/* * linux/fs/nfs/dir.c * * Copyright (C) 1992 Rick Sladkey * * nfs directory handling functions * * 10 Apr 1996 Added silly rename for unlink --okir * 28 Sep 1996 Improved directory cache --okir * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de * Re-implemented silly rename for unlink, newly implemented * silly rename for nfs_rename() following the suggestions * of Olaf Kirch (okir) found in this file. * Following Linus comments on my original hack, this version * depends only on the dcache stuff and doesn't touch the inode * layer (iput() and friends). * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFS_PARANOIA 1 /* #define NFS_DEBUG_VERBOSE 1 */ static int nfs_readdir(struct file *, void *, filldir_t); static struct dentry *nfs_lookup(struct inode *, struct dentry *); static int nfs_create(struct inode *, struct dentry *, int); static int nfs_mkdir(struct inode *, struct dentry *, int); static int nfs_rmdir(struct inode *, struct dentry *); static int nfs_unlink(struct inode *, struct dentry *); static int nfs_symlink(struct inode *, struct dentry *, const char *); static int nfs_link(struct dentry *, struct inode *, struct dentry *); static int nfs_mknod(struct inode *, struct dentry *, int, int); static int nfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *); struct file_operations nfs_dir_operations = { read: generic_read_dir, readdir: nfs_readdir, open: nfs_open, release: nfs_release, }; struct inode_operations nfs_dir_inode_operations = { create: nfs_create, lookup: nfs_lookup, link: nfs_link, unlink: nfs_unlink, symlink: nfs_symlink, mkdir: nfs_mkdir, rmdir: nfs_rmdir, mknod: nfs_mknod, rename: nfs_rename, revalidate: nfs_revalidate, setattr: nfs_notify_change, }; typedef u32 * (*decode_dirent_t)(u32 *, struct nfs_entry *, int); typedef struct { struct file *file; struct page *page; unsigned long page_index; unsigned page_offset; u64 target; struct nfs_entry *entry; decode_dirent_t decode; int plus; int error; } nfs_readdir_descriptor_t; /* Now we cache directories properly, by stuffing the dirent * data directly in the page cache. * * Inode invalidation due to refresh etc. takes care of * _everything_, no sloppy entry flushing logic, no extraneous * copying, network direct to page cache, the way it was meant * to be. * * NOTE: Dirent information verification is done always by the * page-in of the RPC reply, nowhere else, this simplies * things substantially. */ static int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) { struct file *file = desc->file; struct inode *inode = file->f_dentry->d_inode; void *buffer = (void *)kmap(page); int plus = NFS_USE_READDIRPLUS(inode); int error; dfprintk(VFS, "NFS: nfs_readdir_filler() reading cookie %Lu into page %lu.\n", (long long)desc->entry->cookie, page->index); again: error = NFS_PROTO(inode)->readdir(file, desc->entry->cookie, buffer, NFS_SERVER(inode)->dtsize, plus); /* We requested READDIRPLUS, but the server doesn't grok it */ if (desc->plus && error == -ENOTSUPP) { NFS_FLAGS(inode) &= ~NFS_INO_ADVISE_RDPLUS; plus = 0; goto again; } if (error < 0) goto error; SetPageUptodate(page); kunmap(page); /* Ensure consistent page alignment of the data. * Note: assumes we have exclusive access to this mapping either * throught inode->i_sem or some other mechanism. */ if (page->index == 0) invalidate_inode_pages(inode); UnlockPage(page); return 0; error: SetPageError(page); kunmap(page); UnlockPage(page); invalidate_inode_pages(inode); desc->error = error; return -EIO; } /* * Given a pointer to a buffer that has already been filled by a call * to readdir, find the next entry. * * If the end of the buffer has been reached, return -EAGAIN, if not, * return the offset within the buffer of the next entry to be * read. */ static inline int find_dirent(nfs_readdir_descriptor_t *desc, struct page *page) { struct nfs_entry *entry = desc->entry; char *start = (char *)kmap(page), *p = start; int loop_count = 0, status = 0; for(;;) { p = (char *)desc->decode((u32*)p, entry, desc->plus); if (IS_ERR(p)) { status = PTR_ERR(p); break; } desc->page_offset = p - start; dfprintk(VFS, "NFS: found cookie %Lu\n", (long long)entry->cookie); if (entry->prev_cookie == desc->target) break; if (loop_count++ > 200) { loop_count = 0; schedule(); } } kunmap(page); dfprintk(VFS, "NFS: find_dirent() returns %d\n", status); return status; } /* * Find the given page, and call find_dirent() in order to try to * return the next entry. */ static inline int find_dirent_page(nfs_readdir_descriptor_t *desc) { struct inode *inode = desc->file->f_dentry->d_inode; struct page *page; unsigned long index = desc->page_index; int status; dfprintk(VFS, "NFS: find_dirent_page() searching directory page %ld\n", desc->page_index); if (desc->page) { page_cache_release(desc->page); desc->page = NULL; } page = read_cache_page(&inode->i_data, index, (filler_t *)nfs_readdir_filler, desc); if (IS_ERR(page)) { status = PTR_ERR(page); goto out; } if (!Page_Uptodate(page)) goto read_error; /* NOTE: Someone else may have changed the READDIRPLUS flag */ desc->plus = NFS_USE_READDIRPLUS(inode); status = find_dirent(desc, page); if (status >= 0) desc->page = page; else page_cache_release(page); out: dfprintk(VFS, "NFS: find_dirent_page() returns %d\n", status); return status; read_error: page_cache_release(page); return -EIO; } /* * Recurse through the page cache pages, and return a * filled nfs_entry structure of the next directory entry if possible. * * The target for the search is 'desc->target'. */ static inline int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) { int res = 0; int loop_count = 0; dfprintk(VFS, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", (long long)desc->target); for (;;) { res = find_dirent_page(desc); if (res != -EAGAIN) break; /* Align to beginning of next page */ desc->page_offset = 0; desc->page_index ++; if (loop_count++ > 200) { loop_count = 0; schedule(); } } dfprintk(VFS, "NFS: readdir_search_pagecache() returned %d\n", res); return res; } /* * Once we've found the start of the dirent within a page: fill 'er up... */ static int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, filldir_t filldir) { struct file *file = desc->file; struct nfs_entry *entry = desc->entry; char *start = (char *)kmap(desc->page), *p = start + desc->page_offset; unsigned long fileid; int loop_count = 0, res = 0; dfprintk(VFS, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", (long long)desc->target); for(;;) { /* Note: entry->prev_cookie contains the cookie for * retrieving the current dirent on the server */ fileid = nfs_fileid_to_ino_t(entry->ino); res = filldir(dirent, entry->name, entry->len, entry->prev_cookie, fileid, DT_UNKNOWN); if (res < 0) break; file->f_pos = desc->target = entry->cookie; p = (char *)desc->decode((u32 *)p, entry, desc->plus); if (IS_ERR(p)) { if (PTR_ERR(p) == -EAGAIN) { desc->page_offset = 0; desc->page_index ++; } break; } desc->page_offset = p - start; if (loop_count++ > 200) { loop_count = 0; schedule(); } } kunmap(desc->page); page_cache_release(desc->page); desc->page = NULL; dfprintk(VFS, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", (long long)desc->target, res); return res; } /* * If we cannot find a cookie in our cache, we suspect that this is * because it points to a deleted file, so we ask the server to return * whatever it thinks is the next entry. We then feed this to filldir. * If all goes well, we should then be able to find our way round the * cache on the next call to readdir_search_pagecache(); * * NOTE: we cannot add the anonymous page to the pagecache because * the data it contains might not be page aligned. Besides, * we should already have a complete representation of the * directory in the page cache by the time we get here. */ static inline int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, filldir_t filldir) { struct file *file = desc->file; struct inode *inode = file->f_dentry->d_inode; struct page *page = NULL; u32 *p; int status = -EIO; dfprintk(VFS, "NFS: uncached_readdir() searching for cookie %Lu\n", (long