#ifndef _ASM_IA64_PGTABLE_H #define _ASM_IA64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the ia-64 page table tree. * * This hopefully works with any (fixed) ia-64 page-size, as defined * in (currently 8192). * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang */ #include #include #include #include #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ /* Is ADDR a valid kernel address? */ #define kern_addr_valid(addr) ((addr) >= TASK_SIZE) /* Is ADDR a valid physical address? */ #define phys_addr_valid(addr) (((addr) & my_cpu_data.unimpl_pa_mask) == 0) /* * First, define the various bits in a PTE. Note that the PTE format * matches the VHPT short format, the firt doubleword of the VHPD long * format, and the first doubleword of the TLB insertion format. */ #define _PAGE_P (1 << 0) /* page present bit */ #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ #define _PAGE_MA_MASK (0x7 << 2) #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ #define _PAGE_PL_MASK (3 << 7) #define _PAGE_AR_R (0 << 9) /* read only */ #define _PAGE_AR_RX (1 << 9) /* read & execute */ #define _PAGE_AR_RW (2 << 9) /* read & write */ #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ #define _PAGE_AR_MASK (7 << 9) #define _PAGE_AR_SHIFT 9 #define _PAGE_A (1 << 5) /* page accessed bit */ #define _PAGE_D (1 << 6) /* page dirty bit */ #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ #define _PAGE_PROTNONE (__IA64_UL(1) << 63) #define _PFN_MASK _PAGE_PPN_MASK #define _PAGE_CHG_MASK (_PFN_MASK | _PAGE_A | _PAGE_D) #define _PAGE_SIZE_4K 12 #define _PAGE_SIZE_8K 13 #define _PAGE_SIZE_16K 14 #define _PAGE_SIZE_64K 16 #define _PAGE_SIZE_256K 18 #define _PAGE_SIZE_1M 20 #define _PAGE_SIZE_4M 22 #define _PAGE_SIZE_16M 24 #define _PAGE_SIZE_64M 26 #define _PAGE_SIZE_256M 28 #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED /* * Definitions for first level: * * PGDIR_SHIFT determines what a first-level page table entry can map. */ #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PTRS_PER_PGD (__IA64_UL(1) << (PAGE_SHIFT-3)) #define USER_PTRS_PER_PGD PTRS_PER_PGD #define FIRST_USER_PGD_NR 0 /* * Definitions for second level: * * PMD_SHIFT determines the size of the area a second-level page table * can map. */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (__IA64_UL(1) << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PTRS_PER_PMD (__IA64_UL(1) << (PAGE_SHIFT-3)) /* * Definitions for third level: */ #define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3)) /* Number of pointers that fit on a page: this will go away. */ #define PTRS_PER_PAGE (__IA64_UL(1) << (PAGE_SHIFT-3)) # ifndef __ASSEMBLY__ #include #include #include #include /* * All the normal masks have the "page accessed" bits on, as any time * they are used, the page is accessed. They are cleared only by the * page-out routines */ #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) /* * Next come the mappings that determine how mmap() protection bits * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The * _P version gets used for a private shared memory segment, the _S * version gets used for a shared memory segment with MAP_SHARED on. * In a private shared memory segment, we do a copy-on-write if a task * attempts to write to the page. */ /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ #define __P011 PAGE_READONLY /* ditto */ #define __P100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX) #define __P101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX) #define __P110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX) #define __P111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX) #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ #define __S011 PAGE_SHARED #define __S100 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_X_RX) #define __S101 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX) #define __S110 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX) #define __S111 __pgprot(_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_PL_3 | _PAGE_AR_RWX) #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) /* * Some definitions to translate between mem_map, PTEs, and page * addresses: */ /* * Given a pointer to an mem_map[] entry, return the kernel virtual * address corresponding to that page. */ #define page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) /* * Given a PTE, return the index of the mem_map[] entry corresponding * to the page frame the PTE. */ #define pte_pagenr(x) ((unsigned long) ((pte_val(x) & _PFN_MASK) >> PAGE_SHIFT)) /* * Now for some cache flushing routines. This is the kind of stuff * that can be very expensive, so try to avoid them whenever possible. */ /* Caches aren't brain-dead on the ia-64. