/* * linux/fs/namei.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * Some corrections by tytso. */ /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname * lookup logic. */ #include #include #include #include #include #include #include #include #include /* * The bitmask for a lookup event: * - follow links at the end * - require a directory * - ending slashes ok even for nonexistent files * - internal "there are more path compnents" flag */ #define LOOKUP_FOLLOW (1) #define LOOKUP_DIRECTORY (2) #define LOOKUP_SLASHOK (4) #define LOOKUP_CONTINUE (8) #include /* This can be removed after the beta phase. */ #define CACHE_SUPERVISE /* debug the correctness of dcache entries */ #undef DEBUG /* some other debugging */ #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) /* [Feb-1997 T. Schoebel-Theuer] * Fundamental changes in the pathname lookup mechanisms (namei) * were necessary because of omirr. The reason is that omirr needs * to know the _real_ pathname, not the user-supplied one, in case * of symlinks (and also when transname replacements occur). * * The new code replaces the old recursive symlink resolution with * an iterative one (in case of non-nested symlink chains). It does * this with calls to _follow_link(). * As a side effect, dir_namei(), _namei() and follow_link() are now * replaced with a single function lookup_dentry() that can handle all * the special cases of the former code. * * With the new dcache, the pathname is stored at each inode, at least as * long as the refcount of the inode is positive. As a side effect, the * size of the dcache depends on the inode cache and thus is dynamic. * * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink * resolution to correspond with current state of the code. * * Note that the symlink resolution is not *completely* iterative. * There is still a significant amount of tail- and mid- recursion in * the algorithm. Also, note that _readlink() is not used in * lookup_dentry(): lookup_dentry() on the result of _readlink() * may return different results than _follow_link(). Many virtual * filesystems (including /proc) exhibit this behavior. */ /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL * and the name already exists in form of a symlink, try to create the new * name indicated by the symlink. The old code always complained that the * name already exists, due to not following the symlink even if its target * is nonexistent. The new semantics affects also mknod() and link() when * the name is a symlink pointing to a non-existant name. * * I don't know which semantics is the right one, since I have no access * to standards. But I found by trial that HP-UX 9.0 has the full "new" * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the * "old" one. Personally, I think the new semantics is much more logical. * Note that "ln old new" where "new" is a symlink pointing to a non-existing * file does succeed in both HP-UX and SunOs, but not in Solaris * and in the old Linux semantics. */ /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink * semantics. See the comments in "open_namei" and "do_link" below. * * [10-Sep-98 Alan Modra] Another symlink change. */ /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). */ static inline int do_getname(const char *filename, char *page) { int retval; unsigned long len = PAGE_SIZE; if ((unsigned long) filename >= TASK_SIZE) { if (!segment_eq(get_fs(), KERNEL_DS)) return -EFAULT; } else if (TASK_SIZE - (unsigned long) filename < PAGE_SIZE) len = TASK_SIZE - (unsigned long) filename; retval = strncpy_from_user((char *)page, filename, len); if (retval > 0) { if (retval < len) return 0; return -ENAMETOOLONG; } else if (!retval) retval = -ENOENT; return retval; } char * getname(const char * filename) { char *tmp, *result; result = ERR_PTR(-ENOMEM); tmp = __getname(); if (tmp) { int retval = do_getname(filename, tmp); result = tmp; if (retval < 0) { putname(tmp); result = ERR_PTR(retval); } } return result; } /* * permission() * * is used to check for read/write/execute permissions on a file. