#ifndef _ASM_IA64_BITOPS_H #define _ASM_IA64_BITOPS_H /* * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang * * 02/04/00 D. Mosberger Require 64-bit alignment for bitops, per suggestion from davem */ #include /* * These operations need to be atomic. The address must be (at least) * 32-bit aligned. Note that there are driver (e.g., eepro100) which * use these operations to operate on hw-defined data-structures, so * we can't easily change these operations to force a bigger * alignment. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ extern __inline__ void set_bit (int nr, volatile void *addr) { __u32 bit, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); bit = 1 << (nr & 31); do { CMPXCHG_BUGCHECK(m); old = *m; new = old | bit; } while (cmpxchg_acq(m, old, new) != old); } extern __inline__ void clear_bit (int nr, volatile void *addr) { __u32 mask, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); mask = ~(1 << (nr & 31)); do { CMPXCHG_BUGCHECK(m); old = *m; new = old & mask; } while (cmpxchg_acq(m, old, new) != old); } extern __inline__ void change_bit (int nr, volatile void *addr) { __u32 bit, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); bit = (1 << (nr & 31)); do { CMPXCHG_BUGCHECK(m); old = *m; new = old ^ bit; } while (cmpxchg_acq(m, old, new) != old); } extern __inline__ int test_and_set_bit (int nr, volatile void *addr) { __u32 bit, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); bit = 1 << (nr & 31); do { CMPXCHG_BUGCHECK(m); old = *m; new = old | bit; } while (cmpxchg_acq(m, old, new) != old); return (old & bit) != 0; } extern __inline__ int test_and_clear_bit (int nr, volatile void *addr) { __u32 mask, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); mask = ~(1 << (nr & 31)); do { CMPXCHG_BUGCHECK(m); old = *m; new = old & mask; } while (cmpxchg_acq(m, old, new) != old); return (old & ~mask) != 0; } extern __inline__ int test_and_change_bit (int nr, volatile void *addr) { __u32 bit, old, new; volatile __u32 *m; CMPXCHG_BUGCHECK_DECL m = (volatile __u32 *) addr + (nr >> 5); bit = (1 << (nr & 31)); do { CMPXCHG_BUGCHECK(m); old = *m; new = old ^ bit; } while (cmpxchg_acq(m, old, new) != old); return (old & bit) != 0; } extern __inline__ int test_bit (int nr, volatile void *addr) { return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31)); } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ extern inline unsigned long ffz (unsigned long x) { unsigned long result; __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (x & (~x - 1))); return result; } #ifdef __KERNEL__ /* * Find the most significant bit that is set (undefined if no bit is * set). */ static inline unsigned long ia64_fls (unsigned long x) { double d = x; long exp; __asm__ ("getf.exp %0=%1" : "=r"(exp) : "f"(d)); return exp - 0xffff; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ #define ffs(x) __builtin_ffs(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ extern __inline__ unsigned long hweight64 (unsigned long x) { unsigned long result; __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (x)); return result; } #define hweight32(x) hweight64 ((x) & 0xfffffffful) #define hweight16(x) hweight64 ((x) & 0xfffful) #define hweight8(x) hweight64 ((x) & 0xfful) #endif /* __KERNEL__ */ /* * Find next zero bit in a bitmap reasonably efficiently.. */ extern inline int find_next_zero_bit (void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (64-offset); if (size < 64) goto found_first; if (~tmp) goto found_middle; size -= 64; result += 64; } while (size & ~63UL) { if (~(tmp = *(p++))) goto found_middle; result += 64; size -= 64; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } /* * The optimizer actually does good code for this case.. */ #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) #ifdef __KERNEL__ #define ext2_set_bit test_and_set_bit #define ext2_clear_bit test_and_clear_bit #define ext2_test_bit test_bit #define ext2_find_first_zero_bit find_first_zero_bit #define ext2_find_next_zero_bit find_next_zero_bit /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _ASM_IA64_BITOPS_H */