#ifndef _ALPHA_PGALLOC_H #define _ALPHA_PGALLOC_H #include /* Caches aren't brain-dead on the Alpha. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) /* * The icache is not coherent with the dcache on alpha, thus before * running self modified code like kernel modules we must always run * an imb(). */ #ifndef __SMP__ #define flush_icache_range(start, end) imb() #else #define flush_icache_range(start, end) smp_imb() extern void smp_imb(void); #endif #define flush_icache_page(vma, page) do { } while (0) /* * Use a few helper functions to hide the ugly broken ASN * numbers on early Alphas (ev4 and ev45) */ #ifndef __EXTERN_INLINE #define __EXTERN_INLINE extern inline #define __MMU_EXTERN_INLINE #endif __EXTERN_INLINE void ev4_flush_tlb_current(struct mm_struct *mm) { tbiap(); } __EXTERN_INLINE void ev4_flush_tlb_other(struct mm_struct *mm) { } extern void ev5_flush_tlb_current(struct mm_struct *mm); __EXTERN_INLINE void ev5_flush_tlb_other(struct mm_struct *mm) { mm->context = 0; } /* * Flush just one page in the current TLB set. * We need to be very careful about the icache here, there * is no way to invalidate a specific icache page.. */ __EXTERN_INLINE void ev4_flush_tlb_current_page(struct mm_struct * mm, struct vm_area_struct *vma, unsigned long addr) { tbi(2 + ((vma->vm_flags & VM_EXEC) != 0), addr); } __EXTERN_INLINE void ev5_flush_tlb_current_page(struct mm_struct * mm, struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_flags & VM_EXEC) ev5_flush_tlb_current(mm); else tbi(2, addr); } #ifdef CONFIG_ALPHA_GENERIC # define flush_tlb_current alpha_mv.mv_flush_tlb_current # define flush_tlb_other alpha_mv.mv_flush_tlb_other # define flush_tlb_current_page alpha_mv.mv_flush_tlb_current_page #else # ifdef CONFIG_ALPHA_EV4 # define flush_tlb_current ev4_flush_tlb_current # define flush_tlb_other ev4_flush_tlb_other # define flush_tlb_current_page ev4_flush_tlb_current_page # else # define flush_tlb_current ev5_flush_tlb_current # define flush_tlb_other ev5_flush_tlb_other # define flush_tlb_current_page ev5_flush_tlb_current_page # endif #endif #ifdef __MMU_EXTERN_INLINE #undef __EXTERN_INLINE #undef __MMU_EXTERN_INLINE #endif /* * Flush current user mapping. */ static inline void flush_tlb(void) { flush_tlb_current(current->mm); } /* * Flush a specified range of user mapping page tables * from TLB. * Although Alpha uses VPTE caches, this can be a nop, as Alpha does * not have finegrained tlb flushing, so it will flush VPTE stuff * during next flush_tlb_range. */ static inline void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start, unsigned long end) { } #ifndef __SMP__ /* * Flush everything (kernel mapping may also have * changed due to vmalloc/vfree) */ static inline void flush_tlb_all(void) { tbia(); } /* * Flush a specified user mapping */ static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm != current->mm) flush_tlb_other(mm); else flush_tlb_current(mm); } /* * Page-granular tlb flush. * * do a tbisd (type = 2) normally, and a tbis (type = 3) * if it is an executable mapping. We want to avoid the * itlb flush, because that potentially also does a * icache flush. */ static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { struct mm_struct * mm = vma->vm_mm; if (mm != current->mm) flush_tlb_other(mm); else flush_tlb_current_page(mm, vma, addr); } /* * Flush a specified range of user mapping: on the * Alpha we flush the whole user tlb. */ static inline void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { flush_tlb_mm(mm); } #else /* __SMP__ */ extern void flush_tlb_all(void); extern void flush_tlb_mm(struct mm_struct *); extern void flush_tlb_page(struct vm_area_struct *, unsigned long); extern void flush_tlb_range(struct mm_struct *, unsigned long, unsigned long); #endif /* __SMP__ */ /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ #ifndef __SMP__ extern struct pgtable_cache_struct { unsigned long *pgd_cache; unsigned long *pte_cache; unsigned long pgtable_cache_sz; } quicklists; #else #include #define quicklists cpu_data[smp_processor_id()] #endif #define pgd_quicklist (quicklists.pgd_cache) #define pmd_quicklist ((unsigned long *)0) #define pte_quicklist (quicklists.pte_cache) #define pgtable_cache_size (quicklists.pgtable_cache_sz) extern __inline__ pgd_t *get_pgd_slow(void) { pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init; if (ret) { init = pgd_offset(&init_mm, 0UL); memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); pgd_val(ret[PTRS_PER_PGD]) = pte_val(mk_pte(mem_map + MAP_NR(ret), PAGE_KERNEL)); } return ret; } extern __inline__ pgd_t *get_pgd_fast(void) { unsigned long *ret; if((ret = pgd_quicklist) != NULL) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } else ret = (unsigned long *)get_pgd_slow(); return (pgd_t *)ret; } extern __inline__ void free_pgd_fast(pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; pgtable_cache_size++; } extern __inline__ void free_pgd_slow(pgd_t *pgd) { free_page((unsigned long)pgd); } extern pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long address_premasked); extern __inline__ pmd_t *get_pmd_fast(void) { unsigned long *ret; if((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pmd_t *)ret; } extern __inline__ void free_pmd_fast(pmd_t *pmd) { *(unsigned long *)pmd = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pmd; pgtable_cache_size++; } extern __inline__ void free_pmd_slow(pmd_t *pmd) { free_page((unsigned long)pmd); } extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted); extern __inline__ pte_t *get_pte_fast(void) { unsigned long *ret; if((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pte_t *)ret; } extern __inline__ void free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; pgtable_cache_size++; } extern __inline__ void free_pte_slow(pte_t *pte) { free_page((unsigned long)pte); } extern void __bad_pte(pmd_t *pmd); extern void __bad_pmd(pgd_t *pgd); #define pte_free_kernel(pte) free_pte_fast(pte) #define pte_free(pte) free_pte_fast(pte) #define pmd_free_kernel(pmd) free_pmd_fast(pmd) #define pmd_free(pmd) free_pmd_fast(pmd) #define pgd_free(pgd) free_pgd_fast(pgd) #define pgd_alloc() get_pgd_fast() extern inline pte_t * pte_alloc(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (!page) return get_pte_slow(pmd, address); pmd_set(pmd, page); return page + address; } if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline pmd_t * pmd_alloc(pgd_t *pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = get_pmd_fast(); if (!page) return get_pmd_slow(pgd, address); pgd_set(pgd, page); return page + address; } if (pgd_bad(*pgd)) { __bad_pmd(pgd); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } #define pte_alloc_kernel pte_alloc #define pmd_alloc_kernel pmd_alloc extern int do_check_pgt_cache(int, int); extern inline void set_pgdir(unsigned long address, pgd_t entry) { struct task_struct * p; pgd_t *pgd; read_lock(&tasklist_lock); for_each_task(p) { if (!p->mm) continue; *pgd_offset(p->mm,address) = entry; } read_unlock(&tasklist_lock); for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[(address >> PGDIR_SHIFT) & (PTRS_PER_PAGE - 1)] = entry; } #endif /* _ALPHA_PGALLOC_H */