/* * Universal Host Controller Interface driver for USB. * * (C) Copyright 1999 Linus Torvalds * (C) Copyright 1999-2000 Johannes Erdfelt, jerdfelt@sventech.com * (C) Copyright 1999 Randy Dunlap * (C) Copyright 1999 Georg Acher, acher@in.tum.de * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at * * Intel documents this fairly well, and as far as I know there * are no royalties or anything like that, but even so there are * people who decided that they want to do the same thing in a * completely different way. * * WARNING! The USB documentation is downright evil. Most of it * is just crap, written by a committee. You're better off ignoring * most of it, the important stuff is: * - the low-level protocol (fairly simple but lots of small details) * - working around the horridness of the rest */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG #include #include #include #include #include #include "uhci.h" #include "uhci-debug.h" #include static int handle_pm_event(struct pm_dev *dev, pm_request_t rqst, void *data); static int debug = 1; MODULE_PARM(debug, "i"); static kmem_cache_t *uhci_td_cachep; static kmem_cache_t *uhci_qh_cachep; static kmem_cache_t *uhci_up_cachep; /* urb_priv */ static LIST_HEAD(uhci_list); static int rh_submit_urb(urb_t *urb); static int rh_unlink_urb(urb_t *urb); static int uhci_get_current_frame_number(struct usb_device *dev); static int uhci_unlink_generic(urb_t *urb); static int uhci_unlink_urb(urb_t *urb); #define min(a,b) (((a)<(b))?(a):(b)) /* If a transfer is still active after this much time, turn off FSBR */ #define IDLE_TIMEOUT (HZ / 20) /* 50 ms */ /* * Only the USB core should call uhci_alloc_dev and uhci_free_dev */ static int uhci_alloc_dev(struct usb_device *dev) { return 0; } static int uhci_free_dev(struct usb_device *dev) { urb_t *u; struct uhci *uhci = (struct uhci *)dev->bus->hcpriv; struct list_head *tmp, *next, *head = &uhci->urb_list; unsigned long flags; /* Walk through the entire URB list and forcefully remove any */ /* URBs that are still active for that device */ nested_lock(&uhci->urblist_lock, flags); tmp = head->next; while (tmp != head) { u = list_entry(tmp, urb_t, urb_list); next = tmp->next; if (u->dev == dev) uhci_unlink_urb(u); tmp = next; } nested_unlock(&uhci->urblist_lock, flags); return 0; } static void uhci_add_urb_list(struct uhci *uhci, struct urb *urb) { unsigned long flags; nested_lock(&uhci->urblist_lock, flags); list_add(&urb->urb_list, &uhci->urb_list); nested_unlock(&uhci->urblist_lock, flags); } static void uhci_remove_urb_list(struct uhci *uhci, struct urb *urb) { unsigned long flags; nested_lock(&uhci->urblist_lock, flags); if (urb->urb_list.next != &urb->urb_list) { list_del(&urb->urb_list); INIT_LIST_HEAD(&urb->urb_list); } nested_unlock(&uhci->urblist_lock, flags); } static struct uhci_td *uhci_alloc_td(struct usb_device *dev) { struct uhci_td *td; td = kmem_cache_alloc(uhci_td_cachep, in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL); if (!td) return NULL; td->link = UHCI_PTR_TERM; td->buffer = 0; td->frameptr = NULL; td->nexttd = td->prevtd = NULL; td->list.next = td->list.prev = NULL; td->dev = dev; usb_inc_dev_use(dev); return td; } static void inline uhci_fill_td(struct uhci_td *td, __u32 status, __u32 info, __u32 buffer) { td->status = status; td->info = info; td->buffer = buffer; } static void uhci_insert_td(struct uhci *uhci, struct uhci_td *skeltd, struct uhci_td *td) { unsigned long flags; spin_lock_irqsave(&uhci->framelist_lock, flags); /* Fix the linked list pointers */ td->nexttd = skeltd->nexttd; td->prevtd = skeltd; if (skeltd->nexttd) skeltd->nexttd->prevtd = td; skeltd->nexttd = td; td->link = skeltd->link; skeltd->link = virt_to_bus(td); spin_unlock_irqrestore(&uhci->framelist_lock, flags); } /* * We insert Isochronous transfers directly into the frame list at the * beginning * The layout looks as follows: * frame list pointer -> iso td's (if any) -> * periodic interrupt td (if frame 0) -> irq td's -> control qh -> bulk qh */ static void uhci_insert_td_frame_list(struct uhci *uhci, struct uhci_td *td, unsigned framenum) { unsigned long flags; struct uhci_td *nexttd; framenum %= UHCI_NUMFRAMES; spin_lock_irqsave(&uhci->framelist_lock, flags); td->frameptr = &uhci->fl->frame[framenum]; td->link = uhci->fl->frame[framenum]; if (!(td->link & (UHCI_PTR_TERM | UHCI_PTR_QH))) { nexttd = (struct uhci_td *)uhci_ptr_to_virt(td->link); td->nexttd = nexttd; nexttd->prevtd = td; nexttd->frameptr = NULL; } uhci->fl->frame[framenum] = virt_to_bus(td); spin_unlock_irqrestore(&uhci->framelist_lock, flags); } static void uhci_remove_td(struct uhci *uhci, struct uhci_td *td) { unsigned long flags; /* If it's not inserted, don't remove it */ if (!td->frameptr && !td->prevtd && !td->nexttd) return; spin_lock_irqsave(&uhci->framelist_lock, flags); if (td->frameptr) { *(td->frameptr) = td->link; if (td->nexttd) { td->nexttd->frameptr = td->frameptr; td->nexttd->prevtd = NULL; td->nexttd = NULL; } td->frameptr = NULL; } else { if (td->prevtd) { td->prevtd->nexttd = td->nexttd; td->prevtd->link = td->link; } if (td->nexttd) td->nexttd->prevtd = td->prevtd; td->prevtd = td->nexttd = NULL; } td->link = UHCI_PTR_TERM; spin_unlock_irqrestore(&uhci->framelist_lock, flags); } /* * Inserts a td into qh list at the top. */ static void uhci_insert_tds_in_qh(struct uhci_qh *qh, struct urb *urb, int breadth) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; struct uhci_td *td, *prevtd; if (!urbp) return; td = urbp->list.begin; if (!td) return; /* Add the first TD to the QH element pointer */ qh->element = virt_to_bus(td) | (breadth ? 0 : UHCI_PTR_DEPTH); prevtd = td; /* Then link the rest of the TD's */ for (td = td->list.next; td; td = td->list.next) { prevtd->link = virt_to_bus(td) | (breadth ? 