/* * linux/fs/super.c * * Copyright (C) 1991, 1992 Linus Torvalds * * super.c contains code to handle: - mount structures * - super-block tables. * - mount systemcall * - umount systemcall * * Added options to /proc/mounts * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. * * GK 2/5/95 - Changed to support mounting the root fs via NFS * * Added kerneld support: Jacques Gelinas and Bjorn Ekwall * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KERNELD #include #endif #include #include #include /* * We use a semaphore to synchronize all mount/umount * activity - imagine the mess if we have a race between * unmounting a filesystem and re-mounting it (or something * else). */ static struct semaphore mount_sem = MUTEX; extern void wait_for_keypress(void); extern struct file_operations * get_blkfops(unsigned int major); extern int root_mountflags; static int do_remount_sb(struct super_block *sb, int flags, char * data); /* this is initialized in init/main.c */ kdev_t ROOT_DEV; struct super_block super_blocks[NR_SUPER]; static struct file_system_type *file_systems = (struct file_system_type *) NULL; struct vfsmount *vfsmntlist = (struct vfsmount *) NULL; static struct vfsmount *vfsmnttail = (struct vfsmount *) NULL, *mru_vfsmnt = (struct vfsmount *) NULL; /* * This part handles the management of the list of mounted filesystems. */ struct vfsmount *lookup_vfsmnt(kdev_t dev) { struct vfsmount *lptr; if (vfsmntlist == (struct vfsmount *)NULL) return ((struct vfsmount *)NULL); if (mru_vfsmnt != (struct vfsmount *)NULL && mru_vfsmnt->mnt_dev == dev) return (mru_vfsmnt); for (lptr = vfsmntlist; lptr != (struct vfsmount *)NULL; lptr = lptr->mnt_next) if (lptr->mnt_dev == dev) { mru_vfsmnt = lptr; return (lptr); } return ((struct vfsmount *)NULL); /* NOTREACHED */ } struct vfsmount *add_vfsmnt(kdev_t dev, const char *dev_name, const char *dir_name) { struct vfsmount *lptr; char *tmp; lptr = (struct vfsmount *)kmalloc(sizeof(struct vfsmount), GFP_KERNEL); if (!lptr) return NULL; memset(lptr, 0, sizeof(struct vfsmount)); lptr->mnt_dev = dev; sema_init(&lptr->mnt_sem, 1); if (dev_name && !IS_ERR(tmp = getname(dev_name))) { if ((lptr->mnt_devname = (char *) kmalloc(strlen(tmp)+1, GFP_KERNEL)) != (char *)NULL) strcpy(lptr->mnt_devname, tmp); putname(tmp); } if (dir_name && !IS_ERR(tmp = getname(dir_name))) { if ((lptr->mnt_dirname = (char *) kmalloc(strlen(tmp)+1, GFP_KERNEL)) != (char *)NULL) strcpy(lptr->mnt_dirname, tmp); putname(tmp); } if (vfsmntlist == (struct vfsmount *)NULL) { vfsmntlist = vfsmnttail = lptr; } else { vfsmnttail->mnt_next = lptr; vfsmnttail = lptr; } return (lptr); } void remove_vfsmnt(kdev_t dev) { struct vfsmount *lptr, *tofree; if (vfsmntlist == (struct vfsmount *)NULL) return; lptr = vfsmntlist; if (lptr->mnt_dev == dev) { tofree = lptr; vfsmntlist = lptr->mnt_next; if (vfsmnttail->mnt_dev == dev) vfsmnttail = vfsmntlist; } else { while (lptr->mnt_next != (struct vfsmount *)NULL) { if (lptr->mnt_next->mnt_dev == dev) break; lptr = lptr->mnt_next; } tofree = lptr->mnt_next; if (tofree == (struct vfsmount *)NULL) return; lptr->mnt_next = lptr->mnt_next->mnt_next; if (vfsmnttail->mnt_dev == dev) vfsmnttail = lptr; } if (tofree == mru_vfsmnt) mru_vfsmnt = NULL; kfree(tofree->mnt_devname); kfree(tofree->mnt_dirname); kfree_s(tofree, sizeof(struct vfsmount)); } int register_filesystem(struct file_system_type * fs) { struct file_system_type ** tmp; if (!fs) return -EINVAL; if (fs->next) return -EBUSY; tmp = &file_systems; while (*tmp) { if (strcmp((*tmp)->name, fs->name) == 0) return -EBUSY; tmp = &(*tmp)->next; } *tmp = fs; return 0; } #ifdef CONFIG_MODULES int unregister_filesystem(struct file_system_type * fs) { struct file_system_type ** tmp; tmp = &file_systems; while (*tmp) { if (fs == *tmp) { *tmp = fs->next; fs->next = NULL; return 0; } tmp = &(*tmp)->next; } return -EINVAL; } #endif static int fs_index(const char * __name) { struct file_system_type * tmp; char * name; int err, index; name = getname(__name); err = PTR_ERR(name); if (IS_ERR(name)) return err; index = 0; for (tmp = file_systems ; tmp ; tmp = tmp->next) { if (strcmp(tmp->name, name) == 0) { putname(name); return index; } index++; } putname(name); return -EINVAL; } static int fs_name(unsigned int index, char * buf) { struct file_system_type * tmp; int len; tmp = file_systems; while (tmp && index > 0) { tmp = tmp->next; index--; } if (!tmp) return -EINVAL; len = strlen(tmp->name) + 1; return copy_to_user(buf, tmp->name, len) ? -EFAULT : 0; } static int fs_maxindex(void) { struct file_system_type * tmp; int index; index = 0; for (tmp = file_systems ; tmp ; tmp = tmp->next) index++; return index; } /* * Whee.. Weird sysv syscall. */ asmlinkage int sys_sysfs(int option, unsigned long arg1, unsigned long arg2) { int retval = -EINVAL; lock_kernel(); switch (option) { case 1: retval = fs_index((const char *) arg1); break; case 2: retval = fs_name(arg1, (char *) arg2); break; case 3: retval = fs_maxindex(); break; } unlock_kernel(); return retval; } static struct proc_fs_info { int flag; char *str; } fs_info[] = { { MS_NOEXEC, ",noexec" }, { MS_NOSUID, ",nosuid" }, { MS_NODEV, ",nodev" }, { MS_SYNCHRONOUS, ",sync" }, { MS_MANDLOCK, ",mand" }, { MS_NOATIME, ",noatime" }, #ifdef MS_NOSUB /* Can't find this except in mount.c */ { MS_NOSUB, ",nosub" }, #endif { 0, NULL } }; static struct proc_nfs_info { int flag; char *str; } nfs_info[] = { { NFS_MOUNT_SOFT, ",soft" }, { NFS_MOUNT_INTR, ",intr" }, { NFS_MOUNT_POSIX, ",posix" }, { NFS_MOUNT_NOCTO, ",nocto" }, { NFS_MOUNT_NOAC, ",noac" }, { 0, NULL } }; int get_filesystem_info( char *buf ) { struct vfsmount *tmp = vfsmntlist; struct proc_fs_info *fs_infop; struct proc_nfs_info *nfs_infop; struct nfs_server *nfss; int len = 0; while ( tmp && len < PAGE_SIZE - 160) { len += sprintf( buf + len, "%s %s %s %s", tmp->mnt_devname, tmp->mnt_dirname, tmp->mnt_sb->s_type->name, tmp->mnt_flags & MS_RDONLY ? "ro" : "rw" ); for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { if (tmp->mnt_flags & fs_infop->flag) { strcpy(buf + len, fs_infop->str); len += strlen(fs_infop->str); } } if (!strcmp("nfs", tmp->mnt_sb->s_type->name)) { nfss = &tmp->mnt_sb->u.nfs_sb.s_server; if (nfss->rsize != NFS_DEF_FILE_IO_BUFFER_SIZE) { len += sprintf(buf+len, ",rsize=%d", nfss->rsize); } if (nfss->wsize != NFS_DEF_FILE_IO_BUFFER_SIZE) { len += sprintf(buf+len, ",wsize=%d", nfss->wsize); } #if 0 if (nfss->timeo != 7*HZ/10) { len += sprintf(buf+len, ",timeo=%d", nfss->timeo*10/HZ); } if (nfss->retrans != 3) { len += sprintf(buf+len, ",retrans=%d", nfss->retrans); } #endif if (nfss->acregmin != 3*HZ) { len += sprintf(buf+len, ",acregmin=%d", nfss->acregmin/HZ); } if (nfss->acregmax != 60*HZ) { len += sprintf(buf+len, ",acregmax=%d", nfss->acregmax/HZ); } if (nfss->acdirmin != 30*HZ) { len += sprintf(buf+len, ",acdirmin=%d", nfss->acdirmin/HZ); } if (nfss->acdirmax != 60*HZ) { len += sprintf(buf+len, ",acdirmax=%d", nfss->acdirmax/HZ); } for (nfs_infop = nfs_info; nfs_infop->flag; nfs_infop++) { if (nfss->flags & nfs_infop->flag) { strcpy(buf + len, nfs_infop->str); len += strlen(nfs_infop->str); } } len += sprintf(buf+len, ",addr=%s", nfss->hostname); } len += sprintf( buf + len, " 0 0\n" ); tmp = tmp->mnt_next; } return len; } int get_filesystem_list(char * buf) { int len = 0; struct file_system_type * tmp; tmp = file_systems; while (tmp && len < PAGE_SIZE - 80) { len += sprintf(buf+len, "%s\t%s\n", (tmp->fs_flags & FS_REQUIRES_DEV) ? "" : "nodev", tmp->name); tmp = tmp->next; } return len; } struct file_system_type *get_fs_type(const char *name) { struct file_system_type * fs = file_systems; if (!name) return fs; for (fs = file_systems; fs && strcmp(fs->name, name); fs = fs->next) ; #ifdef CONFIG_KERNELD if (!fs && (request_module(name) == 0)) { for (fs = file_systems; fs && strcmp(fs->name, name); fs = fs->next) ; } #endif return fs; } void __wait_on_super(struct super_block * sb) { struct wait_queue wait = { current, NULL }; add_wait_queue(&sb->s_wait, &wait); repeat: current->state = TASK_UNINTERRUPTIBLE; if (sb->s_lock) { schedule(); goto repeat; } remove_wait_queue(&sb->s_wait, &wait); current->state = TASK_RUNNING; } void sync_supers(kdev_t dev) { struct super_block * sb; for (sb = super_blocks + 0 ; sb < super_blocks + NR_SUPER ; sb++) { if (!sb->s_dev) continue; if (dev && sb->s_dev != dev) continue; wait_on_super(sb); if (!sb->s_dev || !sb->s_dirt) continue; if (dev && (dev != sb->s_dev)) continue; if (sb->s_op && sb->s_op->write_super) sb->s_op->write_super(sb); } } struct super_block * get_super(kdev_t dev) { struct super_block * s; if (!dev) return NULL; s = 0+super_blocks; while (s < NR_SUPER+super_blocks) if (s->s_dev == dev) { wait_on_super(s); if (s->s_dev == dev) return s; s = 0+super_blocks; } else s++; return NULL; } asmlinkage int sys_ustat(dev_t dev, struct ustat * ubuf) { struct super_block *s; struct ustat tmp; struct statfs sbuf; mm_segment_t old_fs; int err = -EINVAL; lock_kernel(); s = get_super(to_kdev_t(dev)); if (s == NULL) goto out; err = -ENOSYS; if (!(s->s_op->statfs)) goto out; old_fs = get_fs(); set_fs(get_ds()); s->s_op->statfs(s,&sbuf,sizeof(struct statfs)); set_fs(old_fs); memset(&tmp,0,sizeof(struct ustat)); tmp.f_tfree = sbuf.f_bfree; tmp.f_tinode = sbuf.f_ffree; err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0; out: unlock_kernel(); return err; } static struct super_block * read_super(kdev_t dev,const char *name,int flags, void *data, int silent) { struct super_block * s; struct file_system_type *type; if (!dev) return NULL; check_disk_change(dev); s = get_super(dev); if (s) return s; if (!