.15 Fix bad allocation bug. * Thanks to Deti Fliegl * 28.06.1999 0.16 Add pci_set_master * 03.08.1999 0.17 adapt to Linus' new __setup/__initcall * added kernel command line options "sonicvibes=reverb" and "sonicvibesdmaio=dmaioaddr" * 12.08.1999 0.18 module_init/__setup fixes * 24.08.1999 0.19 get rid of the dmaio kludge, replace with allocate_resource * 31.08.1999 0.20 add spin_lock_init * __initlocaldata to fix gcc 2.7.x problems * use new resource allocation to allocate DDMA IO space * replaced current->state = x with set_current_state(x) * 03.09.1999 0.21 change read semantics for MIDI to match * OSS more closely; remove possible wakeup race * 28.10.1999 0.22 More waitqueue races fixed * 01.12.1999 0.23 New argument to allocate_resource * 07.12.1999 0.24 More allocate_resource semantics change * 08.01.2000 0.25 Prevent some ioctl's from returning bad count values on underrun/overrun; * Tim Janik's BSE (Bedevilled Sound Engine) found this * use Martin Mares' pci_assign_resource * 07.02.2000 0.26 Use pci_alloc_consistent and pci_register_driver * */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dm.h" /* --------------------------------------------------------------------- */ #undef OSS_DOCUMENTED_MIXER_SEMANTICS /* --------------------------------------------------------------------- */ #ifndef PCI_VENDOR_ID_S3 #define PCI_VENDOR_ID_S3 0x5333 #endif #ifndef PCI_DEVICE_ID_S3_SONICVIBES #define PCI_DEVICE_ID_S3_SONICVIBES 0xca00 #endif #define SV_MAGIC ((PCI_VENDOR_ID_S3<<16)|PCI_DEVICE_ID_S3_SONICVIBES) #define SV_EXTENT_SB 0x10 #define SV_EXTENT_ENH 0x10 #define SV_EXTENT_SYNTH 0x4 #define SV_EXTENT_MIDI 0x4 #define SV_EXTENT_GAME 0x8 #define SV_EXTENT_DMA 0x10 /* * we are not a bridge and thus use a resource for DDMA that is used for bridges but * left empty for normal devices */ #define RESOURCE_SB 0 #define RESOURCE_ENH 1 #define RESOURCE_SYNTH 2 #define RESOURCE_MIDI 3 #define RESOURCE_GAME 4 #define RESOURCE_DDMA 7 #define SV_MIDI_DATA 0 #define SV_MIDI_COMMAND 1 #define SV_MIDI_STATUS 1 #define SV_DMA_ADDR0 0 #define SV_DMA_ADDR1 1 #define SV_DMA_ADDR2 2 #define SV_DMA_ADDR3 3 #define SV_DMA_COUNT0 4 #define SV_DMA_COUNT1 5 #define SV_DMA_COUNT2 6 #define SV_DMA_MODE 0xb #define SV_DMA_RESET 0xd #define SV_DMA_MASK 0xf /* * DONT reset the DMA controllers unless you understand * the reset semantics. Assuming reset semantics as in * the 8237 does not work. */ #define DMA_MODE_AUTOINIT 0x10 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ #define SV_CODEC_CONTROL 0 #define SV_CODEC_INTMASK 1 #define SV_CODEC_STATUS 2 #define SV_CODEC_IADDR 4 #define SV_CODEC_IDATA 5 #define SV_CCTRL_RESET 0x80 #define SV_CCTRL_INTADRIVE 0x20 #define SV_CCTRL_WAVETABLE 0x08 #define SV_CCTRL_REVERB 0x04 #define SV_CCTRL_ENHANCED 0x01 #define SV_CINTMASK_DMAA 0x01 #define SV_CINTMASK_DMAC 0x04 #define SV_CINTMASK_SPECIAL 0x08 #define SV_CINTMASK_UPDOWN 0x40 #define SV_CINTMASK_MIDI 0x80 #define SV_CSTAT_DMAA 0x01 #define SV_CSTAT_DMAC 0x04 #define SV_CSTAT_SPECIAL 0x08 #define SV_CSTAT_UPDOWN 0x40 #define SV_CSTAT_MIDI 0x80 #define SV_CIADDR_TRD 0x80 #define SV_CIADDR_MCE 0x40 /* codec indirect registers */ #define SV_CIMIX_ADCINL 0x00 #define SV_CIMIX_ADCINR 0x01 #define SV_CIMIX_AUX1INL 0x02 #define SV_CIMIX_AUX1INR 0x03 #define SV_CIMIX_CDINL 0x04 #define SV_CIMIX_CDINR 0x05 #define SV_CIMIX_LINEINL 0x06 #define SV_CIMIX_LINEINR 0x07 #define SV_CIMIX_MICIN 0x08 #define SV_CIMIX_SYNTHINL 0x0A #define SV_CIMIX_SYNTHINR 0x0B #define SV_CIMIX_AUX2INL 0x0C #define SV_CIMIX_AUX2INR 0x0D #define SV_CIMIX_ANALOGINL 0x0E #define SV_CIMIX_ANALOGINR 0x0F #define SV_CIMIX_PCMINL 0x10 #define SV_CIMIX_PCMINR 0x11 #define SV_CIGAMECONTROL 0x09 #define SV_CIDATAFMT 0x12 #define SV_CIENABLE 0x13 #define SV_CIUPDOWN 0x14 #define SV_CIREVISION 0x15 #define SV_CIADCOUTPUT 0x16 #define SV_CIDMAABASECOUNT1 0x18 #define SV_CIDMAABASECOUNT0 0x19 #define SV_CIDMACBASECOUNT1 0x1c #define SV_CIDMACBASECOUNT0 0x1d #define SV_CIPCMSR0 0x1e #define SV_CIPCMSR1 0x1f #define SV_CISYNTHSR0 0x20 #define SV_CISYNTHSR1 0x21 #define SV_CIADCCLKSOURCE 0x22 #define SV_CIADCALTSR 0x23 #define SV_CIADCPLLM 0x24 #define SV_CIADCPLLN 0x25 #define SV_CISYNTHPLLM 0x26 #define SV_CISYNTHPLLN 0x27 #define SV_CIUARTCONTROL 0x2a #define SV_CIDRIVECONTROL 0x2b #define SV_CISRSSPACE 0x2c #define SV_CISRSCENTER 0x2d #define SV_CIWAVETABLESRC 0x2e #define SV_CIANALOGPWRDOWN 0x30 #define SV_CIDIGITALPWRDOWN 0x31 #define SV_CIMIX_ADCSRC_CD 0x20 #define SV_CIMIX_ADCSRC_DAC 0x40 #define SV_CIMIX_ADCSRC_AUX2 0x60 #define SV_CIMIX_ADCSRC_LINE 0x80 #define SV_CIMIX_ADCSRC_AUX1 0xa0 #define SV_CIMIX_ADCSRC_MIC 0xc0 #define SV_CIMIX_ADCSRC_MIXOUT 0xe0 #define SV_CIMIX_ADCSRC_MASK 0xe0 #define SV_CFMT_STEREO 0x01 #define SV_CFMT_16BIT 0x02 #define SV_CFMT_MASK 0x03 #define SV_CFMT_ASHIFT 0 #define SV_CFMT_CSHIFT 4 static const unsigned sample_size[] = { 1, 2, 2, 4 }; static const unsigned sample_shift[] = { 0, 1, 1, 2 }; #define SV_CENABLE_PPE 0x4 #define SV_CENABLE_RE 0x2 #define SV_CENABLE_PE 0x1 /* MIDI buffer sizes */ #define MIDIINBUF 256 #define MIDIOUTBUF 256 #define FMODE_MIDI_SHIFT 2 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT) #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT) #define FMODE_DMFM 0x10 #define SND_DEV_DSP16 5 /* --------------------------------------------------------------------- */ struct sv_state { /* magic */ unsigned int magic; /* list of sonicvibes devices */ struct list_head devs; /* the corresponding pci_dev structure */ struct pci_dev *dev; /* soundcore stuff */ int dev_audio; int dev_mixer; int dev_midi; int dev_dmfm; /* hardware resources */ unsigned long iosb, ioenh, iosynth, iomidi, iogame; /* long for SPARC */ unsigned int iodmaa, iodmac, irq; /* mixer stuff */ struct { unsigned int modcnt; #ifndef OSS_DOCUMENTED_MIXER_SEMANTICS unsigned short vol[13]; #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } mix; /* wave stuff */ unsigned int rateadc, ratedac; unsigned char fmt, enable; spinlock_t lock; struct semaphore open_sem; mode_t open_mode; wait_queue_head_t open_wait; struct dmabuf { void *rawbuf; dma_addr_t dmaaddr; unsigned buforder; unsigned numfrag; unsigned fragshift; unsigned hwptr, swptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ wait_queue_head_t wait; /* redundant, but makes calculations easier */ unsigned fragsize; unsigned dmasize; unsigned fragsamples; /* OSS stuff */ unsigned mapped:1; unsigned ready:1; unsigned endcleared:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; /* midi stuff */ struct { unsigned ird, iwr, icnt; unsigned ord, owr, ocnt; wait_queue_head_t iwait; wait_queue_head_t owait; struct timer_list timer; unsigned char ibuf[MIDIINBUF]; unsigned char