/* * linux/fs/inode.c * * (C) 1997 Linus Torvalds */ #include #include #include #include #include #include #include #include /* * New inode.c implementation. * * This implementation has the basic premise of trying * to be extremely low-overhead and SMP-safe, yet be * simple enough to be "obviously correct". * * Famous last words. */ /* inode dynamic allocation 1999, Andrea Arcangeli */ #define INODE_PARANOIA 1 /* #define INODE_DEBUG 1 */ /* * Inode lookup is no longer as critical as it used to be: * most of the lookups are going to be through the dcache. */ #define HASH_BITS 14 #define HASH_SIZE (1UL << HASH_BITS) #define HASH_MASK (HASH_SIZE-1) /* * Each inode can be on two separate lists. One is * the hash list of the inode, used for lookups. The * other linked list is the "type" list: * "in_use" - valid inode, i_count > 0, i_nlink > 0 * "dirty" - as "in_use" but also dirty * "unused" - valid inode, i_count = 0 * * A "dirty" list is maintained for each super block, * allowing for low-overhead inode sync() operations. */ static LIST_HEAD(inode_in_use); static LIST_HEAD(inode_unused); static struct list_head inode_hashtable[HASH_SIZE]; static LIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */ /* * A simple spinlock to protect the list manipulations. * * NOTE! You also have to own the lock if you change * the i_state of an inode while it is in use.. */ spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; /* * Statistics gathering.. */ struct { int nr_inodes; int nr_unused; int dummy[5]; } inodes_stat = {0, 0,}; static kmem_cache_t * inode_cachep; #define alloc_inode() \ ((struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL)) #define destroy_inode(inode) kmem_cache_free(inode_cachep, (inode)) /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) { struct inode * inode = (struct inode *) foo; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) { memset(inode, 0, sizeof(*inode)); init_waitqueue_head(&inode->i_wait); INIT_LIST_HEAD(&inode->i_hash); INIT_LIST_HEAD(&inode->i_data.pages); INIT_LIST_HEAD(&inode->i_dentry); sema_init(&inode->i_sem, 1); spin_lock_init(&inode->i_shared_lock); } } /* * Put the inode on the super block's dirty list. * * CAREFUL! We mark it dirty unconditionally, but * move it onto the dirty list only if it is hashed. * If it was not hashed, it will never be added to * the dirty list even if it is later hashed, as it * will have been marked dirty already. * * In short, make sure you hash any inodes _before_ * you start marking them dirty.. */ void __mark_inode_dirty(struct inode *inode) { struct super_block * sb = inode->i_sb; if (sb) { spin_lock(&inode_lock); if (!(inode->i_state & I_DIRTY)) { inode->i_state |= I_DIRTY; /* Only add valid (ie hashed) inodes to the dirty list */ if (!list_empty(&inode->i_hash)) { list_del(&inode->i_list); list_add(&inode->i_list, &sb->s_dirty); } } spin_unlock(&inode_lock); } } static void __wait_on_inode(struct inode * inode) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&inode->i_wait, &wait); repeat: set_current_state(TASK_UNINTERRUPTIBLE); if (inode->i_state & I_LOCK) { schedule(); goto repeat; } remove_wait_queue(&inode->i_wait, &wait); current->state = TASK_RUNNING; } static inline void wait_on_inode(struct inode *inode) { if (inode->i_state & I_LOCK) __wait_on_inode(inode); } static inline void write_inode(struct inode *inode) { if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->write_inode) inode->i_sb->s_op->write_inode(inode); } static inline void sync_one(struct inode *inode) { if (inode->i_state & I_LOCK) { spin_unlock(&inode_lock); __wait_on_inode(inode); spin_lock(&inode_lock); } else { list_del(&inode->i_list); list_add(&inode->i_list, inode->i_count ? &inode_in_use : &inode_unused); /* Set I_LOCK, reset I_DIRTY */ inode->i_state ^= I_DIRTY | I_LOCK; spin_unlock(&inode_lock); write_inode(inode); spin_lock(&inode_lock); inode->i_state &= ~I_LOCK; wake_up(&inode->i_wait); } } static inline void sync_list(struct list_head *head) { struct list_head * tmp; while ((tmp = head->prev) != head) sync_one(list_entry(tmp, struct inode, i_list)); } /* * "sync_inodes()" goes through the super block's dirty list, * writes them out, and puts them back on the normal list. */ void sync_inodes(kdev_t dev) { struct super_block * sb = sb_entry(super_blocks.next); /* * Search the super_blocks array for the device(s) to sync. */ spin_lock(&inode_lock); for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { if (!sb->s_dev) continue; if (dev && sb->s_dev != dev) continue; sync_list(&sb->s_dirty); if (dev) break; } spin_unlock(&inode_lock); } /* * Called with the spinlock already held.. */ static void sync_all_inodes(void) { struct super_block * sb = sb_entry(super_blocks.next); for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.next)) { if (!sb->s_dev) continue; sync_list(&sb->s_dirty); } } /* * Needed by knfsd */ void write_inode_now(struct inode *inode) { struct super_block * sb = inode->i_sb; if (sb) { spin_lock(&inode_lock); while (inode->i_state & I_DIRTY) sync_one(inode); spin_unlock(&inode_lock); } else printk("write_inode_now: no super block\n"); } /* * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme prejudice. */ void clear_inode(struct inode *inode) { if (inode->i_data.nrpages) BUG(); if (!(inode->i_state & I_FREEING)) BUG(); wait_on_inode(inode); if (IS_QUOTAINIT(inode)) DQUOT_DROP(inode); if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode) inode->i_sb->s_op->clear_inode(inode); if (inode->i_bdev) { bdput(inode->i_bdev); inode->i_bdev = NULL; } inode->i_state = 0; } /* * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head * head) { struct list_head * inode_entry; struct inode * inode; while ((inode_entry = head->next) != head) { list_del(inode_entry); inode = list_entry(inode_entry, struct inode, i_list); if (inode->i_data.nrpages) truncate_inode_pages(inode, 0); clear_inode(inode); destroy_inode(inode); } } /* * Invalidate all inodes for a device. */ static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose) { struct list_head *next; int busy = 0, count = 0; next = head->next; for (;;) { struct list_head * tmp = next; struct inode * inode; next = next->next; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_list); if (inode->i_sb != sb) continue; if (!inode->i_count) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); list_add(&inode->i_list, dispose); inode->i_state |= I_FREEING; count++; continue; } busy = 1; } /* only unused inodes may be cached with i_count zero */ inodes_stat.nr_unused -= count; return busy; } /* * This is a two-stage process. First we collect all * offending inodes onto the throw-away list, and in * the second stage we actually dispose of them. This * is because we don't want to sleep while messing * with the global lists.. */ int invalidate_inodes(struct super_block * sb) { int busy; LIST_HEAD(throw_away); spin_lock(&inode_lock); busy = invalidate_list(&inode_in_use, sb, &throw_away); busy |= invalidate_list(&inode_unused, sb, &throw_away); busy |= invalidate_list(&sb->s_dirty, sb, &throw_away); spin_unlock(&inode_lock); dispose_list(&throw_away); return busy; } /* * This is called with the inode lock held. It searches * the in-use for freeable inodes, which are moved to a * temporary list and then placed on the unused list by * dispose_list. * * We don't expect to have to call this very often. * * N.B. The spinlock is released during the call to * dispose_list. */ #define CAN_UNUSE(inode) \ (((inode)->i_state | (inode)->i_data.nrpages) == 0) #define INODE(entry) (list_entry(entry, struct inode, i_list)) void prune_icache(int goal) { LIST_HEAD(list); struct list_head *entry, *freeable = &list; int count = 0; struct inode * inode; spin_lock(&inode_lock); /* go simple and safe syncing everything before starting */ sync_all_inodes(); entry = inode_unused.prev; while (entry != &inode_unused) { struct list_head *tmp = entry; entry = entry->prev; inode = INODE(tmp); if (!CAN_UNUSE(inode)) continue; if (inode->i_count) BUG(); list_del(tmp); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_add(tmp, freeable); inode->i_state |= I_FREEING; count++; if (!--goal) break; } inodes_stat.nr_unused -= count; spin_unlock(&inode_lock); dispose_list(freeable); } int shrink_icache_memory(int priority, int gfp_mask, zone_t *zone) { int count = 0; if (priority) count = inodes_stat.nr_unused / priority; prune_icache(count); /* FIXME: kmem_cache_shrink here should tell us the number of pages freed, and it should work in a __GFP_DMA/__GFP_HIGHMEM behaviour to free only the interesting pages in function of the needs of the current allocation. */ kmem_cache_shrink(inode_cachep); return 0; } static inline void __iget(struct inode * inode) { if (!inode->i_count++) { if (!