(type = get_fs_type(name))) { printk("VFS: on device %s: get_fs_type(%s) failed\n", kdevname(dev), name); return NULL; } for (s = 0+super_blocks ;; s++) { if (s >= NR_SUPER+super_blocks) return NULL; if (!(s->s_dev)) break; } s->s_dev = dev; s->s_flags = flags; if (!type->read_super(s,data, silent)) { s->s_dev = 0; return NULL; } s->s_dev = dev; s->s_rd_only = 0; s->s_dirt = 0; s->s_type = type; return s; } /* * Unnamed block devices are dummy devices used by virtual * filesystems which don't use real block-devices. -- jrs */ static unsigned int unnamed_dev_in_use[256/(8*sizeof(unsigned int))] = { 0, }; kdev_t get_unnamed_dev(void) { int i; for (i = 1; i < 256; i++) { if (!test_and_set_bit(i,unnamed_dev_in_use)) return MKDEV(UNNAMED_MAJOR, i); } return 0; } void put_unnamed_dev(kdev_t dev) { if (!dev || MAJOR(dev) != UNNAMED_MAJOR) return; if (test_and_clear_bit(MINOR(dev), unnamed_dev_in_use)) return; printk("VFS: put_unnamed_dev: freeing unused device %s\n", kdevname(dev)); } static int d_umount(struct super_block * sb) { struct dentry * root = sb->s_root; struct dentry * covered = root->d_covers; if (root->d_count != 1) return -EBUSY; if (root->d_inode->i_state) return -EBUSY; sb->s_root = NULL; if (covered != root) { root->d_covers = root; covered->d_mounts = covered; dput(covered); } dput(root); return 0; } static void d_mount(struct dentry *covered, struct dentry *dentry) { if (covered->d_mounts != covered) { printk("VFS: mount - already mounted\n"); return; } covered->d_mounts = dentry; dentry->d_covers = covered; } static int do_umount(kdev_t dev,int unmount_root) { struct super_block * sb; int retval; sb = get_super(dev); if (!sb) return -ENOENT; if (!sb->s_root) return -ENOENT; /* * Before checking whether the filesystem is still busy, * make sure the kernel doesn't hold any quotafiles open * on the device. If the umount fails, too bad -- there * are no quotas running anymore. Just turn them on again. */ quota_off(dev, -1); /* * Shrink dcache, then fsync. This guarantees that if the * filesystem is quiescent at this point, then (a) only the * root entry should be in use and (b) that root entry is * clean. */ shrink_dcache_sb(sb); fsync_dev(dev); if (dev==ROOT_DEV && !unmount_root) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ retval = 0; if (!(sb->s_flags & MS_RDONLY)) retval = do_remount_sb(sb, MS_RDONLY, 0); return retval; } retval = d_umount(sb); if (retval) goto out; /* Forget any inodes */ if (invalidate_inodes(sb)) { printk("VFS: Busy inodes after unmount. " "Self-destruct in 5 seconds. Bye-bye..\n"); } if (sb->s_op) { if (sb->s_op->write_super && sb->s_dirt) sb->s_op->write_super(sb); if (sb->s_op->put_super) sb->s_op->put_super(sb); } remove_vfsmnt(dev); retval = 0; out: return retval; } static int umount_dev(kdev_t dev) { int retval; struct inode * inode = get_empty_inode(); retval = -ENOMEM; if (!inode) goto out; inode->i_rdev = dev; retval = -ENXIO; if (MAJOR(dev) >= MAX_BLKDEV) goto out_iput; fsync_dev(dev); down(&mount_sem); retval = do_umount(dev,0); if (!retval) { fsync_dev(dev); if (dev != ROOT_DEV) { blkdev_release(inode); put_unnamed_dev(dev); } } up(&mount_sem); out_iput: iput(inode); out: return retval; } /* * Now umount can