/* * include/asm-mips/bitops.h * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1994, 1995, 1996 Ralf Baechle */ #ifndef __ASM_MIPS_BITOPS_H #define __ASM_MIPS_BITOPS_H #ifdef __KERNEL__ #include #include /* * Only disable interrupt for kernel mode stuff to keep usermode stuff * that dares to use kernel include files alive. */ #define __bi_flags unsigned long flags #define __bi_cli() __cli() #define __bi_save_flags(x) __save_flags(x) #define __bi_restore_flags(x) __restore_flags(x) #else #define __bi_flags #define __bi_cli() #define __bi_save_flags(x) #define __bi_restore_flags(x) #endif /* __KERNEL__ */ /* * Note that the bit operations are defined on arrays of 32 bit sized * elements. With respect to a future 64 bit implementation it is * wrong to use long *. Use u32 * or int *. */ extern __inline__ void set_bit(int nr, void *addr); extern __inline__ void clear_bit(int nr, void *addr); extern __inline__ void change_bit(int nr, void *addr); extern __inline__ int test_and_set_bit(int nr, void *addr); extern __inline__ int test_and_clear_bit(int nr, void *addr); extern __inline__ int test_and_change_bit(int nr, void *addr); extern __inline__ int test_bit(int nr, const void *addr); #ifndef __MIPSEB__ extern __inline__ int find_first_zero_bit (void *addr, unsigned size); #endif extern __inline__ int find_next_zero_bit (void * addr, int size, int offset); extern __inline__ unsigned long ffz(unsigned long word); #if (_MIPS_ISA == _MIPS_ISA_MIPS2) || (_MIPS_ISA == _MIPS_ISA_MIPS3) || \ (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) /* * These functions for MIPS ISA > 1 are interrupt and SMP proof and * interrupt friendly */ #include /* * The following functions will only work for the R4000! */ extern __inline__ void set_bit(int nr, void *addr) { int mask, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); } while (!store_conditional(addr, mw|mask)); } extern __inline__ void clear_bit(int nr, void *addr) { int mask, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); } while (!store_conditional(addr, mw & ~mask)); } extern __inline__ void change_bit(int nr, void *addr) { int mask, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); } while (!store_conditional(addr, mw ^ mask)); } extern __inline__ int test_and_set_bit(int nr, void *addr) { int mask, retval, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); retval = (mask & mw) != 0; } while (!store_conditional(addr, mw|mask)); return retval; } extern __inline__ int test_and_clear_bit(int nr, void *addr) { int mask, retval, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); retval = (mask & mw) != 0; } while (!store_conditional(addr, mw & ~mask)); return retval; } extern __inline__ int test_and_change_bit(int nr, void *addr) { int mask, retval, mw; addr += ((nr >> 3) & ~3); mask = 1 << (nr & 0x1f); do { mw = load_linked(addr); retval = (mask & mw) != 0; } while (!store_conditional(addr, mw ^ mask)); return retval; } #else /* MIPS I */ extern __inline__ void set_bit(int nr, void * addr) { int mask; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); *a |= mask; __bi_restore_flags(flags); } extern __inline__ void clear_bit(int nr, void * addr) { int mask; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); *a &= ~mask; __bi_restore_flags(flags); } extern __inline__ void change_bit(int nr, void * addr) { int mask; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); *a ^= mask; __bi_restore_flags(flags); } extern __inline__ int test_and_set_bit(int nr, void * addr) { int mask, retval; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); retval = (mask & *a) != 0; *a |= mask; __bi_restore_flags(flags); return retval; } extern __inline__ int test_and_clear_bit(int nr, void * addr) { int mask, retval; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); retval = (mask & *a) != 0; *a &= ~mask; __bi_restore_flags(flags); return retval; } extern __inline__ int test_and_change_bit(int nr, void * addr) { int mask, retval; int *a = addr; __bi_flags; a += nr >> 5; mask = 1 << (nr & 0x1f); __bi_save_flags(flags); __bi_cli(); retval = (mask & *a) != 0; *a ^= mask; __bi_restore_flags(flags); return retval; } #undef __bi_flags #undef __bi_cli() #undef __bi_save_flags(x) #undef __bi_restore_flags(x) #endif /* MIPS I */ extern __inline__ int test_bit(int nr, const void *addr) { return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; } #ifndef __MIPSEB__ /* Little endian versions. */ extern __inline__ int find_first_zero_bit (void *addr, unsigned size) { unsigned long dummy; int res; if (!size) return 0; __asm__ (".set\tnoreorder\n\t" ".set\tnoat\n" "1:\tsubu\t$1,%6,%0\n\t" "blez\t$1,2f\n\t" "lw\t$1,(%5)\n\t" "addiu\t%5,4\n\t" #if (_MIPS_ISA == _MIPS_ISA_MIPS2) || (_MIPS_ISA == _MIPS_ISA_MIPS3) || \ (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) "beql\t%1,$1,1b\n\t" "addiu\t%0,32\n\t" #else "addiu\t%0,32\n\t" "beq\t%1,$1,1b\n\t" "nop\n\t" "subu\t%0,32\n\t" #endif #ifdef __MIPSEB__ #error "Fix this for big endian" #endif /* __MIPSEB__ */ "li\t%1,1\n" "1:\tand\t%2,$1,%1\n\t" "beqz\t%2,2f\n\t" "sll\t%1,%1,1\n\t" "bnez\t%1,1b\n\t" "add\t%0,%0,1\n\t" ".set\tat\n\t" ".set\treorder\n" "2:" : "=r" (res), "=r" (dummy), "=r" (addr) : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff), "2" (addr), "r" (size) : "$1"); return res; } extern __inline__ int find_next_zero_bit (void * addr, int size, int offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); int set = 0, bit = offset & 31, res; unsigned long dummy; if (bit) { /* * Look for zero in first byte */ #ifdef __MIPSEB__ #error "Fix this for big endian byte order" #endif __asm__(".set\tnoreorder\n\t" ".set\tnoat\n" "1:\tand\t$1,%4,%1\n\t" "beqz\t$1,1f\n\t" "sll\t%1,%1,1\n\t" "bnez\t%1,1b\n\t" "addiu\t%0,1\n\t" ".set\tat\n\t" ".set\treorder\n" "1:" : "=r" (set), "=r" (dummy) : "0" (0), "1" (1 << bit), "r" (*p) : "$1"); if (set < (32 - bit)) return set + offset; set = 32 - bit; p++; } /* * No zero yet, search remaining full bytes for a zero */ res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr)); return offset + set + res; } #endif /* !(__MIPSEB__) */ /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ extern __inline__ unsigned long ffz(unsigned long word) { unsigned int __res; unsigned int mask = 1; __asm__ ( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "move\t%0,$0\n" "1:\tand\t$1,%2,%1\n\t" "beqz\t$1,2f\n\t" "sll\t%1,1\n\t" "bnez\t%1,1b\n\t" "addiu\t%0,1\n\t" ".set\tat\n\t" ".set\treorder\n" "2:\n\t" : "=&r" (__res), "=r" (mask) : "r" (word), "1" (mask) : "$1"); return __res; } #ifdef __MIPSEB__ /* For now I steal the Sparc C versions, no need for speed, just need to * get it working. */ /* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */ extern __inline__ int find_next_zero_bit(void *addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } /* Linus sez that gcc can optimize the following correctly, we'll see if this * holds on the Sparc as it does for the ALPHA. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #endif /* (__MIPSEB__) */ /* Now for the ext2 filesystem bit operations and helper routines. */ #ifdef __MIPSEB__ extern __inline__ int ext2_set_bit(int nr,void * addr) { int mask, retval, flags; unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_flags(flags); cli(); retval = (mask & *ADDR) != 0; *ADDR |= mask; restore_flags(flags); return retval; } extern __inline__ int ext2_clear_bit(int nr, void * addr) { int mask, retval, flags; unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_flags(flags); cli(); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; restore_flags(flags); return retval; } extern __inline__ int ext2_test_bit(int nr, const void * addr) { int mask; const unsigned char *ADDR = (const unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long __swab32(unsigned long val) { return ((val>>24)|((val>>8)&0xff00)|((val<<8)&0xff0000)|(val<<24)); } extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size)); found_middle: return result + ffz(__swab32(tmp)); } #else /* !(__MIPSEB__) */ /* Native ext2 byte ordering, just collapse using defines. */ #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) #define ext2_find_next_zero_bit(addr, size, offset) \ find_next_zero_bit((addr), (size), (offset)) #endif /* !(__MIPSEB__) */ /* * Bitmap functions for the minix filesystem. * FIXME: These assume that Minix uses the native byte/bitorder. * This limits the Minix filesystem's value for data exchange very much. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __ASM_MIPS_BITOPS_H */