0 : UHCI_PTR_DEPTH); prevtd = td; } prevtd->link = UHCI_PTR_TERM; } static void uhci_free_td(struct uhci_td *td) { if (td->list.next || td->list.prev) dbg("td is still in URB list!"); kmem_cache_free(uhci_td_cachep, td); if (td->dev) usb_dec_dev_use(td->dev); } static struct uhci_qh *uhci_alloc_qh(struct usb_device *dev) { struct uhci_qh *qh; qh = kmem_cache_alloc(uhci_qh_cachep, in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL); if (!qh) return NULL; qh->element = UHCI_PTR_TERM; qh->link = UHCI_PTR_TERM; qh->dev = dev; qh->prevqh = qh->nextqh = NULL; INIT_LIST_HEAD(&qh->remove_list); usb_inc_dev_use(dev); return qh; } static void uhci_free_qh(struct uhci_qh *qh) { kmem_cache_free(uhci_qh_cachep, qh); if (qh->dev) usb_dec_dev_use(qh->dev); } static void uhci_insert_qh(struct uhci *uhci, struct uhci_qh *skelqh, struct uhci_qh *qh) { unsigned long flags; spin_lock_irqsave(&uhci->framelist_lock, flags); /* Fix the linked list pointers */ qh->nextqh = skelqh->nextqh; qh->prevqh = skelqh; if (skelqh->nextqh) skelqh->nextqh->prevqh = qh; skelqh->nextqh = qh; qh->link = skelqh->link; skelqh->link = virt_to_bus(qh) | UHCI_PTR_QH; spin_unlock_irqrestore(&uhci->framelist_lock, flags); } static void uhci_remove_qh(struct uhci *uhci, struct uhci_qh *qh) { unsigned long flags; spin_lock_irqsave(&uhci->framelist_lock, flags); if (qh->prevqh) { qh->prevqh->nextqh = qh->nextqh; qh->prevqh->link = qh->link; } if (qh->nextqh) qh->nextqh->prevqh = qh->prevqh; qh->prevqh = qh->nextqh = NULL; spin_unlock_irqrestore(&uhci->framelist_lock, flags); spin_lock_irqsave(&uhci->qh_remove_lock, flags); list_add(&qh->remove_list, &uhci->qh_remove_list); spin_unlock_irqrestore(&uhci->qh_remove_lock, flags); } struct urb_priv *uhci_alloc_urb_priv(struct urb *urb) { struct urb_priv *urbp; urbp = kmem_cache_alloc(uhci_up_cachep, in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL); if (!urbp) return NULL; memset((void *)urbp, 0, sizeof(*urbp)); urbp->list.begin = urbp->list.end = NULL; urb->hcpriv = urbp; urbp->inserttime = jiffies; usb_inc_dev_use(urb->dev); return urbp; } static void uhci_add_td_to_urb(urb_t *urb, struct uhci_td *td) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; td->urb = urb; if (!urbp->list.begin) urbp->list.begin = td; if (urbp->list.end) { urbp->list.end->list.next = td; td->list.prev = urbp->list.end; } urbp->list.end = td; } static void uhci_remove_td_from_urb(urb_t *urb, struct uhci_td *td) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; if (!urbp->list.begin && !urbp->list.end) return; if (td->list.prev) td->list.prev->list.next = td->list.next; else urbp->list.begin = td->list.next; if (td->list.next) td->list.next->list.prev = td->list.prev; else urbp->list.end = td->list.prev; td->list.next = td->list.prev = NULL; td->urb = NULL; } static void uhci_destroy_urb_priv(urb_t *urb) { struct urb_priv *urbp; struct uhci *uhci; struct uhci_td *td, *nexttd; unsigned long flags; spin_lock_irqsave(&urb->lock, flags); urbp = (struct urb_priv *)urb->hcpriv; if (!urbp) return; if (!urb->dev || !urb->dev->bus || !urb->dev->bus->hcpriv) return; uhci = urb->dev->bus->hcpriv; td = urbp->list.begin; while (td) { nexttd = td->list.next; uhci_remove_td_from_urb(urb, td); uhci_remove_td(uhci, td); uhci_free_td(td); td = nexttd; } urb->hcpriv = NULL; kmem_cache_free(uhci_up_cachep, urbp); spin_unlock_irqrestore(&urb->lock, flags); usb_dec_dev_use(urb->dev); } static void uhci_inc_fsbr(struct uhci *uhci, struct urb *urb) { unsigned long flags; struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; if (!urbp) return; spin_lock_irqsave(&uhci->framelist_lock, flags); if (!urbp->fsbr) { urbp->fsbr = 1; if (!uhci->fsbr++) uhci->skel_term_td.link = virt_to_bus(&uhci->skel_hs_control_qh) | UHCI_PTR_QH; } spin_unlock_irqrestore(&uhci->framelist_lock, flags); } static void uhci_dec_fsbr(struct uhci *uhci, struct urb *urb) { unsigned long flags; struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; if (!urbp) return; spin_lock_irqsave(&uhci->framelist_lock, flags); if (urbp->fsbr) { urbp->fsbr = 0; if (!--uhci->fsbr) uhci->skel_term_td.link = UHCI_PTR_TERM; } spin_unlock_irqrestore(&uhci->framelist_lock, flags); } /* * Map status to standard result codes * * is (td->status & 0xFE0000) [a.k.a. uhci_status_bits(td->status)] * is True for output TDs and False for input TDs. */ static int uhci_map_status(int status, int dir_out) { if (!status) return 0; if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */ return -EPROTO; if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */ if (dir_out) return -ETIMEDOUT; else return -EILSEQ; } if (status & TD_CTRL_NAK) /* NAK */ return -ETIMEDOUT; if (status & TD_CTRL_BABBLE) /* Babble */ return -EPIPE; if (status & TD_CTRL_DBUFERR) /* Buffer error */ return -ENOSR; if (status & TD_CTRL_STALLED) /* Stalled */ return -EPIPE; if (status & TD_CTRL_ACTIVE) /* Active */ return 0; return -EINVAL; } /* * Control transfers */ static int uhci_submit_control(urb_t *urb) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; struct uhci_td *td; struct uhci_qh *qh; unsigned long destination, status; int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); int len = urb->transfer_buffer_length; unsigned char *data = urb->transfer_buffer; /* The "pipe" thing contains the destination in bits 8--18 */ destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; /* 3 errors */ status = (urb->pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | (3 << 27); /* * Build the TD for the control request */ td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status, destination | (7 << 21), virt_to_bus(urb->setup_packet)); /* * If direction is "send", change the frame from SETUP (0x2D) * to OUT (0xE1). Else change it from SETUP to IN (0x69). */ destination ^= (USB_PID_SETUP ^ usb_packetid(urb->pipe)); if (!