long)desc->target); if (desc->page) { page_cache_release(desc->page); desc->page = NULL; } page = page_cache_alloc(); if (!page) { status = -ENOMEM; goto out; } p = (u32 *)kmap(page); status = NFS_PROTO(inode)->readdir(file, desc->target, p, NFS_SERVER(inode)->dtsize, 0); if (status >= 0) { p = desc->decode(p, desc->entry, 0); if (IS_ERR(p)) status = PTR_ERR(p); else desc->entry->prev_cookie = desc->target; } kunmap(page); if (status < 0) goto out_release; desc->page_index = 0; desc->page_offset = 0; desc->page = page; status = nfs_do_filldir(desc, dirent, filldir); /* Reset read descriptor so it searches the page cache from * the start upon the next call to readdir_search_pagecache() */ desc->page_index = 0; desc->page_offset = 0; memset(desc->entry, 0, sizeof(*desc->entry)); out: dfprintk(VFS, "NFS: uncached_readdir() returns %d\n", status); return status; out_release: page_cache_release(page); goto out; } /* The file offset position is now represented as a true offset into the * page cache as is the case in most of the other filesystems. */ static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) { struct dentry *dentry = filp->f_dentry; struct inode *inode = dentry->d_inode; nfs_readdir_descriptor_t my_desc, *desc = &my_desc; struct nfs_entry my_entry; long res; res = nfs_revalidate(dentry); if (res < 0) return res; /* * filp->f_pos points to the file offset in the page cache. * but if the cache has meanwhile been zapped, we need to * read from the last dirent to revalidate f_pos * itself. */ memset(desc, 0, sizeof(*desc)); memset(&my_entry, 0, sizeof(my_entry)); desc->file = filp; desc->target = filp->f_pos; desc->entry = &my_entry; desc->decode = NFS_PROTO(inode)->decode_dirent; while(!desc->entry->eof) { res = readdir_search_pagecache(desc); if (res == -EBADCOOKIE) { /* This means either end of directory */ if (desc->entry->cookie == desc->target) { res = 0; break; } /* Or that the server has 'lost' a cookie */ res = uncached_readdir(desc, dirent, filldir); if (res >= 0) continue; } if (res < 0) break; res = nfs_do_filldir(desc, dirent, filldir); if (res < 0) { res = 0; break; } } if (desc->page) page_cache_release(desc->page); if (desc->error < 0) return desc->error; if (res < 0) return res; return 0; } /* * Whenever an NFS operation succeeds, we know that the dentry * is valid, so we update the revalidation timestamp. */ static inline void nfs_renew_times(struct dentry * dentry) { dentry->d_time = jiffies; } static inline int nfs_dentry_force_reval(struct dentry *dentry, int flags) { struct inode *inode = dentry->d_inode; unsigned long timeout = NFS_ATTRTIMEO(inode); /* * If it's the last lookup in a series, we use a stricter * cache consistency check by looking at the parent mtime. * * If it's been modified in the last hour, be really strict. * (This still means that we can avoid doing unnecessary * work on directories like /usr/share/bin etc which basically * never change). */ if (!(flags & LOOKUP_CONTINUE)) { long diff = CURRENT_TIME - dentry->d_parent->d_inode->i_mtime; if (diff < 15*60) timeout = 0; } return time_after(jiffies,dentry->d_time + timeout); } /* * We judge how long we want to trust negative * dentries by looking at the parent inode mtime. * * If mtime is close to present time, we revalidate * more often. */ #define NFS_REVALIDATE_NEGATIVE (1 * HZ) static inline int nfs_neg_need_reval(struct dentry *dentry) { struct inode *dir = dentry->d_parent->d_inode; unsigned long timeout = NFS_ATTRTIMEO(dir); long diff = CURRENT_TIME - dir->i_mtime; if (diff < 5*60 && timeout > NFS_REVALIDATE_NEGATIVE) timeout = NFS_REVALIDATE_NEGATIVE; return time_after(jiffies, dentry->d_time + timeout); } /* * This is called every time the dcache has a lookup hit, * and we should check whether we can really trust that * lookup. * * NOTE! The hit can be a negative hit too, don't assume * we have an inode! * * If the dentry is older than the revalidation interval, * we do a new lookup and verify that the dentry is still * correct. */ static int nfs_lookup_revalidate(struct