#ifndef _I386_PGALLOC_H #define _I386_PGALLOC_H #include #include #include #include #define pgd_quicklist (current_cpu_data.pgd_quick) #define pmd_quicklist (current_cpu_data.pmd_quick) #define pte_quicklist (current_cpu_data.pte_quick) #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz) #if CONFIG_X86_PAE # include #else # include #endif /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ extern __inline__ pgd_t *get_pgd_slow(void) { pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL); if (ret) { #if CONFIG_X86_PAE int i; for (i = 0; i < USER_PTRS_PER_PGD; i++) __pgd_clear(ret + i); #else memset(ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); #endif memcpy(ret + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return ret; } extern __inline__ pgd_t *get_pgd_fast(void) { unsigned long *ret; if ((ret = pgd_quicklist) != NULL) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = 0; pgtable_cache_size--; } else ret = (unsigned long *)get_pgd_slow(); return (pgd_t *)ret; } extern __inline__ void free_pgd_fast(pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; pgtable_cache_size++; } extern __inline__ void free_pgd_slow(pgd_t *pgd) { free_page((unsigned long)pgd); } extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted); extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted); extern __inline__ pte_t *get_pte_fast(void) { unsigned long *ret; if((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pte_t *)ret; } extern __inline__ void free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; pgtable_cache_size++; } extern __inline__ void free_pte_slow(pte_t *pte) { free_page((unsigned long)pte); } #define pte_free_kernel(pte) free_pte_slow(pte) #define pte_free(pte) free_pte_slow(pte) #define pgd_free(pgd) free_pgd_slow(pgd) #define pgd_alloc() get_pgd_fast() extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { if (!pmd) BUG(); address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_pte_fast(); if (!page) return get_pte_kernel_slow(pmd, address); set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(page))); return page + address; } if (pmd_bad(*pmd)) { __handle_bad_pmd_kernel(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) goto getnew; if (pmd_bad(*pmd)) goto fix; return (pte_t *)pmd_page(*pmd) + address; getnew: { unsigned long page = (unsigned long) get_pte_fast(); if (!page) return get_pte_slow(pmd, address); set_pmd(pmd, __pmd(_PAGE_TABLE + __pa(page))); return (pte_t *)page + address; } fix: __handle_bad_pmd(pmd); return NULL; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. * (In the PAE case we free the page.) */ #define pmd_free(pmd) free_pmd_slow(pmd) #define pmd_free_kernel pmd_free #define pmd_alloc_kernel pmd_alloc extern int do_check_pgt_cache(int, int); extern inline void set_pgdir(unsigned long address, pgd_t entry) { struct task_struct * p; pgd_t *pgd; #ifdef __SMP__ int i; #endif read_lock(&tasklist_lock); for_each_task(p) { if (!p->mm) continue; *pgd_offset(p->mm,address) = entry; } read_unlock(&tasklist_lock); #ifndef __SMP__ for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #else /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can modify pgd caches of other CPUs as well. -jj */ for (i = 0; i < NR_CPUS; i++) for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #endif } /* * TLB flushing: * * - flush_tlb() flushes the current mm struct TLBs * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(mm, start, end) flushes a range of pages * * ..but the i386 has somewhat limited tlb flushing capabilities, * and page-granular flushes are available only on i486 and up. */ #ifndef __SMP__ #define flush_tlb() __flush_tlb() #define flush_tlb_all() __flush_tlb_all() #define local_flush_tlb() __flush_tlb() static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->active_mm) __flush_tlb(); } static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_mm == current->active_mm) __flush_tlb_one(addr); } static inline void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm == current->active_mm) __flush_tlb(); } #else /* * We aren't very clever about this yet - SMP could certainly * avoid some global flushes.. */ #include #define local_flush_tlb() \ __flush_tlb() extern void flush_tlb_all(void); extern void flush_tlb_current_task(void); extern void flush_tlb_mm(struct mm_struct *); extern void flush_tlb_page(struct vm_area_struct *, unsigned long); #define flush_tlb() flush_tlb_current_task() static inline void flush_tlb_range(struct mm_struct * mm, unsigned long start, unsigned long end) { flush_tlb_mm(mm); } extern volatile unsigned long smp_invalidate_needed; extern unsigned int cpu_tlbbad[NR_CPUS]; static inline void do_flush_tlb_local(void) { unsigned long cpu = smp_processor_id(); struct mm_struct *mm = current->mm; clear_bit(cpu, &smp_invalidate_needed); if (mm) { set_bit(cpu, &mm->cpu_vm_mask); local_flush_tlb(); } else { cpu_tlbbad[cpu] = 1; } } #endif #endif /* _I386_PGALLOC_H */