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things.. */ int permission(struct inode * inode,int mask) { int mode = inode->i_mode; if (inode->i_op && inode->i_op->permission) return inode->i_op->permission(inode, mask); else if ((mask & S_IWOTH) && IS_RDONLY(inode) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) return -EROFS; /* Nobody gets write access to a read-only fs */ else if ((mask & S_IWOTH) && IS_IMMUTABLE(inode)) return -EACCES; /* Nobody gets write access to an immutable file */ else if (current->fsuid == inode->i_uid) mode >>= 6; else if (in_group_p(inode->i_gid)) mode >>= 3; if (((mode & mask & S_IRWXO) == mask) || capable(CAP_DAC_OVERRIDE)) return 0; /* read and search access */ if ((mask == S_IROTH) || (S_ISDIR(mode) && !(mask & ~(S_IROTH | S_IXOTH)))) if (capable(CAP_DAC_READ_SEARCH)) return 0; return -EACCES; } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. */ int get_write_access(struct inode * inode) { if (inode->i_writecount < 0) return -ETXTBSY; inode->i_writecount++; return 0; } void put_write_access(struct inode * inode) { inode->i_writecount--; } /* * "." and ".." are special - ".." especially so because it has to be able * to know about the current root directory and parent relationships */ static struct dentry * reserved_lookup(struct dentry * parent, struct qstr * name) { struct dentry *result = NULL; if (name->name[0] == '.') { switch (name->len) { default: break; case 2: if (name->name[1] != '.') break; if (parent != current->fs->root) parent = parent->d_covers->d_parent; /* fallthrough */ case 1: result = parent; } } return dget(result); } /* * Internal lookup() using the new generic dcache. */ static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name) { struct dentry * dentry = d_lookup(parent, name); if (dentry && dentry->d_op && dentry->d_op->d_revalidate) { if (!dentry->d_op->d_revalidate(dentry) && !d_invalidate(dentry)) { dput(dentry); dentry = NULL; } } return dentry; } /* * This is called when everything else fails, and we actually have * to go to the low-level filesystem to find out what we should do.. * * We get the directory semaphore, and after getting that we also * make sure that nobody added the entry to the dcache in the meantime.. */ static struct dentry * real_lookup(struct dentry * parent, struct qstr * name) { struct dentry * result; struct inode *dir = parent->d_inode; down(&dir->i_sem); /* * First re-do the cached lookup just in case it was created * while we waited for the directory semaphore.. * * FIXME! This could use version numbering or similar to * avoid unnecessary cache lookups. */ result = cached_lookup(parent, name); if (!result) { struct dentry * dentry = d_alloc(parent, name); result = ERR_PTR(-ENOMEM); if (dentry) { int error = dir->i_op->lookup(dir, dentry); result = dentry; if (error) { dput(dentry); result = ERR_PTR(error); } } } up(&dir->i_sem); return result; } static struct dentry * do_follow_link(struct dentry *base, struct dentry *dentry, unsigned int follow) { struct inode * inode = dentry->d_inode; if (inode && inode->i_op && inode->i_op->follow_link) { if (current->link_count < 5) { struct dentry * result; current->link_count++; /* This eats the base */ result = inode->i_op->follow_link(dentry, base, follow); current->link_count--; dput(dentry); return result; } dput(dentry); dentry = ERR_PTR(-ELOOP); } dput(base); return dentry; } static inline struct dentry * follow_mount(struct dentry * dentry) { struct dentry * mnt = dentry->d_mounts; if (mnt != dentry) { dget(mnt); dput(dentry); dentry = mnt; } return dentry; } /* * Name resolution. * * This is the basic name resolution function, turning a pathname * into the final dentry. */ struct dentry * lookup_dentry(const char * name, struct dentry * base, unsigned int lookup_flags) { struct dentry * dentry; struct inode *inode; if (*name == '/') { if (base) dput(base); do { name++; } while (*name == '/'); __prefix_lookup_dentry(name, lookup_flags); base = dget(current->fs->root); } else if (!base) { base = dget(current->fs->pwd); } if (!