dentry * dentry, int flags) { struct dentry *dir = dentry->d_parent; struct inode *dir_i = dir->d_inode; struct inode * inode = dentry->d_inode; int error; struct nfs_fh fhandle; struct nfs_fattr fattr; lock_kernel(); dir = dentry->d_parent; dir_i = dir->d_inode; /* * If we don't have an inode, let's look at the parent * directory mtime to get a hint about how often we * should validate things.. */ if (!inode) { if (nfs_neg_need_reval(dentry)) goto out_bad; goto out_valid; } if (is_bad_inode(inode)) { dfprintk(VFS, "nfs_lookup_validate: %s/%s has dud inode\n", dir->d_name.name, dentry->d_name.name); goto out_bad; } if (!nfs_dentry_force_reval(dentry, flags)) goto out_valid; if (IS_ROOT(dentry)) { __nfs_revalidate_inode(NFS_DSERVER(dentry), dentry); goto out_valid_renew; } /* * Do a new lookup and check the dentry attributes. */ error = NFS_PROTO(dir_i)->lookup(dir, &dentry->d_name, &fhandle, &fattr); if (error) goto out_bad; /* Inode number matches? */ if (!(fattr.valid & NFS_ATTR_FATTR) || NFS_FSID(inode) != fattr.fsid || NFS_FILEID(inode) != fattr.fileid) goto out_bad; /* Filehandle matches? */ if (memcmp(dentry->d_fsdata, &fhandle, sizeof(struct nfs_fh))) goto out_bad; /* Ok, remeber that we successfully checked it.. */ nfs_refresh_inode(inode, &fattr); out_valid_renew: nfs_renew_times(dentry); out_valid: unlock_kernel(); return 1; out_bad: shrink_dcache_parent(dentry); /* If we have submounts, don't unhash ! */ if (have_submounts(dentry)) goto out_valid; d_drop(dentry); /* Purge readdir caches. */ nfs_zap_caches(dir_i); if (inode && S_ISDIR(inode->i_mode)) nfs_zap_caches(inode); unlock_kernel(); return 0; } /* * This is called from dput() when d_count is going to 0. */ static int nfs_dentry_delete(struct dentry *dentry) { dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", dentry->d_parent->d_name.name, dentry->d_name.name, dentry->d_flags); if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { /* Unhash it, so that ->d_iput() would be called */ return 1; } return 0; } static kmem_cache_t *nfs_fh_cachep; __inline__ struct nfs_fh *nfs_fh_alloc(void) { return kmem_cache_alloc(nfs_fh_cachep, SLAB_KERNEL); } __inline__ void nfs_fh_free(struct nfs_fh *p) { kmem_cache_free(nfs_fh_cachep, p); } /* * Called when the dentry is being freed to release private memory. */ static void nfs_dentry_release(struct dentry *dentry) { if (dentry->d_fsdata) { lock_kernel(); nfs_fh_free(dentry->d_fsdata); unlock_kernel(); } } /* * Called when the dentry loses inode. * We use it to clean up silly-renamed files. */ static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) { if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { lock_kernel(); nfs_complete_unlink(dentry); unlock_kernel(); } iput(inode); } struct dentry_operations nfs_dentry_operations = { d_revalidate: nfs_lookup_revalidate, d_delete: nfs_dentry_delete, d_release: nfs_dentry_release, d_iput: nfs_dentry_iput, }; static struct dentry *nfs_lookup(struct inode *dir_i, struct dentry * dentry) { struct dentry *dir = dentry->d_parent; struct inode *inode; int error; struct nfs_fh fhandle; struct nfs_fattr fattr; dfprintk(VFS, "NFS: lookup(%s/%s)\n", dir->d_name.name, dentry->d_name.name); error = -ENAMETOOLONG; if (dentry->d_name.len > NFS_SERVER(dir_i)->namelen) goto out; error = -ENOMEM; if (!dentry->d_fsdata) { dentry->d_fsdata = nfs_fh_alloc(); if (!dentry->d_fsdata) goto out; } dentry->d_op = &nfs_dentry_operations; error = NFS_PROTO(dir_i)->lookup(dir, &dentry->d_name, &fhandle, &fattr); inode = NULL; if (error == -ENOENT) goto no_entry; if (!error) { error = -EACCES; inode = nfs_fhget(dentry, &fhandle, &fattr); if (inode) { no_entry: d_add(dentry, inode); nfs_renew_times(dentry); error = 0; } } out: return ERR_PTR(error); } /* * Code common to create, mkdir, and mknod. */ static int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct inode *inode; int error = -EACCES; inode = nfs_fhget(dentry, fhandle, fattr); if (inode) { d_instantiate(dentry, inode); nfs_renew_times(dentry); error = 0; } return