#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #ifndef __SMP__ /* * Your basic spinlocks, allowing only a single CPU anywhere */ typedef struct { } spinlock_t; #define SPIN_LOCK_UNLOCKED { } #define spin_lock_init(lock) do { } while(0) #define spin_lock(lock) do { } while(0) #define spin_trylock(lock) do { } while(0) #define spin_unlock_wait(lock) do { } while(0) #define spin_unlock(lock) do { } while(0) #define spin_lock_irq(lock) cli() #define spin_unlock_irq(lock) sti() #define spin_lock_irqsave(lock, flags) \ do { save_flags(flags); cli(); } while (0) #define spin_unlock_irqrestore(lock, flags) \ restore_flags(flags) /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. */ typedef struct { } rwlock_t; #define RW_LOCK_UNLOCKED { } #define read_lock(lock) do { } while(0) #define read_unlock(lock) do { } while(0) #define write_lock(lock) do { } while(0) #define write_unlock(lock) do { } while(0) #define read_lock_irq(lock) cli() #define read_unlock_irq(lock) sti() #define write_lock_irq(lock) cli() #define write_unlock_irq(lock) sti() #define read_lock_irqsave(lock, flags) \ do { save_flags(flags); cli(); } while (0) #define read_unlock_irqrestore(lock, flags) \ restore_flags(flags) #define write_lock_irqsave(lock, flags) \ do { save_flags(flags); cli(); } while (0) #define write_unlock_irqrestore(lock, flags) \ restore_flags(flags) #else /* * Simple spin lock operations. There are two variants, one clears IRQ's * on the local processor, one does not. * * We make no fairness assumptions. They have a cost. */ typedef struct { volatile unsigned int lock; } spinlock_t; #define SPIN_LOCK_UNLOCKED { 0 } #define spin_lock_init(x) do { (x)->lock = 0; } while(0) #define spin_unlock_wait(x) do { barrier(); } while(((volatile spinlock_t *)(x))->lock) typedef struct { unsigned long a[100]; } __dummy_lock_t; #define __dummy_lock(lock) (*(__dummy_lock_t *)(lock)) #define spin_lock(lock) \ __asm__ __volatile__( \ "\n1:\t" \ "lock ; btsl $0,%0\n\t" \ "jc 2f\n" \ ".section .text.lock,\"ax\"\n" \ "2:\t" \ "testb $1,%0\n\t" \ "jne 2b\n\t" \ "jmp 1b\n" \ ".previous" \ :"=m" (__dummy_lock(lock))) #define spin_unlock(lock) \ __asm__ __volatile__( \ "lock ; btrl $0,%0" \ :"=m" (__dummy_lock(lock))) #define spin_trylock(lock) (!test_and_set_bit(0,(lock))) #define spin_lock_irq(lock) \ do { __cli(); spin_lock(lock); } while (0) #define spin_unlock_irq(lock) \ do { spin_unlock(lock); __sti(); } while (0) #define spin_lock_irqsave(lock, flags) \ do { __save_flags(flags); __cli(); spin_lock(lock); } while (0) #define spin_unlock_irqrestore(lock, flags) \ do { spin_unlock(lock); __restore_flags(flags); } while (0) /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. */ typedef struct { volatile unsigned int lock; unsigned long previous; } rwlock_t; #define RW_LOCK_UNLOCKED { 0, 0 } /* * On x86, we implement read-write locks as a 32-bit counter * with the high bit (sign) being the "write" bit. * * The inline assembly is non-obvious. Think about it. */ #define read_lock(rw) \ asm volatile("\n1:\t" \ "lock ; incl %0\n\t" \ "js 2f\n" \ ".section .text.lock,\"ax\"\n" \ "2:\tlock ; decl %0\n" \ "3:\tcmpl $0,%0\n\t" \ "js 3b\n\t" \ "jmp 1b\n" \ ".previous" \ :"=m" (__dummy_lock(&(rw)->lock))) #define read_unlock(rw) \ asm volatile("lock ; decl %0" \ :"=m" (__dummy_lock(&(rw)->lock))) #define write_lock(rw) \ asm volatile("\n1:\t" \ "lock ; btsl $31,%0\n\t" \ "jc 4f\n" \ "2:\ttestl $0x7fffffff,%0\n\t" \ "jne 3f\n" \ ".section .text.lock,\"ax\"\n" \ "3:\tlock ; btrl $31,%0\n" \ "4:\tcmp $0,%0\n\t" \ "jne 4b\n\t" \ "jmp 1b\n" \ ".previous" \ :"=m" (__dummy_lock(&(rw)->lock))) #define write_unlock(rw) \ asm volatile("lock ; btrl $31,%0":"=m" (__dummy_lock(&(rw)->lock))) #define read_lock_irq(lock) do { __cli(); read_lock(lock); } while (0) #define read_unlock_irq(lock) do { read_unlock(lock); __sti(); } while (0) #define write_lock_irq(lock) do { __cli(); write_lock(lock); } while (0) #define write_unlock_irq(lock) do { write_unlock(lock); __sti(); } while (0) #define read_lock_irqsave(lock, flags) \ do { __save_flags(flags); __cli(); read_lock(lock); } while (0) #define read_unlock_irqrestore(lock, flags) \ do { read_unlock(lock); __restore_flags(flags); } while (0) #define write_lock_irqsave(lock, flags) \ do { __save_flags(flags); __cli(); write_lock(lock); } while (0) #define write_unlock_irqrestore(lock, flags) \ do { write_unlock(lock); __restore_flags(flags); } while (0) #endif /* SMP */ #endif /* __ASM_SPINLOCK_H */