(urb->transfer_flags & USB_DISABLE_SPD)) status |= TD_CTRL_SPD; /* * Build the DATA TD's */ while (len > 0) { int pktsze = len; if (pktsze > maxsze) pktsze = maxsze; td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; /* Alternate Data0/1 (start with Data1) */ destination ^= 1 << TD_TOKEN_TOGGLE; uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status, destination | ((pktsze - 1) << 21), virt_to_bus(data)); data += pktsze; len -= pktsze; } /* * Build the final TD for control status */ td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; /* * It's IN if the pipe is an output pipe or we're not expecting * data back. */ destination &= ~TD_PID; if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length) destination |= USB_PID_IN; else destination |= USB_PID_OUT; destination |= 1 << TD_TOKEN_TOGGLE; /* End in Data1 */ status &= ~TD_CTRL_SPD; uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status | TD_CTRL_IOC, destination | (UHCI_NULL_DATA_SIZE << 21), 0); qh = uhci_alloc_qh(urb->dev); if (!qh) return -ENOMEM; /* Low speed or small transfers gets a different queue and treatment */ if (urb->pipe & TD_CTRL_LS) { uhci_insert_tds_in_qh(qh, urb, 0); uhci_insert_qh(uhci, &uhci->skel_ls_control_qh, qh); } else { uhci_insert_tds_in_qh(qh, urb, 1); uhci_insert_qh(uhci, &uhci->skel_hs_control_qh, qh); uhci_inc_fsbr(uhci, urb); } urbp->qh = qh; uhci_add_urb_list(uhci, urb); usb_inc_dev_use(urb->dev); return -EINPROGRESS; } static int usb_control_retrigger_status(urb_t *urb); static int uhci_result_control(urb_t *urb) { struct urb_priv *urbp = urb->hcpriv; struct uhci_td *td; unsigned int status; if (!urbp) return -EINVAL; td = urbp->list.begin; if (!td) return -EINVAL; if (urbp->short_control_packet) goto status_phase; /* The first TD is the SETUP phase, check the status, but skip */ /* the count */ status = uhci_status_bits(td->status); if (status & TD_CTRL_ACTIVE) return -EINPROGRESS; if (status) goto td_error; urb->actual_length = 0; td = td->list.next; /* The rest of the TD's (but the last) are data */ while (td && td->list.next) { status = uhci_status_bits(td->status); if (status & TD_CTRL_ACTIVE) return -EINPROGRESS; urb->actual_length += uhci_actual_length(td->status); /* If SPD is set then we received a short packet */ /* There will be no status phase at the end */ if ((td->status & TD_CTRL_SPD) && (uhci_actual_length(td->status) < uhci_expected_length(td->info))) return usb_control_retrigger_status(urb); if (status) goto td_error; td = td->list.next; } status_phase: /* Control status phase */ status = uhci_status_bits(td->status); /* APC BackUPS Pro kludge */ /* It tries to send all of the descriptor instead of the amount */ /* we requested */ if (td->status & TD_CTRL_IOC && status & TD_CTRL_ACTIVE && status & TD_CTRL_NAK) return 0; if (status & TD_CTRL_ACTIVE) return -EINPROGRESS; if (status) goto td_error; return 0; td_error: /* Some debugging code */ if (debug) { dbg("uhci_result_control() failed with status %x", status); /* Print the chain for debugging purposes */ uhci_show_queue(urbp->qh); } if (status & TD_CTRL_STALLED) /* endpoint has stalled - mark it halted */ usb_endpoint_halt(urb->dev, uhci_endpoint(td->info), uhci_packetout(td->info)); return uhci_map_status(status, uhci_packetout(td->info)); } static int usb_control_retrigger_status(urb_t *urb) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; struct uhci *uhci = urb->dev->bus->hcpriv; struct uhci_td *td, *nexttd; urbp->short_control_packet = 1; /* Delete all of the TD's except for the status TD at the end */ td = urbp->list.begin; while (td && td->list.next) { nexttd = td->list.next; uhci_remove_td_from_urb(urb, td); uhci_remove_td(uhci, td); uhci_free_td(td); td = nexttd; } /* Create a new QH to avoid pointer overwriting problems */ uhci_remove_qh(uhci, urbp->qh); urbp->qh = uhci_alloc_qh(urb->dev); if (!urbp->qh) return -ENOMEM; /* One TD, who cares about Breadth first? */ uhci_insert_tds_in_qh(urbp->qh, urb, 0); /* Low speed or small transfers gets a different queue and treatment */ if (urb->pipe & TD_CTRL_LS) uhci_insert_qh(uhci, &uhci->skel_ls_control_qh, urbp->qh); else uhci_insert_qh(uhci, &uhci->skel_hs_control_qh, urbp->qh); return -EINPROGRESS; } /* * Interrupt transfers */ static int uhci_submit_interrupt(urb_t *urb) { struct uhci_td *td; unsigned long destination, status; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; if (urb->transfer_buffer_length > usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) return -EINVAL; /* The "pipe" thing contains the destination in bits 8--18 */ destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); status = (urb->pipe & TD_CTRL_LS) | TD_CTRL_ACTIVE | TD_CTRL_IOC; td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; destination |= (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE); destination |= ((urb->transfer_buffer_length - 1) << 21); usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status, destination, virt_to_bus(urb->transfer_buffer)); uhci_insert_td(uhci, &uhci->skeltd[__interval_to_skel(urb->interval)], td); uhci_add_urb_list(uhci, urb); return -EINPROGRESS; } static int uhci_result_interrupt(urb_t *urb) { struct urb_priv *urbp = urb->hcpriv; struct uhci_td *td; unsigned int status; if (!urbp) return -EINVAL; urb->actual_length = 0; for (td = urbp->list.begin; td; td = td->list.next) { status = uhci_status_bits(td->status); if (status & TD_CTRL_ACTIVE) return -EINPROGRESS; urb->actual_length += uhci_actual_length(td->status); /* If SPD is set then we received a short packet */ if ((td->status & TD_CTRL_SPD) && (uhci_actual_length(td->status) < uhci_expected_length(td->info))) { usb_settoggle(urb->dev, uhci_endpoint(td->info), uhci_packetout(td->info), uhci_toggle(td->info) ^ 1); return 0; } if (status) goto td_error; } return 0; td_error: /* Some debugging code */ if (debug) { dbg("uhci_result_interrupt/bulk() failed with status %x", status); /* Print the chain for debugging purposes */ if (urbp->qh) uhci_show_queue(urbp->qh); else uhci_show_td(td); } if (status & TD_CTRL_STALLED) /* endpoint has stalled - mark it halted */ usb_endpoint_halt(urb->dev, uhci_endpoint(td->info), uhci_packetout(td->info)); return