obuf[MIDIOUTBUF]; } midi; }; /* --------------------------------------------------------------------- */ static LIST_HEAD(devs); static unsigned long wavetable_mem = 0; /* --------------------------------------------------------------------- */ extern __inline__ unsigned ld2(unsigned int x) { unsigned r = 0; if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 4) { x >>= 2; r += 2; } if (x >= 2) r++; return r; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #ifdef hweight32 #undef hweight32 #endif extern __inline__ unsigned int hweight32(unsigned int w) { unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555); res = (res & 0x33333333) + ((res >> 2) & 0x33333333); res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F); res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF); return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF); } /* --------------------------------------------------------------------- */ /* * Why use byte IO? Nobody knows, but S3 does it also in their Windows driver. */ #undef DMABYTEIO static void set_dmaa(struct sv_state *s, unsigned int addr, unsigned int count) { #ifdef DMABYTEIO unsigned io = s->iodmaa, u; count--; for (u = 4; u > 0; u--, addr >>= 8, io++) outb(addr & 0xff, io); for (u = 3; u > 0; u--, count >>= 8, io++) outb(count & 0xff, io); #else /* DMABYTEIO */ count--; outl(addr, s->iodmaa + SV_DMA_ADDR0); outl(count, s->iodmaa + SV_DMA_COUNT0); #endif /* DMABYTEIO */ outb(0x18, s->iodmaa + SV_DMA_MODE); } static void set_dmac(struct sv_state *s, unsigned int addr, unsigned int count) { #ifdef DMABYTEIO unsigned io = s->iodmac, u; count >>= 1; count--; for (u = 4; u > 0; u--, addr >>= 8, io++) outb(addr & 0xff, io); for (u = 3; u > 0; u--, count >>= 8, io++) outb(count & 0xff, io); #else /* DMABYTEIO */ count >>= 1; count--; outl(addr, s->iodmac + SV_DMA_ADDR0); outl(count, s->iodmac + SV_DMA_COUNT0); #endif /* DMABYTEIO */ outb(0x14, s->iodmac + SV_DMA_MODE); } extern __inline__ unsigned get_dmaa(struct sv_state *s) { #ifdef DMABYTEIO unsigned io = s->iodmaa+6, v = 0, u; for (u = 3; u > 0; u--, io--) { v <<= 8; v |= inb(io); } return v + 1; #else /* DMABYTEIO */ return (inl(s->iodmaa + SV_DMA_COUNT0) & 0xffffff) + 1; #endif /* DMABYTEIO */ } extern __inline__ unsigned get_dmac(struct sv_state *s) { #ifdef DMABYTEIO unsigned io = s->iodmac+6, v = 0, u; for (u = 3; u > 0; u--, io--) { v <<= 8; v |= inb(io); } return (v + 1) << 1; #else /* DMABYTEIO */ return ((inl(s->iodmac + SV_DMA_COUNT0) & 0xffffff) + 1) << 1; #endif /* DMABYTEIO */ } static void wrindir(struct sv_state *s, unsigned char idx, unsigned char data) { outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR); udelay(10); outb(data, s->ioenh + SV_CODEC_IDATA); udelay(10); } static unsigned char rdindir(struct sv_state *s, unsigned char idx) { unsigned char v; outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR); udelay(10); v = inb(s->ioenh + SV_CODEC_IDATA); udelay(10); return v; } static void set_fmt(struct sv_state *s, unsigned char mask, unsigned char data) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); outb(SV_CIDATAFMT | SV_CIADDR_MCE, s->ioenh + SV_CODEC_IADDR); if (mask) { s->fmt = inb(s->ioenh + SV_CODEC_IDATA); udelay(10); } s->fmt = (s->fmt & mask) | data; outb(s->fmt, s->ioenh + SV_CODEC_IDATA); udelay(10); outb(0, s->ioenh + SV_CODEC_IADDR); spin_unlock_irqrestore(&s->lock, flags); udelay(10); } static void frobindir(struct sv_state *s, unsigned char idx, unsigned char mask, unsigned char data) { outb(idx & 0x3f, s->ioenh + SV_CODEC_IADDR); udelay(10); outb((inb(s->ioenh + SV_CODEC_IDATA) & mask) ^ data, s->ioenh + SV_CODEC_IDATA); udelay(10); } #define REFFREQUENCY 24576000 #define ADCMULT 512 #define FULLRATE 48000 static unsigned setpll(struct sv_state *s, unsigned char reg, unsigned rate) { unsigned long flags; unsigned char r, m=0, n=0; unsigned xm, xn, xr, xd, metric = ~0U; /* the warnings about m and n used uninitialized are bogus and may safely be ignored */ if (rate < 625000/ADCMULT) rate = 625000/ADCMULT; if (rate > 150000000/ADCMULT) rate = 150000000/ADCMULT; /* slight violation of specs, needed for continuous sampling rates */ for (r = 0; rate < 75000000/ADCMULT; r += 0x20, rate <<= 1); for (xn = 3; xn < 35; xn++) for (xm = 3; xm < 130; xm++) { xr = REFFREQUENCY/ADCMULT * xm / xn; xd = abs((signed)(xr - rate)); if (xd < metric) { metric = xd; m = xm - 2; n = xn - 2; } } reg &= 0x3f; spin_lock_irqsave(&s->lock, flags); outb(reg, s->ioenh + SV_CODEC_IADDR); udelay(10); outb(m, s->ioenh + SV_CODEC_IDATA); udelay(10); outb(reg+1, s->ioenh + SV_CODEC_IADDR); udelay(10); outb(r | n, s->ioenh + SV_CODEC_IDATA); spin_unlock_irqrestore(&s->lock, flags); udelay(10); return (REFFREQUENCY/ADCMULT * (m + 2) / (n + 2)) >> ((r >> 5) & 7); } #if 0 static unsigned getpll(struct sv_state *s, unsigned char reg) { unsigned long flags; unsigned char m, n; reg &= 0x3f; spin_lock_irqsave(&s->lock, flags); outb(reg, s->ioenh + SV_CODEC_IADDR); udelay(10); m = inb(s->ioenh + SV_CODEC_IDATA); udelay(10); outb(reg+1, s->ioenh + SV_CODEC_IADDR); udelay(10); n = inb(s->ioenh + SV_CODEC_IDATA); spin_unlock_irqrestore(&s->lock, flags); udelay(10); return (REFFREQUENCY/ADCMULT * (m + 2) / ((n & 0x1f) + 2)) >> ((n >> 5) & 7); } #endif static void set_dac_rate(struct sv_state *s, unsigned rate) { unsigned div; unsigned long flags; if (rate > 48000) rate = 48000; if (rate < 4000) rate = 4000; div = (rate * 65536 + FULLRATE/2) / FULLRATE; if (div > 65535) div = 65535; spin_lock_irqsave(&s->lock, flags); wrindir(s, SV_CIPCMSR1, div >> 8); wrindir(s, SV_CIPCMSR0, div); spin_unlock_irqrestore(&s->lock, flags); s->ratedac = (div * FULLRATE + 32768) / 65536; } static void set_adc_rate(struct sv_state *s, unsigned rate) { unsigned long flags; unsigned rate1, rate2, div; if (rate > 48000) rate = 48000; if (rate < 4000) rate = 4000; rate1 = setpll(s, SV_CIADCPLLM, rate); div = (48000 + rate/2) / rate; if (div > 8) div = 8; rate2 = (48000 + div/2) / div; spin_lock_irqsave(&s->lock, flags); wrindir(s, SV_CIADCALTSR, (div-1) << 4); if (abs((signed)(rate-rate2)) <= abs((signed)(rate-rate1))) { wrindir(s, SV_CIADCCLKSOURCE, 0x10); s->rateadc = rate2; } else { wrindir(s, SV_CIADCCLKSOURCE, 0x00); s->rateadc = rate1; } spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ extern inline void stop_adc(struct sv_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); s->enable &= ~SV_CENABLE_RE; wrindir(s, SV_CIENABLE, s->enable); spin_unlock_irqrestore(&s->lock, flags); } extern inline void stop_dac(struct sv_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); s->enable &= ~(SV_CENABLE_PPE | SV_CENABLE_PE); wrindir(s, SV_CIENABLE, s->enable); spin_unlock_irqrestore(&s->lock, flags); } static void start_dac(struct