#ifndef _ASM_IA64_MMU_CONTEXT_H #define _ASM_IA64_MMU_CONTEXT_H /* * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang */ #include #include #include /* * Routines to manage the allocation of task context numbers. Task * context numbers are used to reduce or eliminate the need to perform * TLB flushes due to context switches. Context numbers are * implemented using ia-64 region ids. Since ia-64 TLBs do not * guarantee that the region number is checked when performing a TLB * lookup, we need to assign a unique region id to each region in a * process. We use the least significant three bits in a region id * for this purpose. On processors where the region number is checked * in TLB lookups, we can get back those two bits by defining * CONFIG_IA64_TLB_CHECKS_REGION_NUMBER. The macro * IA64_REGION_ID_BITS gives the number of bits in a region id. The * architecture manual guarantees this number to be in the range * 18-24. * * Copyright (C) 1998 David Mosberger-Tang */ #define IA64_REGION_ID_KERNEL 0 /* the kernel's region id (tlb.c depends on this being 0) */ struct ia64_ctx { spinlock_t lock; unsigned int next; /* next context number to use */ unsigned int limit; /* next >= limit => must call wrap_mmu_context() */ unsigned int max_ctx; /* max. context value supported by all CPUs */ }; extern struct ia64_ctx ia64_ctx; extern void wrap_mmu_context (struct mm_struct *mm); static inline void enter_lazy_tlb (struct mm_struct *mm, struct task_struct *tsk, unsigned cpu) { } static inline unsigned long ia64_rid (unsigned long context, unsigned long region_addr) { return context << 3 | (region_addr >> 61); } static inline void get_new_mmu_context (struct mm_struct *mm) { spin_lock(&ia64_ctx.lock); { if (ia64_ctx.next >= ia64_ctx.limit) wrap_mmu_context(mm); mm->context = ia64_ctx.next++; } spin_unlock(&ia64_ctx.lock); } static inline void get_mmu_context (struct mm_struct *mm) { /* check if our ASN is of an older generation and thus invalid: */ if (mm->context == 0) get_new_mmu_context(mm); } static inline int init_new_context (struct task_struct *p, struct mm_struct *mm) { mm->context = 0; return 0; } static inline void destroy_context (struct mm_struct *mm) { /* Nothing to do. */ } static inline void reload_context (struct mm_struct *mm) { unsigned long rid; unsigned long rid_incr = 0; unsigned long rr0, rr1, rr2, rr3, rr4; rid = mm->context << 3; /* make space for encoding the region number */ rid_incr = 1 << 8; /* encode the region id, preferred page size, and VHPT enable bit: */ rr0 = (rid << 8) | (PAGE_SHIFT << 2) | 1; rr1 = rr0 + 1*rid_incr; rr2 = rr0 + 2*rid_incr; rr3 = rr0 + 3*rid_incr; rr4 = rr0 + 4*rid_incr; ia64_set_rr(0x0000000000000000, rr0); ia64_set_rr(0x2000000000000000, rr1); ia64_set_rr(0x4000000000000000, rr2); ia64_set_rr(0x6000000000000000, rr3); ia64_set_rr(0x8000000000000000, rr4); ia64_insn_group_barrier(); ia64_srlz_i(); /* srlz.i implies srlz.d */ ia64_insn_group_barrier(); } /* * Switch from address space PREV to address space NEXT. */ static inline void activate_mm (struct mm_struct *prev, struct mm_struct *next) { /* * We may get interrupts here, but that's OK because interrupt * handlers cannot touch user-space. */ __asm__ __volatile__ ("mov ar.k7=%0" :: "r"(__pa(next->pgd))); get_mmu_context(next); reload_context(next); } #define switch_mm(prev_mm,next_mm,next_task,cpu) activate_mm(prev_mm, next_mm) #endif /* _ASM_IA64_MMU_CONTEXT_H */