(inode->i_state & I_DIRTY)) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_in_use); } inodes_stat.nr_unused--; } } /* * Called with the inode lock held. * NOTE: we are not increasing the inode-refcount, you must call __iget() * by hand after calling find_inode now! This simplify iunique and won't * add any additional branch in the common code. */ static struct inode * find_inode(struct super_block * sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct list_head *tmp; struct inode * inode; tmp = head; for (;;) { tmp = tmp->next; inode = NULL; if (tmp == head) break; inode = list_entry(tmp, struct inode, i_hash); if (inode->i_sb != sb) continue; if (inode->i_ino != ino) continue; if (find_actor && !find_actor(inode, ino, opaque)) continue; break; } return inode; } /* * This just initializes the inode fields * to known values before returning the inode.. * * i_sb, i_ino, i_count, i_state and the lists have * been initialized elsewhere.. */ static void clean_inode(struct inode *inode) { memset(&inode->u, 0, sizeof(inode->u)); inode->i_sock = 0; inode->i_op = NULL; inode->i_nlink = 1; atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_generation = 0; memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); inode->i_pipe = NULL; inode->i_bdev = NULL; } /* * This is called by things like the networking layer * etc that want to get an inode without any inode * number, or filesystems that allocate new inodes with * no pre-existing information. */ struct inode * get_empty_inode(void) { static unsigned long last_ino = 0; struct inode * inode; inode = alloc_inode(); if (inode) { spin_lock(&inode_lock); list_add(&inode->i_list, &inode_in_use); inode->i_sb = NULL; inode->i_dev = 0; inode->i_ino = ++last_ino; inode->i_flags = 0; inode->i_count = 1; inode->i_state = 0; spin_unlock(&inode_lock); clean_inode(inode); } return inode; } /* * This is called without the inode lock held.. Be careful. * * We no longer cache the sb_flags in i_flags - see fs.h * -- rmk@arm.uk.linux.org */ static struct inode * get_new_inode(struct super_block *sb, unsigned long ino, struct list_head *head, find_inode_t find_actor, void *opaque) { struct inode * inode; inode = alloc_inode(); if (inode) { struct inode * old; spin_lock(&inode_lock); /* We released the lock, so.. */ old = find_inode(sb, ino, head, find_actor, opaque); if (!old) { list_add(&inode->i_list, &inode_in_use); list_add(&inode->i_hash, head); inode->i_sb = sb; inode->i_dev = sb->s_dev; inode->i_ino = ino; inode->i_flags = 0; inode->i_count = 1; inode->i_state = I_LOCK; spin_unlock(&inode_lock); clean_inode(inode); sb->s_op->read_inode(inode); /* * This is special! We do not need the spinlock * when clearing I_LOCK, because we're guaranteed * that nobody else tries to do anything about the * state of the inode when it is locked, as we * just created it (so there can be no old holders * that haven't tested I_LOCK). */ inode->i_state &= ~I_LOCK; wake_up(&inode->i_wait); return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ __iget(old); spin_unlock(&inode_lock); destroy_inode(inode); inode = old; wait_on_inode(inode); } return inode; } static inline unsigned long hash(struct super_block *sb, unsigned long i_ino) { unsigned long tmp = i_ino | (unsigned long) sb; tmp = tmp + (tmp >> HASH_BITS) + (tmp >> HASH_BITS*2); return tmp & HASH_MASK; } /* Yeah, I know about quadratic hash. Maybe, later. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { static ino_t counter = 0; struct inode *inode; struct list_head * head; ino_t res; spin_lock(&inode_lock); retry: if (counter > max_reserved) { head = inode_hashtable + hash(sb,counter); inode = find_inode(sb, res = counter++, head, NULL, NULL); if (!inode) { spin_unlock(&inode_lock); return res; } } else { counter = max_reserved + 1; } goto retry; } struct inode *igrab(struct inode *inode) { spin_lock(&inode_lock); if (!