handle mount points as well as block devices. * This is important for filesystems which use unnamed block devices. * * There is a little kludge here with the dummy_inode. The current * vfs release functions only use the r_dev field in the inode so * we give them the info they need without using a real inode. * If any other fields are ever needed by any block device release * functions, they should be faked here. -- jrs */ asmlinkage int sys_umount(char * name) { struct dentry * dentry; int retval; if (!suser()) return -EPERM; lock_kernel(); dentry = namei(name); retval = PTR_ERR(dentry); if (!IS_ERR(dentry)) { struct inode * inode = dentry->d_inode; kdev_t dev = inode->i_rdev; retval = 0; if (S_ISBLK(inode->i_mode)) { if (IS_NODEV(inode)) retval = -EACCES; } else { struct super_block *sb = inode->i_sb; retval = -EINVAL; if (sb && inode == sb->s_root->d_inode) { dev = sb->s_dev; retval = 0; } } dput(dentry); if (!retval) retval = umount_dev(dev); } unlock_kernel(); return retval; } /* * Check whether we can mount the specified device. */ int fs_may_mount(kdev_t dev) { struct super_block * sb = get_super(dev); int busy; busy = sb && sb->s_root && (sb->s_root->d_count != 1 || sb->s_root->d_covers != sb->s_root); return !busy; } /* * do_mount() does the actual mounting after sys_mount has done the ugly * parameter parsing. When enough time has gone by, and everything uses the * new mount() parameters, sys_mount() can then be cleaned up. * * We cannot mount a filesystem if it has active, used, or dirty inodes. * We also have to flush all inode-data for this device, as the new mount * might need new info. * * [21-Mar-97] T.Schoebel-Theuer: Now this can be overridden when * supplying a leading "!" before the dir_name, allowing "stacks" of * mounted filesystems. The stacking will only influence any pathname lookups * _after_ the mount, but open filedescriptors or working directories that * are now covered remain valid. For example, when you overmount /home, any * process with old cwd /home/joe will continue to use the old versions, * as long as relative paths are used, but absolute paths like /home/joe/xxx * will go to the new "top of stack" version. In general, crossing a * mountpoint will always go to the top of stack element. * Anyone using this new feature must know what he/she is doing. */ int do_mount(kdev_t dev, const char * dev_name, const char * dir_name, const char * type, int flags, void * data) { struct dentry * dir_d = NULL; struct super_block * sb; struct vfsmount *vfsmnt; int error; down(&mount_sem); error = -EACCES; if (!(flags & MS_RDONLY) && dev && is_read_only(dev)) goto out; /*flags |= MS_RDONLY;*/ dir_d = namei(dir_name); error = PTR_ERR(dir_d); if (IS_ERR(dir_d)) goto out; error = -ENOTDIR; if (!S_ISDIR(dir_d->d_inode->i_mode)) goto dput_and_out; error = -EBUSY; if (dir_d->d_covers != dir_d) goto dput_and_out; /* * Check whether to read the super block */ sb = get_super(dev); if (!sb || !sb->s_root) { error = -EINVAL; sb = read_super(dev,type,flags,data,0); if (!sb) goto dput_and_out; } /* * We may have slept while reading the super block, * so we check afterwards whether it's safe to mount. */ error = -EBUSY; if (!fs_may_mount(dev)) goto