sv_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { s->enable = (s->enable & ~SV_CENABLE_PPE) | SV_CENABLE_PE; wrindir(s, SV_CIENABLE, s->enable); } spin_unlock_irqrestore(&s->lock, flags); } static void start_adc(struct sv_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) && s->dma_adc.ready) { s->enable |= SV_CENABLE_RE; wrindir(s, SV_CIENABLE, s->enable); } spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ #define DMABUF_DEFAULTORDER (17-PAGE_SHIFT) #define DMABUF_MINORDER 1 static void dealloc_dmabuf(struct sv_state *s, struct dmabuf *db) { unsigned long map, mapend; if (db->rawbuf) { /* undo marking the pages as reserved */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) clear_bit(PG_reserved, &mem_map[map].flags); pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr); } db->rawbuf = NULL; db->mapped = db->ready = 0; } /* DMAA is used for playback, DMAC is used for recording */ static int prog_dmabuf(struct sv_state *s, unsigned rec) { struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac; unsigned rate = rec ? s->rateadc : s->ratedac; int order; unsigned bytepersec; unsigned bufs; unsigned long map, mapend; unsigned char fmt; unsigned long flags; spin_lock_irqsave(&s->lock, flags); fmt = s->fmt; if (rec) { s->enable &= ~SV_CENABLE_RE; fmt >>= SV_CFMT_CSHIFT; } else { s->enable &= ~SV_CENABLE_PE; fmt >>= SV_CFMT_ASHIFT; } wrindir(s, SV_CIENABLE, s->enable); spin_unlock_irqrestore(&s->lock, flags); fmt &= SV_CFMT_MASK; db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr))) break; if (!db->rawbuf) return -ENOMEM; db->buforder = order; if ((virt_to_bus(db->rawbuf) ^ (virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff) printk(KERN_DEBUG "sv: DMA buffer crosses 64k boundary: busaddr 0x%lx size %ld\n", virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder); if ((virt_to_bus(db->rawbuf) + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff) printk(KERN_DEBUG "sv: DMA buffer beyond 16MB: busaddr 0x%lx size %ld\n", virt_to_bus(db->rawbuf), PAGE_SIZE << db->buforder); /* now mark the pages as reserved; otherwise remap_page_range doesn't do what we want */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) set_bit(PG_reserved, &mem_map[map].flags); } bytepersec = rate << sample_shift[fmt]; bufs = PAGE_SIZE << db->buforder; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytepersec) db->fragshift = ld2(bytepersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; db->fragsamples = db->fragsize >> sample_shift[fmt]; db->dmasize = db->numfrag << db->fragshift; memset(db->rawbuf, (fmt & SV_CFMT_16BIT) ? 0 : 0x80, db->dmasize); spin_lock_irqsave(&s->lock, flags); if (rec) { set_dmac(s, db->dmaaddr, db->numfrag << db->fragshift); /* program enhanced mode registers */ wrindir(s, SV_CIDMACBASECOUNT1, (db->fragsamples-1) >> 8); wrindir(s, SV_CIDMACBASECOUNT0, db->fragsamples-1); } else { set_dmaa(s, db->dmaaddr, db->numfrag << db->fragshift); /* program enhanced mode registers */ wrindir(s, SV_CIDMAABASECOUNT1, (db->fragsamples-1) >> 8); wrindir(s, SV_CIDMAABASECOUNT0, db->fragsamples-1); } spin_unlock_irqrestore(&s->lock, flags); db->ready = 1; return 0; } extern __inline__ void clear_advance(struct sv_state *s) { unsigned char c = (s->fmt & (SV_CFMT_16BIT << SV_CFMT_ASHIFT)) ? 0 : 0x80; unsigned char *buf = s->dma_dac.rawbuf; unsigned bsize = s->dma_dac.dmasize; unsigned bptr = s->dma_dac.swptr; unsigned len = s->dma_dac.fragsize; if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(buf + bptr, c, x); bptr = 0; len -= x; } memset(buf + bptr, c, len); } /* call with spinlock held! */ static void sv_update_ptr(struct sv_state *s) { unsigned hwptr; int diff; /* update ADC pointer */ if (s->dma_adc.ready) { hwptr = (s->dma_adc.dmasize - get_dmac(s)) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); if (!s->dma_adc.mapped) { if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) { s->enable &= ~SV_CENABLE_RE; wrindir(s, SV_CIENABLE, s->enable); s->dma_adc.error++; } } } /* update DAC pointer */ if (s->dma_dac.ready) { hwptr = (s->dma_dac.dmasize - get_dmaa(s)) % s->dma_dac.dmasize; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) wake_up(&s->dma_dac.wait); } else { s->dma_dac.count -= diff; if (s->dma_dac.count <= 0) { s->enable &= ~SV_CENABLE_PE; wrindir(s, SV_CIENABLE, s->enable); s->dma_dac.error++; } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s); s->dma_dac.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } } } /* hold spinlock for the following! */ static void sv_handle_midi(struct sv_state *s) { unsigned char ch; int wake; wake = 0; while (!(inb(s->iomidi+1) & 0x80)) { ch = inb(s->iomidi); if (s->midi.icnt < MIDIINBUF) { s->midi.ibuf[s->midi.iwr] = ch; s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF; s->midi.icnt++; } wake = 1; } if (wake) wake_up(&s->midi.iwait); wake = 0; while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) { outb(s->midi.obuf[s->midi.ord], s->iomidi); s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF; s->midi.ocnt--; if (s->midi.ocnt < MIDIOUTBUF-16) wake = 1; } if (wake) wake_up(&s->midi.owait); } static void sv_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct sv_state *s = (struct sv_state *)dev_id; unsigned int intsrc; /* fastpath out, to ease interrupt sharing */ intsrc = inb(s->ioenh + SV_CODEC_STATUS); if (!(intsrc & (SV_CSTAT_DMAA | SV_CSTAT_DMAC | SV_CSTAT_MIDI))) return; spin_lock(&s->lock); sv_update_ptr(s); sv_handle_midi(s); spin_unlock(&s->lock); } static void sv_midi_timer(unsigned long data) { struct sv_state *s = (struct sv_state *)data; unsigned long flags; spin_lock_irqsave(&s->lock, flags); sv_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); s->midi.timer.expires = jiffies+1; add_timer(&s->midi.timer); } /* --------------------------------------------------------------------- */ static const char invalid_magic[] = KERN_CRIT "sv: invalid magic value\n"; #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != SV_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) /* --------------------------------------------------------------------- */ #define MT_4 1 #define MT_5MUTE 2 #define MT_4MUTEMONO 3 #define MT_6MUTE 4 static const struct { unsigned left:5; unsigned right:5; unsigned type:3; unsigned rec:3; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_RECLEV] = { SV_CIMIX_ADCINL, SV_CIMIX_ADCINR, MT_4, 0 }, [SOUND_MIXER_LINE1] = { SV_CIMIX_AUX1INL, SV_CIMIX_AUX1INR, MT_5MUTE, 5 }, [SOUND_MIXER_CD] = { SV_CIMIX_CDINL, SV_CIMIX_CDINR, MT_5MUTE, 1 }, [SOUND_MIXER_LINE] = { SV_CIMIX_LINEINL, SV_CIMIX_LINEINR, MT_5MUTE, 4 }, [SOUND_MIXER_MIC] = { SV_CIMIX_MICIN, SV_CIMIX_ADCINL, MT_4MUTEMONO, 6 }, [SOUND_MIXER_SYNTH] = { SV_CIMIX_SYNTHINL, SV_CIMIX_SYNTHINR, MT_5MUTE, 2 }, [SOUND_MIXER_LINE2] = { SV_CIMIX_AUX2INL, SV_CIMIX_AUX2INR, MT_5MUTE, 3 }, [SOUND_MIXER_VOLUME] = { SV_CIMIX_ANALOGINL, SV_CIMIX_ANALOGINR, MT_5MUTE, 7 }, [SOUND_MIXER_PCM] = { SV_CIMIX_PCMINL, SV_CIMIX_PCMINR, MT_6MUTE, 0 } }; #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS static int return_mixval(struct sv_state *s, unsigned i, int *arg) { unsigned long flags; unsigned char l, r, rl, rr; spin_lock_irqsave(&s->lock, flags); l = rdindir(s, mixtable[i].left); r = rdindir(s, mixtable[i].right); spin_unlock_irqrestore(&s->lock, flags); switch (mixtable[i].type) { case MT_4: r &= 0xf; l &= 0xf; rl = 10 + 6 * (l & 15); rr = 10 + 6 * (r & 15); break; case MT_4MUTEMONO: rl = 55 - 3 * (l & 15); if (r & 0x10) rl += 45; rr = rl; r = l; break; case MT_5MUTE: default: rl = 100 - 3 * (l & 31); rr = 100 - 3 * (r & 31); break; case MT_6MUTE: rl = 100 - 3 * (l & 63) / 2; rr = 100 - 3 * (r & 63) / 2; break; } if (l & 0x80) rl = 0; if (r & 0x80) rr = 0; return put_user((rr << 8) | rl, arg); } #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ static const unsigned char volidx[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_RECLEV] = 1, [SOUND_MIXER_LINE1] = 2, [SOUND_MIXER_CD] = 3, [SOUND_MIXER_LINE] = 4, [SOUND_MIXER_MIC] = 5, [SOUND_MIXER_SYNTH] = 6, [SOUND_MIXER_LINE2] = 7, [SOUND_MIXER_VOLUME] = 8, [SOUND_MIXER_PCM] = 9 }; #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ static unsigned mixer_recmask(struct sv_state *s) { unsigned long flags; int i, j; spin_lock_irqsave(&s->lock, flags); j = rdindir(s, SV_CIMIX_ADCINL) >> 5; spin_unlock_irqrestore(&s->lock, flags); j &= 7; for (i = 0; i < SOUND_MIXER_NRDEVICES && mixtable[i].rec != j; i++); return 1 << i; } static int mixer_ioctl(struct sv_state *s, unsigned int cmd, unsigned long arg) { unsigned long flags; int i, val; unsigned char l, r, rl, rr; VALIDATE_STATE(s); if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, "SonicVibes", sizeof(info.id)); strncpy(info.name, "S3 SonicVibes", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, "SonicVibes", sizeof(info.id)); strncpy(info.name, "S3 SonicVibes", sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (cmd == SOUND_MIXER_PRIVATE1) { /* SRS settings */ get_user_ret(val, (int *)arg, -EFAULT); spin_lock_irqsave(&s->lock, flags); if (val & 1) { if (val & 2) { l = 4 - ((val >> 2) & 7); if (l & ~3) l = 4; r = 4 - ((val >> 5) & 7); if (r & ~3) r = 4; wrindir(s, SV_CISRSSPACE, l); wrindir(s, SV_CISRSCENTER, r); } else wrindir(s, SV_CISRSSPACE, 0x80); } l = rdindir(s, SV_CISRSSPACE); r = rdindir(s, SV_CISRSCENTER); spin_unlock_irqrestore(&s->lock, flags); if (l & 0x80) return put_user(0, (int *)arg); return put_user(((4 - (l & 7)) << 2) | ((4 - (r & 7)) << 5) | 2, (int *)arg); } if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_recmask(s), (int *)arg); case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].rec) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_CAPS: return put_user(SOUND_CAP_EXCL_INPUT, (int *)arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS return return_mixval(s, i, (int *)arg); #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ if (!volidx[i]) return -EINVAL; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } } if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE)) return -EINVAL; s->mix.modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ get_user_ret(val, (int *)arg, -EFAULT); i = hweight32(val); if (i == 0) return 0; /*val = mixer_recmask(s);*/ else if (i > 1) val &= ~mixer_recmask(s); for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (mixtable[i].rec) break; } if (!mixtable[i].rec) return 0; spin_lock_irqsave(&s->lock, flags); frobindir(s, SV_CIMIX_ADCINL, 0x1f, mixtable[i].rec << 5); frobindir(s, SV_CIMIX_ADCINR, 0x1f, mixtable[i].rec << 5); spin_unlock_irqrestore(&s->lock, flags); return 0; default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); l = val & 0xff; r = (val >> 8) & 0xff; if (mixtable[i].type == MT_4MUTEMONO) l = (r + l) / 2; if (l > 100) l = 100; if (r > 100) r = 100; spin_lock_irqsave(&s->lock, flags); switch (mixtable[i].type) { case MT_4: if (l >= 10) l -= 10; if (r >= 10) r -= 10; frobindir(s, mixtable[i].left, 0xf0, l / 6); frobindir(s, mixtable[i].right, 0xf0, l / 6); break; case MT_4MUTEMONO: rr = 0; if (l < 10) rl = 0x80; else { if (l >= 55) { rr = 0x10; l -= 45; } rl = (55 - l) / 3; } wrindir(s, mixtable[i].left, rl); frobindir(s, mixtable[i].right, ~0x10, rr); break; case MT_5MUTE: if (l < 7) rl = 0x80; else rl = (100 - l) / 3; if (r < 7) rr = 0x80; else rr = (100 - r) / 3; wrindir(s, mixtable[i].left, rl); wrindir(s, mixtable[i].right, rr); break; case MT_6MUTE: if (l < 6) rl = 0x80; else rl = (100 - l) * 2 / 3; if (r < 6) rr = 0x80; else rr = (100 - r) * 2 / 3; wrindir(s, mixtable[i].left, rl); wrindir(s, mixtable[i].right, rr); break; } spin_unlock_irqrestore(&s->lock, flags); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS return return_mixval(s, i, (int *)arg); #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ if (!volidx[i]) return -EINVAL; s->mix.vol[volidx[i]-1] = val; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } } /* --------------------------------------------------------------------- */ static loff_t sv_llseek(struct file *file, loff_t offset, int origin) { return -ESPIPE; } /* --------------------------------------------------------------------- */ static int sv_open_mixdev(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct list_head *list; struct sv_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct sv_state, devs); if (s->dev_mixer == minor) break; } VALIDATE_STATE(s); file->private_data = s; return 0; } static int sv_release_mixdev(struct inode *inode, struct file *file) { struct sv_state *s = (struct sv_state *)file->private_data; VALIDATE_STATE(s); return 0; } static int sv_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct sv_state *)file->private_data, cmd, arg); } static /*const*/ struct file_operations sv_mixer_fops = { owner: THIS_MODULE, llseek: sv_llseek, ioctl: sv_ioctl_mixdev, open: sv_open_mixdev, release: sv_release_mixdev, }; /* --------------------------------------------------------------------- */ static int drain_dac(struct sv_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count, tmo; if (s->dma_dac.mapped || !s->dma_dac.ready) return 0; add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac; tmo >>= sample_shift[(s->fmt >> SV_CFMT_ASHIFT) & SV_CFMT_MASK]; if (!schedule_timeout(tmo + 1)) printk(KERN_DEBUG "sv: dma timed out??\n"); } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t sv_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct sv_state *s = (struct sv_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; #if 0 spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); spin_unlock_irqrestore(&s->lock, flags); #endif add_wait_queue(&s->dma_adc.