#ifndef _M68K_PGTABLE_H #define _M68K_PGTABLE_H #include #include #ifndef __ASSEMBLY__ #include #include /* * This file contains the functions and defines necessary to modify and use * the m68k page table tree. */ #include /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do{ \ *(pteptr) = (pteval); \ } while(0) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 25 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the m68k is configured as three-level, * so we do have PMD level physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 8 #define PTRS_PER_PGD 128 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 /* Virtual address region for use by kernel_map() */ #define KMAP_START 0xd0000000 #define KMAP_END 0xf0000000 /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END KMAP_START #endif /* __ASSEMBLY__ */ /* * Definitions for MMU descriptors */ #define _PAGE_PRESENT 0x001 #define _PAGE_SHORT 0x002 #define _PAGE_RONLY 0x004 #define _PAGE_ACCESSED 0x008 #define _PAGE_DIRTY 0x010 #define _PAGE_SUPER 0x080 /* 68040 supervisor only */ #define _PAGE_FAKE_SUPER 0x200 /* fake supervisor only on 680[23]0 */ #define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */ #define _PAGE_COW 0x800 /* implemented in software */ #define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */ #define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */ #define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */ #define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */ #define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */ /* Page protection values within PTE. */ #define SUN3_PAGE_VALID (0x80000000) #define SUN3_PAGE_WRITEABLE (0x40000000) #define SUN3_PAGE_SYSTEM (0x20000000) #define SUN3_PAGE_NOCACHE (0x10000000) #define SUN3_PAGE_ACCESSED (0x02000000) #define SUN3_PAGE_MODIFIED (0x01000000) #define _DESCTYPE_MASK 0x003 #define _CACHEMASK040 (~0x060) #define _TABLE_MASK (0xfffffe00) #define _PAGE_TABLE (_PAGE_SHORT) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE) #ifndef __ASSEMBLY__ /* This is the cache mode to be used for pages containing page descriptors for * processors >= '040. It is in pte_mknocache(), and the variable is defined * and initialized in head.S */ extern int m68k_pgtable_cachemode; /* This is the cache mode for normal pages, for supervisor access on * processors >= '040. It is used in pte_mkcache(), and the variable is * defined and initialized in head.S */ #if defined(CONFIG_060_WRITETHROUGH) extern int m68k_supervisor_cachemode; #else #define m68k_supervisor_cachemode _PAGE_CACHE040 #endif #if defined(CPU_M68040_OR_M68060_ONLY) #define mm_cachebits _PAGE_CACHE040 #elif defined(CPU_M68020_OR_M68030_ONLY) #define mm_cachebits 0 #else extern unsigned long mm_cachebits; #endif #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits) /* Alternate definitions that are compile time constants, for initializing protection_map. The cachebits are fixed later. */ #define PAGE_NONE_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) #define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) #define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED) /* * The m68k can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */ #define __P000 PAGE_NONE_C #define __P001 PAGE_READONLY_C #define __P010 PAGE_COPY_C #define __P011 PAGE_COPY_C #define __P100 PAGE_READONLY_C #define __P101 PAGE_READONLY_C #define __P110 PAGE_COPY_C #define __P111 PAGE_COPY_C #define __S000 PAGE_NONE_C #define __S001 PAGE_READONLY_C #define __S010 PAGE_SHARED_C #define __S011 PAGE_SHARED_C #define __S100 PAGE_READONLY_C #define __S101 PAGE_READONLY_C #define __S110 PAGE_SHARED_C #define __S111 PAGE_SHARED_C /* zero page used for uninitialized stuff */ extern unsigned long empty_zero_page; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<pmd; short i = 16; while (--i >= 0) { *ptr++ = ptbl; ptbl += (sizeof(pte_t)*PTRS_PER_PTE/16); } } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | __pa(pmdp); } #define __pte_page(pte) ((unsigned long)__va(pte_val(pte) & PAGE_MASK)) #define __pmd_page(pmd) ((unsigned long)__va(pmd_val(pmd) & _TABLE_MASK)) #define __pgd_page(pgd) ((unsigned long)__va(pgd_val(pgd) & _TABLE_MASK)) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & (_PAGE_PRESENT | _PAGE_FAKE_SUPER)) #define pte_clear(ptep) ({ pte_val(*(ptep)) = 0; }) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) ((pmd_val(pmd) & _DESCTYPE_MASK) != _PAGE_TABLE) #define pmd_present(pmd) (pmd_val(pmd) & _PAGE_TABLE) #define pmd_clear(pmdp) ({ \ unsigned long *__ptr = pmdp->pmd; \ short __i = 16; \ while (--__i >= 0) \ *__ptr++ = 0; \ }) #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) ((pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE) #define pgd_present(pgd) (pgd_val(pgd) & _PAGE_TABLE) #define pgd_clear(pgdp) ({ pgd_val(*pgdp) = 0; }) /* Permanent address of a page. */ #define page_address(page) ((page)->virtual) #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) #define pte_page(pte) (mem_map+((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)) #define pte_ERROR(e) \ printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return 1; } extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); } extern inline int pte_exec(pte_t pte) { return 1; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { return pte; } extern inline pte_t pte_exprotect(pte_t pte) { return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; } extern inline pte_t pte_mkread(pte_t pte) { return pte; } extern inline pte_t pte_mkexec(pte_t pte) { return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mknocache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode; return pte; } extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_supervisor_cachemode; return pte; } #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + pgd_index(address); } #define swapper_pg_dir kernel_pg_dir extern pgd_t kernel_pg_dir[128]; extern inline pgd_t * pgd_offset_k(unsigned long address) { return kernel_pg_dir + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *)__pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1)); } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address) { return (pte_t *)__pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ /* Prior to calling these routines, the page should have been flushed * from both the cache and ATC, or the CPU might not notice that the * cache setting for the page has been changed. -jskov */ static inline void nocache_page (unsigned long vaddr) { if (CPU_IS_040_OR_060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mknocache(*ptep); } } static inline void cache_page (unsigned long vaddr) { if (CPU_IS_040_OR_060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mkcache(*ptep); } } /* * Check if the addr/len goes up to the end of a physical * memory chunk. Used for DMA functions. */ #ifdef CONFIG_SINGLE_MEMORY_CHUNK /* * It makes no sense to consider whether we cross a memory boundary if * we support just one physical chunk of memory. */ extern inline int mm_end_of_chunk (unsigned long addr, int len) { return 0; } #else int mm_end_of_chunk (unsigned long addr, int len); #endif extern void kernel_set_cachemode(void *addr, unsigned long size, int cmode); /* * The m68k doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ #define SWP_TYPE(x) (((x).val >> 1) & 0xff) #define SWP_OFFSET(x) ((x).val >> 10) #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 10) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* __ASSEMBLY__ */ #define module_map vmalloc #define module_unmap vfree /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define kern_addr_valid(addr) (1) #define io_remap_page_range remap_page_range #endif /* _M68K_PGTABLE_H */