#ifndef _ALPHA_SEMAPHORE_H #define _ALPHA_SEMAPHORE_H /* * SMP- and interrupt-safe semaphores.. * * (C) Copyright 1996 Linus Torvalds * (C) Copyright 1996 Richard Henderson */ #include #include #include struct semaphore { /* Careful, inline assembly knows about the position of these two. */ atomic_t count; atomic_t waking; /* biased by -1 */ struct wait_queue *wait; }; #define MUTEX ((struct semaphore) \ { ATOMIC_INIT(1), ATOMIC_INIT(-1), NULL }) #define MUTEX_LOCKED ((struct semaphore) \ { ATOMIC_INIT(0), ATOMIC_INIT(-1), NULL }) #define sema_init(sem, val) atomic_set(&((sem)->count), val) extern void __down(struct semaphore * sem); extern int __down_interruptible(struct semaphore * sem); extern int __down_trylock(struct semaphore * sem); extern void __up(struct semaphore * sem); /* All have custom assembly linkages. */ extern void __down_failed(struct semaphore * sem); extern void __down_failed_interruptible(struct semaphore * sem); extern void __down_failed_trylock(struct semaphore * sem); extern void __up_wakeup(struct semaphore * sem); /* * Whee. Hidden out of line code is fun. The contention cases are * handled out of line in kernel/sched.c; arch/alpha/lib/semaphore.S * takes care of making sure we can call it without clobbering regs. */ extern inline void down(struct semaphore * sem) { /* Given that we have to use particular hard registers to communicate with __down_failed anyway, reuse them in the atomic operation as well. __down_failed takes the semaphore address in $24, and it's return address in $28. The pv is loaded as usual. The gp is clobbered (in the module case) as usual. */ /* This little bit of silliness is to get the GP loaded for a function that ordinarily wouldn't. Otherwise we could have it done by the macro directly, which can be optimized the linker. */ register void *pv __asm__("$27") = __down_failed; __asm__ __volatile__ ( "/* semaphore down operation */\n" "1: ldl_l $24,%1\n" " subl $24,1,$24\n" " mov $24,$28\n" " stl_c $28,%1\n" " beq $28,2f\n" " blt $24,3f\n" "4: mb\n" ".section .text2,\"ax\"\n" "2: br 1b\n" "3: lda $24,%1\n" " jsr $28,($27),__down_failed\n" " ldgp $29,0($28)\n" " br 4b\n" ".previous" : "=r"(pv) : "m"(sem->count), "r"(pv) : "$24", "$28", "memory"); } extern inline int down_interruptible(struct semaphore * sem) { /* __down_failed_interruptible takes the semaphore address in $24, and it's return address in $28. The pv is loaded as usual. The gp is clobbered (in the module case) as usual. The return value is in $24. */ register int ret __asm__("$24"); register void *pv __asm__("$27") = __down_failed_interruptible; __asm__ __volatile__ ( "/* semaphore down interruptible operation */\n" "1: ldl_l $24,%2\n" " subl $24,1,$24\n" " mov $24,$28\n" " stl_c $28,%2\n" " beq $28,2f\n" " blt $24,3f\n" " mov $31,%0\n" "4: mb\n" ".section .text2,\"ax\"\n" "2: br 1b\n" "3: lda $24,%2\n" " jsr $28,($27),__down_failed_interruptible\n" " ldgp $29,0($28)\n" " br 4b\n" ".previous" : "=r"(ret), "=r"(pv) : "m"(sem->count), "r"(pv) : "$28", "memory"); return ret; } /* * down_trylock returns 0 on success, 1 if we failed to get the lock. * * We must manipulate count and waking simultaneously and atomically. * Do this by using ll/sc on the pair of 32-bit words. */ extern inline int down_trylock(struct semaphore * sem) { long ret, tmp, tmp2, sub; /* "Equivalent" C. Note that we have to do this all without (taken) branches in order to be a valid ll/sc sequence. do { tmp = ldq_l; sub = 0x0000000100000000; ret = ((int)tmp <= 0); // count =< 0 ? if ((int)tmp >= 0) sub = 0; // count >= 0 ? // note that if count=0 subq overflows to the high // longword (i.e waking) ret &= ((long)tmp < 0); // waking < 0 ? sub += 1; if (ret) break; tmp -= sub; tmp = stq_c = tmp; } while (tmp == 0); */ __asm__ __volatile__( "1: ldq_l %1,%4\n" " lda %3,1\n" " addl %1,0,%2\n" " sll %3,32,%3\n" " cmple %2,0,%0\n" " cmovge %2,0,%3\n" " cmplt %1,0,%2\n" " addq %3,1,%3\n" " and %0,%2,%0\n" " bne %0,2f\n" " subq %1,%3,%1\n" " stq_c %1,%4\n" " beq %1,3f\n" "2:\n" ".section .text2,\"ax\"\n" "3: br 1b\n" ".previous" : "=&r"(ret), "=&r"(tmp), "=&r"(tmp2), "=&r"(sub) : "m"(*sem) : "memory"); return ret; } extern inline void up(struct semaphore * sem) { /* Given that we have to use particular hard registers to communicate with __up_wakeup anyway, reuse them in the atomic operation as well. __up_wakeup takes the semaphore address in $24, and it's return address in $28. The pv is loaded as usual. The gp is clobbered (in the module case) as usual. */ register void *pv __asm__("$27") = __up_wakeup; __asm__ __volatile__ ( "/* semaphore up operation */\n" " mb\n" "1: ldl_l $24,%1\n" " addl $24,1,$24\n" " mov $24,$28\n" " stl_c $28,%1\n" " beq $28,2f\n" " mb\n" " ble $24,3f\n" "4:\n" ".section .text2,\"ax\"\n" "2: br 1b\n" "3: lda $24,%1\n" " jsr $28,($27),__up_wakeup\n" " ldgp $29,0($28)\n" " br 4b\n" ".previous" : "=r"(pv) : "m"(sem->count), "r"(pv) : "$24", "$28", "memory"); } #endif