#ifndef _ASM_IA64_IO_H #define _ASM_IA64_IO_H /* * This file contains the definitions for the emulated IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated to * (a) handle it all in a way that makes gcc able to optimize it as * well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang * Copyright (C) 1999 Asit Mallick * Copyright (C) 1999 Don Dugger */ /* We don't use IO slowdowns on the ia64, but.. */ #define __SLOW_DOWN_IO do { } while (0) #define SLOW_DOWN_IO do { } while (0) #define __IA64_UNCACHED_OFFSET 0xc000000000000000 /* region 6 */ #define IO_SPACE_LIMIT 0xffff # ifdef __KERNEL__ #include #include /* * Change virtual addresses to physical addresses and vv. */ static inline unsigned long virt_to_phys (volatile void *address) { return (unsigned long) address - PAGE_OFFSET; } static inline void* phys_to_virt(unsigned long address) { return (void *) (address + PAGE_OFFSET); } #define bus_to_virt phys_to_virt #define virt_to_bus virt_to_phys # else /* !KERNEL */ # endif /* !KERNEL */ /* * Memory fence w/accept. This should never be used in code that is * not IA-64 specific. */ #define __ia64_mf_a() __asm__ __volatile__ ("mf.a" ::: "memory") extern inline const unsigned long __ia64_get_io_port_base (void) { unsigned long addr; __asm__ ("mov %0=ar.k0;;" : "=r"(addr)); return __IA64_UNCACHED_OFFSET | addr; } extern inline void* __ia64_mk_io_addr (unsigned long port) { const unsigned long io_base = __ia64_get_io_port_base(); unsigned long addr; addr = io_base | ((port >> 2) << 12) | (port & 0xfff); return (void *) addr; } /* * For the in/out instructions, we need to do: * * o "mf" _before_ doing the I/O access to ensure that all prior * accesses to memory occur before the I/O access * o "mf.a" _after_ doing the I/O access to ensure that the access * has completed before we're doing any other I/O accesses * * The former is necessary because we might be doing normal (cached) memory * accesses, e.g., to set up a DMA descriptor table and then do an "outX()" * to tell the DMA controller to start the DMA operation. The "mf" ahead * of the I/O operation ensures that the DMA table is correct when the I/O * access occurs. * * The mf.a is necessary to ensure that all I/O access occur in program * order. --davidm 99/12/07 */ extern inline unsigned int __inb (unsigned long port) { volatile unsigned char *addr = __ia64_mk_io_addr(port); unsigned char ret; ret = *addr; __ia64_mf_a(); return ret; } extern inline unsigned int __inw (unsigned long port) { volatile unsigned short *addr = __ia64_mk_io_addr(port); unsigned short ret; ret = *addr; __ia64_mf_a(); return ret; } extern inline unsigned int __inl (unsigned long port) { volatile unsigned int *addr = __ia64_mk_io_addr(port); unsigned int ret; ret = *addr; __ia64_mf_a(); return ret; } extern inline void __insb (unsigned long port, void *dst, unsigned long count) { volatile unsigned char *addr = __ia64_mk_io_addr(port); unsigned char *dp = dst; __ia64_mf_a(); while (count--) { *dp++ = *addr; } __ia64_mf_a(); return; } extern inline void __insw (unsigned long port, void *dst, unsigned long count) { volatile unsigned short *addr = __ia64_mk_io_addr(port); unsigned short *dp = dst; __ia64_mf_a(); while (count--) { *dp++ = *addr; } __ia64_mf_a(); return; } extern inline void __insl (unsigned long port, void *dst, unsigned long count) { volatile unsigned int *addr = __ia64_mk_io_addr(port); unsigned int *dp = dst; __ia64_mf_a(); while (count--) { *dp++ = *addr; } __ia64_mf_a(); return; } extern inline void __outb (unsigned char val, unsigned long port) { volatile unsigned char *addr = __ia64_mk_io_addr(port); *addr = val; __ia64_mf_a(); } extern inline void __outw (unsigned short val, unsigned long port) { volatile unsigned short *addr = __ia64_mk_io_addr(port); *addr = val; __ia64_mf_a(); } extern inline void __outl (unsigned int val, unsigned long port) { volatile unsigned int *addr = __ia64_mk_io_addr(port); *addr = val; __ia64_mf_a(); } extern inline void __outsb (unsigned long port, const void *src, unsigned long count) { volatile unsigned char *addr = __ia64_mk_io_addr(port); const unsigned char *sp = src; while (count--) { *addr = *sp++; } __ia64_mf_a(); return; } extern inline void __outsw (unsigned long port, const void *src, unsigned long count) { volatile unsigned short *addr = __ia64_mk_io_addr(port); const unsigned short *sp = src; while (count--) { *addr = *sp++; } __ia64_mf_a(); return; } extern inline void __outsl (unsigned long port, void *src, unsigned long count) { volatile unsigned int *addr = __ia64_mk_io_addr(port); const unsigned int *sp = src; while (count--) { *addr = *sp++; } __ia64_mf_a(); return; } #define inb __inb #define inw __inw #define inl __inl #define insb __insb #define insw __insw #define insl __insl #define outb __outb #define outw __outw #define outl __outl #define outsb __outsb #define outsw __outsw #define outsl __outsl /* * The address passed to these functions are ioremap()ped already. */ extern inline unsigned char __readb (void *addr) { return *(volatile unsigned char *)addr; } extern inline unsigned short __readw (void *addr) { return *(volatile unsigned short *)addr; } extern inline unsigned int __readl (void *addr) { return *(volatile unsigned int *) addr; } extern inline unsigned long __readq (void *addr) { return *(volatile unsigned long *) addr; } extern inline void __writeb (unsigned char val, void *addr) { *(volatile unsigned char *) addr = val; } extern inline void __writew (unsigned short val, void *addr) { *(volatile unsigned short *) addr = val; } extern inline void __writel (unsigned int val, void *addr) { *(volatile unsigned int *) addr = val; } extern inline void __writeq (unsigned long val, void *addr) { *(volatile unsigned long *) addr = val; } #define readb(a) __readb((void *)(a)) #define readw(a) __readw((void *)(a)) #define readl(a) __readl((void *)(a)) #define readq(a) __readqq((void *)(a)) #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define __raw_readq readq #define writeb(v,a) __writeb((v), (void *) (a)) #define writew(v,a) __writew((v), (void *) (a)) #define writel(v,a) __writel((v), (void *) (a)) #define writeq(v,a) __writeq((v), (void *) (a)) #define __raw_writeb writeb #define __raw_writew writew #define __raw_writeq writeq #ifndef inb_p # define inb_p inb #endif #ifndef inw_p # define inw_p inw #endif #ifndef inl_p # define inl_p inl #endif #ifndef outb_p # define outb_p outb #endif #ifndef outw_p # define outw_p outw #endif #ifndef outl_p # define outl_p outl #endif /* * An "address" in IO memory space is not clearly either an integer * or a pointer. We will accept both, thus the casts. * * On ia-64, we access the physical I/O memory space through the * uncached kernel region. */ static inline void * ioremap (unsigned long offset, unsigned long size) { return (void *) (__IA64_UNCACHED_OFFSET | (offset)); } static inline void iounmap (void *addr) { } #define ioremap_nocache(o,s) ioremap(o,s) # ifdef __KERNEL__ /* * String version of IO memory access ops: */ extern void __ia64_memcpy_fromio (void *, unsigned long, long); extern void __ia64_memcpy_toio (unsigned long, void *, long); extern void __ia64_memset_c_io (unsigned long, unsigned long, long); #define memcpy_fromio(to,from,len) \ __ia64_memcpy_fromio((to),(unsigned long)(from),(len)) #define memcpy_toio(to,from,len) \ __ia64_memcpy_toio((unsigned long)(to),(from),(len)) #define memset_io(addr,c,len) \ __ia64_memset_c_io((unsigned long)(addr),0x0101010101010101UL*(u8)(c),(len)) #define __HAVE_ARCH_MEMSETW_IO #define memsetw_io(addr,c,len) \ _memset_c_io((unsigned long)(addr),0x0001000100010001UL*(u16)(c),(len)) /* * XXX - We don't have csum_partial_copy_fromio() yet, so we cheat here and * just copy it. The net code will then do the checksum later. Presently * only used by some shared memory 8390 Ethernet cards anyway. */ #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) #if 0 /* * XXX this is the kind of legacy stuff we want to get rid of with IA-64... --davidm 99/12/02 */ /* * This is used for checking BIOS signatures. It's not clear at all * why this is here. This implementation seems to be the same on * all architectures. Strange. */ static inline int check_signature (unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } #define RTC_PORT(x) (0x70 + (x)) #define RTC_ALWAYS_BCD 0 #endif /* * The caches on some architectures aren't DMA-coherent and have need * to handle this in software. There are two types of operations that * can be applied to dma buffers. * * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * * - dma_cache_wback(start, size) makes caches and memory coherent * by writing the content of the caches back to memory, if necessary * (cache flush). * * - dma_cache_wback_inv(start, size) Like dma_cache_wback() but the * function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * * Fortunately, the IA-64 architecture mandates cache-coherent DMA, so * these functions can be implemented as no-ops. */ #define dma_cache_inv(_start,_size) do { } while (0) #define dma_cache_wback(_start,_size) do { } while (0) #define dma_cache_wback_inv(_start,_size) do { } while (0) # endif /* __KERNEL__ */ #endif /* _ASM_IA64_IO_H */