*name) goto return_base; inode = base->d_inode; lookup_flags &= LOOKUP_FOLLOW | LOOKUP_DIRECTORY | LOOKUP_SLASHOK; /* At this point we know we have a real path component. */ for(;;) { int err; unsigned long hash; struct qstr this; unsigned int flags; unsigned int c; err = permission(inode, MAY_EXEC); dentry = ERR_PTR(err); if (err) break; this.name = name; c = *(const unsigned char *)name; hash = init_name_hash(); do { name++; hash = partial_name_hash(c, hash); c = *(const unsigned char *)name; } while (c && (c != '/')); this.len = name - (const char *) this.name; this.hash = end_name_hash(hash); /* remove trailing slashes? */ flags = lookup_flags; if (c) { char tmp; flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; do { tmp = *++name; } while (tmp == '/'); if (tmp) flags |= LOOKUP_CONTINUE; } /* * See if the low-level filesystem might want * to use its own hash.. */ if (base->d_op && base->d_op->d_hash) { int error; error = base->d_op->d_hash(base, &this); if (error < 0) { dentry = ERR_PTR(error); break; } } /* This does the actual lookups.. */ dentry = reserved_lookup(base, &this); if (!dentry) { dentry = cached_lookup(base, &this); if (!dentry) { dentry = real_lookup(base, &this); if (IS_ERR(dentry)) break; } } /* Check mountpoints.. */ dentry = follow_mount(dentry); if (!(flags & LOOKUP_FOLLOW)) break; base = do_follow_link(base, dentry, flags); if (IS_ERR(base)) goto return_base; inode = base->d_inode; if (flags & LOOKUP_DIRECTORY) { if (!inode) goto no_inode; dentry = ERR_PTR(-ENOTDIR); if (!inode->i_op || !inode->i_op->lookup) break; if (flags & LOOKUP_CONTINUE) continue; } return_base: return base; /* * The case of a nonexisting file is special. * * In the middle of a pathname lookup (ie when * LOOKUP_CONTINUE is set), it's an obvious * error and returns ENOENT. * * At the end of a pathname lookup it's legal, * and we return a negative dentry. However, we * get here only if there were trailing slashes, * which is legal only if we know it's supposed * to be a directory (ie "mkdir"). Thus the * LOOKUP_SLASHOK flag. */ no_inode: dentry = ERR_PTR(-ENOENT); if (flags & LOOKUP_CONTINUE) break; if (flags & LOOKUP_SLASHOK) goto return_base; break; } dput(base); return dentry; } /* * namei() * * is used by most simple commands to get the inode of a specified name. * Open, link etc use their own routines, but this is enough for things * like 'chmod' etc. * * namei exists in two versions: namei/lnamei. The only difference is * that namei follows links, while lnamei does not. */ struct dentry * __namei(const char *pathname, unsigned int lookup_flags) { char *name; struct dentry *dentry; name = getname(pathname); dentry = (struct dentry *) name; if (!IS_ERR(name)) { dentry = lookup_dentry(name, NULL, lookup_flags); putname(name); if (!IS_ERR(dentry)) { if (!dentry->d_inode) { dput(dentry); dentry = ERR_PTR(-ENOENT); } } } return dentry; } /* * It's inline, so penalty for filesystems that don't use sticky bit is * minimal. */ static inline int check_sticky(struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; if (inode->i_uid == current->fsuid) return 0; if (dir->i_uid == current->fsuid) return 0; return !capable(CAP_FOWNER); } /* * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do antyhing with * links pointing to it. * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 9. We can't remove a root or mountpoint. */ static inline int may_delete(struct inode *dir,struct dentry *victim, int isdir) { int error; if (!victim->d_inode || victim->d_parent->d_inode != dir) return -ENOENT; error = permission(dir,MAY_WRITE | MAY_EXEC); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| IS_IMMUTABLE(victim->d_inode)) return -EPERM; if (isdir) { if (!S_ISDIR(victim->d_inode->i_mode)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; if (victim->d_mounts != victim->d_covers) return -EBUSY; } else if (S_ISDIR(victim->d_inode->i_mode)) return -EISDIR; return 0; } /* Check whether we can create an object with dentry child in directory * dir. * 1. We can't do it if child already exists (open has special treatment for * this case, but since we are inlined it's OK) * 2. We can't do it if dir is read-only (done in permission()) * 3. We should have write and exec permissions on dir * 4. We can't do it if dir is immutable (done in permission()) */ static inline int may_create(struct inode *dir, struct dentry *child) { if (child->d_inode) return -EEXIST; return permission(dir,MAY_WRITE | MAY_EXEC); } static inline struct dentry *get_parent(struct dentry *dentry) { return dget(dentry->d_parent); } static inline void unlock_dir(struct dentry *dir) { up(&dir->d_inode->i_sem); dput(dir); } /* * We need to do a check-parent every time * after we have locked the parent - to verify * that the parent is still our parent and * that we are still hashed onto it.. * * This is requied in case two processes race * on removing (or moving) the same entry: the * parent lock will serialize them, but the * other process will be too late.. */ #define check_parent(dir, dentry) \ ((dir) == (dentry)->d_parent && !list_empty(&dentry->d_hash)) /* * Locking the parent is needed to: * - serialize directory operations * - make sure the parent doesn't change from * under us in the middle of an operation. * * NOTE! Right now we'd rather use a "struct inode" * for this, but as I expect things to move toward * using dentries instead for most things it is * probably better to start with the conceptually * better interface of relying on a path of dentries. */ static inline struct dentry *lock_parent(struct dentry *dentry) { struct dentry *dir = dget(dentry->d_parent); down(&dir->d_inode->i_sem); return dir; } /* * Whee.. Deadlock country. Happily there are only two VFS * operations that do this.. */ static inline void double_lock(struct dentry *d1, struct dentry *d2) { struct semaphore *s1 = &d1->d_inode->i_sem; struct semaphore *s2 = &d2->d_inode->i_sem; if (s1 != s2) { if ((unsigned long) s1 < (unsigned long) s2) { struct semaphore *tmp = s2; s2 = s1; s1 = tmp; } down(s1); } down(s2); } static inline void double_unlock(struct dentry *d1, struct dentry *d2) { struct semaphore *s1 = &d1->d_inode->i_sem; struct semaphore *s2 = &d2->d_inode->i_sem; up(s1); if (s1 != s2) up(s2); dput(d1); dput(d2); } /* * Special case: O_CREAT|O_EXCL implies O_NOFOLLOW for security * reasons. * * O_DIRECTORY translates into forcing a directory lookup. */ static inline int lookup_flags(unsigned int f) { unsigned long retval = LOOKUP_FOLLOW; if (f & O_NOFOLLOW) retval &= ~LOOKUP_FOLLOW; if ((f & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) retval &= ~LOOKUP_FOLLOW; if (f & O_DIRECTORY) retval |= LOOKUP_DIRECTORY; return retval; } /* * open_namei() * * namei for open - this is in fact almost the whole open-routine. * * Note that the low bits of "flag" aren't the same as in the open * system call - they are 00 - no permissions needed * 01 - read permission needed * 10 - write permission needed * 11 - read/write permissions needed * which is a lot more logical, and also allows the "no perm" needed * for symlinks (where the permissions are checked later). */ struct dentry * open_namei(const char * pathname, int flag, int mode) { int acc_mode, error; struct inode *inode; struct dentry *dentry; mode &= S_IALLUGO & ~current->fs->umask; mode |= S_IFREG; dentry = lookup_dentry(pathname, NULL, lookup_flags(flag)); if (IS_ERR(dentry)) return dentry; acc_mode = ACC_MODE(flag); if (flag & O_CREAT) { struct dentry *dir; if (dentry->d_inode) { if (!