uhci_map_status(status, uhci_packetout(td->info)); } static void uhci_reset_interrupt(urb_t *urb) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; struct uhci_td *td; if (!urbp) return; td = urbp->list.begin; if (!td) return; td->status = (td->status & 0x2F000000) | TD_CTRL_ACTIVE | TD_CTRL_IOC; td->info &= ~(1 << TD_TOKEN_TOGGLE); td->info |= (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE); usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); urb->status = -EINPROGRESS; } /* * Bulk transfers */ static int uhci_submit_bulk(urb_t *urb) { struct uhci_td *td; struct uhci_qh *qh; unsigned long destination, status; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; int maxsze = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); int len = urb->transfer_buffer_length; unsigned char *data = urb->transfer_buffer; struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; if (len < 0) return -EINVAL; /* Can't have low speed bulk transfers */ if (urb->pipe & TD_CTRL_LS) return -EINVAL; /* The "pipe" thing contains the destination in bits 8--18 */ destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); /* 3 errors */ status = TD_CTRL_ACTIVE | (3 << 27); if (!(urb->transfer_flags & USB_DISABLE_SPD)) status |= TD_CTRL_SPD; /* * Build the DATA TD's */ while (len > 0) { int pktsze = len; if (pktsze > maxsze) pktsze = maxsze; td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status, destination | ((pktsze - 1) << 21) | (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)) << TD_TOKEN_TOGGLE), virt_to_bus(data)); data += pktsze; len -= maxsze; if (len <= 0) td->status |= TD_CTRL_IOC; usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); } qh = uhci_alloc_qh(urb->dev); if (!qh) return -ENOMEM; uhci_insert_tds_in_qh(qh, urb, 1); uhci_insert_qh(uhci, &uhci->skel_bulk_qh, qh); urbp->qh = qh; uhci_add_urb_list(uhci, urb); uhci_inc_fsbr(uhci, urb); return -EINPROGRESS; } /* We can use the result interrupt since they're identical */ #define uhci_result_bulk uhci_result_interrupt /* * Isochronous transfers */ static int isochronous_find_limits(urb_t *urb, unsigned int *start, unsigned int *end) { urb_t *u, *last_urb = NULL; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; struct list_head *tmp, *head = &uhci->urb_list; int ret = 0; unsigned long flags; nested_lock(&uhci->urblist_lock, flags); tmp = head->next; while (tmp != head) { u = list_entry(tmp, urb_t, urb_list); /* look for pending URB's with identical pipe handle */ if ((urb->pipe == u->pipe) && (urb->dev == u->dev) && (u->status == -EINPROGRESS) && (u != urb)) { if (!last_urb) *start = u->start_frame; last_urb = u; } tmp = tmp->next; } if (last_urb) { *end = (last_urb->start_frame + last_urb->number_of_packets) & 1023; ret = 0; } else ret = -1; /* no previous urb found */ nested_unlock(&uhci->urblist_lock, flags); return ret; } static int isochronous_find_start(urb_t *urb) { int limits; unsigned int start = 0, end = 0; if (urb->number_of_packets > 900) /* 900? Why? */ return -EFBIG; limits = isochronous_find_limits(urb, &start, &end); if (urb->transfer_flags & USB_ISO_ASAP) { if (limits) { int curframe; curframe = uhci_get_current_frame_number(urb->dev) % UHCI_NUMFRAMES; urb->start_frame = (curframe + 10) % UHCI_NUMFRAMES; } else urb->start_frame = end; } else { urb->start_frame %= UHCI_NUMFRAMES; /* FIXME: Sanity check */ } return 0; } static int uhci_submit_isochronous(urb_t *urb) { struct uhci_td *td; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; int i, ret, framenum; int status, destination; status = TD_CTRL_ACTIVE | TD_CTRL_IOS; destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); ret = isochronous_find_start(urb); if (ret) return ret; framenum = urb->start_frame; for (i = 0; i < urb->number_of_packets; i++, framenum++) { if (!urb->iso_frame_desc[i].length) continue; td = uhci_alloc_td(urb->dev); if (!td) return -ENOMEM; uhci_add_td_to_urb(urb, td); uhci_fill_td(td, status, destination | ((urb->iso_frame_desc[i].length - 1) << 21), virt_to_bus(urb->transfer_buffer + urb->iso_frame_desc[i].offset)); if (i + 1 >= urb->number_of_packets) td->status |= TD_CTRL_IOC; uhci_insert_td_frame_list(uhci, td, framenum); } uhci_add_urb_list(uhci, urb); return -EINPROGRESS; } static int uhci_result_isochronous(urb_t *urb) { struct urb_priv *urbp = (struct urb_priv *)urb->hcpriv; struct uhci_td *td; int status; int i, ret = 0; if (!urbp) return -EINVAL; urb->actual_length = 0; for (i = 0, td = urbp->list.begin; td; i++, td = td->list.next) { int actlength; if (td->status & TD_CTRL_ACTIVE) return -EINPROGRESS; actlength = uhci_actual_length(td->status); urb->iso_frame_desc[i].actual_length = actlength; urb->actual_length += actlength; status = uhci_map_status(uhci_status_bits(td->status), usb_pipeout(urb->pipe)); urb->iso_frame_desc[i].status = status; if (status != 0) { urb->error_count++; ret = status; } } return ret; } static int uhci_submit_urb(urb_t *urb) { int ret = -EINVAL; struct uhci *uhci; unsigned long flags; if (!urb) return -EINVAL; if (!urb->dev || !urb->dev->bus || !urb->dev->bus->hcpriv) return -ENODEV; uhci = (struct uhci *)urb->dev->bus->hcpriv; /* Short circuit the virtual root hub */ if (usb_pipedevice(urb->pipe) == uhci->rh.devnum) return rh_submit_urb(urb); spin_lock_irqsave(&urb->lock, flags); if (!uhci_alloc_urb_priv(urb)) { spin_unlock_irqrestore(&urb->lock, flags); return -ENOMEM; } switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ret = uhci_submit_control(urb); break; case PIPE_INTERRUPT: ret = uhci_submit_interrupt(urb); break; case PIPE_BULK: ret = uhci_submit_bulk(urb); break; case PIPE_ISOCHRONOUS: ret = uhci_submit_isochronous(urb); break; } urb->status = ret; spin_unlock_irqrestore(&urb->lock, flags); if (ret == -EINPROGRESS) ret = 0; else uhci_unlink_generic(urb); return ret; } /* * Return the result of a transfer * * Must be called with urblist_lock acquired */ static void uhci_transfer_result(urb_t *urb) { urb_t *turb; int proceed = 0, is_ring = 0; int ret = -EINVAL; unsigned long flags; spin_lock_irqsave(&urb->lock, flags); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ret = uhci_result_control(urb); break; case PIPE_INTERRUPT: ret = uhci_result_interrupt(urb); break; case PIPE_BULK: ret = uhci_result_bulk(urb); break; case PIPE_ISOCHRONOUS: ret = uhci_result_isochronous(urb); break; } urb->status = ret; spin_unlock_irqrestore(&urb->lock, flags); if (ret == -EINPROGRESS) return; switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: case PIPE_BULK: case PIPE_ISOCHRONOUS: uhci_unlink_generic(urb); break; case PIPE_INTERRUPT: /* Interrupts are an exception */ urb->complete(urb); if (urb->interval) uhci_reset_interrupt(urb); else uhci_unlink_generic(urb); return; /* <-- Note the return */ } if (urb->next) { turb = urb->next; do { if (turb->status != -EINPROGRESS) { proceed = 1; break; } turb = turb->next; } while (turb && turb != urb && turb != urb->next); if (turb == urb || turb == urb->next) is_ring = 1; } if (urb->complete && (!proceed || (urb->transfer_flags & USB_URB_EARLY_COMPLETE))) { urb->complete(urb); if (!proceed && is_ring) uhci_submit_urb(urb); } if (proceed && urb->next) { turb = urb->next; do { if (turb->status != -EINPROGRESS && uhci_submit_urb(turb) != 0) turb = turb->next; } while (turb && turb != urb->next); if (urb->complete && !(urb->transfer_flags & USB_URB_EARLY_COMPLETE)) urb->complete(urb); } } static int uhci_unlink_generic(urb_t *urb) { struct urb_priv *urbp = urb->hcpriv; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; if (!urbp) return -EINVAL; uhci_dec_fsbr(uhci, urb); /* Safe since it checks */ uhci_remove_urb_list(uhci, urb); if (urbp->qh) /* The interrupt loop will reclaim the QH's */ uhci_remove_qh(uhci, urbp->qh); uhci_destroy_urb_priv(urb); return 0; } static int uhci_unlink_urb(urb_t *urb) { struct uhci *uhci; int ret = 0; unsigned long flags; if (!urb) return -EINVAL; if (!urb->dev || !urb->dev->bus) return -ENODEV; uhci = (struct uhci *)urb->dev->bus->hcpriv; /* Short circuit the virtual root hub */ if (usb_pipedevice(urb->pipe) == uhci->rh.devnum) return rh_unlink_urb(urb); if (urb->status == -EINPROGRESS) { uhci_unlink_generic(urb); if (urb->transfer_flags & USB_ASYNC_UNLINK) { spin_lock_irqsave(&uhci->urb_remove_lock, flags); list_add(&urb->urb_list, &uhci->urb_remove_list); spin_unlock_irqrestore(&uhci->urb_remove_lock, flags); urb->status = -ECONNABORTED; } else { if (in_interrupt()) { /* wait at least 1 frame */ static int errorcount = 10; if (errorcount--) dbg("uhci_unlink_urb called from interrupt for urb %p", urb); udelay(1000); } else schedule_timeout(1+1*HZ/1000); if (urb->complete) urb->complete(urb); urb->status = -ENOENT; } } return ret; } /* * uhci_get_current_frame_number() * * returns the current frame number for a USB bus/controller. */ static int uhci_get_current_frame_number(struct usb_device *dev) { struct uhci *uhci = (struct uhci *)dev->bus->hcpriv; return inw(uhci->io_addr + USBFRNUM); } struct usb_operations uhci_device_operations = { uhci_alloc_dev, uhci_free_dev, uhci_get_current_frame_number, uhci_submit_urb, uhci_unlink_urb }; /* ------------------------------------------------------------------- Virtual Root Hub ------------------------------------------------------------------- */ static __u8 root_hub_dev_des[] = { 0x12, /* __u8 bLength; */ 0x01, /* __u8 bDescriptorType; Device */ 0x00, /* __u16 bcdUSB; v1.0 */ 0x01, 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x00, /* __u8 bDeviceProtocol; */ 0x08, /* __u8 bMaxPacketSize0; 8 Bytes */ 0x00, /* __u16 idVendor; */ 0x00, 0x00, /* __u16 idProduct; */ 0x00, 0x00, /* __u16 bcdDevice; */ 0x00, 0x00, /* __u8 iManufacturer; */ 0x00, /* __u8 iProduct; */ 0x00, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /* Configuration descriptor */ static __u8 root_hub_config_des[] = { 0x09, /* __u8 bLength; */ 0x02, /* __u8 bDescriptorType; Configuration */ 0x19, /* __u16 wTotalLength; */ 0x00, 0x01, /* __u8 bNumInterfaces; */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0x40, /* __u8 bmAttributes; Bit 7: Bus-powered, 6: Self-powered, Bit 5 Remote-wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* interface */ 0x09, /* __u8 if_bLength; */ 0x04, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; */ 0x00, /* __u8 if_iInterface; */ /* endpoint */ 0x07, /* __u8 ep_bLength; */ 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ 0x08, /* __u16 ep_wMaxPacketSize; 8 Bytes */ 0x00, 0xff /* __u8 ep_bInterval; 255 ms */ }; static __u8 root_hub_hub_des[] = { 0x09, /* __u8 bLength; */ 0x29, /* __u8 bDescriptorType; Hub-descriptor */ 0x02, /* __u8 bNbrPorts; */ 0x00, /* __u16 wHubCharacteristics; */ 0x00, 0x01, /* __u8 bPwrOn2pwrGood; 2ms */ 0x00, /* __u8 bHubContrCurrent; 0 mA */ 0x00, /* __u8 DeviceRemovable; *** 7 Ports max *** */ 0xff /* __u8 PortPwrCtrlMask; *** 7 ports max *** */ }; /*-------------------------------------------------------------------------*/ /* prepare Interrupt pipe transaction data; HUB INTERRUPT ENDPOINT */ static int rh_send_irq(urb_t *urb) { int i, len = 1; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; unsigned int io_addr = uhci->io_addr; __u16 data = 0; for (i = 0; i < uhci->rh.numports; i++) { data |= ((inw(io_addr + USBPORTSC1 + i * 2) & 0xa) > 0 ? (1 << (i + 1)) : 0); len = (i + 1) / 8 + 1; } *(__u16 *) urb->transfer_buffer = cpu_to_le16(data); urb->actual_length = len; urb->status = USB_ST_NOERROR; if ((data > 0) && (uhci->rh.send != 0)) { dbg("root-hub INT complete: port1: %x port2: %x data: %x", inw(io_addr + USBPORTSC1), inw(io_addr + USBPORTSC2), data); urb->complete(urb); } return USB_ST_NOERROR; } /*-------------------------------------------------------------------------*/ /* Virtual Root Hub INTs are polled by this timer every "interval" ms */ static int rh_init_int_timer(urb_t *urb); static