/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 1995 Waldorf GmbH * Copyright (C) 1994 - 2000 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2000 FSMLabs, Inc. */ #ifndef _ASM_IO_H #define _ASM_IO_H #include #include #include /* * Slowdown I/O port space accesses for antique hardware. */ #undef CONF_SLOWDOWN_IO /* * Sane hardware offers swapping of I/O space accesses in hardware; less * sane hardware forces software to fiddle with this ... */ #ifdef CONFIG_SWAP_IO_SPACE #define __ioswab8(x) (x) #define __ioswab16(x) swab16(x) #define __ioswab32(x) swab32(x) #else #define __ioswab8(x) (x) #define __ioswab16(x) (x) #define __ioswab32(x) (x) #endif /* * This file contains the definitions for the MIPS counterpart of the * x86 in/out instructions. This heap of macros and C results in much * better code than the approach of doing it in plain C. The macros * result in code that is to fast for certain hardware. On the other * side the performance of the string functions should be improved for * sake of certain devices like EIDE disks that do highspeed polled I/O. * * Ralf * * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * On MIPS I/O ports are memory mapped, so we access them using normal * load/store instructions. mips_io_port_base is the virtual address to * which all ports are being mapped. For sake of efficiency some code * assumes that this is an address that can be loaded with a single lui * instruction, so the lower 16 bits must be zero. Should be true on * on any sane architecture; generic code does not use this assumption. */ extern unsigned long mips_io_port_base; /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus * */ #define __SLOW_DOWN_IO \ __asm__ __volatile__( \ "sb\t$0,0x80(%0)" \ : : "r" (mips_io_port_base)); #ifdef CONF_SLOWDOWN_IO #ifdef REALLY_SLOW_IO #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } #else #define SLOW_DOWN_IO __SLOW_DOWN_IO #endif #else #define SLOW_DOWN_IO #endif /* * Change virtual addresses to physical addresses and vv. * These are trivial on the 1:1 Linux/MIPS mapping */ extern inline unsigned long virt_to_phys(volatile void * address) { return PHYSADDR(address); } extern inline void * phys_to_virt(unsigned long address) { return (void *)KSEG0ADDR(address); } extern void * ioremap(unsigned long phys_addr, unsigned long size); extern void iounmap(void *addr); /* * IO bus memory addresses are also 1:1 with the physical address */ extern inline unsigned long virt_to_bus(volatile void * address) { return PHYSADDR(address); } extern inline void * bus_to_virt(unsigned long address) { return (void *)KSEG0ADDR(address); } /* * isa_slot_offset is the address where E(ISA) busaddress 0 is is mapped * for the processor. */ extern unsigned long isa_slot_offset; /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. * * On MIPS, we have the whole physical address space mapped at all * times, so "ioremap()" and "iounmap()" do not need to do anything. * (This isn't true for all machines but we still handle these cases * with wired TLB entries anyway ...) * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. */ extern inline void * ioremap(unsigned long offset, unsigned long size) { return (void *) KSEG1ADDR(offset); } /* * This one maps high address device memory and turns off caching for that area. * it's useful if some control registers are in such an area and write combining * or read caching is not desirable: */ extern inline void * ioremap_nocache (unsigned long offset, unsigned long size) { return (void *) KSEG1ADDR(offset); } extern inline void iounmap(void *addr) { } /* * XXX We need system specific versions of these to handle EISA address bits * 24-31 on SNI. * XXX more SNI hacks. */ #define readb(addr) (*(volatile unsigned char *)(addr)) #define readw(addr) __ioswab16((*(volatile unsigned short *)(addr))) #define readl(addr) __ioswab32((*(volatile unsigned int *)(addr))) #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define writeb(b,addr) (*(volatile unsigned char *)(addr)) = (b) #define writew(b,addr) (*(volatile unsigned short *)(addr)) = (__ioswab16(b)) #define writel(b,addr) (*(volatile unsigned int *)(addr)) = (__ioswab32(b)) #define __raw_writeb writeb #define __raw_writew writew #define __raw_writel writel #define memset_io(a,b,c) memset((void *)(a),(b),(c)) #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) /* END SNI HACKS ... */ /* * ISA space is 'always mapped' on currently supported MIPS systems, no need * to explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char *)(PAGE_OFFSET)) #define isa_readb(a) readb(a) #define isa_readw(a) readw(a) #define isa_readl(a) readl(a) #define isa_writeb(b,a) writeb(b,a) #define isa_writew(w,a) writew(w,a) #define isa_writel(l,a) writel(l,a) #define isa_memset_io(a,b,c) memset_io((a),(b),(c)) #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),(b),(c)) #define isa_memcpy_toio(a,b,c) memcpy_toio((a),(b),(c)) /* * We don't have csum_partial_copy_fromio() yet, so we cheat here and * just copy it. The net code will then do the checksum later. */ #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d)) static inline int check_signature(unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } #define isa_check_signature(io, s, l) check_signature(i,s,l) /* * Talk about misusing macros.. */ #define __OUT1(s) \ extern inline void __out##s(unsigned int value, unsigned int port) { #define __OUT2(m) \ __asm__ __volatile__ ("s" #m "\t%0,%1(%2)" #define __OUT(m,s,w) \ __OUT1(s) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); } \ __OUT1(s##c) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); } \ __OUT1(s##_p) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); \ SLOW_DOWN_IO; } \ __OUT1(s##c_p) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); \ SLOW_DOWN_IO; } #define __IN1(t,s) \ extern __inline__ t __in##s(unsigned int port) { t _v; /* * Required nops will be inserted by the assembler */ #define __IN2(m) \ __asm__ __volatile__ ("l" #m "\t%0,%1(%2)" #define __IN(t,m,s,w) \ __IN1(t,s) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); return __ioswab##w(_v); } \ __IN1(t,s##c) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); return __ioswab##w(_v); } \ __IN1(t,s##_p) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); SLOW_DOWN_IO; return __ioswab##w(_v); } \ __IN1(t,s##c_p) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); SLOW_DOWN_IO; return __ioswab##w(_v); } #define __INS1(s) \ extern inline void __ins##s(unsigned int port, void * addr, unsigned long count) { #define __INS2(m) \ if (count) \ __asm__ __volatile__ ( \ ".set\tnoreorder\n\t" \ ".set\tnoat\n" \ "1:\tl" #m "\t$1,%4(%5)\n\t" \ "subu\t%1,1\n\t" \ "s" #m "\t$1,(%0)\n\t" \ "bne\t$0,%1,1b\n\t" \ "addiu\t%0,%6\n\t" \ ".set\tat\n\t" \ ".set\treorder" #define __INS(m,s,i) \ __INS1(s) __INS2(m) \ : "=r" (addr), "=r" (count) \ : "0" (addr), "1" (count), "i" (0), \ "r" (mips_io_port_base+port), "I" (i) \ : "$1");} \ __INS1(s##c) __INS2(m) \ : "=r" (addr), "=r" (count) \ : "0" (addr), "1" (count), "ir" (port), \ "r" (mips_io_port_base), "I" (i) \ : "$1");} #define __OUTS1(s) \ extern inline void __outs##s(unsigned int port, const void * addr, unsigned long count) { #define __OUTS2(m) \ if (count) \ __asm__ __volatile__ ( \ ".set\tnoreorder\n\t" \ ".set\tnoat\n" \ "1:\tl" #m "\t$1,(%0)\n\t" \ "subu\t%1,1\n\t" \ "s" #m "\t$1,%4(%5)\n\t" \ "bne\t$0,%1,1b\n\t" \ "addiu\t%0,%6\n\t" \ ".set\tat\n\t" \ ".set\treorder" #define __OUTS(m,s,i) \ __OUTS1(s) __OUTS2(m) \ : "=r" (addr), "=r" (count) \ : "0" (addr), "1" (count), "i" (0), "r" (mips_io_port_base+port), "I" (i) \ : "$1");} \ __OUTS1(s##c) __OUTS2(m) \ : "=r" (addr), "=r" (count) \ : "0" (addr), "1" (count), "ir" (port), "r" (mips_io_port_base), "I" (i) \ : "$1");} __IN(unsigned char,b,b,8) __IN(unsigned short,h,w,16) __IN(unsigned int,w,l,32) __OUT(b,b,8) __OUT(h,w,16) __OUT(w,l,32) __INS(b,b,1) __INS(h,w,2) __INS(w,l,4) __OUTS(b,b,1) __OUTS(h,w,2) __OUTS(w,l,4) /* * Note that due to the way __builtin_constant_p() works, you * - can't use it inside an inline function (it will never be true) * - you don't have to worry about side effects within the __builtin.. */ #define outb(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outbc((val),(port)) : \ __outb((val),(port))) #define inb(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inbc(port) : \ __inb(port)) #define outb_p(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outbc_p((val),(port)) : \ __outb_p((val),(port))) #define inb_p(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inbc_p(port) : \ __inb_p(port)) #define outw(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outwc((val),(port)) : \ __outw((val),(port))) #define inw(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inwc(port) : \ __inw(port)) #define outw_p(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outwc_p((val),(port)) : \ __outw_p((val),(port))) #define inw_p(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inwc_p(port) : \ __inw_p(port)) #define outl(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outlc((val),(port)) : \ __outl((val),(port))) #define inl(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inlc(port) : \ __inl(port)) #define outl_p(val,port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outlc_p((val),(port)) : \ __outl_p((val),(port))) #define inl_p(port) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inlc_p(port) : \ __inl_p(port)) #define outsb(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outsbc((port),(addr),(count)) : \ __outsb ((port),(addr),(count))) #define insb(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __insbc((port),(addr),(count)) : \ __insb((port),(addr),(count))) #define outsw(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outswc((port),(addr),(count)) : \ __outsw ((port),(addr),(count))) #define insw(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inswc((port),(addr),(count)) : \ __insw((port),(addr),(count))) #define outsl(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __outslc((port),(addr),(count)) : \ __outsl ((port),(addr),(count))) #define insl(port,addr,count) \ ((__builtin_constant_p((port)) && (port) < 32768) ? \ __inslc((port),(addr),(count)) : \ __insl((port),(addr),(count))) #define IO_SPACE_LIMIT 0xffff /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_wback(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. */ extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); #define dma_cache_wback_inv(start,size) _dma_cache_wback_inv(start,size) #define dma_cache_wback(start,size) _dma_cache_wback(start,size) #define dma_cache_inv(start,size) _dma_cache_inv(start,size) #endif /* _ASM_IO_H */