/* CRIS pgtable.h - macros and functions to manipulate page tables * * HISTORY: * * $Log: pgtable.h,v $ * Revision 1.9 2000/11/22 14:57:53 bjornw * * extern inline -> static inline * * include asm-generic/pgtable.h * * Revision 1.8 2000/11/21 13:56:16 bjornw * Use CONFIG_CRIS_LOW_MAP for the low VM map instead of explicit CPU type * * Revision 1.7 2000/10/06 15:05:32 bjornw * VMALLOC area changed in memory mapping change * * Revision 1.6 2000/10/04 16:59:14 bjornw * Changed comments * * Revision 1.5 2000/09/13 14:39:53 bjornw * New macros * * Revision 1.4 2000/08/17 15:38:48 bjornw * 2.4.0-test6 modifications: * * flush_dcache_page added * * MAP_NR removed * * virt_to_page added * * Plus some comments and type-clarifications. * * Revision 1.3 2000/08/15 16:33:35 bjornw * pmd_bad should recognize both kernel and user page-tables * * Revision 1.2 2000/07/10 17:06:01 bjornw * Fixed warnings * * Revision 1.1.1.1 2000/07/10 16:32:31 bjornw * CRIS architecture, working draft * * * Revision 1.11 2000/05/29 14:55:56 bjornw * Small tweaks of pte_mk routines * * Revision 1.10 2000/01/27 01:49:06 bjornw * * Ooops. The physical frame number in a PTE entry needs to point to the * DRAM directly, not to what the kernel thinks is DRAM (due to KSEG mapping). * Hence we need to strip bit 31 so 0xcXXXXXXX -> 0x4XXXXXXX. * * Revision 1.9 2000/01/26 16:25:50 bjornw * Fixed PAGE_KERNEL bits * * Revision 1.8 2000/01/23 22:53:22 bjornw * Correct flush_tlb_* macros and externs * * Revision 1.7 2000/01/18 16:22:55 bjornw * Use PAGE_MASK instead of PFN_MASK. * * Revision 1.6 2000/01/17 02:42:53 bjornw * Added the pmd_set macro. * * Revision 1.5 2000/01/16 19:53:42 bjornw * Removed VMALLOC_OFFSET. Changed definitions of swapper_pg_dir and zero_page. * * Revision 1.4 2000/01/14 16:38:20 bjornw * PAGE_DIRTY -> PAGE_SILENT_WRITE, removed PAGE_COW from PAGE_COPY. * * Revision 1.3 1999/12/04 20:12:21 bjornw * * PTE bits have moved to asm/mmu.h * * Fixed definitions of the higher level page protection bits * * Added the pte_* functions, including dirty/accessed SW simulation * (these are exactly the same as for the MIPS port) * * Revision 1.2 1999/12/04 00:41:54 bjornw * * Fixed page table offsets, sizes and shifts * * Removed reference to i386 SMP stuff * * Added stray comments about Linux/CRIS mm design * * Include asm/mmu.h which will contain MMU details * * Revision 1.1 1999/12/03 15:04:02 bjornw * Copied from include/asm-etrax100. For the new CRIS architecture. */ #ifndef _CRIS_PGTABLE_H #define _CRIS_PGTABLE_H #include #include /* * The Linux memory management assumes a three-level page table setup. On * CRIS, we use that, but "fold" the mid level into the top-level page * table. Since the MMU TLB is software loaded through an interrupt, it * supports any page table structure, so we could have used a three-level * setup, but for the amounts of memory we normally use, a two-level is * probably more efficient. * * This file contains the functions and defines necessary to modify and use * the CRIS page table tree. */ /* The cache doesn't need to be flushed when TLB entries change (I think!) */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_dcache_page(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) #define flush_icache_page(vma,pg) do { } while (0) /* * TLB flushing (implemented in arch/cris/mm/tlb.c): * * - flush_tlb() flushes the current mm struct TLBs * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(mm, start, end) flushes a range of pages * */ extern void flush_tlb_all(void); extern void flush_tlb_mm(struct mm_struct *mm); extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr); extern void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); static inline void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start, unsigned long end) { /* CRIS does not keep any page table caches in TLB */ } static inline void flush_tlb(void) { flush_tlb_mm(current->mm); } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) /* * (pmds are folded into pgds so this doesnt get actually called, * but the define is needed for a generic inline function.) */ #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) /* PMD_SHIFT determines the size of the area a second-level page table can * map. It is equal to the page size times the number of PTE's that fit in * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number. */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map. * Since we fold into a two-level structure, this is the same as PMD_SHIFT. */ #define PGDIR_SHIFT PMD_SHIFT #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: we use a two-level, so * we don't really have any PMD directory physically. * pointers are 4 bytes so we can use the page size and * divide it by 4 (shift by 2). */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) #define PTRS_PER_PMD 1 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) /* calculate how many PGD entries a user-level program