/* $Id: bitops.h,v 1.3 2000/10/17 14:56:27 bjornw Exp $ */ /* all of these should probably be rewritten in assembler for speed. */ #ifndef _CRIS_BITOPS_H #define _CRIS_BITOPS_H #include /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ /* * Some hacks to defeat gcc over-optimizations.. */ struct __dummy { unsigned long a[100]; }; #define ADDR (*(struct __dummy *) addr) #define CONST_ADDR (*(const struct __dummy *) addr) #define set_bit(nr, addr) (void)test_and_set_bit(nr, addr) #define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr) #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) extern __inline__ int test_and_set_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr |= mask; restore_flags(flags); return retval; } /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() extern __inline__ int test_and_clear_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr &= ~mask; restore_flags(flags); return retval; } extern __inline__ int test_and_change_bit(int nr, void *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *adr) != 0; *adr ^= mask; restore_flags(flags); return retval; } /* * This routine doesn't need to be atomic. */ extern __inline__ int test_bit(int nr, const void *addr) { unsigned int mask; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *adr) != 0); } /* * Find-bit routines.. */ /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ extern __inline__ unsigned long ffz(unsigned long word) { unsigned long result = 0; while(word & 1) { result++; word >>= 1; } return result; } /* * Find first one in word. Undefined if no one exists, * so code should check against 0UL first.. */ extern __inline__ unsigned long find_first_one(unsigned long word) { unsigned long result = 0; while(!(word & 1)) { result++; word >>= 1; } return result; } extern __inline__ int find_next_zero_bit (void * addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL >> size; found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #ifdef __KERNEL__ #define ext2_set_bit test_and_set_bit #define ext2_clear_bit test_and_clear_bit #define ext2_test_bit test_bit #define ext2_find_first_zero_bit find_first_zero_bit #define ext2_find_next_zero_bit find_next_zero_bit /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _CRIS_BITOPS_H */