(flag & O_EXCL)) goto nocreate; error = -EEXIST; goto exit; } dir = lock_parent(dentry); if (!check_parent(dir, dentry)) { /* * Really nasty race happened. What's the * right error code? We had a dentry, but * before we could use it it was removed * by somebody else. We could just re-try * everything, I guess. * * ENOENT is definitely wrong. */ error = -ENOENT; unlock_dir(dir); goto exit; } /* * Somebody might have created the file while we * waited for the directory lock.. So we have to * re-do the existence test. */ if (dentry->d_inode) { error = 0; if (flag & O_EXCL) error = -EEXIST; } else if ((error = may_create(dir->d_inode, dentry)) == 0) { if (!dir->d_inode->i_op || !dir->d_inode->i_op->create) error = -EACCES; else { DQUOT_INIT(dir->d_inode); error = dir->d_inode->i_op->create(dir->d_inode, dentry, mode); /* Don't check for write permission, don't truncate */ acc_mode = 0; flag &= ~O_TRUNC; } } unlock_dir(dir); if (error) goto exit; } nocreate: error = -ENOENT; inode = dentry->d_inode; if (!inode) goto exit; error = -ELOOP; if (S_ISLNK(inode->i_mode)) goto exit; error = -EISDIR; if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) goto exit; error = permission(inode,acc_mode); if (error) goto exit; /* * FIFO's, sockets and device files are special: they don't * actually live on the filesystem itself, and as such you * can write to them even if the filesystem is read-only. */ if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { flag &= ~O_TRUNC; } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { error = -EACCES; if (IS_NODEV(inode)) goto exit; flag &= ~O_TRUNC; } else { error = -EROFS; if (IS_RDONLY(inode) && (flag & 2)) goto exit; } /* * An append-only file must be opened in append mode for writing. */ error = -EPERM; if (IS_APPEND(inode)) { if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) goto exit; if (flag & O_TRUNC) goto exit; } if (flag & O_TRUNC) { error = get_write_access(inode); if (error) goto exit; /* * Refuse to truncate files with mandatory locks held on them. */ error = locks_verify_locked(inode); if (!error) { DQUOT_INIT(inode); error = do_truncate(dentry, 0); } put_write_access(inode); if (error) goto exit; } else if (flag & FMODE_WRITE) DQUOT_INIT(inode); return dentry; exit: dput(dentry); return ERR_PTR(error); } struct dentry * do_mknod(const char * filename, int mode, dev_t dev) { int error; struct dentry *dir; struct dentry *dentry, *retval; mode &= ~current->fs->umask; dentry = lookup_dentry(filename, NULL, LOOKUP_FOLLOW); if (IS_ERR(dentry)) return dentry; dir = lock_parent(dentry); error = -ENOENT; if (!check_parent(dir, dentry)) goto exit_lock; error = may_create(dir->d_inode, dentry); if (error) goto exit_lock; error = -EPERM; if (!dir->d_inode->i_op || !dir->d_inode->i_op->mknod) goto exit_lock; DQUOT_INIT(dir->d_inode); error = dir->d_inode->i_op->mknod(dir->d_inode, dentry, mode, dev); exit_lock: retval = ERR_PTR(error); if (!error) retval = dget(dentry); unlock_dir(dir); dput(dentry); return retval; } asmlinkage int sys_mknod(const char * filename, int mode, dev_t dev) { int error; char * tmp; lock_kernel(); error = -EPERM; if (S_ISDIR(mode) || (!S_ISFIFO(mode) && !capable(CAP_SYS_ADMIN))) goto out; error = -EINVAL; switch (mode & S_IFMT) { case 0: mode |= S_IFREG; break; case S_IFREG: case S_IFCHR: case S_IFBLK: case S_IFIFO: case S_IFSOCK: break; default: goto out; } tmp = getname(filename); error = PTR_ERR(tmp); if (!IS_ERR(tmp)) { struct dentry * dentry = do_mknod(tmp,mode,dev); putname(tmp); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { dput(dentry); error = 0; } } out: unlock_kernel(); return error; } /* * Look out: this function may change a normal dentry * into a directory dentry (different size).. */ static inline int do_mkdir(const char * pathname, int mode) { int error; struct dentry *dir; struct dentry *dentry; dentry = lookup_dentry(pathname, NULL, LOOKUP_SLASHOK); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit; /* * EEXIST is kind of a strange error code to * return, but basically if the dentry was moved * or unlinked while we locked the parent, we * do know that it _did_ exist before, and as * such