error; } /* * Following a failed create operation, we drop the dentry rather * than retain a negative dentry. This avoids a problem in the event * that the operation succeeded on the server, but an error in the * reply path made it appear to have failed. */ static int nfs_create(struct inode *dir_i, struct dentry *dentry, int mode) { struct dentry *dir = dentry->d_parent; struct iattr attr; struct nfs_fattr fattr; struct nfs_fh fhandle; int error; dfprintk(VFS, "NFS: create(%x/%ld, %s\n", dir_i->i_dev, dir_i->i_ino, dentry->d_name.name); attr.ia_mode = mode; attr.ia_valid = ATTR_MODE; /* * The 0 argument passed into the create function should one day * contain the O_EXCL flag if requested. This allows NFSv3 to * select the appropriate create strategy. Currently open_namei * does not pass the create flags. */ nfs_zap_caches(dir_i); error = NFS_PROTO(dir_i)->create(dir, &dentry->d_name, &attr, 0, &fhandle, &fattr); if (!error && fhandle.size != 0) error = nfs_instantiate(dentry, &fhandle, &fattr); if (error || fhandle.size == 0) d_drop(dentry); return error; } /* * See comments for nfs_proc_create regarding failed operations. */ static int nfs_mknod(struct inode *dir_i, struct dentry *dentry, int mode, int rdev) { struct dentry *dir = dentry->d_parent; struct iattr attr; struct nfs_fattr fattr; struct nfs_fh fhandle; int error; dfprintk(VFS, "NFS: mknod(%x/%ld, %s\n", dir_i->i_dev, dir_i->i_ino, dentry->d_name.name); attr.ia_mode = mode; attr.ia_valid = ATTR_MODE; nfs_zap_caches(dir_i); error = NFS_PROTO(dir_i)->mknod(dir, &dentry->d_name, &attr, rdev, &fhandle, &fattr); if (!error && fhandle.size != 0) error = nfs_instantiate(dentry, &fhandle, &fattr); if (error || fhandle.size == 0) d_drop(dentry); return error; } /* * See comments for nfs_proc_create regarding failed operations. */ static int nfs_mkdir(struct inode *dir_i, struct dentry *dentry, int mode) { struct dentry *dir = dentry->d_parent; struct iattr attr; struct nfs_fattr fattr; struct nfs_fh fhandle; int error; dfprintk(VFS, "NFS: mkdir(%x/%ld, %s\n", dir_i->i_dev, dir_i->i_ino, dentry->d_name.name); attr.ia_valid = ATTR_MODE; attr.ia_mode = mode | S_IFDIR; #if 0 /* * Always drop the dentry, we can't always depend on * the fattr returned by the server (AIX seems to be * broken). We're better off doing another lookup than * depending on potentially bogus information. */ d_drop(dentry); #endif nfs_zap_caches(dir_i); error = NFS_PROTO(dir_i)->mkdir(dir, &dentry->d_name, &attr, &fhandle, &fattr); if (!error && fhandle.size != 0) error = nfs_instantiate(dentry, &fhandle, &fattr); if (error || fhandle.size == 0) d_drop(dentry); return error; } static int nfs_rmdir(struct inode *dir_i, struct dentry *dentry) { struct dentry *dir = dentry->d_parent; int error; dfprintk(VFS, "NFS: rmdir(%x/%ld, %s\n", dir_i->i_dev, dir_i->i_ino, dentry->d_name.name); nfs_zap_caches(dir_i); error = NFS_PROTO(dir_i)->rmdir(dir, &dentry->d_name); return error; } static int nfs_sillyrename(struct inode *dir_i, struct dentry *dentry) { struct dentry *dir = dentry->d_parent; static unsigned int sillycounter; const int i_inosize = sizeof(dir_i->i_ino)*2; const int countersize = sizeof(sillycounter)*2; const int slen = strlen(".nfs") + i_inosize + countersize; char silly[slen+1]; struct qstr qsilly; struct dentry *sdentry; int error = -EIO; dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", dentry->d_parent->d_name.name, dentry->d_name.name, atomic_read(&dentry->d_count)); if (atomic_read(&dentry->d_count) == 1) goto out; /* No need to silly rename. */ #ifdef NFS_PARANOIA if (!dentry->d_inode) printk("NFS: silly-renaming %s/%s, negative dentry??\n", dentry->d_parent->d_name.name, dentry->d_name.name); #endif /* * We don't allow a dentry to be silly-renamed twice. */ error = -EBUSY; if (dentry->d_flags & DCACHE_NFSFS_RENAMED) goto out; sprintf(silly, ".nfs%*.