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); swptr = s->dma_adc.swptr; cnt = s->dma_adc.dmasize-swptr; if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_adc(s); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } if (!schedule_timeout(HZ)) { printk(KERN_DEBUG "sv: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count, s->dma_adc.hwptr, s->dma_adc.swptr); stop_adc(s); spin_lock_irqsave(&s->lock, flags); set_dmac(s, virt_to_bus(s->dma_adc.rawbuf), s->dma_adc.numfrag << s->dma_adc.fragshift); /* program enhanced mode registers */ wrindir(s, SV_CIDMACBASECOUNT1, (s->dma_adc.fragsamples-1) >> 8); wrindir(s, SV_CIDMACBASECOUNT0, s->dma_adc.fragsamples-1); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) { if (!ret) ret = -EFAULT; break; } swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_adc(s); } remove_wait_queue(&s->dma_adc.wait, &wait); set_current_state(TASK_RUNNING); return ret; } static ssize_t sv_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct sv_state *s = (struct sv_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; #if 0 spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); spin_unlock_irqrestore(&s->lock, flags); #endif add_wait_queue(&s->dma_dac.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } if (!schedule_timeout(HZ)) { printk(KERN_DEBUG "sv: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, s->dma_dac.hwptr, s->dma_dac.swptr); stop_dac(s); spin_lock_irqsave(&s->lock, flags); set_dmaa(s, virt_to_bus(s->dma_dac.rawbuf), s->dma_dac.numfrag << s->dma_dac.fragshift); /* program enhanced mode registers */ wrindir(s, SV_CIDMAABASECOUNT1, (s->dma_dac.fragsamples-1) >> 8); wrindir(s, SV_CIDMAABASECOUNT0, s->dma_dac.fragsamples-1); s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) { if (!ret) ret = -EFAULT; break; } swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return ret; } /* No kernel lock - we have our own spinlock */ static unsigned int sv_poll(struct file *file, struct poll_table_struct *wait) { struct sv_state *s = (struct sv_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->dma_dac.wait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->dma_adc.wait, wait); spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int sv_mmap(struct file *file, struct vm_area_struct *vma) { struct sv_state *s = (struct sv_state *)file->private_data; struct dmabuf *db; int ret = -EINVAL; unsigned long size; VALIDATE_STATE(s); lock_kernel(); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf(s, 1)) != 0) goto out; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf(s, 0)) != 0) goto out; db = &s->dma_adc; } else goto out; ret = -EINVAL; if (vma->vm_pgoff != 0) goto out; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) goto out; ret = -EAGAIN; if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) goto out; db->mapped = 1; ret = 0; out: unlock_kernel(); return ret; } static int sv_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct sv_state *s = (struct sv_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int count; int val, mapped, ret; unsigned char fmtm, fmtd; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: get_user_ret(val, (int *)arg, -EFAULT); if (val >= 0) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; set_adc_rate(s, val); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; set_dac_rate(s, val); } } return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SNDCTL_DSP_STEREO: get_user_ret(val, (int *)arg, -EFAULT); fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val) fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT; else fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val) fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT; else fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT); } set_fmt(s, fmtm, fmtd); return 0; case SNDCTL_DSP_CHANNELS: get_user_ret(val, (int *)arg, -EFAULT); if (val != 0) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) fmtd |= SV_CFMT_STEREO << SV_CFMT_CSHIFT; else fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_CSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) fmtd |= SV_CFMT_STEREO << SV_CFMT_ASHIFT; else fmtm &= ~(SV_CFMT_STEREO << SV_CFMT_ASHIFT); } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT) : (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_LE|AFMT_U8, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ get_user_ret(val, (int *)arg, -EFAULT); if (val != AFMT_QUERY) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val == AFMT_S16_LE) fmtd |= SV_CFMT_16BIT << SV_CFMT_CSHIFT; else fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_CSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val == AFMT_S16_LE) fmtd |= SV_CFMT_16BIT << SV_CFMT_ASHIFT; else fmtm &= ~(SV_CFMT_16BIT << SV_CFMT_ASHIFT); } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT) : (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & FMODE_READ && s->enable & SV_CENABLE_RE) val |= PCM_ENABLE_INPUT; if (file->f_mode & FMODE_WRITE && s->enable & SV_CENABLE_PE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); case SNDCTL_DSP_SETTRIGGER: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; start_adc(s); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->enable & SV_CENABLE_PE) && (val = prog_dmabuf(s, 0)) != 0) return val; spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; count = s->dma_dac.count; if (count < 0) count = 0; abinfo.bytes = s->dma_dac.dmasize - count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(s->enable & SV_CENABLE_RE) && (val = prog_dmabuf(s, 1)) != 0) return val; spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); abinfo.fragsize = s->dma_adc.fragsize; count = s->dma_adc.count; if (count < 0) count = 0; abinfo.bytes = count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count < 0) count = 0; return put_user(count, (int *)arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; count = s->dma_adc.count; if (count < 0) count = 0; cinfo.blocks = count >> s->dma_adc.fragshift; cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); sv_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; count = s->dma_dac.count; if (count < 0) count = 0; cinfo.blocks = count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf(s, 0))) return val; return put_user(s->dma_dac.fragsize, (int *)arg); } if ((val = prog_dmabuf(s, 1))) return val; return put_user(s->dma_adc.fragsize, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { s->dma_adc.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_adc.ossfragshift < 4) s->dma_adc.ossfragshift = 4; if (s->dma_adc.ossfragshift > 15) s->dma_adc.ossfragshift = 15; if (s->dma_adc.