it makes perfect sense.. In contrast, * ENOENT doesn't make sense for mkdir. */ dir = lock_parent(dentry); error = -EEXIST; if (!check_parent(dir, dentry)) goto exit_lock; error = may_create(dir->d_inode, dentry); if (error) goto exit_lock; error = -EPERM; if (!dir->d_inode->i_op || !dir->d_inode->i_op->mkdir) goto exit_lock; DQUOT_INIT(dir->d_inode); mode &= 0777 & ~current->fs->umask; error = dir->d_inode->i_op->mkdir(dir->d_inode, dentry, mode); exit_lock: unlock_dir(dir); dput(dentry); exit: return error; } asmlinkage int sys_mkdir(const char * pathname, int mode) { int error; char * tmp; lock_kernel(); tmp = getname(pathname); error = PTR_ERR(tmp); if (!IS_ERR(tmp)) { error = do_mkdir(tmp,mode); putname(tmp); } unlock_kernel(); return error; } int vfs_rmdir(struct inode *dir, struct dentry *dentry) { int error; error = may_delete(dir, dentry, 1); if (error) return error; if (!dir->i_op || !dir->i_op->rmdir) return -EPERM; DQUOT_INIT(dir); /* * We try to drop the dentry early: we should have * a usage count of 2 if we're the only user of this * dentry, and if that is true (possibly after pruning * the dcache), then we drop the dentry now. * * A low-level filesystem can, if it choses, legally * do a * * if (!list_empty(&dentry->d_hash)) * return -EBUSY; * * if it cannot handle the case of removing a directory * that is still in use by something else.. */ switch (dentry->d_count) { default: shrink_dcache_parent(dentry); if (dentry->d_count != 2) break; case 2: d_drop(dentry); } error = dir->i_op->rmdir(dir, dentry); return error; } static inline int do_rmdir(const char * name) { int error; struct dentry *dir; struct dentry *dentry; dentry = lookup_dentry(name, NULL, 0); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit; error = -ENOENT; if (!dentry->d_inode) goto exit_dput; dir = dget(dentry->d_parent); /* * The dentry->d_count stuff confuses d_delete() enough to * not kill the inode from under us while it is locked. This * wouldn't be needed, except the dentry semaphore is really * in the inode, not in the dentry.. */ dentry->d_count++; double_lock(dir, dentry); error = -ENOENT; if (check_parent(dir, dentry)) error = vfs_rmdir(dir->d_inode, dentry); double_unlock(dentry, dir); exit_dput: dput(dentry); exit: return error; } asmlinkage int sys_rmdir(const char * pathname) { int error; char * tmp; lock_kernel(); tmp = getname(pathname); error = PTR_ERR(tmp); if (!IS_ERR(tmp)) { error = do_rmdir(tmp); putname(tmp); } unlock_kernel(); return error; } int vfs_unlink(struct inode *dir, struct dentry *dentry) { int error; error = may_delete(dir, dentry, 0); if (error) goto exit_lock; if (!dir->i_op || !dir->i_op->unlink) goto exit_lock; DQUOT_INIT(dir); error = dir->i_op->unlink(dir, dentry); exit_lock: return error; } static inline int do_unlink(const char * name) { int error; struct dentry *dir; struct dentry *dentry; dentry = lookup_dentry(name, NULL, 0); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit; dir = lock_parent(dentry); error = -ENOENT; if (check_parent(dir, dentry)) error = vfs_unlink(dir->d_inode, dentry); unlock_dir(dir); dput(dentry); exit: return error; } asmlinkage int sys_unlink(const char * pathname) { int error; char * tmp; lock_kernel(); tmp = getname(pathname); error = PTR_ERR(tmp); if (!IS_ERR(tmp)) { error = do_unlink(tmp); putname(tmp); } unlock_kernel(); return error; } static inline int do_symlink(const char * oldname, const char * newname) { int error; struct dentry *dir; struct dentry *dentry; dentry = lookup_dentry(newname, NULL, 0); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit; dir = lock_parent(dentry); error = -ENOENT; if (!check_parent(dir, dentry)) goto exit_lock; error = may_create(dir->d_inode, dentry); if (error) goto exit_lock; error = -EPERM; if (!dir->d_inode->i_op || !dir->d_inode->i_op->symlink) goto exit_lock; DQUOT_INIT(dir->d_inode); error = dir->d_inode->i_op->symlink(dir->d_inode, dentry, oldname); exit_lock: unlock_dir(dir); dput(dentry); exit: return error; } asmlinkage int sys_symlink(const char * oldname, const char * newname) { int error; char * from; lock_kernel(); from = getname(oldname); error = PTR_ERR(from); if (!IS_ERR(from)) { char * to; to = getname(newname); error = PTR_ERR(to); if (!IS_ERR(to)) { error = do_symlink(from,to); putname(to); } putname(from); } unlock_kernel(); return error; } static inline int do_link(const char * oldname, const char * newname) { struct dentry *old_dentry, *new_dentry, *dir; struct inode *inode; int error; /* * Hardlinks are often used in delicate situations. We avoid * security-related surprises by not following symlinks on the * newname. --KAB * * We don't follow them on the oldname either to be compatible * with linux 2.0, and to avoid hard-linking to directories * and other special files. --ADM */ old_dentry = lookup_dentry(oldname, NULL, 0); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit; new_dentry = lookup_dentry(newname, NULL, 0); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit_old; dir = lock_parent(new_dentry); error = -ENOENT; if (!check_parent(dir, new_dentry)) goto exit_lock; error = -ENOENT; inode = old_dentry->d_inode; if (!inode) goto exit_lock; error = may_create(dir->d_inode, new_dentry); if (error) goto exit_lock; error = -EXDEV; if (dir->d_inode->i_dev != inode->i_dev) goto exit_lock; /* * A link to an append-only or immutable file cannot be created. */ error = -EPERM; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) goto exit_lock; error = -EPERM; if (!dir->d_inode->i_op || !dir->d_inode->i_op->link) goto exit_lock; DQUOT_INIT(dir->d_inode); error = dir->d_inode->i_op->link(old_dentry, dir->d_inode, new_dentry); exit_lock: unlock_dir(dir); dput(new_dentry); exit_old: dput(old_dentry); exit: return error; } asmlinkage int sys_link(const char * oldname, const char * newname) { int error; char * from; lock_kernel(); from = getname(oldname); error = PTR_ERR(from); if (!IS_ERR(from)) { char * to; to = getname(newname); error = PTR_ERR(to); if (!IS_ERR(to)) { error = do_link(from,to); putname(to); } putname(from); } unlock_kernel(); return error; } int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int error; int isdir; isdir = S_ISDIR(old_dentry->d_inode->i_mode); error = may_delete(old_dir, old_dentry, isdir); /* XXX */ if (error) return error; if (new_dir->i_dev != old_dir->i_dev) return -EXDEV; if (!new_dentry->d_inode) error = may_create(new_dir, new_dentry); else error = may_delete(new_dir, new_dentry, isdir); if (error) return error; if (!old_dir->i_op || !old_dir->i_op->rename) return -EPERM; DQUOT_INIT(old_dir); DQUOT_INIT(new_dir); error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); return error; } static inline int do_rename(const char * oldname, const char * newname) { int error; struct dentry * old_dir, * new_dir; struct dentry * old_dentry, *new_dentry; old_dentry = lookup_dentry(oldname, NULL, 0); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit; error = -ENOENT; if (!old_dentry->d_inode) goto exit_old; { unsigned int flags = 0; if (S_ISDIR(old_dentry->d_inode->i_mode)) flags = LOOKUP_SLASHOK; new_dentry = lookup_dentry(newname, NULL, flags); } error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit_old; new_dir = get_parent(new_dentry); old_dir = get_parent(old_dentry); double_lock(new_dir, old_dir); error = -ENOENT; if (check_parent(old_dir, old_dentry) && check_parent(new_dir, new_dentry)) error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry); double_unlock(new_dir, old_dir); dput(new_dentry); exit_old: dput(old_dentry); exit: return error; } asmlinkage int sys_rename(const char * oldname, const char * newname) { int error; char * from; lock_kernel(); from = getname(oldname); error = PTR_ERR(from); if (!IS_ERR(from)) { char * to; to = getname(newname); error = PTR_ERR(to); if (!IS_ERR(to)) { error = do_rename(from,to); putname(to); } putname(from); } unlock_kernel(); return error; }