dput_and_out; error = -ENOMEM; vfsmnt = add_vfsmnt(dev, dev_name, dir_name); if (vfsmnt) { vfsmnt->mnt_sb = sb; vfsmnt->mnt_flags = flags; d_mount(dir_d, sb->s_root); error = 0; goto out; /* we don't dput(dir) - see umount */ } dput_and_out: dput(dir_d); out: up(&mount_sem); return error; } /* * Alters the mount flags of a mounted file system. Only the mount point * is used as a reference - file system type and the device are ignored. * FS-specific mount options can't be altered by remounting. */ static int do_remount_sb(struct super_block *sb, int flags, char *data) { int retval; struct vfsmount *vfsmnt; /* * Invalidate the inodes, as some mount options may be changed. * N.B. If we are changing media, we should check the return * from invalidate_inodes ... can't allow _any_ open files. */ invalidate_inodes(sb); if (!(flags & MS_RDONLY) && sb->s_dev && is_read_only(sb->s_dev)) return -EACCES; /*flags |= MS_RDONLY;*/ /* If we are remounting RDONLY, make sure there are no rw files open */ if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) if (!fs_may_remount_ro(sb)) return -EBUSY; if (sb->s_op && sb->s_op->remount_fs) { retval = sb->s_op->remount_fs(sb, &flags, data); if (retval) return retval; } sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); vfsmnt = lookup_vfsmnt(sb->s_dev); if (vfsmnt) vfsmnt->mnt_flags = sb->s_flags; return 0; } static int do_remount(const char *dir,int flags,char *data) { struct dentry *dentry; int retval; dentry = namei(dir); retval = PTR_ERR(dentry); if (!IS_ERR(dentry)) { struct super_block * sb = dentry->d_inode->i_sb; retval = -EINVAL; if (dentry == sb->s_root) { /* * Shrink the dcache and sync the device. */ shrink_dcache_sb(sb); fsync_dev(sb->s_dev); retval = do_remount_sb(sb, flags, data); } dput(dentry); } return retval; } static int copy_mount_options (const void * data, unsigned long *where) { int i; unsigned long page; struct vm_area_struct * vma; *where = 0; if (!data) return 0; vma = find_vma(current->mm, (unsigned long) data); if (!vma || (unsigned long) data < vma->vm_start) return -EFAULT; if (!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) data; if (PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE-1; if (!(page = __get_free_page(GFP_KERNEL))) { return -ENOMEM; } if (copy_from_user((void *) page,data,i)) { free_page(page); return -EFAULT; } *where = page; return 0; } /* * Flags is a 16-bit value that allows up to 16 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * NOTE! As old versions of mount() didn't use this setup, the flags * have to have a special 16-bit magic number in the high word: * 0xC0ED. If this magic word isn't present, the flags and data info * aren't used, as the syscall assumes we are talking to an older * version that didn't understand them. */ asmlinkage int sys_mount(char * dev_name, char * dir_name, char * type, unsigned long new_flags, void * data) { struct file_system_type * fstype; struct dentry * dentry = NULL; struct inode * inode = NULL; kdev_t dev; int retval = -EPERM; unsigned long flags = 0; unsigned long page = 0; struct file dummy; /* allows read-write or read-only flag */ lock_kernel(); if (!suser()) goto out; if ((new_flags & (MS_MGC_MSK | MS_REMOUNT)) == (MS_MGC_VAL | MS_REMOUNT)) { retval = copy_mount_options (data, &page); if (retval < 0) goto out; retval = do_remount(dir_name, new_flags & ~MS_MGC_MSK & ~MS_REMOUNT, (char *) page); free_page(page); goto out; } retval = copy_mount_options (type, &page); if (retval < 0) goto out; fstype = get_fs_type((char *) page); free_page(page); retval = -ENODEV; if (!fstype) goto out; memset(&dummy, 0, sizeof(dummy)); if (fstype->fs_flags & FS_REQUIRES_DEV) { dentry = namei(dev_name); retval = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out; inode = dentry->d_inode; retval = -ENOTBLK; if (!S_ISBLK(inode->i_mode)) goto dput_and_out; retval = -EACCES; if (IS_NODEV(inode)) goto dput_and_out; dev = inode->i_rdev; retval = -ENXIO; if (MAJOR(dev) >= MAX_BLKDEV) goto dput_and_out; retval = -ENOTBLK; dummy.f_op = get_blkfops(MAJOR(dev)); if (!dummy.f_op) goto dput_and_out; if (dummy.f_op->open) { dummy.f_dentry = dentry; dummy.f_mode = (new_flags & MS_RDONLY) ? 1 : 3; retval = dummy.f_op->open(inode, &dummy); if (retval) goto dput_and_out; } } else { retval = -EMFILE; if (!(dev = get_unnamed_dev())) goto out; } page = 0; if ((new_flags & MS_MGC_MSK) == MS_MGC_VAL) { flags = new_flags & ~MS_MGC_MSK; retval = copy_mount_options(data, &page); if (retval < 0) goto clean_up; } retval = do_mount(dev, dev_name, dir_name, fstype->name, flags, (void *) page); free_page(page); if (retval) goto clean_up; dput_and_out: dput(dentry); out: unlock_kernel(); return retval; clean_up: if (dummy.f_op) { if (dummy.f_op->release) dummy.f_op->release(inode, NULL); } else put_unnamed_dev(dev); goto dput_and_out; } __initfunc(static void do_mount_root(void)) { struct file_system_type * fs_type; struct super_block * sb; struct vfsmount *vfsmnt; struct inode * d_inode = NULL; struct file filp; int retval; #ifdef CONFIG_ROOT_NFS if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) if (nfs_root_init(nfs_root_name, nfs_root_addrs) < 0) { printk(KERN_ERR "Root-NFS: Unable to contact NFS " "server for root fs, using /dev/fd0 instead\n"); ROOT_DEV = MKDEV(FLOPPY_MAJOR, 0); } if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) { ROOT_DEV = 0; if ((fs_type = get_fs_type("nfs"))) { sb = &super_blocks[0]; while (sb->s_dev) sb++; sb->s_dev = get_unnamed_dev(); sb->s_flags = root_mountflags & ~MS_RDONLY; if (nfs_root_mount(sb) >= 0) { sb->s_rd_only = 0; sb->s_dirt = 0; sb->s_type = fs_type; current->fs->root = dget(sb->s_root); current->fs->pwd = dget(sb->s_root); ROOT_DEV = sb->s_dev; printk (KERN_NOTICE "VFS: Mounted root (nfs filesystem).\n"); vfsmnt = add_vfsmnt(ROOT_DEV, "/dev/root", "/"); if (!vfsmnt) panic("VFS: add_vfsmnt failed for NFS root.\n"); vfsmnt->mnt_sb = sb; vfsmnt->mnt_flags = sb->s_flags; return; } sb->s_dev = 0; } if (!ROOT_DEV) { printk(KERN_ERR "VFS: Unable to mount root fs via NFS, trying floppy.