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { s->dma_dac.ossfragshift = val & 0xffff; s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_dac.ossmaxfrags = 4; } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; if (file->f_mode & FMODE_WRITE) s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_READ_CHANNELS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_STEREO << SV_CFMT_CSHIFT) : (SV_CFMT_STEREO << SV_CFMT_ASHIFT))) ? 2 : 1, (int *)arg); case SOUND_PCM_READ_BITS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (SV_CFMT_16BIT << SV_CFMT_CSHIFT) : (SV_CFMT_16BIT << SV_CFMT_ASHIFT))) ? 16 : 8, (int *)arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: case SOUND_PCM_READ_FILTER: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static int sv_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); unsigned char fmtm = ~0, fmts = 0; struct list_head *list; struct sv_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct sv_state, devs); if (!((s->dev_audio ^ minor) & ~0xf)) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & file->f_mode) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } if (file->f_mode & FMODE_READ) { fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_CSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= SV_CFMT_16BIT << SV_CFMT_CSHIFT; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; set_adc_rate(s, 8000); } if (file->f_mode & FMODE_WRITE) { fmtm &= ~((SV_CFMT_STEREO | SV_CFMT_16BIT) << SV_CFMT_ASHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= SV_CFMT_16BIT << SV_CFMT_ASHIFT; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; set_dac_rate(s, 8000); } set_fmt(s, fmtm, fmts); s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); up(&s->open_sem); return 0; } static int sv_release(struct inode *inode, struct file *file) { struct sv_state *s = (struct sv_state *)file->private_data; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem); if (file->f_mode & FMODE_WRITE) { stop_dac(s); dealloc_dmabuf(s, &s->dma_dac); } if (file->f_mode & FMODE_READ) { stop_adc(s); dealloc_dmabuf(s, &s->dma_adc); } s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE); wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static /*const*/ struct file_operations sv_audio_fops = { owner: THIS_MODULE, llseek: sv_llseek, read: sv_read, write: sv_write, poll: sv_poll, ioctl: sv_ioctl, mmap: sv_mmap, open: sv_open, release: sv_release, }; /* --------------------------------------------------------------------- */ static ssize_t sv_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct sv_state *s = (struct sv_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; if (count == 0) return 0; ret = 0; add_wait_queue(&s->midi.iwait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.ird; cnt = MIDIINBUF - ptr; if (s->midi.icnt < cnt) cnt = s->midi.icnt; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIINBUF; spin_lock_irqsave(&s->lock, flags); s->midi.ird = ptr; s->midi.icnt -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; break; } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.iwait, &wait); return ret; } static ssize_t sv_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct sv_state *s = (struct sv_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; if (count == 0) return 0; ret = 0; add_wait_queue(&s->midi.owait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.owr; cnt = MIDIOUTBUF - ptr; if (s->midi.ocnt + cnt > MIDIOUTBUF) cnt = MIDIOUTBUF - s->midi.ocnt; if (cnt <= 0) { __set_current_state(TASK_INTERRUPTIBLE); sv_handle_midi(s); } spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIOUTBUF; spin_lock_irqsave(&s->lock, flags); s->midi.owr = ptr; s->midi.ocnt += cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; spin_lock_irqsave(&s->lock, flags); sv_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.owait, &wait); return ret; } /* No kernel lock - we have our own spinlock */ static unsigned int sv_midi_poll(struct file *file, struct poll_table_struct *wait) { struct sv_state *s = (struct sv_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->midi.owait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->midi.iwait, wait); spin_lock_irqsave(&s->lock, flags); if (file->f_mode & FMODE_READ) { if (s->midi.icnt > 0) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->midi.ocnt < MIDIOUTBUF) mask |= POLLOUT | POLLWRNORM; } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int sv_midi_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); unsigned long flags; struct list_head *list; struct sv_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct sv_state, devs); if (s->dev_midi == minor) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; s->midi.ord = s->midi.owr = s->midi.ocnt = 0; //outb(inb(s->ioenh + SV_CODEC_CONTROL) | SV_CCTRL_WAVETABLE, s->ioenh + SV_CODEC_CONTROL); outb(inb(s->ioenh + SV_CODEC_INTMASK) | SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK); wrindir(s, SV_CIUARTCONTROL, 5); /* output MIDI data to external and internal synth */ wrindir(s, SV_CIWAVETABLESRC, 1); /* Wavetable in PC RAM */ outb(0xff, s->iomidi+1); /* reset command */ outb(0x3f, s->iomidi+1); /* uart command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); s->midi.ird = s->midi.iwr = s->midi.icnt = 0; init_timer(&s->midi.timer); s->midi.timer.expires = jiffies+1; s->midi.timer.data = (unsigned long)s; s->midi.timer.function = sv_midi_timer; add_timer(&s->midi.timer); } if (file->f_mode & FMODE_READ) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; } if (file->f_mode & FMODE_WRITE) { s->midi.ord = s->midi.owr = s->midi.ocnt = 0; } spin_unlock_irqrestore(&s->lock, flags); s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); up(&s->open_sem); return 0; } static int sv_midi_release(struct inode *inode, struct file *file) { struct sv_state *s = (struct sv_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned count, tmo; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) { add_wait_queue(&s->midi.owait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->midi.ocnt; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (file->f_flags & O_NONBLOCK) { remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = (count * HZ) / 3100; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "sv: midi timed out??