*lx", i_inosize, i_inosize, dentry->d_inode->i_ino); sdentry = NULL; do { char *suffix = silly + slen - countersize; dput(sdentry); sillycounter++; sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); dfprintk(VFS, "trying to rename %s to %s\n", dentry->d_name.name, silly); sdentry = lookup_one(silly, dentry->d_parent); /* * N.B. Better to return EBUSY here ... it could be * dangerous to delete the file while it's in use. */ if (IS_ERR(sdentry)) goto out; } while(sdentry->d_inode != NULL); /* need negative lookup */ nfs_zap_caches(dir_i); qsilly.name = silly; qsilly.len = strlen(silly); error = NFS_PROTO(dir_i)->rename(dir, &dentry->d_name, dir, &qsilly); if (!error) { nfs_renew_times(dentry); d_move(dentry, sdentry); error = nfs_async_unlink(dentry); /* If we return 0 we don't unlink */ } dput(sdentry); out: return error; } /* * Remove a file after making sure there are no pending writes, * and after checking that the file has only one user. * * We invalidate the attribute cache and free the inode prior to the operation * to avoid possible races if the server reuses the inode. */ static int nfs_safe_remove(struct dentry *dentry) { struct dentry *dir = dentry->d_parent; struct inode *dir_i = dir->d_inode; struct inode *inode = dentry->d_inode; int error = -EBUSY, rehash = 0; dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", dentry->d_parent->d_name.name, dentry->d_name.name); /* * Unhash the dentry while we remove the file ... */ if (!d_unhashed(dentry)) { d_drop(dentry); rehash = 1; } if (atomic_read(&dentry->d_count) > 1) { #ifdef NFS_PARANOIA printk("nfs_safe_remove: %s/%s busy, d_count=%d\n", dentry->d_parent->d_name.name, dentry->d_name.name, atomic_read(&dentry->d_count)); #endif goto out; } /* If the dentry was sillyrenamed, we simply call d_delete() */ if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { error = 0; goto out_delete; } nfs_zap_caches(dir_i); if (inode) NFS_CACHEINV(inode); error = NFS_PROTO(dir_i)->remove(dir, &dentry->d_name); if (error < 0) goto out; out_delete: /* * Free the inode */ d_delete(dentry); out: if (rehash) d_rehash(dentry); return error; } /* We do silly rename. In case sillyrename() returns -EBUSY, the inode * belongs to an active ".nfs..." file and we return -EBUSY. * * If sillyrename() returns 0, we do nothing, otherwise we unlink. */ static int nfs_unlink(struct inode *dir, struct dentry *dentry) { int error; dfprintk(VFS, "NFS: unlink(%x/%ld, %s)\n", dir->i_dev, dir->i_ino, dentry->d_name.name); error = nfs_sillyrename(dir, dentry); if (error && error != -EBUSY) { error = nfs_safe_remove(dentry); if (!error) { nfs_renew_times(dentry); } } return error; } static int nfs_symlink(struct inode *dir_i, struct dentry *dentry, const char *symname) { struct dentry *dir = dentry->d_parent; struct iattr attr; struct nfs_fattr sym_attr; struct nfs_fh sym_fh; struct qstr qsymname; unsigned int maxlen; int error; dfprintk(VFS, "NFS: symlink(%x/%ld, %s, %s)\n", dir_i->i_dev, dir_i->i_ino, dentry->d_name.name, symname); error = -ENAMETOOLONG; maxlen = (NFS_PROTO(dir_i)->version==2) ? NFS2_MAXPATHLEN : NFS3_MAXPATHLEN; if (strlen(symname) > maxlen) goto out; #ifdef NFS_PARANOIA if (dentry->d_inode) printk("nfs_proc_symlink: %s/%s not negative!\n", dentry->d_parent->d_name.name, dentry->d_name.name); #endif /* * Fill in the sattr for the call. * Note: SunOS 4.1.2 crashes if the mode isn't initialized! */ attr.ia_valid = ATTR_MODE; attr.ia_mode = S_IFLNK | S_IRWXUGO; qsymname.name = symname; qsymname.len = strlen(symname); nfs_zap_caches(dir_i); error = NFS_PROTO(dir_i)->symlink(dir, &dentry->d_name, &qsymname, &attr, &sym_fh, &sym_attr); if (!error && sym_fh.size != 0 && (sym_attr.valid & NFS_ATTR_FATTR)) { error = nfs_instantiate(dentry, &sym_fh, &sym_attr); } else { if (error == -EEXIST) printk("nfs_proc_symlink: %s/%s already exists??