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) #define flush_icache_range(start, end) do { } while (0) extern void ia64_flush_icache_page (unsigned long addr); #define flush_icache_page(vma,pg) \ do { \ if ((vma)->vm_flags & PROT_EXEC) \ ia64_flush_icache_page(page_address(pg)); \ } while (0) /* * Now come the defines and routines to manage and access the three-level * page table. */ /* * On some architectures, special things need to be done when setting * the PTE in a page table. Nothing special needs to be on ia-64. */ #define set_pte(ptep, pteval) (*(ptep) = (pteval)) #define VMALLOC_START (0xa000000000000000+2*PAGE_SIZE) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END 0xbfffffffffffffff /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t ia64_bad_page (void); extern pmd_t *ia64_bad_pagetable (void); #define BAD_PAGETABLE ia64_bad_pagetable() #define BAD_PAGE ia64_bad_page() /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page,pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot); \ __pte; \ }) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) #define page_pte_prot(page,prot) mk_pte(page, prot) #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) #define pte_clear(pte) (pte_val(*(pte)) = 0UL) /* pte_page() returns the "struct page *" corresponding to the PTE: */ #define pte_page(pte) (mem_map + pte_pagenr(pte)) #define pmd_set(pmdp, ptep) (pmd_val(*(pmdp)) = __pa(ptep)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!phys_addr_valid(pmd_val(pmd))) #define pmd_present(pmd) (pmd_val(pmd) != 0UL) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) #define pmd_page(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) #define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = __pa(pmdp)) #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) (!phys_addr_valid(pgd_val(pgd))) #define pgd_present(pgd) (pgd_val(pgd) != 0UL) #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) #define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) /* * The following have defined behavior only work if pte_present() is true. */ #define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) < 4) #define pte_dirty(pte) (pte_val(pte) & _PAGE_D) #define pte_young(pte) (pte_val(pte) & _PAGE_A) /* * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the * 2nd bit in the access rights: */ #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) /* * Macro to make mark a page protection value as "uncacheable". Note * that "protection" is really a misnomer here as the protection value * contains the memory attribute bits, dirty bits, and various other * bits as well. */ #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) /* * Return the region index for virtual address ADDRESS. */ extern __inline__ unsigned long rgn_index (unsigned long address) { ia64_va a; a.l = address; return a.f.reg; } /* * Return the region offset for virtual address ADDRESS. */ extern __inline__ unsigned long rgn_offset (unsigned long address) { ia64_va a; a.l = address; return a.f.off; } #define RGN_SIZE (1UL << 61) #define RGN_KERNEL 7 extern __inline__ unsigned long pgd_index (unsigned long address) { unsigned long region = address >> 61; unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); return (region << (PAGE_SHIFT - 6)) | l1index; } /* The offset in the 1-level directory is given by the 3 region bits (61..63) and the seven level-1 bits (33-39). */ extern __inline__ pgd_t* pgd_offset (struct mm_struct *mm, unsigned long address) { return mm->pgd + pgd_index(address); } /* In the kernel's mapped region we have a full 43 bit space available and completely ignore the region number (since we know its in region number 5). */ #define pgd_offset_k(addr) \ (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir,addr) \ ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* Find an entry in the third-level page table.. */ #define pte_offset(dir,addr) \ ((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void paging_init (void); /* * IA-64 doesn't have any external MMU info: the page tables contain * all the necessary information. However, we can use this macro * to pre-install (override) a PTE that we know is needed anyhow. * * Asit says that on Itanium, it is generally faster to let the VHPT * walker pick up a newly installed PTE (and VHPT misses should be * extremely rare compared to normal misses). Also, since * pre-installing the PTE has the problem that we may evict another * TLB entry needlessly because we don't know for sure whether we need * to update the iTLB or dTLB, I tend to prefer this solution, too. * Also, this avoids nasty issues with forward progress (what if the * newly installed PTE gets replaced before we return to the previous * execution context?). * */ #if 1 # define update_mmu_cache(vma,address,pte) #else # define update_mmu_cache(vma,address,pte) \ do { \ /* \ * XXX fix me!! \ * \ * It's not clear this is a win. We may end up pollute the \ * dtlb with itlb entries and vice versa (e.g., consider stack \ * pages that are normally marked executable). It would be \ * better to insert the TLB entry for the TLB cache that we \ * know needs the new entry. However, the update_mmu_cache() \ * arguments don't tell us whether we got here through a data \ * access or through an instruction fetch. Talk to Linus to \ * fix this. \ * \ * If you re-enable this code, you must disable the ptc code in \ * Entry 20 of the ivt. \ */ \ unsigned long flags; \ \ ia64_clear_ic(flags); \ ia64_itc((vma->vm_flags & PROT_EXEC) ? 0x3 : 0x2, address, pte_val(pte), PAGE_SHIFT); \ __restore_flags(flags); \ } while (0) #endif #define SWP_TYPE(entry) (((entry).val >> 1) & 0xff) #define SWP_OFFSET(entry) ((entry).val >> 9) #define SWP_ENTRY(type,offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 9) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #define module_map vmalloc #define module_unmap vfree /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define io_remap_page_range remap_page_range /* XXX is this right? */ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) # endif /* !__ASSEMBLY__ */ #endif /* _ASM_IA64_PGTABLE_H */