\n"); } remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); } down(&s->open_sem); s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE); spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { outb(inb(s->ioenh + SV_CODEC_INTMASK) & ~SV_CINTMASK_MIDI, s->ioenh + SV_CODEC_INTMASK); del_timer(&s->midi.timer); } spin_unlock_irqrestore(&s->lock, flags); wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static /*const*/ struct file_operations sv_midi_fops = { owner: THIS_MODULE, llseek: sv_llseek, read: sv_midi_read, write: sv_midi_write, poll: sv_midi_poll, open: sv_midi_open, release: sv_midi_release, }; /* --------------------------------------------------------------------- */ static int sv_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { static const unsigned char op_offset[18] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15 }; struct sv_state *s = (struct sv_state *)file->private_data; struct dm_fm_voice v; struct dm_fm_note n; struct dm_fm_params p; unsigned int io; unsigned int regb; switch (cmd) { case FM_IOCTL_RESET: for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } return 0; case FM_IOCTL_PLAY_NOTE: if (copy_from_user(&n, (void *)arg, sizeof(n))) return -EFAULT; if (n.voice >= 18) return -EINVAL; if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xa0 + regb, io); outb(n.fnum & 0xff, io+1); outb(0xb0 + regb, io); outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1); return 0; case FM_IOCTL_SET_VOICE: if (copy_from_user(&v, (void *)arg, sizeof(v))) return -EFAULT; if (v.voice >= 18) return -EINVAL; regb = op_offset[v.voice]; io = s->iosynth + ((v.op & 1) << 1); outb(0x20 + regb, io); outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1); outb(0x40 + regb, io); outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1); outb(0x60 + regb, io); outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1); outb(0x80 + regb, io); outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1); outb(0xe0 + regb, io); outb(v.waveform & 0x7, io+1); if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xc0 + regb, io); outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) | (v.connection & 1), io+1); return 0; case FM_IOCTL_SET_PARAMS: if (copy_from_user(&p, (void *)arg, sizeof(p))) return -EFAULT; outb(0x08, s->iosynth); outb((p.kbd_split & 1) << 6, s->iosynth+1); outb(0xbd, s->iosynth); outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) | ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1); return 0; case FM_IOCTL_SET_OPL: outb(4, s->iosynth+2); outb(arg, s->iosynth+3); return 0; case FM_IOCTL_SET_MODE: outb(5, s->iosynth+2); outb(arg & 1, s->iosynth+3); return 0; default: return -EINVAL; } } static int sv_dmfm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); DECLARE_WAITQUEUE(wait, current); struct list_head *list; struct sv_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct sv_state, devs); if (s->dev_dmfm == minor) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & FMODE_DMFM) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); up(&s->open_sem); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } /* init the stuff */ outb(1, s->iosynth); outb(0x20, s->iosynth+1); /* enable waveforms */ outb(4, s->iosynth+2); outb(0, s->iosynth+3); /* no 4op enabled */ outb(5, s->iosynth+2); outb(1, s->iosynth+3); /* enable OPL3 */ s->open_mode |= FMODE_DMFM; up(&s->open_sem); return 0; } static int sv_dmfm_release(struct inode *inode, struct file *file) { struct sv_state *s = (struct sv_state *)file->private_data; unsigned int regb; VALIDATE_STATE(s); lock_kernel(); down(&s->open_sem); s->open_mode &= ~FMODE_DMFM; for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } wake_up(&s->open_wait); up(&s->open_sem); unlock_kernel(); return 0; } static /*const*/ struct file_operations sv_dmfm_fops = { owner: THIS_MODULE, llseek: sv_llseek, ioctl: sv_dmfm_ioctl, open: sv_dmfm_open, release: sv_dmfm_release, }; /* --------------------------------------------------------------------- */ /* maximum number of devices; only used for command line params */ #define NR_DEVICE 5 static int reverb[NR_DEVICE] = { 0, }; #if 0 static int wavetable[NR_DEVICE] = { 0, }; #endif static unsigned int devindex = 0; MODULE_PARM(reverb, "1-" __MODULE_STRING(NR_DEVICE) "i"); MODULE_PARM_DESC(reverb, "if 1 enables the reverb circuitry. NOTE: your card must have the reverb RAM"); #if 0 MODULE_PARM(wavetable, "1-" __MODULE_STRING(NR_DEVICE) "i"); MODULE_PARM_DESC(wavetable, "if 1 the wavetable synth is enabled"); #endif MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu"); MODULE_DESCRIPTION("S3 SonicVibes Driver"); /* --------------------------------------------------------------------- */ static struct initvol { int mixch; int vol; } initvol[] __initdata = { { SOUND_MIXER_WRITE_RECLEV, 0x4040 }, { SOUND_MIXER_WRITE_LINE1, 0x4040 }, { SOUND_MIXER_WRITE_CD, 0x4040 }, { SOUND_MIXER_WRITE_LINE, 0x4040 }, { SOUND_MIXER_WRITE_MIC, 0x4040 }, { SOUND_MIXER_WRITE_SYNTH, 0x4040 }, { SOUND_MIXER_WRITE_LINE2, 0x4040 }, { SOUND_MIXER_WRITE_VOLUME, 0x4040 }, { SOUND_MIXER_WRITE_PCM, 0x4040 } }; #define RSRCISIOREGION(dev,num) (pci_resource_start((dev), (num)) != 0 && \ (pci_resource_flags((dev), (num)) & IORESOURCE_IO)) static int __devinit sv_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid) { static const char __initlocaldata sv_ddma_name[] = "S3 Inc. SonicVibes DDMA Controller"; struct sv_state *s; mm_segment_t fs; int i, val; char *ddmaname; unsigned ddmanamelen; if (!RSRCISIOREGION(pcidev, RESOURCE_SB) || !RSRCISIOREGION(pcidev, RESOURCE_ENH) || !RSRCISIOREGION(pcidev, RESOURCE_SYNTH) || !RSRCISIOREGION(pcidev, RESOURCE_MIDI) || !RSRCISIOREGION(pcidev, RESOURCE_GAME)) return -1; if (pcidev->irq == 0) return -1; if (!pci_dma_supported(pcidev, 0x00ffffff)) { printk(KERN_WARNING "sonicvibes: architecture does not support 24bit PCI busmaster DMA\n"); return -1; } /* try to allocate a DDMA resource if not already available */ if (!RSRCISIOREGION(pcidev, RESOURCE_DDMA)) { pcidev->resource[RESOURCE_DDMA].start = 0; pcidev->resource[RESOURCE_DDMA].end = 2*SV_EXTENT_DMA-1; pcidev->resource[RESOURCE_DDMA].flags = PCI_BASE_ADDRESS_SPACE_IO | IORESOURCE_IO; ddmanamelen = strlen(sv_ddma_name)+1; if (!(ddmaname = kmalloc(ddmanamelen, GFP_KERNEL))) return -1; memcpy(ddmaname, sv_ddma_name, ddmanamelen); pcidev->resource[RESOURCE_DDMA].name = ddmaname; if (pci_assign_resource(pcidev, RESOURCE_DDMA)) { pcidev->resource[RESOURCE_DDMA].name = NULL; kfree(ddmaname); printk(KERN_ERR "sv: cannot allocate DDMA controller io ports\n"); return -1; } } if (!