\n"); ROOT_DEV = MKDEV(FLOPPY_MAJOR, 0); } } #endif #ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { floppy_eject(); #ifndef CONFIG_BLK_DEV_RAM printk(KERN_NOTICE "(Warning, this kernel has no ramdisk support)\n"); #endif printk(KERN_NOTICE "VFS: Insert root floppy and press ENTER\n"); wait_for_keypress(); } #endif memset(&filp, 0, sizeof(filp)); d_inode = get_empty_inode(); d_inode->i_rdev = ROOT_DEV; filp.f_dentry = NULL; if ( root_mountflags & MS_RDONLY) filp.f_mode = 1; /* read only */ else filp.f_mode = 3; /* read write */ retval = blkdev_open(d_inode, &filp); if (retval == -EROFS) { root_mountflags |= MS_RDONLY; filp.f_mode = 1; retval = blkdev_open(d_inode, &filp); } iput(d_inode); if (retval) /* * Allow the user to distinguish between failed open * and bad superblock on root device. */ printk("VFS: Cannot open root device %s\n", kdevname(ROOT_DEV)); else for (fs_type = file_systems ; fs_type ; fs_type = fs_type->next) { if (!(fs_type->fs_flags & FS_REQUIRES_DEV)) continue; sb = read_super(ROOT_DEV,fs_type->name,root_mountflags,NULL,1); if (sb) { sb->s_flags = root_mountflags; current->fs->root = dget(sb->s_root); current->fs->pwd = dget(sb->s_root); printk ("VFS: Mounted root (%s filesystem)%s.\n", fs_type->name, (sb->s_flags & MS_RDONLY) ? " readonly" : ""); vfsmnt = add_vfsmnt(ROOT_DEV, "/dev/root", "/"); if (!vfsmnt) panic("VFS: add_vfsmnt failed for root fs"); vfsmnt->mnt_sb = sb; vfsmnt->mnt_flags = root_mountflags; return; } } panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV)); } __initfunc(void mount_root(void)) { struct super_block * sb = super_blocks; int i; memset(super_blocks, 0, sizeof(super_blocks)); /* * Initialize the dirty inode list headers for the super blocks */ for (i = NR_SUPER ; i-- ; sb++) INIT_LIST_HEAD(&sb->s_dirty); do_mount_root(); } #ifdef CONFIG_BLK_DEV_INITRD extern int initmem_freed; __initfunc(static int do_change_root(kdev_t new_root_dev,const char *put_old)) { kdev_t old_root_dev; struct vfsmount *vfsmnt; struct dentry *old_root,*old_pwd,*dir_d = NULL; int error; old_root = current->fs->root; old_pwd = current->fs->pwd; old_root_dev = ROOT_DEV; if (!fs_may_mount(new_root_dev)) { printk(KERN_CRIT "New root is busy. Staying in initrd.\n"); return -EBUSY; } ROOT_DEV = new_root_dev; do_mount_root(); dput(old_root); dput(old_pwd); #if 1 shrink_dcache(); printk("do_change_root: old root has d_count=%d\n", old_root->d_count); #endif /* * Get the new mount directory */ dir_d = lookup_dentry(put_old, NULL, 1); if (IS_ERR(dir_d)) { error = PTR_ERR(dir_d); } else if (!dir_d->d_inode) { dput(dir_d); error = -ENOENT; } else { error = 0; } if (!error && dir_d->d_covers != dir_d) { dput(dir_d); error = -EBUSY; } if (!error && !S_ISDIR(dir_d->d_inode->i_mode)) { dput(dir_d); error = -ENOTDIR; } if (error) { int umount_error; printk(KERN_NOTICE "Trying to unmount old root ... "); umount_error = do_umount(old_root_dev,1); if (!umount_error) { printk("okay\n"); invalidate_buffers(old_root_dev); return 0; } printk(KERN_ERR "error %d\n",umount_error); return error; } remove_vfsmnt(old_root_dev); vfsmnt = add_vfsmnt(old_root_dev,"/dev/root.old",put_old); if (vfsmnt) { vfsmnt->mnt_sb = old_root->d_inode->i_sb; vfsmnt->mnt_flags = vfsmnt->mnt_sb->s_flags; d_mount(dir_d,old_root); return 0; } printk(KERN_CRIT "Trouble: add_vfsmnt failed\n"); return -ENOMEM; } int change_root(kdev_t new_root_dev,const char *put_old) { if (initmem_freed) { printk (KERN_CRIT "Initmem has been already freed. Staying in initrd\n"); return -EBUSY; } return do_change_root(new_root_dev, put_old); } #endif