(inode->i_state & I_FREEING)) __iget(inode); else inode = NULL; spin_unlock(&inode_lock); if (inode) wait_on_inode(inode); return inode; } struct inode *iget4(struct super_block *sb, unsigned long ino, find_inode_t find_actor, void *opaque) { struct list_head * head = inode_hashtable + hash(sb,ino); struct inode * inode; spin_lock(&inode_lock); inode = find_inode(sb, ino, head, find_actor, opaque); if (inode) { __iget(inode); spin_unlock(&inode_lock); wait_on_inode(inode); return inode; } spin_unlock(&inode_lock); /* * get_new_inode() will do the right thing, re-trying the search * in case it had to block at any point. */ return get_new_inode(sb, ino, head, find_actor, opaque); } void insert_inode_hash(struct inode *inode) { struct list_head *head = &anon_hash_chain; if (inode->i_sb) head = inode_hashtable + hash(inode->i_sb, inode->i_ino); spin_lock(&inode_lock); list_add(&inode->i_hash, head); spin_unlock(&inode_lock); } void remove_inode_hash(struct inode *inode) { spin_lock(&inode_lock); list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); spin_unlock(&inode_lock); } void iput(struct inode *inode) { if (inode) { struct super_operations *op = NULL; int destroy = 0; if (inode->i_sb && inode->i_sb->s_op) op = inode->i_sb->s_op; if (op && op->put_inode) op->put_inode(inode); spin_lock(&inode_lock); if (!--inode->i_count) { if (!inode->i_nlink) { list_del(&inode->i_hash); INIT_LIST_HEAD(&inode->i_hash); list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; if (op && op->delete_inode) { void (*delete)(struct inode *) = op->delete_inode; spin_unlock(&inode_lock); if (inode->i_data.nrpages) truncate_inode_pages(inode, 0); delete(inode); spin_lock(&inode_lock); } } if (list_empty(&inode->i_hash)) { list_del(&inode->i_list); INIT_LIST_HEAD(&inode->i_list); inode->i_state|=I_FREEING; spin_unlock(&inode_lock); clear_inode(inode); destroy = 1; spin_lock(&inode_lock); } else { if (!(inode->i_state & I_DIRTY)) { list_del(&inode->i_list); list_add(&inode->i_list, &inode_unused); } inodes_stat.nr_unused++; } #ifdef INODE_PARANOIA if (inode->i_flock) printk(KERN_ERR "iput: inode %s/%ld still has locks!\n", kdevname(inode->i_dev), inode->i_ino); if (!list_empty(&inode->i_dentry)) printk(KERN_ERR "iput: device %s inode %ld still has aliases!\n", kdevname(inode->i_dev), inode->i_ino); if (inode->i_count) printk(KERN_ERR "iput: device %s inode %ld count changed, count=%d\n", kdevname(inode->i_dev), inode->i_ino, inode->i_count); if (atomic_read(&inode->i_sem.count) != 1) printk(KERN_ERR "iput: Aieee, semaphore in use inode %s/%ld, count=%d\n", kdevname(inode->i_dev), inode->i_ino, atomic_read(&inode->i_sem.count)); #endif } if (inode->i_count > (1<<31)) { printk(KERN_ERR "iput: inode %s/%ld count wrapped\n", kdevname(inode->i_dev), inode->i_ino); } spin_unlock(&inode_lock); if (destroy) destroy_inode(inode); } } int bmap(struct inode * inode, int block) { struct buffer_head tmp; if (inode->i_op && inode->i_op->get_block) { tmp.b_state = 0; tmp.b_blocknr = 0; inode->i_op->get_block(inode, block, &tmp, 0); return tmp.b_blocknr; } return 0; } /* * Initialize the hash tables. */ void __init inode_init(void) { int i; struct list_head *head = inode_hashtable; i = HASH_SIZE; do { INIT_LIST_HEAD(head); head++; i--; } while (i); /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, SLAB_HWCACHE_ALIGN, init_once, NULL); if (!inode_cachep) panic("cannot create inode slab cache"); } void update_atime (struct inode *inode) { if ( IS_NOATIME (inode) ) return; if ( IS_NODIRATIME (inode) && S_ISDIR (inode->i_mode) ) return; if ( IS_RDONLY (inode) ) return; inode->i_atime = CURRENT_TIME; mark_inode_dirty (inode); } /* End Function update_atime */ /* * Quota functions that want to walk the inode lists.. */ #ifdef CONFIG_QUOTA /* Functions back in dquot.c */ void put_dquot_list(struct list_head *); int remove_inode_dquot_ref(struct inode *, short, struct list_head *); void remove_dquot_ref(kdev_t dev, short type) { struct super_block *sb = get_super(dev); struct inode *inode; struct list_head *act_head; LIST_HEAD(tofree_head); if (!sb || !sb->dq_op) return; /* nothing to do */ /* We have to be protected against other CPUs */ spin_lock(&inode_lock); for (act_head = inode_in_use.next; act_head != &inode_in_use; act_head = act_head->next) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb != sb || !IS_QUOTAINIT(inode)) continue; remove_inode_dquot_ref(inode, type, &tofree_head); } for (act_head = inode_unused.next; act_head != &inode_unused; act_head = act_head->next) { inode = list_entry(act_head, struct inode, i_list); if (inode->i_sb != sb || !IS_QUOTAINIT(inode)) continue; remove_inode_dquot_ref(inode, type, &tofree_head); } for (act_head = sb->s_dirty.next; act_head != &sb->s_dirty; act_head = act_head->next) { inode = list_entry(act_head, struct inode, i_list); if (!IS_QUOTAINIT(inode)) continue; remove_inode_dquot_ref(inode, type, &tofree_head); } spin_unlock(&inode_lock); put_dquot_list(&tofree_head); } #endif