(s = kmalloc(sizeof(struct sv_state), GFP_KERNEL))) { printk(KERN_WARNING "sv: out of memory\n"); return -1; } memset(s, 0, sizeof(struct sv_state)); init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->midi.iwait); init_waitqueue_head(&s->midi.owait); init_MUTEX(&s->open_sem); spin_lock_init(&s->lock); s->magic = SV_MAGIC; s->dev = pcidev; s->iosb = pci_resource_start(pcidev, RESOURCE_SB); s->ioenh = pci_resource_start(pcidev, RESOURCE_ENH); s->iosynth = pci_resource_start(pcidev, RESOURCE_SYNTH); s->iomidi = pci_resource_start(pcidev, RESOURCE_MIDI); s->iogame = pci_resource_start(pcidev, RESOURCE_GAME); s->iodmaa = pci_resource_start(pcidev, RESOURCE_DDMA); s->iodmac = pci_resource_start(pcidev, RESOURCE_DDMA) + SV_EXTENT_DMA; pci_write_config_dword(pcidev, 0x40, s->iodmaa | 9); /* enable and use extended mode */ pci_write_config_dword(pcidev, 0x48, s->iodmac | 9); /* enable */ printk(KERN_DEBUG "sv: io ports: %#lx %#lx %#lx %#lx %#lx %#x %#x\n", s->iosb, s->ioenh, s->iosynth, s->iomidi, s->iogame, s->iodmaa, s->iodmac); s->irq = pcidev->irq; /* hack */ pci_write_config_dword(pcidev, 0x60, wavetable_mem >> 12); /* wavetable base address */ if (!request_region(s->ioenh, SV_EXTENT_ENH, "S3 SonicVibes PCM")) { printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->ioenh, s->ioenh+SV_EXTENT_ENH-1); goto err_region5; } if (!request_region(s->iodmaa, SV_EXTENT_DMA, "S3 SonicVibes DMAA")) { printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmaa, s->iodmaa+SV_EXTENT_DMA-1); goto err_region4; } if (!request_region(s->iodmac, SV_EXTENT_DMA, "S3 SonicVibes DMAC")) { printk(KERN_ERR "sv: io ports %#x-%#x in use\n", s->iodmac, s->iodmac+SV_EXTENT_DMA-1); goto err_region3; } if (!request_region(s->iomidi, SV_EXTENT_MIDI, "S3 SonicVibes Midi")) { printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iomidi, s->iomidi+SV_EXTENT_MIDI-1); goto err_region2; } if (!request_region(s->iosynth, SV_EXTENT_SYNTH, "S3 SonicVibes Synth")) { printk(KERN_ERR "sv: io ports %#lx-%#lx in use\n", s->iosynth, s->iosynth+SV_EXTENT_SYNTH-1); goto err_region1; } if (pci_enable_device(pcidev)) goto err_irq; /* initialize codec registers */ outb(0x80, s->ioenh + SV_CODEC_CONTROL); /* assert reset */ udelay(50); outb(0x00, s->ioenh + SV_CODEC_CONTROL); /* deassert reset */ udelay(50); outb(SV_CCTRL_INTADRIVE | SV_CCTRL_ENHANCED /*| SV_CCTRL_WAVETABLE */ | (reverb[devindex] ? SV_CCTRL_REVERB : 0), s->ioenh + SV_CODEC_CONTROL); inb(s->ioenh + SV_CODEC_STATUS); /* clear ints */ wrindir(s, SV_CIDRIVECONTROL, 0); /* drive current 16mA */ wrindir(s, SV_CIENABLE, s->enable = 0); /* disable DMAA and DMAC */ outb(~(SV_CINTMASK_DMAA | SV_CINTMASK_DMAC), s->ioenh + SV_CODEC_INTMASK); /* outb(0xff, s->iodmaa + SV_DMA_RESET); */ /* outb(0xff, s->iodmac + SV_DMA_RESET); */ inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */ wrindir(s, SV_CIADCCLKSOURCE, 0); /* use pll as ADC clock source */ wrindir(s, SV_CIANALOGPWRDOWN, 0); /* power up the analog parts of the device */ wrindir(s, SV_CIDIGITALPWRDOWN, 0); /* power up the digital parts of the device */ setpll(s, SV_CIADCPLLM, 8000); wrindir(s, SV_CISRSSPACE, 0x80); /* SRS off */ wrindir(s, SV_CIPCMSR0, (8000 * 65536 / FULLRATE) & 0xff); wrindir(s, SV_CIPCMSR1, ((8000 * 65536 / FULLRATE) >> 8) & 0xff); wrindir(s, SV_CIADCOUTPUT, 0); /* request irq */ if (request_irq(s->irq, sv_interrupt, SA_SHIRQ, "S3 SonicVibes", s)) { printk(KERN_ERR "sv: irq %u in use\n", s->irq); goto err_irq; } printk(KERN_INFO "sv: found adapter at io %#lx irq %u dmaa %#06x dmac %#06x revision %u\n", s->ioenh, s->irq, s->iodmaa, s->iodmac, rdindir(s, SV_CIREVISION)); /* register devices */ if ((s->dev_audio = register_sound_dsp(&sv_audio_fops, -1)) < 0) goto err_dev1; if ((s->dev_mixer = register_sound_mixer(&sv_mixer_fops, -1)) < 0) goto err_dev2; if ((s->dev_midi = register_sound_midi(&sv_midi_fops, -1)) < 0) goto err_dev3; if ((s->dev_dmfm = register_sound_special(&sv_dmfm_fops, 15 /* ?? */)) < 0) goto err_dev4; pci_set_master(pcidev); /* enable bus mastering */ /* initialize the chips */ fs = get_fs(); set_fs(KERNEL_DS); val = SOUND_MASK_LINE|SOUND_MASK_SYNTH; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val); for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val); } set_fs(fs); /* store it in the driver field */ pcidev->driver_data = s; pcidev->dma_mask = 0x00ffffff; /* put it into driver list */ list_add_tail(&s->devs, &devs); /* increment devindex */ if (devindex < NR_DEVICE-1) devindex++; return 0; err_dev4: unregister_sound_midi(s->dev_midi); err_dev3: unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: printk(KERN_ERR "sv: cannot register misc device\n"); free_irq(s->irq, s); err_irq: release_region(s->iosynth, SV_EXTENT_SYNTH); err_region1: release_region(s->iomidi, SV_EXTENT_MIDI); err_region2: release_region(s->iodmac, SV_EXTENT_DMA); err_region3: release_region(s->iodmaa, SV_EXTENT_DMA); err_region4: release_region(s->ioenh, SV_EXTENT_ENH); err_region5: kfree(s); return -1; } static void __devinit sv_remove(struct pci_dev *dev) { struct sv_state *s = (struct sv_state *)dev->driver_data; if (!s) return; list_del(&s->devs); outb(~0, s->ioenh + SV_CODEC_INTMASK); /* disable ints */ synchronize_irq(); inb(s->ioenh + SV_CODEC_STATUS); /* ack interrupts */ wrindir(s, SV_CIENABLE, 0); /* disable DMAA and DMAC */ /*outb(0, s->iodmaa + SV_DMA_RESET);*/ /*outb(0, s->iodmac + SV_DMA_RESET);*/ free_irq(s->irq, s); release_region(s->iodmac, SV_EXTENT_DMA); release_region(s->iodmaa, SV_EXTENT_DMA); release_region(s->ioenh, SV_EXTENT_ENH); release_region(s->iomidi, SV_EXTENT_MIDI); release_region(s->iosynth, SV_EXTENT_SYNTH); unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); unregister_sound_midi(s->dev_midi); unregister_sound_special(s->dev_dmfm); kfree(s); dev->driver_data = NULL; } static struct pci_device_id id_table[] __devinitdata = { { PCI_VENDOR_ID_S3, PCI_DEVICE_ID_S3_SONICVIBES, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci, id_table); static struct pci_driver sv_driver = { name: "sonicvibes", id_table: id_table, probe: sv_probe, remove: sv_remove }; static int __init init_sonicvibes(void) { if (!pci_present()) /* No PCI bus in this machine! */ return -ENODEV; printk(KERN_INFO "sv: version v0.26 time " __TIME__ " " __DATE__ "\n"); #if 0 if (!(wavetable_mem = __get_free_pages(GFP_KERNEL, 20-PAGE_SHIFT))) printk(KERN_INFO "sv: cannot allocate 1MB of contiguous nonpageable memory for wavetable data\n"); #endif return pci_module_init(&sv_driver); } static void __exit cleanup_sonicvibes(void) { printk(KERN_INFO "sv: unloading\n"); pci_unregister_driver(&sv_driver); if (wavetable_mem) free_pages(wavetable_mem, 20-PAGE_SHIFT); } module_init(init_sonicvibes); module_exit(cleanup_sonicvibes); /* --------------------------------------------------------------------- */ #ifndef MODULE /* format is: sonicvibes=[reverb] sonicvibesdmaio=dmaioaddr */ static int __init sonicvibes_setup(char *str) { static unsigned __initlocaldata nr_dev = 0; if (nr_dev >= NR_DEVICE) return 0; #if 0 if (get_option(&str, &reverb[nr_dev]) == 2) (void)get_option(&str, &wavetable[nr_dev]); #else (void)get_option(&str, &reverb[nr_dev]); #endif nr_dev++; return 1; } __setup("sonicvibes=", sonicvibes_setup); #endif /* MODULE */