can use * the first mappable virtual address is 0 * (TASK_SIZE is the maximum virtual address space) */ #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 /* * Kernels own virtual memory area. */ #ifdef CONFIG_CRIS_LOW_MAP #define VMALLOC_START KSEG_7 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END KSEG_8 #else #define VMALLOC_START KSEG_D #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END KSEG_E #endif /* Define some higher level generic page attributes. The PTE bits are * defined in asm-cris/mmu.h, and these are just combinations of those. */ #define __READABLE (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED) #define __WRITEABLE (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED) #define _PAGE_TABLE (_PAGE_PRESENT | __READABLE | __WRITEABLE) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_SILENT_WRITE) #define PAGE_NONE __pgprot(_PAGE_PRESENT | __READABLE) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_WRITE | \ _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | __READABLE) // | _PAGE_COW #define PAGE_READONLY __pgprot(_PAGE_PRESENT | __READABLE) #define PAGE_KERNEL __pgprot(_PAGE_GLOBAL | _PAGE_KERNEL | \ _PAGE_PRESENT | __READABLE | __WRITEABLE) #define _KERNPG_TABLE (_PAGE_TABLE | _PAGE_KERNEL) /* * CRIS can't do page protection for execute, and considers read the same. * Also, write permissions imply read permissions. This is the closest we can * get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* zero page used for uninitialized stuff */ extern unsigned long empty_zero_page; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) /* * Handling allocation failures during page table setup. */ extern void __handle_bad_pmd(pmd_t * pmd); extern void __handle_bad_pmd_kernel(pmd_t * pmd); /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) /* to set the page-dir */ #define SET_PAGE_DIR(tsk,pgdir) #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0) #define pmd_none(x) (!pmd_val(x)) /* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries. */ #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } static inline void pgd_clear(pgd_t * pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } static inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) { pte_val(pte) |= _PAGE_SILENT_READ; if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) == (_PAGE_WRITE | _PAGE_MODIFIED)) pte_val(pte) |= _PAGE_SILENT_WRITE; } return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* What actually goes as arguments to the various functions is less than * obvious, but a rule of thumb is that struct page's goes as struct page *, * really physical DRAM addresses are unsigned long's, and DRAM "virtual" * addresses (the 0xc0xxxxxx's) goes as void *'s. */ static inline pte_t __mk_pte(void * page, pgprot_t pgprot) { pte_t pte; /* the PTE needs a physical address */ pte_val(pte) = __pa(page) | pgprot_val(pgprot); return pte; } #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) #define mk_pte_phys(physpage, pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ __pte; \ }) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval * __pte_page(pte_val) refers to the "virtual" DRAM interval * pte_pagenr refers to the page-number counted starting from the virtual DRAM start */ static inline unsigned long __pte_page(pte_t pte) { /* the PTE contains a physical address */ return (unsigned long)__va(pte_val(pte) & PAGE_MASK); } #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) /* permanent address of a page */ #define page_address(page) ((page)->virtual) #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) #define pte_page(pte) (mem_map+pte_pagenr(pte)) /* only the pte's themselves need to point to physical DRAM (see above) * the pagetable links are purely handled within the kernel SW and thus * don't need the __pa and __va transformations. */ static inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd) & PAGE_MASK; } static inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; } static inline void pmd_set_kernel(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; } /* to find an entry in a page-table-directory. */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) /* to find an entry in a page-table-directory */ static inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + pgd_index(address); } /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ static inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } #define pte_ERROR(e) \ printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ /* * CRIS doesn't have any external MMU info: the kernel page * tables contain all the necessary information. * * Actually I am not sure on what this could be used for. */ static inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ #define SWP_TYPE(x) (((x).val >> 5) & 0x7f) #define SWP_OFFSET(x) ((x).val >> 12) #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #include #endif /* _CRIS_PGTABLE_H */