void rh_int_timer_do(unsigned long ptr) { urb_t *urb = (urb_t *)ptr, *u; struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; struct list_head *tmp, *head = &uhci->urb_list; struct urb_priv *urbp; int len; unsigned long flags; if (uhci->rh.send) { len = rh_send_irq(urb); if (len > 0) { urb->actual_length = len; if (urb->complete) urb->complete(urb); } } nested_lock(&uhci->urblist_lock, flags); tmp = head->next; while (tmp != head) { u = list_entry(tmp, urb_t, urb_list); urbp = (struct urb_priv *)u->hcpriv; if (urbp) { if (urbp->fsbr && time_after(jiffies, urbp->inserttime + IDLE_TIMEOUT)) uhci_dec_fsbr(uhci, u); } tmp = tmp->next; } nested_unlock(&uhci->urblist_lock, flags); rh_init_int_timer(urb); } /*-------------------------------------------------------------------------*/ /* Root Hub INTs are polled by this timer */ static int rh_init_int_timer(urb_t *urb) { struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; uhci->rh.interval = urb->interval; init_timer(&uhci->rh.rh_int_timer); uhci->rh.rh_int_timer.function = rh_int_timer_do; uhci->rh.rh_int_timer.data = (unsigned long)urb; uhci->rh.rh_int_timer.expires = jiffies + (HZ * (urb->interval < 30 ? 30 : urb->interval)) / 1000; add_timer(&uhci->rh.rh_int_timer); return 0; } /*-------------------------------------------------------------------------*/ #define OK(x) len = (x); break #define CLR_RH_PORTSTAT(x) \ status = inw(io_addr + USBPORTSC1 + 2 * (wIndex-1)); \ status = (status & 0xfff5) & ~(x); \ outw(status, io_addr + USBPORTSC1 + 2 * (wIndex-1)) #define SET_RH_PORTSTAT(x) \ status = inw(io_addr + USBPORTSC1 + 2 * (wIndex-1)); \ status = (status & 0xfff5) | (x); \ outw(status, io_addr + USBPORTSC1 + 2 * (wIndex-1)) /*-------------------------------------------------------------------------*/ /************************* ** Root Hub Control Pipe *************************/ static int rh_submit_urb(urb_t *urb) { struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; unsigned int pipe = urb->pipe; devrequest *cmd = (devrequest *)urb->setup_packet; void *data = urb->transfer_buffer; int leni = urb->transfer_buffer_length; int len = 0; int status = 0; int stat = USB_ST_NOERROR; int i; unsigned int io_addr = uhci->io_addr; __u16 cstatus; __u16 bmRType_bReq; __u16 wValue; __u16 wIndex; __u16 wLength; if (usb_pipetype(pipe) == PIPE_INTERRUPT) { uhci->rh.urb = urb; uhci->rh.send = 1; uhci->rh.interval = urb->interval; rh_init_int_timer(urb); return USB_ST_NOERROR; } bmRType_bReq = cmd->requesttype | cmd->request << 8; wValue = le16_to_cpu(cmd->value); wIndex = le16_to_cpu(cmd->index); wLength = le16_to_cpu(cmd->length); for (i = 0; i < 8; i++) uhci->rh.c_p_r[i] = 0; switch (bmRType_bReq) { /* Request Destination: without flags: Device, RH_INTERFACE: interface, RH_ENDPOINT: endpoint, RH_CLASS means HUB here, RH_OTHER | RH_CLASS almost ever means HUB_PORT here */ case RH_GET_STATUS: *(__u16 *)data = cpu_to_le16(1); OK(2); case RH_GET_STATUS | RH_INTERFACE: *(__u16 *)data = cpu_to_le16(0); OK(2); case RH_GET_STATUS | RH_ENDPOINT: *(__u16 *)data = cpu_to_le16(0); OK(2); case RH_GET_STATUS | RH_CLASS: *(__u32 *)data = cpu_to_le32(0); OK(4); /* hub power */ case RH_GET_STATUS | RH_OTHER | RH_CLASS: status = inw(io_addr + USBPORTSC1 + 2 * (wIndex - 1)); cstatus = ((status & USBPORTSC_CSC) >> (1 - 0)) | ((status & USBPORTSC_PEC) >> (3 - 1)) | (uhci->rh.c_p_r[wIndex - 1] << (0 + 4)); status = (status & USBPORTSC_CCS) | ((status & USBPORTSC_PE) >> (2 - 1)) | ((status & USBPORTSC_SUSP) >> (12 - 2)) | ((status & USBPORTSC_PR) >> (9 - 4)) | (1 << 8) | /* power on */ ((status & USBPORTSC_LSDA) << (-8 + 9)); *(__u16 *)data = cpu_to_le16(status); *(__u16 *)(data + 2) = cpu_to_le16(cstatus); OK(4); case RH_CLEAR_FEATURE | RH_ENDPOINT: switch (wValue) { case RH_ENDPOINT_STALL: OK(0); } break; case RH_CLEAR_FEATURE | RH_CLASS: switch (wValue) { case RH_C_HUB_OVER_CURRENT: OK(0); /* hub power over current */ } break; case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS: switch (wValue) { case RH_PORT_ENABLE: CLR_RH_PORTSTAT(USBPORTSC_PE); OK(0); case RH_PORT_SUSPEND: CLR_RH_PORTSTAT(USBPORTSC_SUSP); OK(0); case RH_PORT_POWER: OK(0); /* port power */ case RH_C_PORT_CONNECTION: SET_RH_PORTSTAT(USBPORTSC_CSC); OK(0); case RH_C_PORT_ENABLE: SET_RH_PORTSTAT(USBPORTSC_PEC); OK(0); case RH_C_PORT_SUSPEND: /*** WR_RH_PORTSTAT(RH_PS_PSSC); */ OK(0); case RH_C_PORT_OVER_CURRENT: OK(0); /* port power over current */ case RH_C_PORT_RESET: uhci->rh.c_p_r[wIndex - 1] = 0; OK(0); } break; case RH_SET_FEATURE | RH_OTHER | RH_CLASS: switch (wValue) { case RH_PORT_SUSPEND: SET_RH_PORTSTAT(USBPORTSC_SUSP); OK(0); case RH_PORT_RESET: SET_RH_PORTSTAT(USBPORTSC_PR); wait_ms(10); uhci->rh.c_p_r[wIndex - 1] = 1; CLR_RH_PORTSTAT(USBPORTSC_PR); udelay(10); SET_RH_PORTSTAT(USBPORTSC_PE); wait_ms(10); SET_RH_PORTSTAT(0xa); OK(0); case RH_PORT_POWER: OK(0); /* port power ** */ case RH_PORT_ENABLE: SET_RH_PORTSTAT (USBPORTSC_PE); OK(0); } break; case RH_SET_ADDRESS: uhci->rh.devnum = wValue; OK(0); case RH_GET_DESCRIPTOR: switch ((wValue & 0xff00) >> 8) { case 0x01: /* device descriptor */ len = min(leni, min(sizeof(root_hub_dev_des), wLength)); memcpy(data, root_hub_dev_des, len); OK(len); case 0x02: /* configuration descriptor */ len = min(leni, min(sizeof(root_hub_config_des), wLength)); memcpy (data, root_hub_config_des, len); OK(len); case 0x03: /* string descriptors */ stat = -EPIPE; } break; case RH_GET_DESCRIPTOR | RH_CLASS: root_hub_hub_des[2] = uhci->rh.numports; len = min(leni, min(sizeof(root_hub_hub_des), wLength)); memcpy(data, root_hub_hub_des, len); OK(len); case RH_GET_CONFIGURATION: *(__u8 *)data = 0x01; OK(1); case RH_SET_CONFIGURATION: OK(0); default: stat = -EPIPE; } urb->actual_length = len; urb->status = stat; if (urb->complete) urb->complete(urb); return USB_ST_NOERROR; } /*-------------------------------------------------------------------------*/ static int rh_unlink_urb(urb_t *urb) { struct uhci *uhci = (struct uhci *)urb->dev->bus->hcpriv; uhci->rh.send = 0; del_timer(&uhci->rh.rh_int_timer); return 0; } /*-------------------------------------------------------------------*/ void uhci_free_pending_qhs(struct uhci *uhci) { struct list_head *tmp, *head; unsigned long flags; /* Free any pending QH's */ spin_lock_irqsave(&uhci->qh_remove_lock, flags); head = &uhci->qh_remove_list; tmp = head->next; while (tmp != head) { struct uhci_qh *qh = list_entry(tmp, struct uhci_qh, remove_list); tmp = tmp->next; list_del(&qh->remove_list); uhci_free_qh(qh); } spin_unlock_irqrestore(&uhci->qh_remove_lock, flags); } static void uhci_interrupt(int irq, void *__uhci, struct pt_regs *regs) { struct uhci *uhci = __uhci; unsigned int io_addr = uhci->io_addr; unsigned short status; unsigned long flags; struct list_head *tmp, *head; /* * Read the interrupt status, and write it back to clear the * interrupt cause */ status = inw(io_addr + USBSTS); if (!status) /* shared interrupt, not mine */ return; outw(status, io_addr + USBSTS); if (status & ~(USBSTS_USBINT | USBSTS_ERROR)) { if (status & USBSTS_RD) printk(KERN_INFO "uhci: resume detected, not implemented\n"); if (status & USBSTS_HSE) printk(KERN_ERR "uhci: host system error, PCI problems?\n"); if (status & USBSTS_HCPE) printk(KERN_ERR "uhci: host controller process error. something bad happened\n"); if (status & USBSTS_HCH) { printk(KERN_ERR "uhci: host controller halted. very bad\n"); /* FIXME: Reset the controller, fix the offending TD */ } } uhci_free_pending_qhs(uhci); spin_lock(&uhci->urb_remove_lock); head = &uhci->urb_remove_list; tmp = head->next; while (tmp != head) { struct urb *urb = list_entry(tmp, struct urb, urb_list); tmp = tmp->next; list_del(&urb->urb_list); if (urb->complete) urb->complete(urb); } spin_unlock(&uhci->urb_remove_lock); /* Walk the list of pending TD's to see which ones completed */ nested_lock(&uhci->urblist_lock, flags); head = &uhci->urb_list; tmp = head->next; while (tmp != head) { struct urb *urb = list_entry(tmp, struct urb, urb_list); tmp = tmp->next; /* Checks the status and does all of the magic necessary */ uhci_transfer_result(urb); } nested_unlock(&uhci->urblist_lock, flags); } static void reset_hc(struct uhci *uhci) { unsigned int io_addr = uhci->io_addr; /* Global reset for 50ms */ outw(USBCMD_GRESET, io_addr + USBCMD); wait_ms(50); outw(0, io_addr + USBCMD); wait_ms(10); } static void start_hc(struct uhci *uhci) { unsigned int io_addr = uhci->io_addr; int timeout = 1000; /* * Reset the HC - this will force us to get a * new notification of any already connected * ports due to the virtual disconnect that it * implies. */ outw(USBCMD_HCRESET, io_addr + USBCMD); while (inw(io_addr + USBCMD) & USBCMD_HCRESET) { if (!--timeout) { printk(KERN_ERR "uhci: USBCMD_HCRESET timed out!\n"); break; } } /* Turn on all interrupts */ outw(USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP, io_addr + USBINTR); /* Start at frame 0 */ outw(0, io_addr + USBFRNUM); outl(virt_to_bus(uhci->fl), io_addr + USBFLBASEADD); /* Run and mark it configured with a 64-byte max packet */ outw(USBCMD_RS | USBCMD_CF | USBCMD_MAXP, io_addr + USBCMD); } /* * Allocate a frame list, and then setup the skeleton * * The hardware doesn't really know any difference * in the queues, but the order does matter for the * protocols higher up. The order is: * * - any isochronous events handled before any * of the queues. We don't do that here, because * we'll create the actual TD entries on demand. * - The first queue is the "interrupt queue". * - The second queue is the "control queue", split into low and high speed * - The third queue is "bulk data". */ static struct uhci *alloc_uhci(unsigned int io_addr, unsigned int io_size) { int i, port; struct uhci *uhci; struct usb_bus *bus; uhci = kmalloc(sizeof(*uhci), GFP_KERNEL); if (!uhci) return NULL; memset(uhci, 0, sizeof(*uhci)); uhci->irq = -1; uhci->io_addr = io_addr; uhci->io_size = io_size; spin_lock_init(&uhci->qh_remove_lock); INIT_LIST_HEAD(&uhci->qh_remove_list); spin_lock_init(&uhci->urb_remove_lock); INIT_LIST_HEAD(&uhci->urb_remove_list); nested_init(&uhci->urblist_lock); INIT_LIST_HEAD(&uhci->urb_list); spin_lock_init(&uhci->framelist_lock); /* We need exactly one page (per UHCI specs), how convenient */ /* We assume that one page is atleast 4k (1024 frames * 4 bytes) */ uhci->fl = (void *)__get_free_page(GFP_KERNEL); if (!uhci->fl) goto au_free_uhci; bus = usb_alloc_bus(&uhci_device_operations); if (!bus) goto au_free_fl; uhci->bus = bus; bus->hcpriv = uhci; /* Initialize the root hub */ /* UHCI specs says devices must have 2 ports, but goes on to say */ /* they may have more but give no way to determine how many they */ /* have. However, according to the UHCI spec, Bit 7 is always set */ /* to 1. So we try to use this to our advantage */ for (port = 0; port < (io_size - 0x10) / 2; port++) { unsigned int portstatus; portstatus = inw(io_addr + 0x10 + (port * 2)); if (!(portstatus & 0x0080)) break; } if (debug) info("detected %d ports", port); /* This is experimental so anything less than 2 or greater than 8 is */ /* something weird and we'll ignore it */ if (port < 2 || port > 8) { info("port count misdetected? forcing to 2 ports"); port = 2; } uhci->rh.numports = port; /* * 9 Interrupt queues; link int2 to int1, int4 to int2, etc * then link int1 to control and control to bulk */ for (i = 1; i < 9; i++) { struct uhci_td *td = &uhci->skeltd[i]; uhci_fill_td(td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0); td->link = virt_to_bus(&uhci->skeltd[i - 1]); } uhci_fill_td(&uhci->skel_int1_td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0); uhci->skel_int1_td.link = virt_to_bus(&uhci->skel_ls_control_qh) | UHCI_PTR_QH; uhci->skel_ls_control_qh.link = virt_to_bus(&uhci->skel_hs_control_qh) | UHCI_PTR_QH; uhci->skel_ls_control_qh.element = UHCI_PTR_TERM; uhci->skel_hs_control_qh.link = virt_to_bus(&uhci->skel_bulk_qh) | UHCI_PTR_QH; uhci->skel_hs_control_qh.element = UHCI_PTR_TERM; uhci->skel_bulk_qh.link = virt_to_bus(&uhci->skel_term_qh) | UHCI_PTR_QH; uhci->skel_bulk_qh.element = UHCI_PTR_TERM; /* This dummy TD is to work around a bug in Intel PIIX controllers */ uhci_fill_td(&uhci->skel_term_td, 0, (UHCI_NULL_DATA_SIZE << 21) | (0x7f << 8) | USB_PID_IN, 0); uhci->skel_term_td.link = UHCI_PTR_TERM; uhci->skel_term_qh.link = UHCI_PTR_TERM; uhci->skel_term_qh.element = virt_to_bus(&uhci->skel_term_td); /* * Fill the frame list: make all entries point to * the proper interrupt queue. * * This is probably silly, but it's a simple way to * scatter the interrupt queues in a way that gives * us a reasonable dynamic range for irq latencies. */ for (i = 0; i < 1024; i++) { struct uhci_td *irq = &uhci->skel_int2_td; if (i & 1) { irq++; if (i & 2) { irq++; if (i & 4) { irq++; if (i & 8) { irq++; if (i & 16) { irq++; if (i & 32) { irq++; if (i & 64) irq++; } } } } } } /* Only place we don't use the frame list routines */ uhci->fl->frame[i] = virt_to_bus(irq); } return uhci; /* * error exits: */ au_free_fl: free_page((unsigned long)uhci->fl); au_free_uhci: kfree(uhci); return NULL; } /* * De-allocate all resources.. */ static void release_uhci(struct uhci *uhci) { if (uhci->irq >= 0) { free_irq(uhci->irq, uhci); uhci->irq = -1; } if (uhci->fl) { free_page((unsigned long)uhci->fl); uhci->fl = NULL; } usb_free_bus(uhci->bus); kfree(uhci); } int uhci_start_root_hub(struct uhci *uhci) { struct usb_device *dev; dev = usb_alloc_dev(NULL, uhci->bus); if (!dev) return -1; uhci->bus->root_hub = dev; usb_connect(dev); if (usb_new_device(dev) != 0) { usb_free_dev(dev); return -1; } return 0; } /* * If we've successfully found a UHCI, now is the time to increment the * module usage count, and return success.. */ static int setup_uhci(struct pci_dev *dev, int irq, unsigned int io_addr, unsigned int io_size) { int retval; struct uhci *uhci; uhci = alloc_uhci(io_addr, io_size); if (!uhci) return -ENOMEM; INIT_LIST_HEAD(&uhci->uhci_list); list_add(&uhci->uhci_list, &uhci_list); request_region(uhci->io_addr, io_size, "usb-uhci"); reset_hc(uhci); usb_register_bus(uhci->bus); start_hc(uhci); retval = -EBUSY; if (request_irq(irq, uhci_interrupt, SA_SHIRQ, "usb-uhci", uhci) == 0) { uhci->irq = irq; if (!uhci_start_root_hub(uhci)) { struct pm_dev *pmdev; pmdev = pm_register(PM_PCI_DEV, PM_PCI_ID(dev), handle_pm_event); if (pmdev) pmdev->data = uhci; return 0; } } /* Couldn't allocate IRQ if we got here */ list_del(&uhci->uhci_list); INIT_LIST_HEAD(&uhci->uhci_list); reset_hc(uhci); release_region(uhci->io_addr, uhci->io_size); release_uhci(uhci); return retval; } static int found_uhci(struct pci_dev *dev) { int i; /* Search for the IO base address.. */ for (i = 0; i < 6; i++) { unsigned int io_addr = dev->resource[i].start; unsigned int io_size = dev->resource[i].end - dev->resource[i].start + 1; /* IO address? */ if (!(dev->resource[i].flags & IORESOURCE_IO)) continue; /* Is it already in use? */ if (check_region(io_addr, io_size)) break; if (!dev->irq) { err("found UHCI device with no IRQ assigned. check BIOS settings!"); continue; } /* disable legacy emulation */ pci_write_config_word(dev, USBLEGSUP, USBLEGSUP_DEFAULT); if (pci_enable_device(dev) < 0) continue; return setup_uhci(dev, dev->irq, io_addr, io_size); } return -1; } static int handle_pm_event(struct pm_dev *dev, pm_request_t rqst, void *data) { switch (rqst) { case PM_SUSPEND: break; case PM_RESUME: break; } return 0; } int uhci_init(void) { int retval; struct pci_dev *dev; u8 type; retval = -ENOMEM; /* We throw all of the TD's and QH's into a kmem cache */ /* TD's and QH's need to be 16 byte aligned and SLAB_HWCACHE_ALIGN */ /* does this for us */ uhci_td_cachep = kmem_cache_create("uhci_td", sizeof(struct uhci_td), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!uhci_td_cachep) goto td_failed; uhci_qh_cachep = kmem_cache_create("uhci_qh", sizeof(struct uhci_qh), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!uhci_qh_cachep) goto qh_failed; uhci_up_cachep = kmem_cache_create("uhci_urb_priv", sizeof(struct urb_priv), 0, 0, NULL, NULL); if (!uhci_up_cachep) goto up_failed; retval = -ENODEV; dev = NULL; for (;;) { dev = pci_find_class(PCI_CLASS_SERIAL_USB << 8, dev); if (!dev) break; /* Is it the UHCI programming interface? */ pci_read_config_byte(dev, PCI_CLASS_PROG, &type); if (type != 0) continue; /* Ok set it up */ retval = found_uhci(dev); } /* We only want to return an error code if ther was an error */ /* and we didn't find a UHCI controller */ if (retval && uhci_list.next == &uhci_list) goto init_failed; return 0; init_failed: if (kmem_cache_destroy(uhci_up_cachep)) printk(KERN_INFO "uhci: not all urb_priv's were freed\n"); up_failed: if (kmem_cache_destroy(uhci_qh_cachep)) printk(KERN_INFO "uhci: not all QH's were freed\n"); qh_failed: if (kmem_cache_destroy(uhci_td_cachep)) printk(KERN_INFO "uhci: not all TD's were freed\n"); td_failed: return retval; } void uhci_cleanup(void) { struct list_head *tmp, *head = &uhci_list; tmp = head->next; while (tmp != head) { struct uhci *uhci = list_entry(tmp, struct uhci, uhci_list); tmp = tmp->next; list_del(&uhci->uhci_list); INIT_LIST_HEAD(&uhci->uhci_list); if (uhci->bus->root_hub) usb_disconnect(&uhci->bus->root_hub); usb_deregister_bus(uhci->bus); reset_hc(uhci); release_region(uhci->io_addr, uhci->io_size); uhci_free_pending_qhs(uhci); release_uhci(uhci); } if (kmem_cache_destroy(uhci_up_cachep)) printk(KERN_INFO "uhci: not all urb_priv's were freed\n"); if (kmem_cache_destroy(uhci_qh_cachep)) printk(KERN_INFO "uhci: not all QH's were freed\n"); if (kmem_cache_destroy(uhci_td_cachep)) printk(KERN_INFO "uhci: not all TD's were freed\n"); } #ifdef MODULE int init_module(void) { return uhci_init(); } void cleanup_module(void) { pm_unregister_all(handle_pm_event); uhci_cleanup(); } #endif //MODULE