\n", dir->d_name.name, dentry->d_name.name); d_drop(dentry); } out: return error; } static int nfs_link(struct dentry *old_dentry, struct inode *dir_i, struct dentry *dentry) { struct dentry *dir = dentry->d_parent; struct inode *inode = old_dentry->d_inode; int error; dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", old_dentry->d_parent->d_name.name, old_dentry->d_name.name, dentry->d_parent->d_name.name, dentry->d_name.name); /* * Drop the dentry in advance to force a new lookup. * Since nfs_proc_link doesn't return a file handle, * we can't use the existing dentry. */ d_drop(dentry); nfs_zap_caches(dir_i); NFS_CACHEINV(inode); error = NFS_PROTO(dir_i)->link(old_dentry, dir, &dentry->d_name); return error; } /* * RENAME * FIXME: Some nfsds, like the Linux user space nfsd, may generate a * different file handle for the same inode after a rename (e.g. when * moving to a different directory). A fail-safe method to do so would * be to look up old_dir/old_name, create a link to new_dir/new_name and * rename the old file using the sillyrename stuff. This way, the original * file in old_dir will go away when the last process iput()s the inode. * * FIXED. * * It actually works quite well. One needs to have the possibility for * at least one ".nfs..." file in each directory the file ever gets * moved or linked to which happens automagically with the new * implementation that only depends on the dcache stuff instead of * using the inode layer * * Unfortunately, things are a little more complicated than indicated * above. For a cross-directory move, we want to make sure we can get * rid of the old inode after the operation. This means there must be * no pending writes (if it's a file), and the use count must be 1. * If these conditions are met, we can drop the dentries before doing * the rename. */ static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode *old_inode = old_dentry->d_inode; struct inode *new_inode = new_dentry->d_inode; struct dentry *dentry = NULL, *rehash = NULL; int error = -EBUSY; /* * To prevent any new references to the target during the rename, * we unhash the dentry and free the inode in advance. */ if (!d_unhashed(new_dentry)) { d_drop(new_dentry); rehash = new_dentry; } dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", old_dentry->d_parent->d_name.name, old_dentry->d_name.name, new_dentry->d_parent->d_name.name, new_dentry->d_name.name, atomic_read(&new_dentry->d_count)); /* * First check whether the target is busy ... we can't * safely do _any_ rename if the target is in use. * * For files, make a copy of the dentry and then do a * silly-rename. If the silly-rename succeeds, the * copied dentry is hashed and becomes the new target. */ if (!new_inode) goto go_ahead; if (S_ISDIR(new_inode->i_mode)) goto out; else if (atomic_read(&new_dentry->d_count) > 1) { int err; /* copy the target dentry's name */ dentry = d_alloc(new_dentry->d_parent, &new_dentry->d_name); if (!dentry) goto out; /* silly-rename the existing target ... */ err = nfs_sillyrename(new_dir, new_dentry); if (!err) { new_dentry = rehash = dentry; new_inode = NULL; /* instantiate the replacement target */ d_instantiate(new_dentry, NULL); } /* dentry still busy? */ if (atomic_read(&new_dentry->d_count) > 1) { #ifdef NFS_PARANOIA printk("nfs_rename: target %s/%s busy, d_count=%d\n", new_dentry->d_parent->d_name.name, new_dentry->d_name.name, atomic_read(&new_dentry->d_count)); #endif goto out; } } go_ahead: /* * ... prune child dentries and writebacks if needed. */ if (atomic_read(&old_dentry->d_count) > 1) { nfs_wb_all(old_inode); shrink_dcache_parent(old_dentry); } if (new_inode) d_delete(new_dentry); nfs_zap_caches(new_dir); nfs_zap_caches(old_dir); error = NFS_PROTO(old_dir)->rename(old_dentry->d_parent, &old_dentry->d_name, new_dentry->d_parent, &new_dentry->d_name); out: if (rehash) d_rehash(rehash); if (!error && !S_ISDIR(old_inode->i_mode)) d_move(old_dentry, new_dentry); /* new dentry created? */ if (dentry) dput(dentry); return error; } int nfs_init_fhcache(void) { nfs_fh_cachep = kmem_cache_create("nfs_fh", sizeof(struct nfs_fh), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (nfs_fh_cachep == NULL) return -ENOMEM; return 0; } void nfs_destroy_fhcache(void) { if (kmem_cache_destroy(nfs_fh_cachep)) printk(KERN_INFO "nfs_fh: not all structures were freed\n"); } /* * Local variables: * version-control: t * kept-new-versions: 5 * End: */